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1. INTRODUCTION To pool or not to pool

1. Introduction

When estimating coefficients in time series or in regressions we find that the variance of the used

estimators might lead to misspecified parameters. A solution to this problem might lie in panel

regression. Here we have not only a time dimension on the data, but we also have multiple individ-

uals in the data. In contrast to regular regression and time series where only one individual is used.

By combining the data on multiple individuals we are able to reduce the variance of the coefficient

estimates. Although, this does require more restrictive assumptions which, when falsely assumed,

can cause bias. We find ourselves with a very familiar problem: the bias-variance trade-off. At one

of the ends of the spectrum with minimum variance, we find the pooled estimator, which assumes

all slope coefficients are equal among individuals. On the other end of the spectrum we find the

classical individual estimator, which is unbiased but has a higher variance. In literature this prob-

lem is dealt with repeatedly, but a fix-it-all solution has not been found. In Wang et al. (2019) an

averaging estimator is proposed which takes a weighted average of the different models that are

considered, according to a certain criterion. The models considered are the pooled and individual

model, but also intermediate model where a group structure is assumed, such that individuals are

divided into groups with equal coefficients within groups. The specific criterion investigated is the

Mallows criterion, which is a consistent estimator for the squared (forecast) error. The research into

such averaging estimators in a panel data setting is quite recent and current research on heteroge-

neous slopes in panel data is more focused on different kinds of models. In this paper we will study

different estimators in different settings and determine which one is the best with a special focus on

averagin estimators. Another assumption often taken for granted in panel data is the constantness

of slopes over time. Here there are two main paths to choose: do we consider changes over time

to be continuous or do we consider discontinuities. We investigate the former. We propose a new

time-varying coefficient approach which is based on kernel smoothing estimation methods. We

combine this kernel estimator with the Mallows criterion to investigate the behaviour with possible

slope heterogeneity among individuals. Our main research question will be: does the effect of the

Mallows pooling estimator differ between parametric and non-parametric settings? We test the

models in a simulation setting. In reviewing the time-invariant coefficient methods we find similar

results as Wang et al. (2019). The estimator based on Mallows criterion outperforms others when

the data has a medium degree of heterogeneity such as a group structure. The estimator performs

quite well in other cases, but the individual and pooled estimators have a better performance in the

heterogeneous and homogeneous model respectively. We find that when the number of individuals

changes the outcome does not change, but the difference in performance becomes greater. When

looking at the time-variant coefficient model we find that the pooled estimator performs very well

compared to the Mallows criterion and to estimators based on AIC and BIC. We find that this is the

case especially when the number of individuals is low. When the number of individuals rises we

find that Mallows pooling average outperforms the other models. Overall we find that the pooling
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2. LITERATURE REVIEW To pool or not to pool

estimator albeit unbiased when the assumptions do not match performs quite well. We find that in

the parametric models the Mallows pooling method has better estimates when heterogeneity arises.

In the non-parametric model the Mallows pooling average does not drastically outperforms other

estimators and only outperforms the pooled estimator when both the number of individuals and

number of time observations is high. The methods we discuss can improve the decision-making

process in multiple fields, because we are able to generate better estimates of effects in panel data

models. Panel data models are found across multiple fields, examples are finance, economics, psy-

chology and medicine. Alike normal panel data models we find that non-parametric models have

uses in the same fields. Most literature on these models stems from the medical field, but recent

literature in the area of finance and economics has shown it has diverse applications.

This paper has the following structure. In section 2, we will give a short summary of the literature

on the topic until now. In section 3, the methods we use are considered. Already existing methods

are reviewed and methods extending those are introduced. The setup of the simulation is also

considered. In section 4, the results will be given and shortly examined. Section 5 will discuss the

results and possibilities for future research on this topic.

2. Literature review

In literature we find that heterogeneous slopes in panel data are researched as early as 1970 in

Swamy (1970), where a Random Coefficient Model (RCM) is proposed with a GLS type estimator

as a solution for estimating the average effect (see also M. H. Pesaran and Yamagata (2008)). In

M. Pesaran and Smith (1995) four methods for dealing with possible heterogeneous slopes are eval-

uated: individual estimation, pooled estimation, aggregated estimation and averaging estimation.

It is found that pooling and aggregating, which need extra assumptions, can lead to misleading es-

timates and the assumption of homogeneity should be made carefully. However, Baltagi and Griffin

(1997) finds that the pooling estimator performs better than the individual estimator in terms of

root mean square error, even though the model is not correctly specified due to a false assumption

of homogeneous slopes. It is thus not fair to rule out pooling the data although the assumptions

might not hold, because the variance reducing properties of the pooling outweigh the bias due to

violated assumptions.

In other literature the focus is not concentrated on average effect, but instead on the individual

effect. As policy makers often have choices to make between individuals, these effects are valuable

to estimate correctly. In G. S. Maddala, Trost, Li, and Joutz (1997) a shrinkage estimator is pro-

posed as homogeneity does not hold and the individual estimator gives false results. In this method

the pooled estimates and the individual estimates are combined to make a new estimate. In the

previously mentioned study of Baltagi and Griffin (1997) the shrinkage estimator does however

not outperform the pooling estimator. In a later study G. Maddala, Li, Srivastava, et al. (2001) is

again favourable for the shrinkage estimator. Recently, Wang et al. (2019) uses another method to
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2. LITERATURE REVIEW To pool or not to pool

combine models. Here not only the pooled and individual estimator are combined, but a weighted

estimate is taken over a space of numerous models. Wang et al. (2019) builds upon the ideas

proposed in Hansen (2007), where Mallows criterion is used to combine multiple models to form

a new estimator. Mallows criterion, a consistent estimator for the squared error, is found to out-

perform other information criteria such as the Akaike information criterion (AIC) and the Bayesian

information criterion (BIC) when averaging weights are chosen by smoothing the values of these

criteria. Mentioned should also be the study Wan, Zhang, and Zou (2010) where the optimality

of Hansen’s model is shown with even fewer assumptions. In Wang et al. (2019) this method is

extended to the panel data case to make an averaging estimator with superior mean squared (fore-

cast) error compared to multiple previously mentioned methods. We will revisit the results of Wang

et al. (2019) and compare the Mallows averaging estimator to multiple estimators among which

are the shrinkage estimator and the smoothed BIC and AIC estimators.

In different studies the problem of heterogeneous slopes is solved by defining which parameters

are heterogeneous and estimating accordingly. A good example of this is M. H. Pesaran, Shin,

and Smith (1999), where a distinction is made between homogeneous long-run parameters and

heterogeneous short-run parameters. This method does however require a correct specification

for the homogeneous and heterogeneous parameters. In more recent research a distinction is not

made between parameters, but between individuals. For example in Ando and Bai (2015), where a

model is considered with unobserved group factors. In literature different methods for estimating

group structure is discussed, two major methods are a k-means approach which is discussed in

Bonhomme and Manresa (2015) and Lin and Ng (2012) or a classifier-Lasso (c-lasso) approach

as discussed in Su, Shi, and Phillips (2016). Where the latter is found to be less computationally

demanding and have favourable inferential properties over the former. We use the c-lasso estimator

for finding the correct groups in the data and compare the estimator to other estimators as well.

The methods for c-lasso are also extended to not only include time-invariant coefficient models,

but to extend to the non-parametric time-variant case as well in Su, Wang, and Jin (2019). Here a

sieve estimation method is proposed in combination with the c-lasso penalty, such that each individ-

ual coefficient function is shrunken towards a group coefficient function. Time-variant coefficient

models, also known as functional coefficient models are a topic of research on their own. In Hastie

and Tibshirani (1993) the methods of kernel estimation are discussed in detail and in Hoover,

Rice, Wu, and Yang (1998) smoothing splines and polynomial methods are discussed. In Li, Chen,

and Gao (2011) a kernel method approach based on Taylor expansion is extended to panel data.

However, except for Su et al. every non-parametric model assumes parameter homogeneity and

other literature does not extend the parametric models to non-parametric cases. In Bernoth and

Erdogan (2012) the time-varying kernel model of Sun, Carroll, and Li (2009) is applied to model

sovereign bond spread, inferential properties and a method to select the optimal bandwidth are

also discussed. Again the c-lasso methods will be used to find the correct groups. Furthermore we

will extend it with kernel methods and use it in comparison to other methods.
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3. Methodology

3.1. General model

We consider the model

yit = f (xit) + εit (1)

for i = 1...N and t = 1...T . We assume εit is a zero-mean, time-independent process with variance

σ2
ε . Furthermore we assume that εit and εjt are independent if i , j. The current form of f (·) is very

unrestricted, thus hard to use for inference. In Hastie and Tibshirani (1993) a model is proposed

such that f (·) is a function linear in some of the independent variable xit. We consider two sets of

independent variables X =
{
xitj : i = 1...N , t = 1...T , j = 1...k

}
and Z = {zit : i = 1...N , t = 1...T }. The

model we can consider then is

yit =
k∑
j=1

xitjβij(zit) (2)

for i = 1...N and t = 1...T . We consider two specific models, the first being the standard linear

model such that βij(zit) = βij for i = 1...N and j = 1...k. Such that all the coefficients are constants,

but are allowed to vary between individuals. This results in the following model.

yit =
k∑
j=1

xitjβij (3)

The second model we consider assumes zit = t, such that we can rewrite the model to be the

following.

yit =
k∑
j=1

xitjβitj (4)

for i = 1...N and t = 1...T Here the coefficients are allowed to change between individuals and over

time. We assume though that β changes smoothly over time. In section 3.2 the model in equation

(3) will be investigated and in section 3.3 the model in equation (4) will be looked at. In the rest

of this text we will write Xit = (xit1,xit2, ...,xitk) for i = 1...N and t = 1...T

3.2. Time-invariant coefficients

If we consider the coefficients in the model to be time-invariant we can rewrite equation 3 to be

yi = Xiβi + εi , i = 1...N (5)

where yi = (yi1, yi2, ..., yiT )′, Xi = (X ′i1,X
′
i2, ...,X

′
iT ) and βi = (βi1,βi2, ...,βik). For each individual i

we can consider the individual least squares estimator βi = (X ′iXi)
−1X ′iyi . Under certain assump-

tions this estimator is unbiased, consistent and attains a variance of σ2
ε (X

′
iXi)

−1. We will write

βind = (β′1,β
′
2, ...,β

′
N )
′ as the Nk by 1 individual estimator. However this estimator does not take

5



3. METHODOLOGY To pool or not to pool

the panel structure of the data into account, meaning that only the individual data is used for each

individual estimation. On the other end of the spectrum we consider the pooled estimator. This esti-

mator assumes that the coefficients are equal over all individuals, that is βi = βj ,∀i, j ∈ 1,2, ...N . The

pooled estimator is defined as b =
(∑N

i=1X
′
iXi

)(∑N
i=1X

′
iyi

)
. We define βpool = (b′ ,b′ , ...,b′)′ as our Nk

by 1 pooled estimator. Because this pooled estimator uses the cross-section variation of the data the

variance is lower, however this comes at the cost that the estimator is biased if the, often not justi-

fiable, assumption of equal coefficients is violated. This problem seems to be a classic bias-variance

trade-off situation. If we do not wish to use the estimator at either side of the spectrum, we could

choose to use the intermediate estimator. This intermediate estimator is formed by restricting the

coefficients by some restriction matrix R. The restriction Rβ = 0 forces certain structure on the coef-

ficients. We only consider restriction matrices which force a group structure on the parameters, such

that within groups the coefficients are equal, but they differ over multiple groups. By using the pro-

jection matrix P = INk−(X ′X)−1R′(R(X ′X)−1R′)−1Rwe get the restricted estimator to be βres = P βind .

We denote (Rm, Pm) for the m-th restriction and projection matrix, such that β̂(m) = Pmβind is the m-

th estimator. If we wish to combine multiple models we could do so by averaging. If we have M

different estimators and a set of weights (w1,w2, ...,wM ) ∈
{
(wm)

M
i=1 :

∑M
i=1 = 1,wm ∈ [0,1] for all m

}
we can make an averaging estimator β(w) =

∑M
i=1wmβ̂(m) =

∑M
i=1wmPmβind = P (w)βind . To find the

optimal weights in literature certain information criteria are used (see Hansen (2007)). Examples

of information criteria used are the Akaike information criterion (AIC), the Bayesian information

criterion (BIC) and Mallows information criterion (also known as Mallows Cp). The last one will

be used extensively throughout this paper. The Mallows criterion for averaging is given by

CA(w) = ||P (w)βind − βind ||2A +2tr (P ′(w)AV )− ||βind − β||2A (6)

where V = var(βind) is the variance of the estimator and ||x||2A = x′Ax is a weighted matrix norm.

When A = I this criterion focuses on accuracy of the estimator, if A = X ′X this criterion focuses

on in-sample forecasting. The use of Mallows criterion for averaging purposes was introduced by

Hansen (2007) and more of its properties are investigated in Wang et al. (2019). If the variance

matrix V is unknown it can be replaced by an estimator V̂ in equation (6), for homoscedastic error

terms V̂ = σ̃2
ε (X

′X)−1 where σ̃2
ε = (y−Xβ)′(y−Xβ)

NT−Nk . We find the optimal weights, and thus the optimal

estimates, in our averaging model by wopt = argminw∈W CA(w).

However, in practice another problem is luring. In some situations there might be a certain set of

restriction matrices that make sense. More often than not such a clear set of restriction matrices

might not be clear. As the number of individuals grows the number of possible groups grows

drastically, thus computation for all possible groups is not feasible. Therefore we must shrink the

space of possible restrictions. In other words, we must find groupings that make sense according

to the data and there must not be too many. However, we do want to find the minimum value

for Mallows criteria CA(w). As is discussed in Wang et al. (2019) and Zhang, Yu, Zou, and Liang

(2016) even though the space is shrunken, the asymptotic optimality is still achieved in terms of
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3. METHODOLOGY To pool or not to pool

squared loss under certain assumptions. That is,

LA(ŵs)
infw∈W LA(ŵ)

−→ 1 (7)

where LA(w) = ||β̂(w) − β||2A and ŵs is the optimal weight vector from the set of shrunken model

space. The denominator denotes the most optimal weights when the space is not shrunken. The

assumptions this requires and the proof can be found in Zhang et al. (2016) and Wang et al. (2019).

To put the above into practice we use the methods developed in Su et al. (2016) where group

structure in data is found by shrinking the coefficients in a regression to group coefficient for a pre-

specified number of K0 groups using a lasso penalty. That is, they defineQ1,NT (β) =
1
NT

∑N
i=1

∑T
t=1ψ(wit;βi)

as the profile log-likelihood function. A criterion function is then defined as

Q
(K0)
1NT ,λ(β,α) =Q1,NT (β) +

λ
N

N∑
i=1

K0∏
k=1

||βi −αk || (8)

By minimizing this criterion function the individual coefficient for individual i: βi is shrunken

towards the group coefficient αk for some k ∈ {1, ...,K0}. Because of the product in equation (8) once

an individual coefficient and a group coefficient are equal the penalty on that individual disappears

to 0. After this function has been minimized and estimates (α1,α2, ...,αK0) and (β1,β2, ...,βN ) the

groups are formed such that Gk =
{
i ∈ {1,2, ...,N } : β̂i = α̂k

}
for k ∈ {1,2, ...,K0} In Su et al. (2016) an

information criterion is also developed to find the best number of groups. We compare the results

from the estimates of this information criterion to the estimates found using Mallows criterion. We

furthermore compare models selected by the Akaike information criterion, Bayesian information

criterion. We also use these criteria to find smoothed weights. Let CRi , i = 1, ...,M be the values

of the information criteria for every model, then the smoothed weights are found using the formula

wi =
exp(− 1

2CRi )∑M
j=1 exp(− 1

2CRj )
as mentioned in Hansen (2007).

Another method of averaging is Bayesian averaging, here the posterior probability of each model

is used to create weights for the model, details for this can be found in Wang et al. (2019). We

furthermore compare the Mallows pooling average estimator to the Shrinkage estimator, which

weighs the pooled and the individual model according to the test statistic with a null-hypothesis of

homogeneous slopes, detail for this can be found in G. S. Maddala et al. (1997).

3.3. Time-variant coefficients

Where in the previous section we restricted our model to the form in equation (4), where βi is

considered constant, we now assume the model is of the form

yit = xitβi(
t
T
) + εit, for i = 1, ...,N and t = 1, ...,T (9)

where xit = (1,xit1,xit2, ...,xitk) and βi( tT ) = (βi0(
t
T ),βi1(

t
T ),βi2(

t
T ), ...,βik(

t
T ))
′. We assume βij( tT ) is

a sufficiently smooth function, that is we assume βij( tT ) ∈ C2[0,1] such that the second derivative

7



3. METHODOLOGY To pool or not to pool

is continuous in the time interval. Rewriting each βij(
t
T ) using Taylor series we find βij(

t
T ) =

βij(τ) + β′ij(τ)(
t
T − τ) + O

(
( tT − τ)

2
)

for 0 < τ < 1 such that we can approximate each coefficient

function by the first two terms of their Taylor series. Following the methods in Li et al. (2011) we

define

Mi(τ) =


Xi1

1−τT
T Xi1

...
...

XiT
T−τT
T XiT

 and W (τ) = diag

K
(
1−τT
T

)
h

, ...,
K

(
T−τT
T

)
h

 (10)

Where
K( ·h )
h is a kernel function with bandwith h, which makesW (τ) a weighing matrix that weighs

the distance from each observation t to the current τ. We are now able to find the Taylor approxi-

mation coefficients by the following minimization problem:

min
a,b∈Rk

[
yi −Mi(τ)(a

′ ,b′)′
]′W (τ)

[
yi −Mi(τ)(a

′ ,b′)′
]

(11)

such that we can estimate β̂i(τ) asβ̂i(τ)β̂′i (τ)

 = [
M ′i (τ)W (τ)Mi(τ)

]−1
M ′i (τ)W (τ)yi (12)

for each individual i. As we did in the parametric time-invariant case we can also pool the data un-

der the assumptions of homogeneous slopes among all individuals. The pooled estimator becomes:β̂pool(τ)β̂′pool(τ)

 =
 N∑
i=1

M ′i (τ)W (τ)Mi(τ)


−1 N∑

i=1

M ′i (τ)W (τ)yi (13)

We are also able to extend the restricted model to a time-variant model. We assume groupings do

not vary over time. Then we can consider the restrictions as follows Rβ( tT ) = 0 for t = 1, ...,T , where

β( tT ) = (β1(
t
T )
′ ,β2(

t
T )
′ , ...,βN (

t
T )
′)′ is defined as before by the stacked individual slopes. Let β̂(τ) and

β̂′(τ) be defined in the same way. Then for restriction matrix Rm we findβ̂(m)(τ)

β̂′(m)(τ)

 = Pm
 β̂(τ)β̂′(τ)

 (14)

where Pm is the 2Nk-by-2Nk projection matrix defined by

Pm = I2Nk − (M ′(τ)W (τ)M ′(τ))−1
(
R′m R′m

)
RmRm

 (M ′(τ)W (τ)M ′(τ))−1
(
R′m R′m

)−1
RmRm

 (15)

Equation (15) is the extended equivalent of the time-invariant projection matrix. We stack two

restriction matrices as the same restrictions hold for the coefficient functions as well as for their

derivatives. We furthermore see that (X ′X)−1 is simply replaced by its weighted time-variant equiv-

alent (M ′(τ)W (τ)M ′(τ))−1. We follow the time-invariant methods by defining P (w) =
∑
m∈MwmPm,

8
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where M is the set of restrictions and
∑
m∈Mwm = 1. Then β(m)(τ) = P (w)β(τ) as in the time-

invariant case.

Next, we extend the Mallows criterion to the time-variant case. Where above we have seen that we

can again define P (w) and β(m)(τ). We can redefine Mallows criterion by taking the average over

every time observation. That is, the Mallows criterion becomes the following:

CA(w) =
1
T

T∑
t=1

||P (w)β̂
( t
T

)
− β̂

( t
T

)
||2A +2tr

(
P ′(w)AV̂

)
− ||β̂

( t
T

)
− β

( t
T

)
||2A (16)

We redefine V̂ to use the time-variant data: V̂ = σ̂ (X ′X)−1 =
∑T
t=1(yt−Xt β̂( tT ))

′(yt−Xt β̂( tT ))
(NT−Nk) (X ′X)−1. We

find the optimal weights by minimizing the extended Mallows criterion. Similar to the time-

invariant case the model space M can consist of an immense amount of models, making the

minimization problem for the optimal weight vector computationally very demanding. Alike the

time-invariant case, we use a certain model classifier to find groups among individuals. We use the

c-lasso type estimator discussed in Su et al. (2019). We alter their model by using the kernel type

regression described above instead of the sieve type regression they propose. In the sieve regression

approach the following objective function is considered:

Q
(K)
NT ,λ(π,ω) =

1
NT

N∑
i=1

T∑
t=1

[yit −Zitvec(πi)]
2 +

λ
N

N∑
i=1

σ̂2−K
i

K∏
k=1

||vec(πi −ωk)|| (17)

where σ̂2
i = 1

T

∑T
t=1[yit − Zitπi]2. Here yit and Zit have been normalized to filter out individual

effects and for ease of computation, resulting in a slightly different but equivalent formulation as

in the original text of Su et al. (2019). By minimizing the function Q(K)
NT ,λ individual coefficients πi

and group coefficients ωk can be found and equivalently as in the time-invariant case we consider

individual i to be in group k if ||πi −ωk || = 0.

We propose to extend this objective function to include kernel estimation techniques. We will re-

place the first term which concerns the data fit by 1
NT

∑N
i=1

∑T
τ=1 [yi −Mi(τ)biτ ]

′W (τ) [yi −Mi(τ)biτ ].

If we set Bi = (bi1,bi2, ...,biT ) and let || · ||2F be the squared Frobenius norm, then we can replace the

penalty term by λ
N

∑N
i=1 σ̂

2−K
i

∏K
k=1 ||Bi −Ωk ||2F . We get the new objective function:

Q
(K)
NT ,λ(B,Ω) =

1
NT

N∑
i=1

T∑
τ=1

[yi −Mi(τ)biτ ]
′W (τ) [yi −Mi(τ)biτ ] +

λ
N

N∑
i=1

σ̂2−K
i

K∏
k=1

||Bi −Ωk ||2F (18)

Using the above objective function we are still able to apply the methods and results as presented

in Su et al. (2019). Note that for clarity we have written Ωk instead of (ωk(1),ωk(2), ...,ωk(T )).

Unfortunately, the above minimization problem, even though there exist convex methods to solve

it (see the work of Su et al. (2019)), is too computationally intensive and thus out of the scope of

the current study. As we only study simulated data and thus are aware of the structure of the data,

we form groups based on the order and the number of groups. If we make K0 groups then the first

9
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group will contain all individuals i, for which i < N
K0 . Such that group j will be the following set

G
(K0)
j =

{
i : (j−1)NK0 < i ≤ jN

K0

}
.

As the above latent structure models only work with a pre-specified number of groups an informa-

tion criteria is given to find the number of groups. A BIC-type information criteria is proposed: let

σ̂2
K = 1

NT

∑K
j=1

∑N
i=1

∑T
t=11i∈Ĝj

[
yit −Xit [1k 0k]ωj(t)

]
then we define IC(K) = ln σ̂2

K + ρkK . We then

choose the number of groups with the lowest information criterion.

3.4. Simulation

As this paper only handles theoretical results we will describe in detail how the data was simu-

lated. The section is divided in two sections, the first regarding the simulation of the time-invariant

coefficient data, the second will be about the simulation of the time-variant coefficient data.

3.4.1. Time-invariant coefficients

To measure the performance of different estimators we will test them on data with different prop-

erties. We will vary the number of individuals in the data and the number of observations in the

time dimension. We will keep the number of explanatory variables fixed at k = 5. We will vary

the number of individuals to vary between 10 and 30. The number of time observations will be

either 20 observations, 40 observations or 80 observations. The different data generating processes

we use all have different degrees of heterogeneity. We start by the homogeneous data generating

process here

βij = 1 for i = 1, ...,N and j = 1, ..., k (19)

Next we will consider a data generating process where the individuals belong to different groups.

We choose the number of groups K0 to be equal to 3.

βij =


1 for i = 1, ...,bN/3− 1c

3 for i = bN/3c, ...,b2N/3− 1c

5 for i = b2N/3c, ...,N

and j = 1, ..., k (20)

As a last case, we will consider a completely heterogeneous process. For this process every individ-

ual has different coefficients.

βij = 0.1× i × j for i = 1, ...,N and j = 1, ..., k (21)

Throughout the simulation we use a low level of noise with a regression R2 equal to 0.89. We

generate the data for the explanatory variables by a zero mean normal distribution with a standard

deviation of 10. The errors are generated using a standard normal distribution. When estimating

we focus on the forecast abilities of the estimator, therefore we choose A = X ′X thus modelling in-

sample forecasting. The model we compare, some of which have been previously discussed, are the

following: MPA (Mallows pooling average), BPA (Bayesian pooling average), Pooled, Individual,

10
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SAIC (smoothed AIC), SBIC (smoothed BIC), AIC, BIC, SHK (Shrinkage estimator as suggested

by G. S. Maddala et al. (1997)) and c-lasso (the best group structure according to the c-lasso

information criteria).

3.4.2. Time-variant coefficients

For the time-variant coefficient case we will again compare our estimates for different values of

number of individuals N and number of time observations T . We will fix the number of explanatory

variables to k = 3. For the number of individuals we will again assume N = {10,30} and for the

number of time observations we will have T = {20,40,80}. We will again consider three types of

heterogeneity: homogeneous, group structure and completely heterogeneous. As the coefficients

are now functions over time we will consider polynomials of degree two. Such that every coefficient

has the following form: βij(t) = α0ij +α1ijt+α2ijt2. We can use polynomials as coefficient functions

as they are infinitely differentiable over the real numbers. As we are indifferent what α· is as long

as it does following the heterogeneity structure, we set α0ij = α1ij = α2ij for the homogeneous and

grouped structure processes. For the homogeneous we set

βij(t) = 0.5+0.5t +0.5t2 for i = 1, ...N and j = 1, ..., k (22)

For the grouped structure process we choose the following:

βij(t) =


0.5+0.5t +0.5t2 for i = 1, ...,bN/3− 1c

2+2t +2t2 for i = bN/3c, ...,b2N/3− 1c

5+5t +5t2 for i = b2N/3c, ...,N

and j = 1, ..., k (23)

When considering the heterogeneous process we use the following coefficients:

βij(t) = ij +2ijt +3ijt2 for i = 1, ...,N and j = 1, ..., k (24)

We again consider a high explanatory power for this simulation with the R2 = 0.89. We generate

the explanatory variables by a zero mean normal distribution with a standard deviation of 10. We

estimate the error term with a standard normal distribution. We consider only a selection of the

estimation methods used in the time-invariant simulation. We compare the (altered) MPA, SAIC,

SBIC, AIC, BIC, c-lasso and the smoothed version of the c-lasso criterion.

4. Results

4.1. Time-invariant coefficients

4.1.1. N = 10

Here we will consider the results for the time-invariant models when the number of individuals is

relatively low with 10 individuals.

11
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Table 1: The loss calculated for every different model divided by the loss of the individual estimator

where the number of individuals is set to 10. Bold faces values is the best performing model. In the

process where T = 20 and the data generating process in heterogeneous we see that the individual

estimator performs better than all others, albeit marginally. The abbreviations for the models are given

in the section regarding the simulation.

DGP MPA c-lasso BPA SAIC SBIC AIC BIC pooled SHK

Homo 0,03 0,03 0,58 0,07 0,11 0,03 0,03 0,03 0,88

Group 0,75 33,40 0,77 14,32 14,00 33,40 33,40 33,40 1,00
T
=
20

Hetero 1,01 142,89 1,00 44,31 44,00 142,89 142,89 142,89 1,00

Homo 0,16 0,01 0,89 0,86 0,23 0,01 0,01 0,01 0,96

Group 0,76 33,15 0,80 16,88 16,69 33,15 33,15 33,15 1,00
T
=
40

Hetero 1,00 38,19 1,00 8,12 8,07 38,19 38,19 38,19 1,00

Homo 0,10 0,02 0,75 0,59 0,07 0,02 0,02 0,02 0,98

Group 0,33 297,09 0,31 168,44 167,64 297,09 297,09 297,09 1,00
T
=
80

Hetero 1,00 84,22 1,11 23,21 23,11 84,22 84,22 84,22 1,00

We see in the table that Mallows pooling average performs very well among its peers. Across the

different number of time observations it is apparent that the pooled estimator and the estimator

that select a single model based on information criteria are all equal or slightly better in perfor-

mance compared to MPA. In the case of a group structure we see that MPA and BPA are very

closely matched up and other estimators are significantly outperformed by those two. In case of

heterogeneous data it is very clear that the individual estimator performs well, although MPA, BPA

and the SHK estimators are marginally better or worse. Overall we see that the SHK estimator

closely matches the performance of the individual estimator. We see that the smoothed criterion

estimators (SAIC and SBIC) are easily outperformed by all other models indifferent of number of

observations or coefficient structure. We see no specific differences over time between estimators,

only the relative differences become greater.

4.1.2. N = 30

Next, we will consider the time-invariant models with the number of individuals tripled such that

N = 30.

12



4. RESULTS To pool or not to pool

Table 2: The loss calculated for every different model divided by the loss of the individual estimator

where the number of individuals is set to 30. Boldfaced values denote the best performing model.

Where no value is boldfaced, the individual estimator is better than all the others. The abbreviations

for the models are given in the section regarding the simulation.

DGP MPA c-lasso BPA SAIC SBIC AIC BIC pooled SHK

Homo 0,10 0,00 0,35 0,19 0,21 0,00 0,00 0,00 0,91

Group 0,34 24,93 0,59 9,77 9,72 24,93 24,93 24,93 1,00
T
=
40

Hetero 13,63 62,92 16,15 35,28 35,26 62,92 62,92 62,92 1,00

Homo 0,21 0,01 0,62 0,39 0,40 0,01 0,01 0,01 0,94

Group 0,31 58,55 0,55 11,92 11,87 58,55 58,55 58,55 1,00
T
=
40

Hetero 6,66 780,97 8,44 127,20 127,10 780,97 780,97 780,97 1,00

Homo 0,25 0,00 0,68 0,53 0,16 0,00 0,00 0,00 0,98

Group 0,31 88,86 0,43 15,73 15,69 88,86 88,86 88,86 1,00
T
=
80

Hetero 31,38 590,74 29,84 176,83 176,80 590,74 590,74 590,74 1,00

With a greater number of individuals we see some changes. As before for the homogeneous data

generating process the pooled estimator and the model selecting criterion based estimates (which

select the pooled model) substantially outperform the other models. We see that as the number

of individuals has risen the relative difference between the MPA and the pooled estimators has

become greater. When the data generating process has a group structure for the coefficients we

see that MPA outperforms all other models, unexpectedly even the c-lasso significantly. We see that

the relative difference between MPA and BPA is also bigger compared to the N = 10 case. In the

heterogeneous case we see that the individual estimator and the shrinkage estimator perform the

best.

4.2. Time-variant coefficients

4.2.1. N = 10

Thirdly, we will look at a low number of individuals of 10 when the coefficients are allowed to vary

over time.

13
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Table 3: The loss calculated for every different model divided by the loss of the individual estimator

where the number of individuals is set to 10. Bold faces values is the best performing model. Where no

value is boldfaces, the individual estimator is better than all the others. The abbreviations for the

models are given in the section regarding the simulation.

DGP MPA Pooled SAIC SBIC SCL AIC BIC CL

Homo 0,55 0,36 0,67 0,67 0,68 0,67 0,67 0,36

Group 0,68 0,66 0,81 0,81 0,81 1,00 1,00 0,66
T
=
20

Hetero 0,69 0,33 0,53 0,53 0,53 1,00 1,00 0,33

Homo 0,63 0,33 0,60 0,60 0,60 1,00 1,00 0,33

Group 0,72 0,37 0,69 0,69 0,69 1,00 1,00 0,37
T
=
40

Hetero 0,36 0,63 0,72 0,72 0,72 1,00 1,00 0,63

Homo 0,67 0,63 0,78 0,78 0,78 1,00 1,00 0,63

Group 0,77 0,35 0,64 0,64 0,65 1,00 1,00 0,35
T
=
80

Hetero 0,52 0,54 0,70 0,70 0,71 1,00 1,00 0,54

When looking at a low number of individuals we find that the pooled model performs exceptionally

well when compared to other models. We find that the CL (c-lasso) criterion model performs just

as well as the pooled model, but this can be explained by the fact that the CL criterion penalizes

on number of groups and thus the pooled model with only 1 group is selected. We see that the

Mallows pooling average does not outperform other models, except the marginal difference with

a heterogeneous generating process and a high number of time observations equal to 80. We find

that the AIC and BIC consistently pick the individual model. Furthermore we see that the smoothed

information criteria perform similarly as the MPA.

4.2.2. N = 30

Lastly, we will consider the time-variant model with a number of individuals equal to 30.

14
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Table 4: The loss calculated for every different model divided by the loss of the individual estimator

where the number of individuals is set to 30. Bold faces values is the best performing model. Where no

value is boldfaces, the individual estimator is better than all the others. The abbreviations for the

models are given in the section regarding the simulation.

DGP MPA Pooled SAIC SBIC SCL AIC BIC CL

Homo 0,66 0,59 0,74 0,74 0,74 1,00 1,00 0,59

Group 0,54 0,34 0,67 0,67 0,68 1,00 1,00 0,34
T
=
20

Hetero 0,59 0,36 0,60 0,60 0,60 1,00 1,00 0,36

Homo 0,58 0,51 0,65 0,65 0,65 1,00 1,00 0,51

Group 0,43 0,43 0,65 0,65 0,65 1,00 1,00 0,43
T
=
40

Hetero 0,60 0,60 0,82 0,82 0,82 1,00 1,00 0,60

Homo 0,59 0,31 0,63 0,63 0,64 1,00 1,00 0,31

Group 0,38 0,51 0,64 0,64 0,65 1,00 1,00 0,51
T
=
80

Hetero 0,34 0,56 0,61 0,61 0,62 1,00 1,00 0,56

When looking at the results where the number of individuals has tripled, we directly notice that

now the Mallows pooling average performs much better compared to other models. We find that

for a low number of time observations the pooled model still outperforms all other models and for

a homogeneous data generating process we find that the pooling model is the best, as we would

expect. However, when the data has a medium heterogeneous structure or is completely hetero-

geneous we find that the MPA outperforms all other models, albeit in some cases only marginally.

We find again that the AIC en BIC criteria select the individual model and that the CL criterion

selects the pooled model. We find that the smoothed models do perform constantly better than the

individual model, but they are outperformed by the pooled model.

5. Discussion

Concluding, we find that in the case of time-invariant coefficient the pooled estimator and the

Mallows pooling average clearly both perform fairly well. Not unexpectedly we find that when

data is homogeneous the pooled estimator performs very well. When there exists a heterogeneous

structure we find however that the Mallows pooling average performs the best. We find that this

estimator also perform quite well compared to other estimator when the data is homogeneous. We

can thus follow the conclusions from Wang et al. (2019) that the MPA is the best estimator in non-

extreme cases and robust in extreme cases. In the time-variant model our findings are different.

We see here that the pooling estimator clearly outperforms all other models when the number of

individuals is low. When the number of individuals is high we find that the pooled estimator is
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only superior when the structure is homogeneous. We find that the Mallows pooling average per-

forms marginally better in this case. Summarizing we would choose the Mallows pooling average

estimator in time-invariant models, except if the assumption of homogeneity is very likely. In the

time-variant case we would let our decision be based on the number of individuals and observa-

tions available. We would only choose MPA above the pooling estimator if those dimensions are

high.

However, we have to take into consideration that in the time-variant model the best groups for the

data have not been made. We extended a method known literature, but were not able to use it for

calculations due to time-constraints. The time-variant Mallows pooling average might suffer from

this.

In the future the proposed method can be studied, but where we used kernel methods to estimate

the non-parametric coefficients more methods must be investigated as literature on the combination

of panel data with non-parametric models is very scarce.
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Appendix

In this appendix we will describe the code used to come to our results. All code is programmed in

matlab. Every subsection is a different folder.

Matlab

• betaCalc: in this function the coefficient estimates are calculated, such that one function can

return multiple estimates from multiple estimators

• BPA: in this function the weights belonging to the Bayesian pooled average estimator are

calculated

• calculateLoss: this function calculates the loss when given the real coefficient and the esti-

mates, the function can take multiple estimates as input

• criterion2: this function is developed by Su et al. (2016) and finds the optimal c-lasso model

according to their proposed criterion

• findP: this function uses other functions to calculate the groups structure and then forms the

restriction matrices and projection matrices with this group structure

• generateData: this function generates the data in the way as is discussed in the paper

• indEst: this function returns the individual estimates for every individual

• main: this program runs all other programs, puts the results in a table and saves them.

• MakeTable: this function is used to put all data in a table

• MallowsCrit: this function computes the weights and coefficient estimates for the Mallowscri-

terion

• optCLasso: This function returns the optimal c-lasso estimate

• P: this function takes weights and the projection matrices in as arguments and returns the

weighted average

• PLSest : thisf unctionisdevelopedbySu etal. (2016)andf indsthecoef f icientsf orthegroupstructuremodeltheyhavedeveloped

Time-invariant

••• datagenerator: this function generates the data according to the process described in the

paper
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• groupfinder: this methods finds the group structure and makes restriction and projection

matrices based on that

• individualest: This function calculates the individual estimates

• main: in this function the main results are gathered for different N,T or degree of hetero-

geneity

• main2: this program runs main for multiple values

• tableMaker: this function calculates the loss for each estimate

• timevarIC: This function calculates the estimates for the different information criterion esti-

mates such as SAIC, SBIC, SCL, AIC, BIC and CL

• timevarMallows: This function calculates the estimates for the Mallows pooling average

estimator

• timeVarZ: this function calculates the values for the M and W matrices for every time step.
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