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Abstract

The causal forests algorithm is widely known as a machine learning technique that is power-

ful in drawing causal effect inferences of a treatment. Meanwhile, linear regression model as

a more statistics-based technique can also estimate treatment effects. In this study, we apply

both methods to two different datasets concerning the Romanian Baccalaureate exam out-

comes and the students’ college achievement measures to answer the following two questions.

The first one is do the two estimation methods give similar results for estimating average

treatment effects, and the second one is can causal forests generate accurate treatment effect

estimates if being trained with few observations. The empirical findings show that the two

methods can give accurate and similar estimation results if large enough datatset is uti-

lized. Moreover, when being trained with small dataset, the causal forests algorithm cannot

correctly give estimates however, it can still capture potential treatment heterogeneity.
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1 Introduction

As a machine learning technique, causal forests algorithm which extends the random forests al-

gorithm that was first developed by Breiman (2001), is widely considered to be one of the most

efficient techniques in respect of drawing causal effect inferences of a treatment. A brief under-

standing of how causal forest operates is that, the forest generates estimate for the treatment

effect by averaging the estimates produced by all the decision trees, which are grown by splitting

the data points conditionally on the predictive covariates in such a way to achieve maximum

model fit. Generally, causal forests algorithm is data-hungry.

Wager and Athey (2018) suggest that the nonparametric causal forests algorithm can generate

pointwise consistent estimate for the true treatment effect. Moreover, several other researchers

reveal the fact that the estimates are asymptotically Gaussian distributed which enables us to

formally examine the significance of those estimates: (1) potential nearest neighbors construction

introduced by Yi and Yongho (2006) and classical analysis tools proposed by Hoeffding (1948)

and Hajek (1968) indicate that estimates made by causal forests are Gaussian and unbiased;

(2) infinitesimal jackknife for random forests suggested by Efron (2014) and Wager, Hastie, and

Efron (2014) implies the way to estimate their asymptotic variance. Furthermore, Chernozhukov

et al. (2017) has established the “best linear predictor” method to investigate the accuracy of

the mean forest prediction as well as the quality of the treatment heterogeneity. Except causal

forests, another difference-in-differences (DD) strategy as a statistical method can also assess the

treatment effects. In general, one can simply represent the strategy via a linear regression model

where the dependent variable is the outcome being treated, meanwhile a dummy variable which

can indicate the existence of treatment forms part of the regressors. On the whole, the most

prominent difference between DD and causal forests approaches is that, there exists efficient

built-in algorithm in causal forests to detect treatment heterogeneity on covariates, whereas

there are no sufficient exploitable properties about the DD strategy that can imply potential

treatment heterogeneity, apart from tediously adding covariates into the regression model and

testing the significance of their coefficients.

Considering above, we will devote the bulk of our study to investigate and answer the following

two major research questions, namely (1) whether the DD and causal forests approaches would

result in similar estimates for the treatment effects (for the purpose of making extension on

the reference paper, we also devote part of this study to estimate the heterogeneous treatment

effects in the first application, we will explicate this later), (2) can causal forests algorithm
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give accurate treatment effect estimates and capture heterogeneity using small dataset however,

with large number of covariates. To that end, we will apply causal forests to two datasets. The

first one is about the Romanian Baccalaureate exam outcomes which is collected and provided

by Borcan, Lindahl, and Mitrut (2017), while the second one is about the college achievement

measures which is collected and provided by Angrist, Lang, and Oreopoulos (2009). More details

on the two applications as well as our findings are given in the next paragraph.

Initiated in 2011, a national anti-corruption campaign was launched in Romanian to fight against

the corruption in the Baccalaureate exam by two means: the first one is increasing punishment on

students and teachers caught bribing and the second one is installing cameras to monitor students

during exams. Thus, we will examine the treatment effects on the students’ Baccalaureate exam

outcomes by the “camera” treatment. To that end, we employ a dataset containing 100,000

observations that partly consist of 22 covariates. Our empirical findings show that, the causal

forests algorithm and DD strategy give rather similar results of the estimated average treatment

effects by camera such that both suggest students’ exam performance can be undermined under

the camera monitor. Moreover, results suggest that covariates such as county id, school id,

standardized ability measure and middle school GPA cause remarkable treatment heterogeneity.

In the incentive for college achievement application a SFSP programme is thought to influence

students’ college achievement, therefore, we use causal forests to estimate the treatment effects

on those achievement measures by the SFSP. The aim of this application is to study whether

causal forests algorithm can accurately estimate treatment effects as well as capturing treatment

heterogeneity with small dataset containing large number of covariates, specifically, we employ

a dataset containing 1102 observations which partly consist of 26 covariates. In brief, the results

indicate that causal forests algorithm cannot correctly generate treatment effect estimates with

few observations. Yet, it can still capture potential treatment heterogeneity if being trained

with large number of covariates.

This paper mainly focus on extensions, namely answering the two central research questions as

mentioned earlier. The replication forms a small part of this paper with the results given in

Appendix A B and C. We replicate the reference paper Borcan, Lindahl, and Mitrut (2017) by

replicating table 2, 4, and 6 from it, and we obtain the same results as the reference paper.

The remainder of this paper is arranged as follows. Section 2 will describe the data utilized in

both of the two applications. Section 3 will explicate the main methodologies which we apply

to conduct our analysis. Section 4 will show the main results of our study. Finally, in section 5

we will reveal our conclusions.
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2 Data

2.1 Data of the Romanian education system application

We use two datasets to conduct our analysis for the first application. The first one is the

administrative data provided by the Ministry of Education documenting the information of

students who enrolled at the Baccalaureate exam during the period between year 2009 and

2012. This dataset contains the exam outcomes of students especially the three that are of our

main interests, i.e., Romanian written score, Baccalaureate exam pass indicator, and overall

Baccalaureate score. Also, the “camera” treatment information is included in the data which

consists of dummy variables that equal to one if students were monitored by cameras during the

exam and zero otherwise. Moreover, it enables us to obtain students’ background information

such as gender, high school GPA, and date of birth, etc. In order to train our causal forests,

students’ poverty status is one of our primary considerations for originating heterogeneity in the

treatment effects, as the first dataset does not provide the relevant information, we therefore

utilize a second one which consists of the information on students’ eligibility for the Money for

High School (MHS) public program of financial assistance for high school students from poor

households, covering the data of students who took the Baccalaureate exam between year 2009

and 2012. The requirement for a student to be eligible for the financial assistance is that, each

household member of a student should have a gross monthly income less than 150 RON (US$45)

in the three months before the application to the MHS financial assistance. Correspondingly,

we create a dummy variable called poor, which equals to one if a student was eligible for the

financial assistance for at least one year during high school and zero otherwise. In short, we use

22 covariates in total to train our causal forests, please refer to Appendix D for more detailed

explanations of the selected covariates.

Overall, the final merged dataset consists of 731,505 observations containing the information of

students coming from 42 different counties, however, due to the computational capacity limit

of our computer when running with R, we need to effectively reduce the dataset being applied.

Therefore, we randomly select observations from the whole dataset to create a subsample as our

working dataset. Our final dataset contains 100,000 observations. Table 1 below shows some of

the main summary statistics of our working dataset.
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Table 1: Summary statistics for the working dataset of the first application.

2009 2010 2011 2012
Mean SD Mean SD Mean SD Mean SD

Baccalaureate pass indicator 0.860 0.347 0.767 0.422 0.555 0.497 0.538 0.499
Romanian written score 7.063 1.769 7.341 1.558 6.522 1.986 6.406 2.054
Overall Baccalaureate score 8.251 1.082 7.230 1.591 6.315 1.950 6.221 2.117
Romanian oral score 8.678 1.387 2.549 0.657 2.589 0.648 2.574 0.662
Middle school GPA 8.639 0.918 8.633 0.930 8.671 0.919 8.775 0.872
Standardized ability measure 0.003 0.990 0.015 0.991 0.023 0.984 0.047 0.971
Poor 0.203 0.402 0.220 0.415 0.232 0.422 0.222 0.415
Male 0.455 0.498 0.465 0.499 0.463 0.499 0.446 0.497
Rural 0.043 0.203 0.049 0.216 0.052 0.222 0.053 0.225
Theoretical track 0.509 0.500 0.485 0.500 0.506 0.500 0.548 0.498

Observations 26648 26109 24561 22682

Notes: For the main exam outcomes, the Romanian written score and overall Baccalaureate score have
a 1-10 scale, the Baccalaureate pass indicator is a dummy variable which equals to one if a student
passed the overall Baccalaureate exam and zero otherwise.

2.2 Data of the incentives for college achievement application

As mentioned earlier in the introduction section, the purpose of the incentives for college achieve-

ment application is to discover whether causal forests algorithm can perform well detecting het-

erogeneity with small number of observations while with large number of covariates. Hence,

we empoly a dataset containing 1102 observations with 26 covariates. In comparison with the

dataset of the first application which consists of 100,000 observations with 22 covariates, the

number of observations is notably smaller and number of covariates is slightly larger in the

second datatet.

We work with a dataset containing students’ information who were studying in an university

in 2005, the university was originally a commuter school. In order to explicate the functions of

different variables, we classify the variables pertained to the dataset into three categories. The

first one measures students’ college achievement, i.e., GPA, good standing and credits earned

of both first and second university year. The second one is the SFSP treatment, which is a

dummy variable that equals to one if a student received the SFSP service and zero otherwise.

The SFSP consists of two components, i.e., a service strategy known as the Student Support

Program (SSP), and an incentive strategy known as the Student Fellowship Program (SFP). The

SSP provides students with opportunities to receive a peer-advising service and a supplemental

instruction service by means of Facilitated Study Groups (FSGs). While the SFP gives students

chance to win merit scholarships for obtaining satisfactory grades in the first university year.
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Finally, the last category consists of students’ background information, e.g., age, gender, and

parents’ education levels, which we use to construct our covariates set. Totally, there are 26

covariates, please refer to Appendix E for more detailed explanations of those covariates. Table

2 below shows some of the main summary statistics of our working dataset.

Table 2: Summary statistics for the working dataset of the second application.

GPA year 1 GPA year 2 Good standing year 1 Good standing year 2 Credits earned year 1 Credits earned year 2
Mean 1.916 2.096 0.544 0.749 2.576 2.893
SD 0.849 0.877 0.498 0.434 0.817 1.224

Father’s education Mother’s education Female High school GPA Age Work
Mean 4.975 4.516 0.576 78.992 18.249 0.767
SD 2.329 2.271 0.494 4.253 0.551 0.423

Notes: GPA, good standing and credits earned are the three main college achievement measures. GPA
has a scale of 1-4, while good standing is a dummy variable which equals to one if a student is in good
standing and zero otherwise. For the father’s and mother’s education levels, they are scaled numerically
from 1 to 10. The high school GPA is calculated in a hundred mark system. “Female” and “Work” are
two dummy variables equaling to one indicating a student is female and a student planned to work
while in school separately.

3 Methodology

3.1 Difference-in-differences

We introduce the difference-in-differences (DD) strategy in this subsection. The following for-

mula which is retaken from paper Borcan, Lindahl, and Mitrut (2017) specifies the strategy:

yict = α+ βTct + γ′Xict + ϕt + θc + θc · t+ εict, (1)

where i, c, and t are the indicators for student, county and year separately. The dependent

variable yict consists of three main outcomes: (i) the standardized written Romanian language

exam score, (ii) the overall Baccalaureate exam score, and (iii) the pass indicator which equals

to one if a student passed the Baccalaureate exam and zero otherwise. Tct is one of the main

concerned variables in our research which acts as a treatment indicator that equals to one if

a student is monitored by camera during the exam and zero otherwise. Hence, the estimated

β̂ will capture the pure treatment effect by the “camera” treatment on exam outcomes which

may fluctuate over time. Regressor Xict consists of students’ background information, which

includes poverty status, study track, gender, and whether coming from a rural municipality.

The estimated results of β and γ therefore, can reveal the heterogeneous treatment effects. In
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the meantime, ϕt acts as the year dummy variable (in our research we focus on the period from

2009 to 2012), and θc is the county dummy variable. We also include θc · t as an interaction term

between the county dummies and linear time trend in our DD estimator. We replace the county

dummies with a full set of family or school dummies in some regression estimations as suggested

by Borcan, Lindahl, and Mitrut (2017). There are 25 out of 42 counties which installed camera

monitors in 2011, and all counties had the monitors installed in 2012, it is plausible that the

camera treatment implementation is county-wise. Therefore, we cluster the standard errors at

the county level (with 42 clusters).

3.2 Causal forests

This section mainly reveals how causal forests algorithm generate estimates, how to test the

accuracy of the estimates, how to test the significance of the treatment heterogeneity captured

by casual forests and, what are the asymptotic properties of those estimates. Therefore, the

remainder of this section is structured as fallows. Subsection 3.2.1 will give a brief introduction

to causal forests, for instance, how they estimate conditional average treatment effects given the

necessary assumptions; subsection 3.2.2 will reveal the asymptotic properties of causal forests

which allow us to conduct tests on the significance of the conditional average treatment effects

estimates; subsection 3.2.3 will explain how causal forests work with clusters; finally, subsec-

tion 3.2.4 will propose the indicators to ascertain whether causal forests successfully capture

heterogeneity in the conditional average treatment effects estimations.

3.2.1 An introduction to causal forests

In order to give a smooth explanation of causal forests algorithm, we first introduce the random

forests algorithm. The random forests algorithm is known as a statistical learning algorithm

which is widely used for non-parametric conditional mean estimation. Specifically, assume that

we generate a dataset (Xi, Yi) ∈ X × R, then we can use random forests to estimate µ(x) =

E [Yi|Xi = x] (equation is retaken from paper Athey, Tibshirani, and Wager (2019)). Athey,

Tibshirani, and Wager (2019) proposed that an estimate of the expectation at a specific point

Xi = x can be obtained by averaging the estimates made by all decision trees in the forest.

Generally, we grow each tree by greedy recursive partitioning the data points based on the

variables (covariates) on the nodes of the tree to form leaves, one variable at a time. In the end,

each leaf consists of a category of subsamples that are classified in a way to maximally enhance

model fit. Put differently, we grow each tree by recursively adding those axis-aligned splits to
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each tree (Athey, Tibshirani, and Wager (2019)). The following paragraph gives more details

on how random forests generate predictions of the expected value µ(x).

To begin with, assume a random forest consists of B decision trees, and Lb(x) denotes the leaf of

the b− th tree which contains the training sample x. Then, as introduced by Athey and Wager

(2019), through the following three steps the random forest can effectively make predictions:

(1) Draw a subsample Sb ⊆ {1, . . . , n} for every tree b = 1, . . . , B.

(2) Recursively split each subsample Sb, b = 1, . . . , B, and add the splits to form leaves to grow

a tree.

(3) Make predictions in the following way:

µ̂(x) =
1

B

B∑
b=1

n∑
i=1

Yi1 ({Xi ∈ Lb(x), i ∈ Sb})
|{i : Xi ∈ Lb(x), i ∈ Sb}|

. (2)

Equation 2 is retaken from paper Athey, Tibshirani, and Wager (2019). Previous study suggests

that causal forests algorithm draw causal effect inferences by using the so called “out-of-bag”

predictions which are denoted by an extra superscript −i. Consider estimating µ̂(x) in the above

equation, making an “out-of-bag” prediction means that computing µ̂(x) without using the real

observation Yi. In practice, we estimate µ̂(−i) (Xi) using only the trees b for which i /∈ Sb for

“out-of-bag” predictions.

In addition, Athey, Tibshirani, and Wager (2019) gave a different perspective about random

forests by considering it as an adaptive kernel method. As a result, we rewrite equation 2 as

follows:

µ̂(x) =

n∑
i=1

αi(x)Yi, αi(x) =
1

B

B∑
b=1

1 ({Xi ∈ Lb(x), i ∈ Sb})
|{i : Xi ∈ Lb(x), i ∈ Sb}|

. (3)

We consider αi(x) as a data-adaptive kernel, which keeps track of the frequency that the i− th

training sample falls into the leaf that includes the test point x. The above equations are retaken

from paper Athey and Wager (2019).

As mentioned earlier, variables play a crucial role in the splitting scheme, therefore, it is essential

to select the suitable variables to train the random forests such that more accurate predictions

can be made. Thus, we propose the following method to measure the importance level of a

variable ` in a decision tree T with J − 1 nodes:

I2` (T ) =
J−1∑
t=1

î2t I(v(t) = `), (4)
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where î2t denotes the approximated squared error improvement at node t, the function I() is used

to indicate that a variable v(t) is chosen at node t such that the variable maximally improve the

squared error at that node (Hastie, Tibshirani, and Friedman (2009)). Correspondingly, we use

I2` =
1

M

M∑
m=1

I2` (Tm) (5)

to calculate the importance level of variable ` in a random forest consists of M trees. Equations

4 and 5 are retaken from paper O’Neill and Weeks (2018).

We use the explanations on random forests algorithm outlined above as a starting point to

elaborate the causal forests algorithm in the rest of this section. To begin with, assume we have

a training dataset containing n i.i.d. samples, labelled by i = 1, ..., n, each of which consists

of three components, i.e., a feature vector Xi ∈ [0, 1]d, a treatment indicator Wi ∈ {0, 1} and

a response Yi ∈ R. Then we hypothesize that, for sample i, Y
(1)
i and Y

(0)
i are the potential

outcomes of the response Yi with and without the treatment, and define the conditional average

treatment effect as

τ(x) = E
[
Y

(1)
i − Y (0)

i |Xi = x
]
. (6)

Equation 6 is acquired from paper Wager and Athey (2018). The aim is to get τ(x), to this

end, we need to fit Y
(1)
i and Y

(0)
i into equation 6, yet the difficulty here is that in practice either

Y
(1)
i or Y

(0)
i can ever be observed instead of both of them. Conventionally, it is impossible to

estimate τ(x) based only on the observations (Xi, Yi,Wi). To overcome this problem, we need

to further restrict the data-generating distribution (restriction 7 is acquired from paper Wager

and Athey (2018)). Sufficiently, we can assume (i) unconfoundedness (Rosenbaum and Rubin

(1983)) in our dataset: {
Y

(0)
i , Y

(1)
i

}
⊥Wi|Xi, (7)

equation 7 explicitly states that the treatment Wi is independent of the possible outcome Yi

conditional on Xi. The assumption of unconfoundedness has the following incentives: under

the assumption of continuity, unconfoundedness effectively enables us to consider the nearby

observations in the x space as they have come from a randomized experiment, hence, making

some of the local methods such as nearest-neighbor matching consistent for τ(x) (Wager and

Athey (2018)). We denote e(x) = P [Wi|Xi = x] as propensity score and m(x) = E [Yi|Xi = x]

as expected outcome of the response Yi marginalizing over treatment. In order to obtain a

semiparametrical efficient estimator of τ , in addition we need the following assumptions other

than unconfoundedness (Athey and Wager (2019)): (ii) m̂ and ê are o
(
n−1/4

)
consistent for

9



m and e respectively in root-mean-square error; (iii) the data is independently and identically

distributed; (iv) there is overlap, that is, for some ε > 0 and all x ∈ [0, 1]d, it holds that

ε < P [Wi|Xi = x] < 1 − ε (this equation is acquired from paper Wager and Athey (2018));

(v) τ(x) = τ for all x ∈ X , that is, we assume constant of conditional average treatment effect

function. Eventually, we have the following efficient estimator of τ (Chernozhukov et al. (2018);

Robinson (1988)):

τ̂ =
1
n

∑n
i=1

(
Yi − m̂(−i) (Xi)

) (
Wi − ê(−i) (Xi)

)
1
n

∑n
i=1

(
Wi − ê(−i) (Xi)

)2 . (8)

Conventionally, we will estimate all of the results of conditional average treatment effects based

on the “out-of-bag” predictions. Equation 8 is retaken from paper Athey, Tibshirani, and Wager

(2019).

In general, equation 8 can only be used to estimate the constant treatment effect, however, as

our goal also includes heterogeneous treatment effects analysis, we now introduce an “R-learner”

objective function (Nie and Wager (2017)) which can be utilized for heterogeneous treatment

effect estimation. We retake the “R-learner” objective function from paper Athey and Wager

(2019) and represent it as follows:

τ̂(·) = argminτ

{
n∑
i=1

((
Yi − m̂(−i) (Xi)

)
− τ (Xi)

(
Wi − ê(−i) (Xi)

))2
+ Λn(τ(·))

}
, (9)

where Λn(τ(·)) is called a regularizer which is able to control the complexity of the learned

τ̂(·) function. The motivation for introducing the “R-learner” objective function, as discussed

by Athey and Wager (2019) is that, in case that the true conditional average treatment effect

function τ(·) is simpler than the propensity function e(·) or the main effect function m(·), the

optimized outcome τ̂(·) from 9 would converge faster than the estimation in which m̂(·) or ê(·)

are used to construct the objective function as in equation 8. Based on 8 and 9, we can utilize

the idea of the data-adaptive kernel in 3 to estimate treatment effects in a more advanced way.

That is, we first grow a forest to evaluate the weights αi(x) (data-adaptive kernel), then we get

the estimator as shown below (which is retaken from paper Athey and Wager (2019)):

τ̂ =

∑n
i=1 αi(x)

(
Yi − m̂(−i) (Xi)

) (
Wi − ê(−i) (Xi)

)∑n
i=1 αi(x)

(
Wi − ê(−i) (Xi)

)2 . (10)

Furthermore, there are some built-in tuning parameters in the causal forests algorithm, we

will use cross-validation on the “R-learner” objective to choose those parameters which would

effectively minimize the “out-of-bag” estimates of the objective function given in 9.
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3.2.2 Asymptotic inference of causal forests

In order to test the significance of the conditional average treatment effects, we can make use

of the asymptotic properties of causal forests. In this subsection we will reveal two valuable

asymptotic properties of causal forests concerning the consistency and asymptotic distributions

of causal forests respectively. As discussed by Wager and Athey (2018), the first property states

that the estimated treatment effect with causal forests is consistent with the true treatment

effect τ(x), which requires the following two assumptions:

(1) Both E
[
Y (0)|X = x

]
and E

[
Y (1)|X = x

]
are Lipschitz continuous,

(2) There is overlap, i.e., for some ε > 0 and all x ∈ [0, 1]d, it holds that ε < P[W = 1|X = x] <

1− ε (as discussed in section 3.2.1).

The second assumption ensures that for large enough sample size n, the treatment and control

units near any test point x will be enough to enable the local methods to work.

The second property is about the asymptotic sampling distribution of the estimated treatment

effects τ̂(x). In order to explicate this property, we utilize the potential nearest neighbors

construction introduced by Yi and Yongho (2006) and classical analysis tools established by

Hoeffding (1948) and Hajek (1968). Assume the subsample size s used to build individual

causal trees is scaled as s � nβ for some βmin < β < 1, then it holds that asymptotically the

predictions made by a causal forest are Gaussian and unbiased as specified as follows (we acquire

the following definition from paper Wager and Athey (2018)):

(τ̂(x)− τ(x))/
√

Var[τ̂(x)]⇒ N (0, 1). (11)

Furthermore, we can use the infinitesimal jackknife for random forests introduced by Efron

(2014) and Wager, Hastie, and Efron (2014) to estimate the asymptotic variance of causal

forests. The infinitesimal jackknife method requires the following two assumptions (Wager and

Athey (2018)):

(1) The number of trees B is large enough such that the Monte Carlo variability is trivial.

(2) We only measure the randomness in τ̂(x).

Once the two assumptions are satisfied, we can consistently estimate the asymptotic variance
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(we acquire its representation from paper Wager and Athey (2018)) as below:

V̂IJ(x) =
n− 1

n

(
n

n− s

)2 n∑
i=1

Cov∗ [τ̂∗b (x), N∗ib]
2 , (12)

where τ̂∗b (x) denotes the treatment effect estimated by tree b, and N∗ib ∈ {0, 1} shows if the i− th

sample is used to train tree b. The covariance in 12 is obtained for all trees b = 1, . . . , B in the

forest. Consequently, it holds that V̂IJ(x) ∼ Var[τ̂(x)].

3.2.3 Cluster analysis

Section 2.1 shows that the dataset in the Romanian education system application contains

information of students coming from 42 different counties, inspired by Athey and Wager (2019),

we implement the “cluster-robust random forests” to conduct analysis for this application in

order to get more plausible results. We denote Ci ∈ {1, . . . ,K} (K=42) as county with index i,

and Yi as the outcomes of students in county i, then we have the following estimates which we

acquire from paper Athey and Wager (2019):

µ̂k =
1

nk

∑
{i:Ai=k}

Yi, µ̂ =
1

K

K∑
k=1

µ̂k, σ̂2 =
1

K(K − 1)

K∑
k=1

(µ̂k − µ̂)2 , (13)

nk is the number of students in county k, µ̂ is the global mean and σ̂2 denotes the variance.

With clusters, we therefore accordingly adjust the running process of random forests algorithm

illustrated in section 3.2.1 (Athey and Wager (2019) in the following way. To start with, in the

first step we draw a subsample of clusters Kb ⊆ {1, . . . ,K}, and draw k random samples from

every cluster k ∈ Kb to generate Sb. Moreover, we estimate the average treatment effect τ̂ and

standard error σ̂2 in a different way (we acquire the following equations from paper Athey and

Wager (2019)):

τ̂k = 1
nk

∑
{i:Ai=k} Γ̂i, τ̂ = 1

K

∑K
k=1 τ̂k, σ̂2 = 1

K(K−1)
∑K

k=1 (τ̂k − τ̂)2,

Γ̂i = τ̂ (−i) (Xi) + Wi−ê(−i)(Xi)

ê(−i)(Xi)(1−ê(−i)(Xi))

(
Yi − m̂(−i) (Xi)−

(
Wi − ê(−i) (Xi)

)
τ̂ (−i) (Xi)

)
.

(14)

3.2.4 Inspecting treatment heterogeneity

After obtaining the estimation results of the average treatment effects, it is worth investigating

whether the trained causal forests has precisely detected treatment heterogeneity. To that end,

12



we propose a test for heterogeneity, namely the “best linear predictor” method, as established

by Chernozhukov et al. (2017), which attempts to fit the conditional average treatment effect

as a linear function of the “out-of-bag” estimates of treatment effects τ̂ (−i) (Xi). We compose

the following two synthetic predictors (which are acquired from paper Athey and Wager (2019))

based on equation 8:

Ci = τ
(
Wi − ê(−i) (Xi)

)
, (15)

Di =
(
τ̂ (−i) (Xi)− τ

)(
Wi − ê(−i) (Xi)

)
, (16)

where τ denotes the estimate of the average “out-of-bag” treatment effects. We then regress

Yi − m̂(−i) (Xi) on Ci and Di, the estimated coefficients of Ci and Di have next interpretations

respectively:

Ci: it is the absorption of the average treatment effect, hence, for Ci a coefficient of one means

that the mean forest prediction is correct.

Di: it is used to indicate the quality of the estimates of treatment heterogeneity (Athey and

Wager (2019)), a coefficient of one suggests that the causal forest has captured heterogeneity,

in other words, the treatment heterogeneity estimates are properly calibrated. One can use the

p-value of the coefficient to test the null hypothesis that heterogeneity has been successfully

captured.

Once the causal forests have captured heterogeneity in conditional average treatment effects,

we can assess the heterogeneous treatment effects. To that end, we first split our sample into

certain number of twofold subsamples based on the selected important covariates as suggested

in section 3.2.1, e.g., consider the middle school GPA covariate in the first application, we

split the entire sample into two: the first one contains observations whose middle school GPA

are above the median and the second one contains observations whose middle school GPA

are below the median. Secondly, we calculate the conditional average treatment effects of the

subsamples in each twofold subsample group, and regard them as the heterogeneous treatment

effects. Furthermore, we employ Student’s t-test to investigate whether the the two estimated

average treatment effects of each twofold subsample group are statistically the same, if the null

hypothesis of same treatment effects is rejected, we conclude that the two treatment effects are

heterogeneous.
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4 Results

4.1 Results of Romanian education system application

We demonstrate the central results of the conditional average treatment effects (CATEs) esti-

mation on the three exam outcomes in table 3 below. As marked with asterisks, all three CATEs

are significant using a significance level of 0.001, meaning that our trained causal forests are sta-

tistically accurate evaluating the CATEs. We observe that the “camera” treatment effectively

undermines students’ Baccalaureate exam performance. That is, when students are monitored

by the cameras in the exam hall, the probability for them to pass the exam is lowered by 0.086,

furthermore, their written exam scores tends to reduce by 0.216 and the overall Baccalaureate

scores would decrease by 0.487 approximately, as compared to a scenario when they are not

being monitored.

Table 3: Conditional average treatment effects on three outcomes.

Baccalaureate Pass Indicator Romanian Written Score Overall Baccalaureate Score
Conditional average treatment effect (CATE) -0.086∗∗∗ -0.216∗∗∗ -0.487∗∗∗

(0.015) (0.045) (0.061)
Conditional average treatment effect (high) -0.062∗∗∗ -0.050∗ -0.254∗∗∗

(0.013) (0.020) (0.031)
Conditional average treatment effect (low) -0.111∗∗∗ -0.391∗∗∗ -0.709∗∗∗

(0.022) (0.078) (0.092)
95% CI for the CATE (-0.115, -0.057) (-0.303, -0.129) (-0.606, -0.368)
95% CI for the difference in CATE (-0.002, 0.098) (0.184, 0.498) (0.263, 0.645)
Observations 100000 100000 100000
Number of covariates 22 22 22

Notes: In this table we show the estimated results of the average treatment effects by “camera”
treatment on the three outcomes as indicated in the first row, as well as the means of the treatment
effects which are higher and lower than the median value of the whole set of estimated treatment effects
(standard errors are in the brackets). We use ∗∗∗, ∗∗ and ∗ to indicate that a CATE is significant at a
significance level of 0.001, 0.01 and 0.05 respectively (same for table 8). For the sake of completeness,
we also include in the table the 95% confidence intervals for both the CATEs and the difference between
the the higher and lower CATE.
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Except estimating the CATEs, causal forests are also able to capture the potential treatment

heterogeneity, hence, we will focus on the heterogeneity analysis from now on. Above figures

vaguely give a first impression of existence of heterogeneity by showing strong variations ex-

hibited by CATE estimates of all three causal forests. In order to formally detect whether

the causal forests have captured potential heterogeneity in the treatment effects, we employ

calibration tests. As elaborated in table 4, the p-values indicate that the treatment effects on

the written scores and overall scores are significantly heterogeneous, whereas no evidence shows

there exists heterogeneity in the treatment effect on the pass indicator given a large p-value of

0.853. Additionally, the p-values of the omnibus tests show that the means of the “out-of-bag”

predictions of the three causal forests are correct.

Table 4: Calibration tests for heterogeneity.

Baccalaureate Pass Indicator Romanian Written Score Overall Baccalaureate Score
Di Ci Di Ci Di Ci

Value 0.222 0.973 0.954 1.015 1.142 1.002
Standard error 1.198 0.268 0.345 0.385 0.289 0.192
t-value 0.186 3.625 2.765 2.633 3.958 5.222
p-value 0.853 < 0.001∗∗∗ 0.006∗∗ 0.008∗∗ 7.581e-5∗∗∗ 1.772e-7∗∗∗

Notes: The ∗∗∗ denotes that the p value is significantly small such that the null hypothesis of the
omnibus test is rejected, with a significance level of 0.001, whereas ∗∗ corresponds to a significance level
of 0.01 (same for table 9). Please refer to section 3.2.4 for detailed explanations of coefficients Di and Ci.

After successfully discovering the existence of heterogeneity, it is worthy to ascertain which

covariates cause the heterogeneity. Table 5 below displays the selected covariates to train the

causal forests, along with their corresponding weights. Covariates are selected by the built-in

variable importance() function in the grf package. As can be seen, county id and school id are

selected by all three causal forests especially in the pass indicator, in which the two covariates

are adopted as the most important ones, totally the causal forest spends around 30% of splits

on them. The reasons for that are rather straight forward: there could exist some unobserved

school-level features that may affect the treatment effects, e.g., new study programs established

by some schools to help students to perform better in the exams when it is not possible to cheat;

as for the county level, we use it to form clusters when we train our forests since many of the

covariates used are county-level properties such as the county population and county poor rate.

Moreover, middle school GPA and standardized ability measure are also selected by all three

causal forests, particularly by the forests for the written score and overall score in which the two

covariates together possess roughly 40% split weights. Other selected covariates can be found

in the table.
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Table 5: Selected covariates for training the causal forests and their weights.

Baccalaureate Pass Indicator Romanian Written Score Overall Baccalaureate Score
selected covariates splits weighted by depth (%) selected covariates splits weighted by depth (%) selected covariates splits weighted by depth (%)

county id 17.199 midschool gpa 23.285 midschool gpa 20.389

school id 13.446 ability std 14.906 ability std 16.966

ability std 11.691 orrom 12.204 county id 14.028

county shromanian 10.204 county id 11.287 county shromanian 8.580

midschool gpa 8.618 county shromanian 8.369 orrom 6.631

county pop 8.465 school id 6.023 school id 6.089

total population 6.528 urban population 5.196 total population 6.053

urban population 6.139 total population 4.903 urban population 5.785

rep bac 5.863 county pop 5.473

Notes: The meaning of the abbreviations of the covariates in this table can be found in Appendix D.
This table shows the “selected” covariates by each causal forest, as well as the split weights on each
covariate. The more weights being assigned to a covariate, the more important the covariate is in
contributing to heterogeneity. We sort the weights in a descending order (same for table 10).

Table 6: Main heterogeneous treatment effects with t-test results.

Baccalaureate Pass Indicator Romanian Written Score Overall Baccalaureate Score
HTE test statistics HTE test statistics HTE test statistics

High midschool gpa -0.037∗∗
t-value = 358.010

-0.003
t-value = 405.570

-0.186∗∗∗
t-value = 567.200

(0.012) (0.035) (0.040)
Low midschool gpa -0.115∗∗∗

p-value <2.2e-16
-0.382∗∗∗

p-value <2.2e-16
-0.745∗∗∗

p-value <2.2e-16
(0.029) (0.115) (0.134)

High rep bac -0.018
t-value = 216.470

(0.016)
Low rep bac -0.086∗∗∗

p-value <2.2e-16
(0.024)

High ability std -0.039∗∗∗
t-value = 356.320

-0.004
t-value = 407.570

-0.188∗∗∗
t-value = 571.190

(0.012) (0.035) (0.040)
Low ability std -0.114∗∗∗

p-value <2.2e-16
-0.383∗∗∗

p-value<2.2e-16
-0.747∗∗∗

p-value <2.2e-16
(0.029) (0.116) (0.135)

Large county pop -0.089∗∗
t-value = -18.304

-0.462∗∗∗
t-value = 17.929

(0.034) (0.147)
Small county pop -0.074∗∗∗

p-value <2.2e-16
-0.481∗∗∗

p-value <2.2e-16
(0.024) (0.107)

Large total population -0.091∗∗
t-value = -17.248

-0.275∗
t-value = -16.695

-0.485∗∗∗
t-value = 20.132

(0.035) (0.117) (0.147)
Small total population -0.072∗∗

p-value <2.2e-16
-0.170

p-value <2.2e-16
-0.468∗∗∗

p-value <2.2e-16
(0.024) (0.087) (0.107)

Large urban population -0.101∗∗
t-value = -9.437

-0.290∗
t-value = -19.097

-0.540∗∗∗
t-value = 20.414

(0.034) (0.115) (0.138)
Small urban population -0.068∗∗

p-value <2.2e-16
-0.167

p-value <2.2e-16
−0.442∗∗

p-value <2.2e-16
(0.025) (0.087) (0.109)

High county shromanian -0.057∗
t-value = 25.469

-0.111
t-value = 7.252

-0.375∗∗∗
t-value = 4.119

(0.028) (0.089) (0.115)
Low county shromanian -0.094∗∗∗

p-value <2.2e-16
-0.281∗∗

p-value = 4.148e-13
-0.556∗∗∗

p-value = 3.814e-5
(0.029) (0.108) (0.132)

High orrom -0.176∗∗∗
t-value = 14.577

-0.471∗∗∗
t-value = 4.313

(0.040) (0.034)
Low orrom -0.196∗∗

p-value <2.2e-16
-0.495∗∗∗

p-value = 1.613e-5
(0.071) (0.064)

Notes: The meaning of the abbreviations of the covariates in this table can be found in Appendix D.
Furthermore, we indicate different subsamples by giving them different names, e.g., “High
midschool gpa” and “Low midschool gpa” represent the subsamples of students with middle school
GPA that is higher than the median value and lower than the median value respectively. “HTE” is
short for heterogeneous treatment effect. We use ∗∗∗, ∗∗ and ∗ to indicate that the heterogeneous
treatment effect is significant when using a significance level of 0.001, 0.01 and 0.05 respectively. (same
for table 11 and Appendix F)
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Table 6 above shows the heterogeneous treatment effects corresponding to each selected covariate

as well as test statistics of the tests for heterogeneity. Please refer to section 3.2.4 for complete

explanations on how heterogeneous treatment effects are calculated and how the tests work.

From the table we can see that all the p-values of all the tests are extremely small such that

the null hypothesis of no heterogeneity is rejected. One possible reason for that is the degrees

of freedom for all tests are quite large due to large sample size, namely 100,000.

Finally, we show the results of the comparison between treatment effects estimated by OLS

estimation and causal forest estimation (we use OLS estimation to replicate the results from

Borcan, Lindahl, and Mitrut (2017), and give the replicated outcomes in Appendix A). From

table 7 we can observe that the estimated results from two different estimation techniques are

quite similar, this further suggests that the exam outcomes are affected negatively by the camera

monitors.

Table 7: Comparison of the “camera” treatment effects between OLS estimation and causal
forests estimation.

Baccalaureate Pass Indicator Romanian Written Score Overall Baccalaureate Score
OLS estimates -0.076 -0.246 -0.430

(0.030) (0.108) (0.144)
Causal forests estimates -0.086 -0.216 -0.487

(0.015) (0.045) (0.061)

4.2 Results of incentives for college achievement application

The results from the above section has verified that causal forests algorithm is able to accurately

estimate CATEs and in the meantime capture heterogeneity when it works with large enough

number of observations. For now, we examine the results of the second application to ascertain

if we will draw the same conclusion in a scenario where causal forests are trained with much

fewer observations.

The following table shows the main results of the estimated CATEs on the three outcomes: GPA,

good standing and credits earned for the first and second university years of sampled students.

For the purpose of comparison, we also include the estimated HTEs for male and female students

in the table to keep pace with table 6 from Angrist, Lang, and Oreopoulos (2009).

Surprisingly, all the CATEs are statistically insignificant at a 0.05 significance level. On the

other hand, as for the gender HTEs, only the one concerning female students’ first year good

standing is significant at a significance level of 0.01, which numerically indicates that the SFSP

treatment affects female students’ first year good standing negatively by a level of 0.180. Thus,
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we conclude that with very few observations, causal forests algorithm cannot properly estimate

CATEs.

Table 8: Conditional average treatment effects on main outcomes.

Year 1 Year 2
All Men Women All Men Women
(1) (2) (3) (4) (5) (6)

Panel A: GPA
Conditional average treatment effect (CATE) 0.047 0.046 0.046 -0.013 -0.129 0.060

(0.098) (0.172) (0.119) (0.100) (0.188) (0.114)
95% CI for the CATE (-0.145, 0.239) (-0.291, 0.383) (-0.186, 0.278) (-0.210, 0.184) (-0.497, 0.239) (-0.163, 0.283)
Observations 1102 467 635 1102 467 635
Number of covariates 26 - - 26 - -
Panel B: good standing
Conditional average treatment effect (CATE) -0.082 0.078 -0.180∗∗ 0.010 0.021 0.002

(0.050) (0.078) (0.065) (0.030) (0.060) (0.031)
95% CI for the CATE (-0.180, 0.016) (-0.075, 0.231) (-0.306, -0.054) (-0.048, 0.068) (-0.096, 0.138) (-0.059, 0.063)
Observations 1102 467 635 1102 467 635
Number of covariates 26 - - 26 - -
Panel C: credits earned
Conditional average treatment effect (CATE) -0.148 -0.196 -0.118 -0.193 -0.147 -0.221

(0.096) (0.176) (0.112) (0.147) (0.253) (0.180)
95% CI for the CATE (-0.337, 0.041) (-0.540, 0.148) (-0.337, 0.101) (-0.482, 0.096) (-0.643, 0.349) (-0.574, 0.132)
Observations 1102 467 635 1102 467 635
Number of covariates 26 - - 26 - -

The conclusion is also in line with the results given by table 9 below, in which nearly all the

p-values of the omnibus tests for Cis suggest that the means of “out-of-bag” predictions of the

causal forests are incorrect except the one for the first year credits earned. On the other hand,

the p-values of the tests for heterogeneity imply that four out of six causal forests successfully

find heterogeneity in the CATEs, namely first year GPA and credits earned, as well as second

year good standing and credits earned. Moreover, figures 4, 5 and 6 below illustrate that there

exist variations in the estimated CATEs on the first year study outcomes, the illustrations for

the second year outcomes can be found in Appendix G.

Table 9: Calibration tests for heterogeneity.

Year 1 GPA Good standing Credits earned
Di Ci Di Ci Di Ci

Value -61.233 -1.874 -0.035 1.317 -57.546 1.461
Standard error 5.638 1.884 0.991 1.082 4.513 0.454
t-value -10.862 -0.995 -0.035 1.216 -12.750 3.216
p-value <2e-16*** 0.320 0.972 0.224 <2.2e-16*** 0.001**
Year 2 GPA Good standing Credits earned

Di Ci Di Ci Di Ci

Value 0.416 0.409 -73.217 0.827 -83.264 1.028
Standard error 1.202 5.772 7.518 1.856 8.059 0.546
t-value 0.346 0.071 -9.739 0.446 -10.332 1.882
p-value 0.729 0.944 <2e-16*** 0.656 <2e-16*** 0.060
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Figure 6: credits earned.

Table 10 shows the important covariates that are selected by each causal forest as well as their

weights. It is notable that all six causal forests select the next four covariates: high school

GPA, a dummy variable indicating whether a student has emailed an advisor, father’s education

level and mother’s education level. Accordingly, we can have the following interpretations: high

school GPA reflects a student’s academic ability, while parents’ education level genetically affect

a student’s academic ability, therefore, they both play essential roles in affecting a student’s

college achievement; also, the study advice from an advisor effectively helps students to achieve

more in college.

Table 10: Selected covariates for training the causal forests and their weights.

Year 1 GPA Good standing Credits earned
selected covariates splits weighted by depth (%) selected covariates splits weighted by depth (%) selected covariates splits weighted by depth (%)

gpa0 20.386 gpa0 28.009 gpa0 18.723
used adv 14.913 used adv 18.617 used adv 13.209
dad edn 10.796 mom edn 10.575 mom edn 12.590
lm rarely 9.649 female 7.286 dad edn 10.820
mom edn 8.701 dad edn 5.470 lm rarely 7.363
lastmin 5.374 numcourses nov1 4.305 numcourses nov1 4.465

Year 2 GPA Good standing Credits earned
selected covariates splits weighted by depth (%) selected covariates splits weighted by depth (%) selected covariates splits weighted by depth (%)

gpa0 20.774 gpa0 23.438 gpa0 20.021
used adv 14.249 used adv 14.337 used adv 16.105
dad edn 10.412 dad edn 9.847 mom edn 9.942
lm rarely 9.349 prob year1 8.596 dad edn 8.947
lastmin 7.054 mom edn 7.313 numcourses nov1 7.960

mom edn 5.857 lm rarely 5.069 lm rarely 5.263
dad2 5.302 numcourses nov1 4.522 lastmin 4.676

female 3.883

Notes: The meaning of the abbreviations of the covariates in this table can be found in Appendix E.

Based on the results from table 10, we can assess the HTEs for the selected covariates, table

11 below presents the estimates of all HTEs on the first year outcomes and their test statistics,

please refer to Appendix F for the second year results. Again, we observe that roughly all

the estimated HTEs are insignificant except the two for credits earned of the students whose

fathers’ education level is below the median and of the students who enroll fewer courses than

the median, which are significant at a significance level of 0.05, along with the one for the good
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standing of the female students which is significant at a significance level of 0.01. Meanwhile,

the p-values evidence that the HTEs of most twofold subsamples are statistically different.

Table 11: Main heterogeneous treatment effects with t-test results.

Year 1 GPA Good standing Credits earned
HTE test statistics HTE test statistics HTE test statistics

High dad edn 0.370
t-value = -1.567

-0.096
t-value = -8.447

0.159
t-value = 6.110

(0.234) (0.109) (0.180)
Low dad edn -0.062

p-value = 0.1179
-0.075

p-value = 3.44e-16
-0.250∗

p-value = 1.9e-9
(0.106) (0.056) (0.115)

High gpa0 0.103
t-value = -7.622

-0.120
t-value = -14.118

-0.154
t-value = 5.161

(0.152) (0.075) (0.124)
Low gpa0 -0.009

p-value = 5.414e-14
-0.050

p-value <2.2e-16
-0.136

p-value = 2.911e-7
(0.129) (0.068) (0.145)

High lastmin -0.109
t-value = -11.773

(0.181)
Low lastmin 0.124

p-value <2.2e-16
(0.115)

Lm rarely -0.252
t-value = -12.035

-0.348
t-value = -6.400

(0.189) (0.210)
Non-lm rarely 0.177

p-value <2.2e-16
-0.053

p-value = 5.666e-10
(0.113) (0.100)

High mom edn 0.158
t-value = -1.401

-0.151
t-value = -15.204

-0.031
t-value = -1.100

(0.158) (0.081) (0.134)
Low mom edn -0.042

p-value = 0.161
-0.038

p-value <2.2e-16
-0.252

p-value = 0.271
(0.121) (0.062) (0.132)

Used adv 0.105
t-value = -0.896

-0.137
t-value = -14.753

-0.156
t-value = 0.536

(0.143) (0.080) (0.138)
Non-used adv -0.024

p-value = 0.373
-0.021

p-value <2.2e-16
-0.140

p-value = 0.594
(0.134) (0.058) (0.136)

Male 0.078
t-value = -22.651

(0.078)
Female -0.178∗∗

p-value <2.2e-16
(0.064)

High numcourses nov1 -0.016
t-value = -0.368

0.034
t-value = -3.555

(0.085) (0.201)
Low numcourses nov1 -0.109

p-value = 0.713
-0.225∗

p-value <0.001
(0.060) (0.106)

Notes: The meaning of the abbreviations of the covariates in this table can be found in Appendix E.
Furthermore, we indicate different subsamples by giving them different names, e.g., “High dad edn” and
“Low dad edn” represent the subsamples of students whose fathers’ education level is higher than the
median and lower than the median respectively.

5 Conclusion

In this paper, we conduct empirical analysis to explore two research questions. The first one is

whether the machined-learning-based causal forests algorithm and the statistics-based difference-

in-differences strategy have similar ability to estimate conditional average treatment effects,

specifically, do they generate similar estimates of the average treatment effects. The second

one is can the causal forests algorithm correctly estimate average treatment effects meanwhile

capture the existing treatment heterogeneity when running with small dataset which contains

large number of covariates. In order to answer the two questions, we implement the causal

forests algorithm with two datasets which were collected and provided by Borcan, Lindahl, and

Mitrut (2017) and Angrist, Lang, and Oreopoulos (2009). We elaborate the two applications as

follows.
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In the first application, we try to estimate the treatment effects on students’ Baccalaureate

exam outcomes, namely Baccalaureate pass rate, Romanian written score and overall Baccalau-

reate score, by the “camera” treatment which was promoted by the national anti-corruption

campaign in Romanian. We do so by means of both the causal forests algorithm and difference-

in-differences strategy. The results show that the two different approaches give rather simi-

lar estimates of the average treatment effects which numerically suggest that students’ exam

performance would be significantly undermined by the camera monitor. Moreover, significant

treatment heterogeneity has been captured by the causal forests on the Romanian written score

and overall Baccalaureate score. Overall, county id, school id, standardized ability measure

and middle school GPA are the most important covariates in originating heterogeneity in the

treatment effects on all the three exam outcomes.

In the second application, we try to estimate the treatment effects on students’ college achieve-

ment by a SFSP treatment which was used to increase students incentives. In order to answer

the second research question, we use a dataset which contains only 1102 observations. Surpris-

ingly, we find that the average treatment effect estimates are rather incorrect in a sense that

they are all statistically insignificant. Nevertheless, treatment heterogeneity has been captured.

Specifically, there exists significant heterogeneity in the treatment effects on first year GPA and

credits earned, along with the second year good standing and credits earned.

To sum up, as a machine learning technique, causal forests algorithm can draw accurate causal

effect inferences of a treatment only when it is trained with a large dataset containing enough

observations, otherwise it may perform quite poorly. Also, the algorithm is powerful in detect-

ing potential treatment heterogeneity even if being trained with small dataset. Furthermore,

the difference-in-differences strategy can generate accurate treatment effect estimates that are

similar to the ones generated by the causal forest algorithm. However, due to the fact that

the causal forests algorithm can efficiently test the accuracy of the estimated treatment effects

as well as detecting heterogeneity, we suggest other researchers who may also want to study

causal effect inferences of a treatment to utilize the causal forests algorithm other than the DD

strategy.
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Appendices

A The effects of anti-corruption campaign on students’ exam

outcomes

Baccalaureate Pass Indicator Romanian Written Score Overall Baccalaureate Score
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Camera -0.076 -0.076 -0.095 -0.246 -0.251 -0.353 -0.430 -0.439 -0.512
(0.030) (0.029) (0.025) (0.108) (0.106) (0.106) (0.144) (0.142) (0.137)

Year 12 -0.211 -0.135 -0.148 -0.082 -0.874 -0.628 -0.716 -0.463 -0.923 -0.492 -0.579 -0.323
(0.024) (0.025) (0.023) (0.017) (0.065) (0.087) (0.078) (0.087) (0.092) (0.115) (0.106) (0.094)

Year 11 -0.211 -0.161 -0.166 -0.129 -0.875 -0.713 -0.743 -0.597 -0.943 -0.660 -0.690 -0.547
(0.022) (0.019) (0.018) (0.016) (0.058) (0.070) (0.071) (0.081) (0.088) (0.091) (0.090) (0.088)

Year 09 0.121 0.121 0.115 0.093 -0.205 -0.205 -0.237 -0.311 1.087 1.086 1.055 0.967
(0.011) (0.011) (0.011) (0.012) (0.054) (0.054) (0.057) (0.033) (0.042) (0.042) (0.040) (0.040)

Male -0.109 -0.109 -0.852 -0.852 -0.590 -0.590
(0.003) (0.003) (0.016) (0.016) (0.014) (0.013)

Poor -0.045 -0.044 -0.224 -0.222 -0.263 -0.260
(0.004) (0.004) (0.022) (0.022) (0.020) (0.020)

Theoretic track 0.318 0.318 1.458 1.457 1.559 1.559
(0.013) (0.012) (0.049) (0.049) (0.052) (0.051)

Rural municipality -0.137 -0.137 -0.662 -0.666 -0.652 -0.656
(0.020) (0.020) (0.067) (0.067) (0.085) (0.085)

County FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Controls No No Yes Yes No No Yes Yes No No Yes Yes
County FE × yearly trends No No No Yes No No No Yes No No No Yes
Observations 731,505 731,505 731,505 731,505 712,298 712,298 712,298 712,298 706,895 706,895 706,895 706,895
R2 0.102 0.103 0.239 0.253 0.060 0.060 0.275 0.289 0.204 0.206 0.417 0.432

Notes: This table replicates table 2 from Borcan, Lindahl, and Mitrut (2017). The table demonstrates
the results of the OLS estimates based on the difference-in-differences strategy. The dependent variables
include Baccalaureate exam pass rates, Romanian Written exam scores and overall Baccalaureate
scores, which are regressed on the year dummies in columns (1), (5), (9), also on the “camera”
treatment in columns (2), (6), (10), and on all the regressors including dummies for gender, poverty,
study track and municipality status in the rest columns, displaying the estimated coefficient of each
regressor, with the standard error in the parentheses underneath the coefficient. The “camera”
treatment is equal to one for student from county that implemented the CCTV monitoring in 2011 and
in 2012, and zero otherwise. The standard errors are clustered at the county level (42 clusters).
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B The heterogeneous effects of the anti-corruption campaign on

poor students

Baccalaureate Pass Indicator Romanian Written Score Overall Baccalaureate Score
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Camera -0.081 -0.088 -0.077 -0.302 -0.255 -0.131 -0.433 -0.434 -0.308
(0.026) (0.023) (0.017) (0.110) (0.082) (0.056) (0.141) (0.113) (0.076)

Poor × camera -0.062 -0.056 -0.051 -0.213 -0.257 -0.214 -0.346 -0.350 -0.306
(0.015) (0.012) (0.013) (0.063) (0.053) (0.052) (0.078) (0.061) (0.063)

Year fixed effect Yes Yes Yes Yes Yes Yes Yes Yes Yes
County fixed effect Yes Yes Yes Yes Yes Yes Yes Yes Yes
County fixed effect × yearly trends Yes Yes Yes Yes Yes Yes Yes Yes Yes
Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes
Poor interactions Yes Yes Yes Yes Yes Yes Yes Yes Yes
Ability interactions No No Yes No No Yes No No Yes
Observations 731,505 553,903 553,903 712,298 547,447 547,447 706,895 545,121 545,121
R2 0.256 0.310 0.394 0.291 0.356 0.459 0.435 0.504 0.613

Notes: This table replicates table 4 from Borcan, Lindahl, and Mitrut (2017). The table demonstrates
the results of the OLS estimates based on the difference-in-differences strategy which regress the
Baccalaureate exam pass rates, Romanian Written exam scores and overall Baccalaureate scores on the
“camera” treatment and and the interaction terms between poverty status and all variables for the
2009–2012 school years. Columns (1), (4), and (7) include only poverty status interactions with all
variables, including county fixed effects and county trends. Columns (2), (5), and (8) include only
poverty status interactions. While columns (3), (6), and (9) include all interactions between an ability
indicator and all variables, including county fixed effects and county trends. We control for students of
low ability in columns (3), (6), (9). The controls include: poor, gender, theoretical track, and rural
indicators. The standard errors are clustered at the county level (42 clusters).
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C The effects of the anti-corruption campaign on the admission

rates to elite university of poor students

Poor students in Poor students in
an elite university an elite university Poor students in top

Poor students admitted with tuition-exempt with tuition-paying 20 percent at
to elite university (top students) (good students) Baccalaureate exam

(1) (2) (3) (4) (5) (6) (7) (8)
Camera -0.025 -0.025 -0.025 -0.026 -0.025 -0.026 -0.022 -0.019

(0.013) (0.013) (0.015) (0.015) (0.031) (0.030) (0.006) (0.006)
Year 09 -0.006 -0.005 -0.007 -0.006 -0.012 -0.013 -0.032 -0.031

(0.004) (0.004) (0.006) (0.006) (0.009) (0.009) (0.004) (0.004)
Year 11 0.038 0.038 0.043 0.043 0.036 0.035 0.036 0.035

(0.011) (0.011) (0.012) (0.012) (0.028) (0.027) (0.004) (0.004)
Year 12 0.055 0.056 0.055 0.055 0.063 0.061 0.060 0.058

(0.011) (0.011) (0.012) (0.012) (0.027) (0.027) (0.005) (0.005)
Year fixed effect Yes Yes Yes Yes Yes Yes Yes Yes
County fixed effect Yes Yes Yes Yes Yes Yes Yes Yes
County fixed effect×yearly trends Yes Yes Yes Yes Yes Yes Yes Yes
Controls No Yes No Yes No Yes No Yes
Observations 15,821 15,821 10,023 10,023 5,798 5,798 142,214 142,214
R2 0.043 0.048 0.043 0.050 0.064 0.069 0.048 0.066

Notes: This table replicates table 6 from Borcan, Lindahl, and Mitrut (2017). The table demonstrates
the results of the OLS estimates based on the difference-in-differences strategy for a formation of
students admitted at an elite university in the period between 2009 and 2012. The dependent variable
from column (1) to column (6) are the poverty status of the students who were admitted into an elite
university, with dummy=1 indicating poor and dummy=0 otherwise. For column (7) and (8), the
dependent variables are the poverty status for students who scored in the top 20 percent in the working
sample of the Baccalaureate exam, with dummy=1 indicating poor and dummy=0 otherwise. The
control variables for the university admission sample are as follows: student’s gender, study track and
dummy indicator for students who took the Baccalaureate before the year of university admission;
control variables for the Baccalaureate top 20 percent sample are as follows: student’s gender, study
track, and a municipality status indicator. The standard errors are clustered at the county level (42
clusters).
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D Definitions of covariates in the Romanian education system

application

Y Three exam outcomes, i.e., the overall Baccalaureate exam score, the Romanian
written score and the dummy that equals to 1 if a student pass the exam

W The “camera” treatment, which equals to 1 if a student is monitored by CCTV during the exam
X1 school id School id
X2 county id County id
X3 male Dummy which equals to 1 if a student is male, and 0 otherwise
X4 orrom Romanian oral score
X5 rur Municipality status of the place which the student comes from, e.g., rural and non-rural
X6 yr09 Dummy for year 2009
X7 yr10 Dummy for year 2010
X8 yr11 Dummy for year 2011
X9 yr12 Dummy for year 2012
X10 poor Dummy which equals to 1 if a student is poor, and 0 otherwise
X11 midschool gpa Student’s middle school GPA
X12 theoretic Dummy which equals to 1 for theoretic study track, and 0 otherwise
X13 soros 2 Dummy which equals to 1 if a student comes from a more corrupt county and 0 otherwise
X14 rep bac How many times a student retakes Baccalaureate exam
X15 top20pcent Dummy which equals to 1 if a student scores top 20% of the overall exam and 0 otherwise
X16 top20pcent rom Dummy which equals to 1 if a student scores top 20% of the Romanian written exam and 0 otherwise
X17 ability std Standardized ability measure
X18 fam 2child Dummy which equals to 1 if a student comes from a family with 2 children and 0 otherwise
X19 county pop County population
X20 county shromanian Poor rate of a county
X21 total population Total population
X22 urban population Urban population

E Definitions of covariates in the incentives for college achieve-

ment application

Y The main achievement measures in college of samples, i.e., GPA, good standing
and credits earned of year 1 and year 2

W The SFSP treatment, which equals to 1 if a student receives the SFSP service and o otherwise
X1 age The age of a student
X2 chooseUTM Dummy which equals to 1 if a student at his first choice school and 0 otherwise
X3 composure Dummy which equals to 1 if a student completed the survey and 0 otherwise
X4 control Dummy which equals to 1 if a student is one of the controlled sample and 0 otherwise
X5 dad1 Dummy which equals to 1 if a student’s father graduated from high school and 0 otherwise
X6 dad2 Dummy which equals to 1 if a student’s father graduated from college and 0 otherwise
X7 dad edn Students’ fathers’ education level
X8 english Dummy which equals to 1 if a student’s mother tongue is English and 0 otherwise
X9 female Dummy for gender which equals to 1 for female and 0 for male
X10 finish4 Dummy which equals to 1 if a student intends to finish college study within 4 years and 0 otherwise
X11 gpa0 Student’s high school GPA
X12 graddeg Dummy which equals to 1 if a student wants more than a Bachelor degree and 0 otherwise
X13 hcom Dummy which equals to 1 if a student lives at home and 0 otherwise
X14 hsgroup Student’s high school group
X15 lastmin How often does a student leave studying until the last minute for tests and exams
X16 lm never Dummy which equals to 1 if a student never puts of studying for tests and 0 otherwise
X17 lm rarely Dummy which equals to 1 if a student rarely puts of studying for tests and 0 otherwise
X18 mom1 Dummy which equals to 1 if a student’s mother graduated from high school and 0 otherwise
X19 mom2 Dummy which equals to 1 if a student’s mother graduated from college and 0 otherwise
X20 mom edn Students’ fathers’ education level
X21 numcourses nov1 Number of courses a student enrolled as of fall 2005
X22 used adv Dummy which equals to1 if a student ever emailed an advisor and 0 otherwise
X23 used fsg Dummy which equals to 1 if a student ever attended FSGs and 0 otherwise
X24 work1 Dummy which equals to 1 if a student plans to work while in school and 0 otherwise
X25 prob year1 Dummy which equals to 1 if a student is on probation in year 1 and 0 otherwise
X26 prob year2 Dummy which equals to 1 if a student is on probation in year 2 and 0 otherwise
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F Second year heterogeneous treatment effects results of the

incentives for college achievement application

Year 2 GPA Good standing Credits earned
HTE test statistics HTE test statistics HTE test statistics

High dad edn -0.045
t-value = -17.121

-0.009
t-value = 1.316

-0.067
t-value = -0.333

(0.184) (0.048) (0.284)
Low dad edn -0.009

p-value <2.2e-16
0.014

p-value = 0.189
-0.231

p-value = 0.739
(0.117) (0.036) (0.173)

High gpa0 -0.024
t-value = -4.207

0.035
t-value = 0.325

-0.098
t-value = -1.732

(0.157) (0.033) (0.205)
Low gpa0 0.006

p-value = 2.81e-5
-0.011

p-value = 0.746
-0.280

p-value = 0.084
(0.125) (0.048) (0.211)

High lastmin -0.155
t-value = -13.473

-0.320
t-value = -2.851

(0.176) (0.238)
Low lastmin 0.065

p-value <2.2e-16
-0.113

p-value = 0.005
(0.120) (0.185)

Lm rarely -0.227
t-value = -13.040

-0.007
t-value = 1.274

-0.360
t-value = -2.905

(0.188) (0.064) (0.263)
Non-lm rarely 0.085

p-value <2.2e-16
0.017

p-value = 0.204
-0.110

p-value = 0.004
(0.117) (0.031) (0.176)

High mom edn -0.083
t-value = -15.187

0.044
t-value = -0.728

-0.055
t-value = -1.965

(0.143) (0.047) (0.221)
Low mom edn 0.043

p-value <2.2e-16
-0.019

p-value = 0.467
-0.316

p-value = 0.050
(0.135) (0.037) (0.201)

Used adv -0.042
t-value = -0.77263

0.023
t-value = -0.107

-0.248
t-value = 0.300

(0.163) (0.043) (0.246)
Non-used adv 0.020

p-value = 0.442
-0.005

p-value = 0.915
-0.139

p-value = 0.769
(0.114) (0.042) (0.162)

Male -0.121
t-value = 6.127

(0.184)
Female 0.057

p-value = 1.309e-9
(0.114)

High numcourses nov1 -0.038
t-value = -0.443

0.166
t-value = 0.699

(0.059) (0.265)
Low numcourses nov1 0.025

p-value = 0.658
-0.357∗

p-value = 0.485
(0.036) (0.180)

Dad2 -0.264
t-value = -51.336

(0.144)
Non-Dad2 0.185

p-value <2.2e-16
(0.134)

Prob year1 0.048
t-value = 0.346

(0.164)
Non-prob year1 -0.002

p-value = 0.730
(0.018)

Notes: The meaning of the abbreviations of the covariates in this table can be found in Appendix E.
Furthermore, we indicate different subsamples by giving them different names, e.g., “High dad edn” and
“Low dad edn” represent the subsamples of students whose fathers’ education level is higher than the
median and lower than the median respectively.

28



G Plots illustrating heterogeneity in CATEs in the incentives

for college achievement application (second year)
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Figure 7: GPA.
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Figure 8: good standing.
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Figure 9: credits earned.
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H R code for the Romanian education system application

1 library(grf)

2 if (packageVersion ("grf") < ’0.10.2’) {

3 warning ("This script requires grf 0.10.2 or higher ")

4 }

5 library(sandwich)

6 library(lmtest)

7 library(Hmisc)

8 library(ggplot2)

9

10 # get county id covariate

11 county_id = as.numeric(covariates$county_id)

12

13 # generate Y.forest and W.forest , and estimate Y.hat and W.hat

14 Y.forest = regression_forest(X, Y, clusters = county_id)

15 Y.hat = predict(Y.forest)$predictions

16 W.forest = regression_forest(X, W, clusters = county_id)

17 W.hat = predict(W.forest)$predictions

18

19 # grow a temporary causal forest , and get the important covraites causing heterogeneity

20 cf.raw = causal_forest(X,

21 Y,

22 W,

23 Y.hat = Y.hat ,

24 W.hat = W.hat ,

25 clusters = county_id)

26 varimp = variable_importance(cf.raw)

27 selected.idx = which(varimp > mean(varimp))

28

29 # grow the final version of a causal forest based on the selected covariates , and estimate tau hat for each observation

30 cf = causal_forest(

31 X[, selected.idx],

32 Y,

33 W,

34 Y.hat = Y.hat ,

35 W.hat = W.hat ,

36 clusters = county_id ,

37 tune.parameters = TRUE

38 )

39 tau.hat = predict(cf)$predictions

40

41 #

42 # Estimate average treatment effect (ATE)

43 #

44

45 ATE = average_treatment_effect(cf)

46 paste("95% CI for the ATE:", round(ATE[1], 3),

47 "+/-", round(qnorm(0.975) * ATE[2], 3))

48

49 #

50 # Omnibus tests for heterogeneity

51 #

52

53 test_calibration(cf)

54

55 # Compare regions with high and low estimated CATEs

56 high_effect = tau.hat > median(tau.hat)

57 ate.high = average_treatment_effect(cf , subset = high_effect)

58 ate.low = average_treatment_effect(cf, subset = !high_effect)

59 paste(

60 "95% CI for difference in ATE:",

61 round(ate.high[1] - ate.low[1], 3),

62 "+/-",
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63 round(qnorm(0.975) * sqrt(ate.high[2] ^ 2 + ate.low[2] ^ 2), 3)

64 )

65

66 #

67 # try test significance of the heterogeneity for students with high middle shool GPA and low middleshool GPA

68 #

69

70 middle_school_gpa <- covariates$midschool_gpa

71 high_gpa = middle_school_gpa > median(middle_school_gpa)

72

73 # get heterogeneous treatment effect on students with high middle shool gpa by "camera" treatment

74 hete_treatment_high_gpa = average_treatment_effect(cf, target.sample = "overlap", subset = high_gpa)

75

76 # get heterogeneous treatment effect on students with low middle shool gpa by "camera" treatment

77 hete_treatment_low_gpa = average_treatment_effect(cf, target.sample = "overlap", subset = !high_gpa)

78

79 # t-test heterogeneity in middle school gpa

80 t.test(tau.hat[high_gpa], tau.hat[! high_gpa ])

81

82 #

83 # try test the significance of the heterogeneity for students with high Oral exam score and low Oral exam score

84 #

85

86 Oral_exam_score <- covariates$orrom

87 high_Oral_exam_score = Oral_exam_score > median(Oral_exam_score)

88

89 # get heterogeneous treatment effect on students with high Oral score by "camera" treatment

90 hete_treatment_high_Oral = average_treatment_effect(cf, target.sample =

91 "overlap", subset = high_Oral_exam_score)

92 # get heterogeneous treatment effect on students with low Oral score by "camera" treatment

93 hete_treatment_low_Oral = average_treatment_effect(cf,

94 target.sample = "overlap",

95 subset = !high_Oral_exam_score)

96

97 # t-test heterogeneity in Oral score

98 t.test(tau.hat[high_Oral_exam_score], tau.hat[! high_Oral_exam_score ])

99

100 #

101 # try test the significance of the heterogeneity for male students and female students

102 #

103 gender <- covariates$male

104 male = gender > 0

105

106 # get heterogeneous treatment effect for male students by "camera" treatment

107 hete_treatment_male = average_treatment_effect(cf, target.sample = "overlap", subset = male)

108

109 # get heterogeneous treatment effect for female students by "camera" treatment

110 hete_treatment_female = average_treatment_effect(cf, target.sample = "overlap", subset = !male)

111

112 # t-test heterogeneity for male and female stuents

113 t.test(tau.hat[male], tau.hat[!male])

114

115 #

116 # try test the significance of the heterogeneity for rural and nonrural municipality

117 #

118

119 municipality_status <- covariates$rur

120 rural = municipality_status > 0

121

122 # get heterogeneous treatment effect for students from rural municipality by "camera" treatment

123 hete_treatment_rural = average_treatment_effect(cf, target.sample = "overlap", subset = rural)

124

125 # get heterogeneous treatment effect for students from nonrural municipality by "camera" treatment

126 hete_treatment_nonrural = average_treatment_effect(cf, target.sample = "overlap", subset = !rural)

127

128 # t-test heterogeneity for rural and nonrual stuents
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129 t.test(tau.hat[rural], tau.hat[!rural])

130

131 #

132 # try test the significance of the heterogeneity for poor students and nonpoor students

133 #

134

135 poverty_status <- covariates$poor

136 poor = poverty_status > 0

137

138 # get heterogeneous treatment effect for poor students by "camera" treatment

139 hete_treatment_poor = average_treatment_effect(cf, target.sample = "overlap", subset = poor)

140

141 # get heterogeneous treatment effect for nonpoor students by "camera" treatment

142 hete_treatment_nonpoor = average_treatment_effect(cf, target.sample = "overlap", subset = !poor)

143

144 # t-test heterogeneity for poor and nonpoor stuents

145 t.test(tau.hat[poor], tau.hat[!poor])

146

147 #

148 # try test the significance of the heterogeneity for students taking theoretic track and other track

149 #

150

151 study_track <- covariates$theoretic

152 theoretic = study_track > 0

153

154 # get heterogeneous treatment effect for theoretic track students by "camera" treatment

155 hete_treatment_theoretic = average_treatment_effect(cf, target.sample =

156 "overlap", subset = theoretic)

157 # get heterogeneous treatment effect for other track students by "camera" treatment

158 hete_treatment_nontheoretic = average_treatment_effect(cf, target.sample =

159 "overlap", subset = !theoretic)

160

161 # t-test heterogeneity for theoretic track students and other track students

162 t.test(tau.hat[theoretic], tau.hat[! theoretic ])

163

164 #

165 # try test the significance of the heterogeneity for students coming from more corrupt and less corrupt counties

166 #

167

168 corruption_status <- covariates$soros_2

169 more_corrupt = corruption_status > 0

170

171 # get heterogeneous treatment effect for students coming from more corrupt counties by "camera" treatment

172 hete_treatment_more_corrupt = average_treatment_effect(cf, target.sample =

173 "overlap", subset = more_corrupt)

174 # get heterogeneous treatment effect for students coming from less corrupt counties by "camera" treatment

175 hete_treatment_less_corrupt = average_treatment_effect(cf, target.sample =

176 "overlap", subset = !more_corrupt)

177

178 # t-test heterogeneity for students coming from more corrupt and less corrupt counties

179 t.test(tau.hat[more_corrupt], tau.hat[! more_corrupt ])

180

181 #

182 # try test the significance of the heterogeneity for students with high and low ability index

183 #

184

185 standardized_ability <- covariates$ability_std

186 high_ability = standardized_ability > median(standardized_ability)

187

188 # get heterogeneous treatment effect for students with high ability by "camera" treatment

189 hete_treatment_high_ability = average_treatment_effect(cf, target.sample =

190 "overlap", subset = high_ability)

191 # get heterogeneous treatment effect for students with low ability by "camera" treatment

192 hete_treatment_low_ability = average_treatment_effect(cf, target.sample =

193 "overlap", subset = !high_ability)

194
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195 # t-test heterogeneity for students with high and low ability index

196 t.test(tau.hat[high_ability], tau.hat[! high_ability ])

197

198 #

199 # try test the significance of the heterogeneity for students coming from counties with high and low populations

200 #

201

202 county_population <- covariates$county_pop

203 high_population_county = county_population > median(county_population)

204

205 # get heterogeneous treatment effect for students coming from counties with high population by "camera" treatment

206 hete_treatment_high_population_county = average_treatment_effect(cf, target.sample =

207 "overlap", subset = high_population_county)

208 # get heterogeneous treatment effect for students coming from counties with low population by "camera" treatment

209 hete_treatment_low_population_county = average_treatment_effect(cf,

210 target.sample = "overlap",

211 subset = !high_population_county)

212

213 # t-test heterogeneity for students coming from counties with different populations

214 t.test(tau.hat[high_population_county], tau.hat[! high_population_county ])

215

216 #

217 # try test the significance of the heterogeneity for students coming from areas with high and low total populations

218 #

219

220 total_population <- covariates$total_population

221 high_population_total = total_population > median(total_population)

222

223 # get heterogeneous treatment effect for students coming from areas with high total populations by "camera" treatment

224 hete_treatment_high_population_total = average_treatment_effect(cf, target.sample =

225 "overlap", subset = high_population_total)

226 # get heterogeneous treatment effect for students coming from areas with low total populations by "camera" treatment

227 hete_treatment_low_population_total = average_treatment_effect(cf,

228 target.sample = "overlap",

229 subset = !high_population_total)

230

231 # t-test heterogeneity for students coming from areas with different total populations

232 t.test(tau.hat[high_population_total], tau.hat[! high_population_total ])

233

234 #

235 # try test the significance of the heterogeneity for students coming from areas with high and low urban populations

236 #

237

238 urban_population <- covariates$urban_population

239 high_population_urban = urban_population > median(urban_population)

240

241 # get heterogeneous treatment effect for students coming from areas with high urban populations by "camera" treatment

242 hete_treatment_high_population_urban = average_treatment_effect(cf, target.sample =

243 "overlap", subset = high_population_urban)

244 # get heterogeneous treatment effect for students coming from areas with low urban populations by "camera" treatment

245 hete_treatment_low_population_urban = average_treatment_effect(cf,

246 target.sample = "overlap",

247 subset = !high_population_urban)

248

249 # t-test heterogeneity for students coming from areas with different urban populations

250 t.test(tau.hat[high_population_urban], tau.hat[! high_population_urban ])

251

252

253 #

254 # try test the significance of the heterogeneity for students coming from counties with high and low poor rates

255 #

256

257 shromanian_population <- covariates$county_shromanian

258 high_population_shromanian = shromanian_population > median(shromanian_population)

259
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260 # get heterogeneous treatment effect for students coming from areas with high shromanian populations by "camera"

treatment

261 hete_treatment_high_population_shromanian = average_treatment_effect(cf, target.sample =

262 "overlap", subset = high_population_shromanian)

263 # get heterogeneous treatment effect for students coming from areas with low shromanian populations by "camera"

treatment

264 hete_treatment_low_population_shromanian = average_treatment_effect(cf,

265 target.sample = "overlap",

266 subset = !high_population_shromanian)

267

268 # Bonferroni test heterogeneity for students coming from areas with different shromanian populations

269 t.test(tau.hat[high_population_shromanian], tau.hat[! high_population_shromanian ])

270

271

272 #

273 # try test the significance of the heterogeneity for retaking different times of exams

274 #

275

276 retake_times <- covariates$rep_bac

277 high_retake_times = retake_times > median(retake_times)

278

279 # get heterogeneous treatment effect for students coming from areas with high shromanian populations by "camera"

treatment

280 hete_treatment_high_retake_times = average_treatment_effect(cf, target.sample =

281 "overlap", subset = high_retake_times)

282 # get heterogeneous treatment effect for students coming from areas with low shromanian populations by "camera"

treatment

283 hete_treatment_low_retake_times = average_treatment_effect(cf,

284 target.sample = "overlap",

285 subset = !high_retake_times)

286

287 # t-test heterogeneity for students coming from areas with different shromanian populations

288 t.test(tau.hat[high_retake_times], tau.hat[! high_retake_times ])

289

290 #

291 # Make the CATE frequency plot

292 #

293

294 pdf(" tauhat_hist.pdf")

295 pardef = par(

296 mar = c(5, 4, 4, 2) + 0.5,

297 cex.lab = 1.5,

298 cex.axis = 1.5,

299 cex.main = 1.5,

300 cex.sub = 1.5

301 )

302 hist(tau.hat , xlab = "estimated CATE", main = "")

303 dev.off()

34



I R code for the incentives for college achievement application

1 library(grf)

2 if (packageVersion ("grf") < ’0.10.2’) {

3 warning ("This script requires grf 0.10.2 or higher ")

4 }

5 library(sandwich)

6 library(lmtest)

7 library(Hmisc)

8 library(ggplot2)

9

10

11 # train Y.forest and W.forest , and estimate Y.hat and W.hat

12 Y.forest = regression_forest(X, Y)

13 Y.hat = predict(Y.forest)$predictions

14 W.forest = regression_forest(X, W)

15 W.hat = predict(W.forest)$predictions

16

17 # grow a temporary causal forest , and get the important covraites causing heterogeneity

18 cf.raw = causal_forest(X, Y, W, Y.hat = Y.hat , W.hat = W.hat)

19 varimp = variable_importance(cf.raw)

20 selected.idx = which(varimp > mean(varimp))

21

22 # grow the final version of a causal forest based on the selected covariates , and estimate tau hat for each observation

23 cf = causal_forest(X[, selected.idx],

24 Y,

25 W,

26 Y.hat = Y.hat ,

27 W.hat = W.hat ,

28 tune.parameters = TRUE)

29 tau.hat = predict(cf)$predictions

30

31 #

32 # Estimate average treatment effect (ATE)

33 #

34

35 ATE = average_treatment_effect(cf, target.sample = "treated ")

36 paste("95% CI for the ATE:", round(ATE[1], 3),

37 "+/-", round(qnorm(0.975) * ATE[2], 3))

38

39 #

40 # Omnibus tests for heterogeneity

41 #

42 test_calibration(cf)

43

44

45 # get gender covariates

46 gender <- covariates$female

47 female <- gender > 0

48

49 # get the heterogeneous treatment effects along gender

50 hetero_female <-

51 average_treatment_effect(cf , target.sample = "treated", subset = female)

52 hetero_male <-

53 average_treatment_effect(cf , target.sample = "treated", subset = !female)

54

55 # get the 95% confidence interval of the treatment effects for female

56 paste(

57 "95% CI for the hetero_female :",

58 round(hetero_female[1], 3),

59 "+/-",

60 round(qnorm(0.975) * hetero_female[2], 3)

61 )

62
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63 # get the 95% confidence interval of the treatment effects for male

64 paste(

65 "95% CI for the hetero_male :",

66 round(hetero_male[1], 3),

67 "+/-",

68 round(qnorm(0.975) * hetero_male[2], 3)

69 )

70

71 # t-test for the significance of the heterogeneity

72 t.test(tau.hat[female], tau.hat[! female ])

73

74 #

75 # try to test significance of the heterogeneity along father ’s education level

76 #

77

78 dad_edu <- covariates$dad_edn

79 high_dad_edu <- dad_edu > median(dad_edu)

80 hete_high_dad_edu <-

81 average_treatment_effect(cf , target.sample = "treated", subset = high_dad_edu)

82 hete_low_dad_edu <-

83 average_treatment_effect(cf , target.sample = "treated", subset = !high_dad_edu)

84

85 # t-test the signigicance of the heterogeneity

86 t.test(tau.hat[high_dad_edu], tau.hat[! high_dad_edu ])

87

88 #

89 # try to test significance of the heterogeneity along students ’ high school GPA

90 #

91

92 highschool_GPA <- covariates$gpa0

93 high_GPA <- highschool_GPA > median(highschool_GPA)

94 hete_high_GPA <-

95 average_treatment_effect(cf , target.sample = "treated", subset = high_GPA)

96 hete_low_GPA <-

97 average_treatment_effect(cf , target.sample = "treated", subset = !high_GPA)

98

99 # t-test the signigicance of the heterogeneity

100 t.test(tau.hat[high_GPA], tau.hat[! high_GPA ])

101

102 #

103 # try to test significance of the heterogeneity along the lastmin covariate

104 #

105

106 lastmin <- covariates$lastmin

107 high_lastmin <- lastmin > median(lastmin)

108 hete_high_lastmin <-

109 average_treatment_effect(cf, target.sample = "treated", subset = high_lastmin)

110 hete_low_lastmin <-

111 average_treatment_effect(cf, target.sample = "treated", subset = !high_lastmin)

112

113 # t-test the signigicance of the heterogeneity

114 t.test(tau.hat[high_lastmin], tau.hat[! high_lastmin ])

115

116 #

117 # try to test significance of the heterogeneity along the lm_rarely covariate

118 #

119

120 lm_rarely <- covariates$lm_rarely

121 rarely <- lm_rarely > 0

122 hete_rarely <-

123 average_treatment_effect(cf, target.sample = "treated", subset = rarely)

124 hete_non_rarely <-

125 average_treatment_effect(cf, target.sample = "treated", subset = !rarely)

126

127 # t-test the signigicance of the heterogeneity

128 t.test(tau.hat[rarely], tau.hat[! rarely ])
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129

130 #

131 # try to test significance of the heterogeneity along mother ’s education level

132 #

133

134 mom_edu <- covariates$mom_edn

135 high_mom_edu <- mom_edu > median(mom_edu)

136 hete_high_mom_edu <-

137 average_treatment_effect(cf, target.sample = "treated", subset = high_mom_edu)

138 hete_low_mom_edu <-

139 average_treatment_effect(cf, target.sample = "treated", subset = !high_mom_edu)

140

141 # t-test the signigicance of the heterogeneity

142 t.test(tau.hat[high_mom_edu], tau.hat[! high_mom_edu ])

143

144 #

145 # try to test significance of the heterogeneity along the used_adv covariate

146 #

147

148 used_adv <- covariates$used_adv

149 used <- used_adv > 0

150 hete_used_adv <-

151 average_treatment_effect(cf, target.sample = "treated", subset = used)

152 hete_non_used_adv <-

153 average_treatment_effect(cf, target.sample = "treated", subset = !used)

154

155 # t-test the signigicance of the heterogeneity

156 t.test(tau.hat[used], tau.hat[!used])

157

158 #

159 # try to test significance of the heterogeneity along the the numcourses_nov1 covariate

160 #

161

162 numcourses_nov1 <- covariates$numcourses_nov1

163 high_numcourses_nov1 <- numcourses_nov1 > median(numcourses_nov1)

164 hete_high_numcourses_nov1 <-

165 average_treatment_effect(cf, target.sample = "treated", subset = high_numcourses_nov1)

166 hete_low_numcourses_nov1 <-

167 average_treatment_effect(cf,

168 target.sample = "treated",

169 subset = !high_numcourses_nov1)

170

171 # t-test the signigicance of the heterogeneity

172 t.test(tau.hat[high_numcourses_nov1], tau.hat[! high_numcourses_nov1])

173

174 #

175 # try to test significance of the heterogeneity along the dad2 covariate

176 #

177

178 dad2 <- covariates$dad2

179 dad_college_gra <- dad2 > 0

180 hete_dad_college_gra <-

181 average_treatment_effect(cf, target.sample = "treated", subset = dad_college_gra)

182 hete_dad_non_college_gra <-

183 average_treatment_effect(cf,

184 target.sample = "treated",

185 subset = !dad_college_gra)

186

187 # t-test the signigicance of the heterogeneity

188 t.test(tau.hat[dad_college_gra], tau.hat[! dad_college_gra ])

189

190 #

191 # try to test significance of the heterogeneity along the prob_year1 covariate

192 #

193

194 prob_fir_year <- covariates$prob_year1
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195 prob <- prob_fir_year > 0

196 hete_prob <-

197 average_treatment_effect(cf, target.sample = "treated", subset = prob)

198 hete_non_prob <-

199 average_treatment_effect(cf, target.sample = "treated", subset = !prob)

200

201 # t-test the signigicance of the heterogeneity

202 t.test(tau.hat[prob], tau.hat[!prob])

203

204 #

205 # Make the CATE frequency plot

206 #

207

208 pdf(" tauhat_hist.pdf")

209 pardef = par(

210 mar = c(5, 4, 4, 2) + 0.5,

211 cex.lab = 1.5,

212 cex.axis = 1.5,

213 cex.main = 1.5,

214 cex.sub = 1.5

215 )

216 hist(tau.hat , xlab = "estimated CATE", main = "")

217 dev.off()
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J Stata code for the replication which is provided by Borcan,

Lindahl, and Mitrut (2017), the authors of this code are:

Oana Borcan, Andreea Mitrut, Mikael Lindahl

1 *Authors: Oana Borcan , Andreea Mitrut , Mikael Lindahl

2 *Last modified: 21/06/2016

3

4 /*********************************************************************

5

6 Replication File for Tables 2, 4, 6 of Borcan , Lindahl and Mitrut (2016)

7 "Fighting Corruption in Education: What Works and Who Benefits ?"

8

9 *********************************************************************/

10

11 /*

12

13

14 Table 2:

15

16 Datasets: BAC_camera_paper_dataset_1015.dta

17

18 Additional Variables:

19

20 new_cam: treatment dummy=1 if student treated with camera surveillance

21 t: linear time trend

22 dcounty1-dcounty42: dummies for each county

23 yr09-yr12: dummy=1 for 2009, 2010, 2011 and 2012

24 cam: dummy=1 for counties treated with cameras in 2011.

25 These counties are: Arges , Alba , Bucuresti , Iasi , Bihor , Bacau , Vrancea , Giurgiu , Neamt , Prahova ,

26 Buzau , Calarasi , Caras Severin , Braila , Dolj , Galati , Brasov , Maramures ,

27 Timis , Mures , Tulcea , Dambovita , Arad , Hunedoara , Mehedinti

28 new_cam: Treatment variable. dummy=1 for counties that installed early in year 2011, and for all counties in 2012.

29

30 Table 4:

31

32 Datasets: BAC_camera_paper_dataset_1015.dta

33

34 Additional Variables:

35

36 poor_new_cam: poor interacted with camera treatment

37 poor09-poor12: poor interacted with year dummies

38 poor_male: poor interacted with male

39 poor_theoretic: poor interacted with theoretical track

40 poor_rur: poor interacted with rural

41 poort1-poort42: poor inteacted with county specific linear time trends

42 poordcounty1-poordcounty42: poor interacted with county indicators

43 lo_new_cam: low ability interacted with camera treatment

44 lo09-lo12: low ability interacted with year dummies

45 lo_male: low ability interacted with male

46 lo_theoretic: low ability interacted with theoretical track

47 lo_rur: low ability interacted with rural

48 lo_poor: low ability interacted with poor

49 lot1-lot42: low ability inteacted with county specific linear time trends

50 lodcounty1-lodcounty42: low ability interacted with county indicators

51

52 Table 6:

53

54 Datasets: BAC_elite_uni.dta , BAC_camera_paper_dataset_1015.dta

55

56 Additional Variables:
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57

58 fee_exempt: dummy=1 for students exempt from tuition fees at an elite university (top students)

59 top20percent: a dummy=1 for students in the top 20% of the overall Baccalaureate score distribution in each year

60 */

61

62 /*********************************************************************

63 Variable definition

64 *********************************************************************/

65 clear all

66 set more off

67

68

69 cd "C:\2015-0074_replication" /* change path*/

70

71 use "2015-0074_data\BAC_main_2009_2012.dta"

72

73 *create county dummies

74 tab county_id , gen(dcounty)

75

76 * create county specific linear time trends

77 forvalues j = 1/42 {

78 gen t‘j’=t*dcounty ‘j’

79 }

80

81 /* generate indicator for low ability students */

82 su midschool_gpa , det

83 *8.81 median

84 gen lo_ability=1 if midschool_gpa <8.81&midschool_gpa !=.

85 replace lo_ability=0 if midschool_gpa >=8.81&midschool_gpa !=.

86

87

88 /*********************************************************************

89 Create Table 2: The impact of the anti -corruption campaign: main results

90 *********************************************************************/

91

92 reg finwrrom yr12 yr11 yr09 dcounty*, cluster(county_id)

93 outreg2 yr12 yr11 yr09 using "Tables\Table2_main.rtf",dec(3) nocons ctitle ("") addtext (" County FE, Yes , Controls ,

No, County FE x Yearly Trends , No") word replace

94 reg finwrrom new_cam yr12 yr11 yr09 dcounty*, cluster(county_id)

95 outreg2 new_cam yr12 yr11 yr09 using "Tables\Table2_main.rtf",dec(3) nocons ctitle ("") addtext (" County FE, Yes ,

Controls , No, County FE x Yearly Trends , No") word append

96 reg finwrrom new_cam yr12 yr11 yr09 dcounty* male poor theoretic rur , cluster(county_id)

97 outreg2 new_cam yr12 yr11 yr09 using "Tables\Table2_main.rtf",dec(3) nocons ctitle ("") addtext (" County FE, Yes ,

Controls , Yes , County FE x Yearly Trends , No") word append

98 reg finwrrom new_cam yr12 yr11 yr09 male poor theoretic rur dcounty* t1-t41, cluster(county_id)

99 outreg2 new_cam yr12 yr11 yr09 using "Tables\Table2_main.rtf",dec(3) nocons ctitle ("") addtext (" County FE, Yes ,

Controls , Yes , County FE x Yearly Trends , Yes") word append

100

101 reg pass yr12 yr11 yr09 dcounty*, cluster(county_id)

102 outreg2 yr12 yr11 yr09 using "Tables\Table2_main.rtf",dec(3) nocons ctitle ("") addtext (" County FE, Yes , Controls ,

No, County FE x Yearly Trends , No") word append

103 reg pass new_cam yr12 yr11 yr09 dcounty*, cluster(county_id)

104 outreg2 new_cam yr12 yr11 yr09 using "Tables\Table2_main.rtf",dec(3) nocons ctitle ("") addtext (" County FE, Yes ,

Controls , No, County FE x Yearly Trends , No") word append

105 reg pass new_cam yr12 yr11 yr09 dcounty* male poor theoretic rur , cluster(county_id)

106 outreg2 new_cam yr12 yr11 yr09 using "Tables\Table2_main.rtf",dec(3) nocons ctitle ("") addtext (" County FE, Yes ,

Controls , Yes , County FE x Yearly Trends , No") word append

107 reg pass new_cam yr12 yr11 yr09 male poor theoretic rur dcounty* t1-t41, cluster(county_id)

108 outreg2 new_cam yr12 yr11 yr09 using "Tables\Table2_main.rtf",dec(3) nocons ctitle ("") addtext (" County FE, Yes ,

Controls , Yes , County FE x Yearly Trends , Yes") word append

109

110 reg final_score yr12 yr11 yr09 dcounty*, cluster(county_id)

111 outreg2 yr12 yr11 yr09 using "Tables\Table2_main.rtf",dec(3) nocons ctitle ("") addtext (" County FE, Yes , Controls ,

No, County FE x Yearly Trends , No") word append

112 reg final_score new_cam yr12 yr11 yr09 dcounty*, cluster(county_id)
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113 outreg2 new_cam yr12 yr11 yr09 using "Tables\Table2_main.rtf",dec(3) nocons ctitle ("") addtext (" County FE, Yes ,

Controls , No, County FE x Yearly Trends , No") word append

114 reg final_score new_cam yr12 yr11 yr09 dcounty* male poor theoretic rur , cluster(county_id)

115 outreg2 new_cam yr12 yr11 yr09 using "Tables\Table2_main.rtf",dec(3) nocons ctitle ("") addtext (" County FE, Yes ,

Controls , Yes , County FE x Yearly Trends , No") word append

116 reg final_score new_cam yr12 yr11 yr09 male poor theoretic rur dcounty* t1-t41, cluster(county_id)

117 outreg2 new_cam yr12 yr11 yr09 using "Tables\Table2_main.rtf",dec(3) nocons ctitle ("") addtext (" County FE, Yes ,

Controls , Yes , County FE x Yearly Trends , Yes") word append

118

119 /*********************************************************************

120 Create Table 4: Heterogeneous effects of the anti -corruption

121 campaign by poverty: a fully interacted model

122 *********************************************************************/

123

124 /* generate interactions between poor and treatment/time/student

125 and school characteristics */

126

127 gen poor_new_cam=poor*new_cam

128 gen poor09=poor*yr09

129 gen poor11=poor*yr11

130 gen poor12=poor*yr12

131 gen poor_male=poor*male

132 gen poor_theoretic=poor*theoretic

133 gen poor_rur=poor*rur

134

135 foreach var of varlist t1-t42 {

136 generate poor ‘var ’ = ‘var ’ * poor

137 }

138 foreach var of varlist dcounty1-dcounty42 {

139 generate poor ‘var ’ = ‘var ’ * poor

140 }

141

142 /* generate interactions between low ability and treatment/time/student

143 and school characteristics */

144

145 gen lo_new_cam=lo_ability*new_cam

146 gen lo09=lo_ability*yr09

147 gen lo11=lo_ability*yr11

148 gen lo12=lo_ability*yr12

149 gen lo_male=lo_ability*male

150 gen lo_theoretic=lo_ability*theoretic

151 gen lo_rur=lo_ability*rur

152 gen lo_poor=lo_ability*poor

153

154 foreach var of varlist t1-t42 {

155 generate lo‘var ’ = ‘var ’ * lo_ability

156 }

157 foreach var of varlist dcounty1-dcounty42 {

158 generate lo‘var ’ = ‘var ’ * lo_ability

159 }

160

161 *declare variables lists

162

163 global poorinteractions "poor_new_cam poor12 poor11 poor09 poor_male poor_theoretic poor_rur

poordcounty1-poordcounty37 poordcounty39-poordcounty42 poort1-poort37 poort39-poort42"

164 global lo_ability_interactions "lo_new_cam lo12 lo11 lo09 lo_male lo_theoretic lo_rur lo_poor lodcounty1-lodcounty37

lodcounty39-lodcounty42 lot1-lot37 lot39-lot42"

165

166 *create table

167

168 reg finwrrom new_cam yr12 yr11 yr09 $poorinteractions poor male theoretic rur dcounty1-dcounty37

dcounty39-dcounty42 t1-t37 t39-t42 , cluster(county_id)

169 outreg2 new_cam poor_new_cam using "Tables\Table4_interactions.rtf",dec(3) nocons ctitle ("") addtext ("Year FE ,

Yes , County FE, Yes , County FE x Yearly Trends , Yes , Controls , Yes , Poor Interactions , Yes , Ability

Interactions , No") word replace

41



170 reg finwrrom new_cam yr12 yr11 yr09 $poorinteractions poor male theoretic rur dcounty1-dcounty37

dcounty39-dcounty42 t1-t37 t39-t42 if lo_ability !=., cluster(county_id)

171 outreg2 new_cam poor_new_cam using "Tables\Table4_interactions.rtf",dec(3) nocons ctitle ("") addtext ("Year FE ,

Yes , County FE, Yes , County FE x Yearly Trends , Yes , Controls , Yes , Poor Interactions , Yes , Ability

Interactions , No") word append

172 reg finwrrom new_cam yr12 yr11 yr09 $poorinteractions $lo_ability_interactions poor lo_ability male theoretic rur

dcounty1-dcounty37 dcounty39-dcounty42 t1-t37 t39-t42 if lo_ability !=., cluster(county_id)

173 outreg2 new_cam poor_new_cam using "Tables\Table4_interactions.rtf",dec(3) nocons ctitle ("") addtext ("Year FE, Yes ,

County FE, Yes , County FE x Yearly Trends , Yes , Controls , Yes , Poor Interactions , Yes , Ability Interactions ,

Yes") word append

174

175 reg pass new_cam yr12 yr11 yr09 $poorinteractions poor male theoretic rur dcounty1-dcounty37 dcounty39-dcounty42

t1-t37 t39-t42 , cluster(county_id)

176 outreg2 new_cam poor_new_cam using "Tables\Table4_interactions.rtf",dec(3) nocons ctitle ("") addtext ("Year FE, Yes ,

County FE, Yes , County FE x Yearly Trends , Yes , Controls , Yes , Poor Interactions , Yes , Ability Interactions ,

No") word append

177 reg pass new_cam yr12 yr11 yr09 $poorinteractions poor male theoretic rur dcounty1-dcounty37 dcounty39-dcounty42

t1-t37 t39-t42 if lo_ability !=., cluster(county_id)

178 outreg2 new_cam poor_new_cam using "Tables\Table4_interactions.rtf",dec(3) nocons ctitle ("") addtext ("Year FE, Yes ,

County FE, Yes , County FE x Yearly Trends , Yes , Controls , Yes , Poor Interactions , Yes , Ability Interactions ,

No") word append

179 reg pass new_cam yr12 yr11 yr09 $poorinteractions $lo_ability_interactions poor lo_ability male theoretic rur

dcounty1-dcounty37 dcounty39-dcounty42 t1-t37 t39-t42 if lo_ability !=., cluster(county_id)

180 outreg2 new_cam poor_new_cam using "Tables\Table4_interactions.rtf",dec(3) nocons ctitle ("") addtext ("Year FE, Yes ,

County FE, Yes , County FE x Yearly Trends , Yes , Controls , Yes , Poor Interactions , Yes , Ability Interactions ,

Yes") word append

181

182 reg final_score new_cam yr12 yr11 yr09 $poorinteractions poor male theoretic rur dcounty1-dcounty37

dcounty39-dcounty42 t1-t37 t39-t42 , cluster(county_id)

183 outreg2 new_cam poor_new_cam using "Tables\Table4_interactions.rtf",dec(3) nocons ctitle ("") addtext ("Year FE ,

Yes , County FE, Yes , County FE x Yearly Trends , Yes , Controls , Yes , Poor Interactions , Yes , Ability

Interactions , No") word append

184 reg final_score new_cam yr12 yr11 yr09 $poorinteractions poor male theoretic rur dcounty1-dcounty37

dcounty39-dcounty42 t1-t37 t39-t42 if lo_ability !=., cluster(county_id)

185 outreg2 new_cam poor_new_cam using "Tables\Table4_interactions.rtf",dec(3) nocons ctitle ("") addtext ("Year FE, Yes ,

County FE, Yes , County FE x Yearly Trends , Yes , Controls , Yes , Poor Interactions , Yes , Ability Interactions ,

No") word append

186 reg final_score new_cam yr12 yr11 yr09 $poorinteractions $lo_ability_interactions poor lo_ability male theoretic rur

dcounty1-dcounty37 dcounty39-dcounty42 t1-t37 t39-t42 if lo_ability !=., cluster(county_id)

187 outreg2 new_cam poor_new_cam using "Tables\Table4_interactions.rtf",dec(3) nocons ctitle ("") addtext ("Year FE , Yes ,

County FE, Yes , County FE x Yearly Trends , Yes , Controls , Yes , Poor Interactions , Yes , Ability Interactions ,

Yes") word append

188

189 /*********************************************************************

190 Create Table 6: The composition in terms of poverty at the admission

191 into an elite university and in the top 20% at the

192 Baccalaureate

193 *********************************************************************/

194 clear all

195 set more off

196 cd "C:\2015-0074_replication" /* change path accordingly */

197

198 use "2015-0074_data\Bac_elite_uni.dta"

199

200 *** define the camera indicator ***

201 gen cam=1 if county_id ==35 | county_id ==22 | county_id ==1 | county_id ==26 | county_id ==3 | county_id ==37 | /*

202 */ county_id ==11 |county_id ==9 |county_id ==40 |county_id ==24 |county_id ==5 | county_id ==14 |county_id ==30

|county_id ==12 |county_id ==18 |/*

203 */ county_id ==21 |county_id ==29 |county_id ==19 |county_id ==13 |county_id ==27 |county_id ==10 |county_id ==4 |

county_id ==25 |county_id ==7 | county_id ==23

204 replace cam=0 if cam==.

205

206 gen new_cam=1 if (cam==1&year==2011)|year==2012

207 replace new_cam=0 if year <2011|(year==2011&cam==0)

208

209 *** define years and year trend var ***
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210 gen yr09=year==2009

211 gen yr10=year==2010

212 gen yr11=year==2011

213 gen yr12=year==2012

214

215 gen male=sex =="M"

216

217 *generate county dummies

218 tab county_id , gen(dcounty)

219

220 *generate linear time trend

221 gen t=1 if year==2009

222 replace t=2 if year==2010

223 replace t=3 if year==2011

224 replace t=4 if year==2012

225

226 *generate county specific linear time trends

227 forvalues j = 1/42 {

228 gen t‘j’=t*dcounty ‘j’

229 }

230

231

232 *the mean admitted at elite university is in the top 20% in the bac score distribution of written Romanian score at

BAC*

233

234 *generate dummy for tuition exempt students (the top admitted students)

235 gen fee_exempt=forma =="B"

236 *generate dummy for students who followed the theoretical track in high school

237 gen theoretic =( filiera ==" TEO")

238

239 *cannot control for rur , almost no rural students

240 reg poor new_cam yr09 yr11 yr12 t1-t41 dcounty* , cluster(county_id)

241 outreg2 poor new_cam using "Tables\Table6_elite.rtf", dec(3) nocons ctitle ("") addtext(Year FE, Yes , County FE , Yes ,

County FE x Yearly Trends , Yes , Controls , No) word replace

242 reg poor new_cam yr09 yr11 yr12 year_diferit male theoretic t1-t41 dcounty*, cluster(county_id)

243 outreg2 poor new_cam using "Tables\Table6_elite.rtf", dec(3) nocons ctitle ("") addtext(Year FE , Yes , County FE, Yes ,

County FE x Yearly Trends , Yes , Controls , Yes) word append

244

245 reg poor new_cam yr09 yr11 yr12 dcounty* t1-t41 if fee_exempt ==1, cluster(county_id)

246 outreg2 poor new_cam using "Tables\Table6_elite.rtf", dec(3) nocons ctitle ("") addtext(Year FE , Yes , County FE, Yes ,

County FE x Yearly Trends , Yes , Controls , No) word append

247 reg poor new_cam yr09 yr11 yr12 year_diferit male theoretic dcounty* t1-t41 if fee_exempt ==1, cluster(county_id)

248 outreg2 poor new_cam using "Tables\Table6_elite.rtf", dec(3) nocons ctitle ("") addtext(Year FE , Yes , County FE, Yes ,

County FE x Yearly Trends , Yes , Controls , Yes) word append

249

250 reg poor new_cam yr09 yr11 yr12 dcounty* t1-t41 if fee_exempt ==0, cluster(county_id)

251 outreg2 poor new_cam using "Tables\Table6_elite.rtf", dec(3) nocons ctitle ("") addtext(Year FE , Yes , County FE, Yes ,

County FE x Yearly Trends , Yes , Controls , No) word append

252 reg poor new_cam yr09 yr11 yr12 year_diferit male theoretic dcounty* t1-t41 if fee_exempt ==0, cluster(county_id)

253 outreg2 poor new_cam using "Tables\Table6_elite.rtf", dec(3) nocons ctitle ("") addtext(Year FE , Yes , County FE, Yes ,

County FE x Yearly Trends , Yes , Controls , Yes) word append

254

255

256 /*Add columns 7 and 8, on poor composition in top 20% at Baccalaureate */

257

258 clear all

259 set more off

260 use "2015-0074_data\BAC_main_2009_2012.dta"

261

262

263 *generate county dummies

264 tab county_id , gen(dcounty)

265

266 * create county specific linear time trends

267 forvalues j = 1/42 {

268 gen t‘j’=t*dcounty ‘j’
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269 }

270

271 /*find the 80th percentile in the overall Baccalaureate score for

272 each year */

273

274 sum final_score , det

275 pctile pct9 = final_score if year==2009, nq(10)

276 list pct9 in 1/10

277

278 pctile pct10 = final_score if year==2010, nq(10)

279 list pct10 in 1/10

280

281 pctile pct11 = final_score if year==2011, nq(10)

282 list pct11 in 1/10

283

284 pctile pct12 = final_score if year==2012, nq(10)

285 list pct12 in 1/10

286

287 /* generate an indicator for students above the 80th percentile in the

288 overall Baccalaureate score distribution */

289

290 gen top20percent=1 if final_score !=.&(( final_score >9.15 & year==2009)|( final_score >8.51 & year==2010)|(

final_score >7.95& year==2011)|( final_score >8.13 & year==2012))

291 replace top20percent=0 if top20percent ==.

292

293 *create columns 7 and 8 for table 6

294

295 reg poor new_cam yr12 yr11 yr09 dcounty* t1-t41 if top20percent ==1, cluster(county_id)

296 outreg2 new_cam using "Tables\Table6_elite.rtf", dec(3) nocons ctitle ("") addtext(Year FE, Yes , County FE, Yes ,

County FE x Yearly Trends , Yes , Controls , No) word append

297

298 reg poor new_cam yr12 yr11 yr09 male theoretic rur dcounty* t1-t41 if top20percent ==1, cluster(county_id)

299 outreg2 new_cam using "Tables\Table6_elite.rtf", dec(3) nocons ctitle ("") addtext(Year FE, Yes , County FE, Yes ,

County FE x Yearly Trends , Yes , Controls , Yes) word append
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