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1 Introduction

The empirical analysis of panel data is of growing importance due to its increasing availability.
In heterogeneous panel data regression models, the potentially large number of coefficients that
need to be estimated can lead to a substantial loss in efficiency. However, assuming homogeneity
between units by applying pooled coefficient estimation could lead to a substantial bias in the
individual coefficient estimates and therefore to incorrect empirical inference making. This
typical trade-off between bias and efficiency describes an important dilemma in panel data
model estimation.

Existing literature proposes multiple approaches for the estimation of heterogeneous coef-
ficients in panel data models. For example, Swamy (1970) are the first to specifically address
this problem, for which they propose the random coefficient model (RCM) in which the average
effect of (potentially) heterogeneous random coefficients is estimated using feasible generalized
least squares (GLS). They prove that this estimator is consistent and asymptotically efficient.
Pesaran and Smith (1995) propose the mean group estimator, which, opposed to Swamy (1970),
equally averages the random coefficients from each individual regression for each unit. Another
approach is considered by Su et al. (2016), who propose their classifier-Lasso (C-Lasso) to deter-
mine latent group structures in panel data models in which coefficients of units are homogeneous
within groups and heterogeneous between groups. They further show that the C-Lasso estimator
enables consistent estimation of the number of groups.

Wang et al. (2019) propose to average the estimators or forecasts of different pooling strate-
gies in a linear panel data regression model with fixed, but potentially heterogeneous coefficients,
with appropriate weights. By selecting the weights with Mallows Cp-criterion, following Hansen
(2007), their Mallows pooling averaging estimator (MPA) makes an explicit bias-variance trade-
off which is optimal with respect to the mean square (forecast) error (MS(F)E). This is different
from other methods, which focus on other criteria than the MS(F)E, like unbiasedness or consis-
tency, and therefore cannot guarantee a minimum MS(F)E. The MPA estimator further opposes
the average-effect estimators of Swamy (1970) and Pesaran and Smith (1995) by leading to po-
tentially different unit-specific coefficient estimates, while the average-effect estimators lead to a
common coefficient estimate for all units. Unit-specific estimates are particularly relevant in the
explanation or forecasting of the individual units. An other advantage of the MPA estimator is
that it enables heterogeneity to exist in any pattern, not requiring a correct specification of the
group structure. By means of a Monte Carlo simulation study, Wang et al. (2019) compare the
performance of the MPA estimator to, among others, the methods mentioned above for multiple
combinations of data generating processes (DGPs). They find that the MPA estimator often
outperforms the other estimators in heterogeneous panels with a moderate signal-to-noise ratio
and also performs well in homogeneous panels or panels with a lower signal-to-noise ratio.

For the estimation of the individual coefficients, Wang et al. (2019) consider ordinary least
squares (OLS), which is equivalent to applying system OLS in a seemingly unrelated regression
(SUR) model. The estimation of SUR models for panel data is proposed by Zellner (1962), who
prove the asymptotic efficiency of the feasible GLS estimator in this setting, of which system
OLS is a specific case. The relative performance of feasible GLS compared to OLS depends on
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the variance-covariance structure of the error terms. In the absence of error correlations, the
finite sample properties favour the OLS estimator, which is also more robust. Feasible GLS is
more efficient in the case of cross-unit correlation between the error terms: higher correlations
lead to greater efficiency gains by (feasible) GLS relative to OLS. Wang et al. (2019) assume
uncorrelated error terms and consider the corresponding consistent variance estimators of the
OLS estimators, for which the optimality of the MPA estimator is established. Liu et al. (2016)
propose to average feasible GLS estimators of models with heteroskedastic error terms, but in a
single equation setting. In this case, the weight selection by Mallows Cp-criterion is also proven
to be optimal with respect to the MS(F)E.

In our research, we consider the MPA estimator of Wang et al. (2019), but examine its
application in the presence of contemporaneous cross-unit error correlations. We propose an
extension of the MPA estimator to (feasible) GLS and compare the performance of this GLS
MPA estimator to that of the OLS MPA estimator of Wang et al. (2019). We ask ourselves
whether GLS MPA outperforms OLS MPA in terms of MS(F)E due to the gain in efficiency
by GLS in the presence of contemporaneous cross-unit error correlations—and, if so, in which
situations. To the best of our knowledge, no literature exists on pooling averaging estimation
under GLS in panel data models nor on the performance of OLS MPA under cross-unit error
correlations. We expect that GLS MPA outperforms OLS MPA in samples with a large number
of observations per unit and with high cross-unit error correlations. Further, in our case, the
variance estimators of the OLS estimators considered by Wang et al. (2019) are not consistent.
Hence, we also examine the performance of OLS MPA when applying a variance estimator which
is consistent in the presence of cross-unit error correlations.

To answer our research question, we perform an extensive Monte Carlo simulation study
with different DGPs. Wang et al. (2019) find that the bias-efficiency trade-off of OLS MPA is
jointly determined by multiple factors, including the signal-to-noise ratio, the degree of cross-unit
coefficient heterogeneity, the number of observations per unit, and the number of explanatory
variables. In our case, the size of the cross-unit error correlations also determines the relative
efficiency of GLS compared to OLS and the sample size for each unit is particularly impor-
tant for feasible GLS. Therefore, we compare the squared risk, which is closely related to the
MS(F)E, of GLS MPA, OLS MPA, (individual) OLS and feasible GLS, and pooling forecasts
for different DGP combinations with respect to coefficient heterogeneity, sample size, cross-unit
error correlations, and signal-to-noise ratio. To compare the robustness of the estimators with
respect to the MS(F)E, we also consider DGP combinations in which the exogeneity condition
is violated.

We must note that the optimality results of the MPA estimator by Wang et al. (2019) are
not established for the (feasible) GLS estimator nor in presence of cross-unit error correlations.
Our research is not intended to provide a theoretical derivation of the (potential) optimality
properties of GLS MPA and OLS MPA in this situation, but we merely attempt to gain insights
into the relative performances of these estimators by means of our simulation study.

Our simulation results show that GLS MPA convincingly outperforms OLS MPA in panels
with a large number of observations per unit and high cross-unit error correlations. In particular,
for a moderate signal-to-noise ratio and a large sample size, GLS MPA outperforms all considered
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estimators. For a moderate number of observations, OLS MPA often performs best. Further,
in accordance with the findings of Wang et al. (2019), we find that none of the considered
estimators performs best in all situations. For instance, the pooling estimator performs best in
most homogeneous panels and (individual) OLS or feasible GLS outperform MPA in completely
heterogeneous panels in many situations. The considered variance estimators for OLS MPA
and GLS MPA often give similar results, suggesting that the importance of their consistency is
negligible. In case of endogeneity and a large number of observations, GLS MPA outperforms
all estimators in almost all heterogeneous panels, but often the difference with other estimators
is small. MPA generally outperforms OLS under endogeneity, proving to be more robust with
respect to MS(F)E in this situation.

The remainder of this paper is as follows. In Section 2 we explain our model set-up and derive
and explain the estimators. Specifically, we derive the pooling averaging estimators under OLS
and (feasible) GLS and provide an intuitive theoretical MS(F)E comparison. Further, we explain
the Mallows criterion for the weight selection and our considered variance estimators. Section 3
provides an explanation of our Monte Carlo simulation and in Section 4 we discuss the simulation
results. Section 5 concludes this paper with an overview and discussion of our findings and some
suggestions for future research.

2 Estimators

2.1 Model set-up

We consider the linear panel data model with heterogeneous coefficients for each unit i at period
t = 1, . . . , T ,

yi = Xiβi + εi, i = 1, . . . , N, (2.1.1)

where yi = (yi1, . . . , yiT )′ is a T × 1 vector of dependent variables, Xi = (x′i1, . . . , x
′
iT )′ is a

T ×K matrix of explanatory variables, βi = (βi1, . . . , βiK)′ a K × 1 vector of fixed regression
coefficients, and εi = (εi1, . . . , εiT )′ a T × 1 vector of error terms. The first coefficient, βi1,
corresponds to the intercept, such that x1,it = 1 for all i, t. Further, the coefficients βi are
assumed to be fixed, but they can vary over units i. This can be written more compactly for all
N units as the SUR model

y = Xβ + ε, (2.1.2)

where y = (y′1, . . . , y
′
N )′, X = diag(X1, . . . , XN ), β = (β′1, . . . , β

′
N )′, and ε = (ε′1, . . . , ε

′
N )′.

Wang et al. (2019) assume that the error terms εi are uncorrelated conditional on Xi for all
i. In this paper, we allow for contemporaneous correlation between the error terms to compare
the performance of the OLS and GLS pooling averaging estimators explained in Section 2.2 and
2.3, respectively. That is, we assume that

ε ∼ D(0,Σ⊗ IT ) = D(0,Ω) (2.1.3)

where D denotes some distribution, Σ is the N×N contemporaneous variance-covariance matrix
of the error terms with typical elements σij = E[εitεjt], for i, j = 1, . . . , N and for all t, and
IT the T × T identity matrix. In practice, the presence of cross-unit error correlations can be
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tested, for instance, by the Lagrange Multiplier test proposed by Baltagi et al. (2012). We
further assume that the explanatory variables are strictly exogenous, within and across units:
E[x′itεjt] = 0 for i, j = 1, . . . , N and for all t; and correct specification of the model in (2.1.2) to
ensure that both the OLS and GLS estimators are consistent.

2.2 OLS pooling averaging estimator

We first consider the two extremes in panel data model estimation by OLS: estimating the co-
efficients of the individual units by (system) OLS in the SUR model, which allows for complete
heterogeneity; and pooled estimation of the coefficients, which completely ignores possible het-
erogeneity. We further consider restricting some of the coefficients to be equal while allowing
others to vary across different units. By averaging the restricted estimators, Wang et al. (2019)
propose an estimator that makes an explicit trade-off between the gained efficiency from pooling
and bias due to potential heterogeneity.

Provided that each individual model is correctly specified and all regressors are within-
unit exogenous, unbiased estimation of the individual coefficients by system OLS in (2.1.2) is
obtained by β̂ = (β̂′1, . . . , β̂

′
N )′ = (X ′X)−1X ′y. This is equivalent to equation-by-equation OLS

estimation, β̂i = (X ′iXi)
−1X ′iyi for all i, if there are no restrictions imposed on the coefficients.

However, the OLS estimator can be inefficient due to the large number of coefficients and because
no cross-unit variation is taken into consideration.

Pooled estimation of the coefficients, which completely ignores possible heterogeneity across
units, restricts the coefficient βi to be equal for all i. This is equivalent to transforming the matrix
X to X∗ = (X ′1, . . . , X

′
N )′, and then applying OLS as above, such that b = (X ′∗X∗)

−1X ′∗y, a
K × 1 vector. The pooled estimator for all units is β̂pool = (ı ⊗ b), where ı is the N × 1 unit
vector. This method can lead to a substantial bias in the (individual) coefficient estimates, but
is generally more efficient.

A compromise between the two estimators above is to introduce a specific pooling strategy
by restricting some of the coefficients to be the same. By imposing equality restrictions of the
form

Rmβ = 0 (2.2.1)

on the coefficients vector β in (2.1.2), we get the restricted OLS estimator

β̂(m) = Pmβ̂ = (INK − (X ′X)−1R′m(Rm(X ′X)−1R′m)−1Rm)β̂, (2.2.2)

where Rm and Pm are the restriction matrix and the resulting projection matrix, respectively,
under pooling strategy m.

Wang et al. (2019) propose to average estimators or forecasts of M different pooling strate-
gies Pmβ̂ with appropriate weights to obtain an optimal bias-efficiency trade-off, defining their
pooling averaging estimator as

β̂(w) =

M∑
m=1

wmβ̂(m) =

M∑
m=1

wmPmβ̂ = P (w)β̂. (2.2.3)

Here, P (w) =
∑M

m=1wmPm is an NK × NK matrix and w = (w1, . . . , wM )′ is a vector of
weights, such that w ∈ W = {w ∈ [0, 1]M :

∑M
m=1wm = 1}. Wang et al. (2019) show that
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weight selection by minimizing the appropriate Mallows Cp-criterion is optimal with respect to
the squared risk, or MS(F)E, resulting in their MPA estimator. Because the possible number
of imposing restrictions on β, and thus the number of possible pooling strategies, can be large
depending on the number of units and the number of explanatory variables, a preliminary step of
model screening is desirable. Wang et al. (2019) use the classifier-Lasso (C-Lasso) proposed by
Su et al. (2016) for this purpose, under which the optimality of the weight selection still holds.
We give a more detailed explanation of the weight selection and preliminary model screening in
Section 2.5.

2.3 GLS pooling averaging estimator

Contrary to Wang et al. (2019), we allow for contemporaneous error correlations across different
units. In this particular case, GLS estimation can be more efficient than OLS estimation. The
GLS estimator is given by

β̂GLS = (X ′Ω−1X)−1X ′Ω−1y

= (X ′(Σ−1 ⊗ IT )X)−1X ′(Σ−1 ⊗ IT )y.
(2.3.1)

Consistency of the GLS estimator requires strict exogeneity of the explanatory variables, fol-
lowing the assumption in Section 2.1. For feasible estimation, it must further hold that Σ � 0

and that X ′Ω−1X is nonsingular. Because the matrix Ω is generally unknown in practice, we
substitute it with a consistent estimate to obtain a feasible GLS estimator, which we explain
in Section 2.6. We note that for an accurate estimate of Ω, a sufficiently large sample size is
required. Therefore, the feasible GLS estimator may have the potential to outperform the OLS
estimator only for larger T .

Because GLS is equivalent to OLS in a transformed model, we can show that the OLS
pooling averaging estimator proposed by Wang et al. (2019) and explained in Section 2.2 can be
extended to GLS. That is, letting A be an invertible transformation matrix such that

var(Aε) = A var(ε)A′ = AΩA′ = INT ,

then it holds that Ω = (A′A)−1. In this case, applying OLS in the transformed model

Ay = AXβ +Aε

gives the efficient GLS estimator

β̂GLS = ((AX)′AX)−1(AX)′Ay

= (X(A′AX))−1X ′(A′A)y

= (X ′Ω−1X)−1)−1X ′Ω−1y,

which is the best linear unbiased estimator (BLUE), as proven by Zellner (1962). This can
be extended to estimation under coefficient restrictions. Given the restriction Rmβ = 0 and
following (2.2.2), we get the restricted GLS estimator

β̂(m),GLS = (INK − ((AX)′(AX))−1R′m(Rm((AX)′(AX))−1R′m)−1Rm)β̂GLS

= (INK − (X ′Ω−1X)−1R′m(Rm(X ′Ω−1X)−1R′m)−1Rm)β̂GLS

= Pm,GLSβ̂GLS.

(2.3.2)

Opposed to the restricted OLS estimator in (2.2.2), the matrix Pm,GLS depends on the matrix Ω,
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which is unknown in practice. We therefore replace it with the same consistent estimate as for
the estimator β̂GLS in (2.3.1) to get a feasible estimator. We can then extend the OLS pooling
averaging estimator in (2.2.3) to GLS in a similar manner, giving

β̂GLS(w) =

M∑
m=1

wmβ̂(m),GLS =

M∑
m=1

wmPm,GLSβ̂GLS = PGLS(w)β̂GLS. (2.3.3)

For clarity we proceed by denoting β̂OLS(w) = POLS(w)β̂OLS and β̂GLS(w) = PGLS(w)β̂GLS

as the pooling averaging estimators under OLS and GLS, respectively, and, for notational con-
venience, β̂(w) = P (w)β̂ when no distinction is necessary.

2.4 MS(F)E comparison under OLS and GLS estimation

We follow a part of the theoretical derivation of Wang et al. (2019) to motivate the application
of pooling averaging. Specifically, we motivate a pooling averaging estimator under GLS instead
of the OLS by comparing their MS(F)E, or squared risk. This provides insights into the bias-
efficiency trade-off of an estimator or a forecast.

The following derivations are meant to give an intuitive motivation, assuming that the
weights of the pooling averaging estimator are fixed. Because in practice these weights are
estimated from the data, meaning that they are correlated with the explanatory variables and
coefficient estimators, the practical implications of our assumption are less clear. However, more
formal derivations are beyond the scope of our research and we refer to Wang et al. (2019) for
the implications of random weights. The same holds for the covariance matrix Ω, required for
the GLS estimator, which in practice needs to be estimated from the data to obtain a feasible
GLS estimator. In the following derivations, we assume that Ω is known.

The MSFE of forecast ŷ of the model defined in (2.1.2) can be written as

MSFE∗(ŷ) = E[(y − ŷ)(y − ŷ)′]

= E[(Xβ + ε−Xβ̂)(Xβ + ε−Xβ̂)′]

= E[(X(β − β̂) + ε)(X(β − β̂) + ε))′]

= E[X(β − β̂)(β − β̂)′X ′] + Ω,

(2.4.1)

where β̂ is some estimator for the true coefficient vector β and the last step holds (asymptotically)
due to the exogeneity condition. We omit the Ω term in further analysis because it is fixed and
identical under both OLS and GLS and therefore irrelevant for the comparison of the estimators.
Defining ||θ||2H = θ′Hθ for any vector θ and nonnegative definite matrix H and by taking the
trace of the last expression in (2.4.1), we find the following alternative expression for the MSFE:

MSFE(ŷ) = tr(E[X(β − β̂)(β − β̂)′X ′])

= E[tr(X(β − β̂)(β − β̂)′X ′)]

= E[tr((β − β̂)′X ′X(β − β̂))]

= E[(β − β̂)′X ′X(β − β̂)]

= E ||β̂ − β||2X′X .

(2.4.2)

Here, we follow the cyclic property of the trace and the property that the trace of a scalar
expectation equals the expectation of that trace. The last expression of (2.4.2) defines the
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MSFE that we consider in further analysis, following Wang et al. (2019). This expression is
particularly relevant in the appropriate Mallows Cp-criterion discussed in Section 2.5, as it is
equivalent to the (scaled) squared risk, or expected squared loss.

The scaling matrix X ′X in (2.4.1) gives the MSFE expression for forecast accuracy: the
expected "scaled sum of squared errors", as defined by Mallows (1973); while replacing X ′X
by the NT ×NT identity matrix INT gives the MSE expression for the accuracy of the coeffi-
cient estimator β̂. To generalize the squared risk to both forecasting and coefficient estimation
accuracy, we denote the scaling matrices X ′X and INT by H. The choice of H depends on
the application, specifically for the weight selection of the pooling averaging estimator by the
Mallows Cp-criterion.

For the pooling averaging estimators β̂(w) in (2.2.3) and (2.3.3), for OLS and GLS, respec-
tively, assuming fixed weights w and fixed Ω and using the trace properties mentioned above,
we can write the (asymptotic) MS(F)E, or squared risk, as

RH(w) = E ||β̂(w)− β||2H
= E[(β̂(w)− β)′H(β̂(w)− β)]

= E[tr((β̂(w)− β)′H(β̂(w)− β))]

= tr(E[(β̂(w)− β)(β̂(w)− β)′]H)

= tr(var(β̂(w))H) + tr((E[β̂(w)]− β)(E[β̂(w)]− β)′H)

= tr(var(β̂(w)H) + tr(E[β̂(w)]− β)′H(E[β̂(w)]− β))

= tr(var(β̂(w))H) + ||E[β̂(w)]− β||2H
= tr(P (w) var(β̂)P ′(w)H) + ||P (w)β − β||2H .

(2.4.3)

The last step holds because both the OLS and GLS estimator for β are unbiased. This expression
shows the bias-efficiency trade-off of the estimator β̂(w), with the left term accounting for the
variance and the right term for the bias. As pointed out by Wang et al. (2019), the last
expression in (2.4.3) further shows that the MS(F)E depends on the degree of heterogeneity of
the true coefficients β, the variance of the individual estimator β̂, the scaling matrix H, and
the combination of weights and projection matrices in P (w). The MS(F)E of the estimators
also depends on the signal-to-noise ratio because the variances of both the GLS and the OLS
estimator of β̂ depend on the error variances.

We specifically consider the presence of contemporaneous cross-unit error correlations, mean-
ing that the variance of the OLS estimator is (X ′X)−1X ′ΩX(X ′X)−1 and the variance of the
GLS estimator is (X ′Ω−1X)−1. In this case the GLS estimator is BLUE, following Zellner
(1962), and it holds that

var(β̂OLS)− var(β̂GLS) < 0.

Depending on the weights, the last expression in (2.4.3) shows that the GLS pooling averaging
estimator potentially has a smaller MS(F)E than the OLS pooling averaging estimator due to
the lower variance of β̂GLS.
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2.5 Mallows pooling averaging estimator

As proposed by Wang et al. (2019), we select the weight vector w of the pooling averaging esti-
mators by minimizing the appropriate Cp-criterion by Mallows (1973), resulting in the Mallows
pooling averaging (MPA) estimator. Wang et al. (2019) prove that, in the case of OLS MPA, the
selected weights provide asymptotically optimal results in terms of the squared risk, as defined
in (2.4.3). We must note that the optimality is not established in the presence of cross-unit error
correlations and, to our knowledge, no prove exists for the GLS pooling averaging estimator and
its variance estimators.

For the OLS pooling averaging estimator, weight selection by Mallows criterion is further mo-
tivated by Hansen (2007) and Hansen (2008) for averaging nested models with discrete weights.
Wan et al. (2010) extend the optimality theory to non-nested models and continuous weights.
Liu et al. (2016) prove the optimality for GLS averaging in a single equation model with het-
eroskedastic error terms, which, however, deviates from our assumptions about the error distri-
bution.

In the case of a linear panel data regression model, the generalization by Wang et al. (2019)
of the Mallows criterion proposed by Hansen (2007) is defined as

CH(w) = ||P (w)β̂ − β̂||2H + 2 tr(P ′(w)H var(β̂))− ||β̂ − β||2H , (2.5.1)

which they show to be an unbiased estimator of the squared risk. The choice of the scaling
matrix H depends on the application: if the focus lies on forecasting, H = X ′X, and if the focus
lies on the coefficient estimation, H = INK , the identity matrix. In our Monte Carlo simulation
study, we focus on the forecasting performance of the pooling averaging estimator in the spirit
of Wang et al. (2019) to make our results comparable.

Selection of the weights for GLS MPA or OLS MPA is achieved by minimizing the criterion
with the appropriate projection matrices, POLS(w) or (the feasible) PGLS(w), and the estimates
β̂OLS and β̂GLS and their variances. That is,

ŵ = arg min
w∈W

CH(w). (2.5.2)

The last term of (2.5.1) is irrelevant for the minimization, because it is independent of the
weights w. Minimizing this criterion ensures asymptotic optimality of the pooling averaging
estimator under the assumptions and regularity conditions addressed by Wang et al. (2019),
which we refer to for a thorough explanation and extensive proofs. However, as noted above,
the optimality is not proven for the GLS pooling averaging estimator and further depends on
the structure of the variance of the error terms Ω.

Because in practice the variance var(β̂) is unknown, we need to replace it with an estimate.
Wang et al. (2019) propose three variance estimators which are all inconsistent in the presence
of cross-unit error correlations. We explain our considered variance estimators in Section 2.6,
but must note that optimality of the weight selection by (2.5.2) is not proven for our considered
robust OLS variance estimator and both GLS variance estimators.

As noted in Section 2.2, we apply the C-Lasso proposed by Su et al. (2016) for our preliminary
step of model screening. Following Wang et al. (2019), we select M pooling strategies by
estimating the group memberships of each unit with the C-Lasso. That is, we select M panel

9



structure models in which each unit belongs to a group in which all units share the same
coefficients, including the intercept. Each pooling strategym corresponds to a specific maximum
number of possible groups equal to m, for m = 1, . . . ,M and M ≤ N . As Wang et al. (2019)
show, the optimality of the weight selection by Mallows criterion still holds when screening out
the poor performing pooling strategies by the C-Lasso, provided that the other conditions and
assumptions are met.

2.6 Variance estimators for OLS and feasible GLS

In this section, we explain the applicable variance estimators for both the OLS and the fea-
sible GLS estimators of β, and what one should take into consideration when applying these
with respect to consistency and the optimality of MPA. For notational convenience, we de-
fine the N × 1 residual vector ε̂t = [ε̂1t, . . . , ε̂Nt]

′ and the N × NK block diagonal matrix
Xt = diag(x1t, . . . , xNt) with 1×K vectors of explanatory variable, for t = 1, . . . , T .

For OLS, we consider the robust variance estimator

v̂ar(β̂OLS) = (X ′X)−1(

T∑
t=1

X ′tε̂tε̂
′
tXt)(X

′X)−1, (2.6.1)

where X is defined as in (2.1.2). This variance estimator is consistent in the presence of cross-
unit correlation and cross-unit heteroskedasticity of the error terms, following the distributional
assumptions in (2.1.3). As an alternative, we consider an OLS variance estimator that is only
consistent in the presence of cross-unit error heteroskedasticity. This estimator is given by

v̂ar(β̂OLS) = diag(σ̂21(X ′1X1)
−1, . . . , σ̂2N (X ′NXN )−1). (2.6.2)

In this expression, σ̂2i = σ̂ii = 1
T

∑T
t=1 ε̂

′
iε̂i, where ε̂i is the T × 1 residual vector and Xi is

defined as in (2.1.1), for all i. The estimator in (2.6.2) is equivalent to the ’between-individual
heteroscedasticity’ consistent variance estimator considered by Wang et al. (2019).

For GLS, we first address the estimation of Σ to obtain the feasible GLS estimator. We
consistently estimate the contemporaneous variance of the error terms by

Σ̂ =
1

T

T∑
t=1

ε̂tε̂
′
t, (2.6.3)

which has typical elements σ̂ij = 1
T

∑T
i=1 ε̂itε̂jt for i, j = 1, . . . , N and where ε̂it are the residuals

obtained by a preliminary OLS estimation step. Following this estimator, we construct Ω̂ =

Σ̂⊗ IT . As for OLS, we consider two estimators for the variance of the feasible GLS estimator.
The robust variance estimator is

v̂ar(β̂GLS) = (X ′Ω̂−1X)−1(
T∑
t=1

X ′tΣ̂
−1ε̂∗t ε̂

∗′
t Σ̂−1Xt)(X

′Ω̂−1X)−1, (2.6.4)

where ε̂∗t is an N × 1 vector with feasible GLS residuals and X defined as in (2.1.2). As an
alternative, we consider the non-robust and statistically most efficient variance estimator for
feasible GLS,

v̂ar(β̂GLS) = (X ′Ω̂X)−1. (2.6.5)

However, this estimator is only consistent when it holds that E[X ′tΣ
−1εtε

′
tΣ
−1Xt] = E[X ′tΣ

−1Xt]

for all t, which is not satisfied when the error terms within units i are heteroskedastic.
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Under the regularity conditions discussed by Wang et al. (2019), weight selection following
the Mallows criterion by (2.5.2) is optimal for uncorrelated error terms. Applying the cross-unit
heteroskedastic variance estimator of OLS in (2.6.2) is proven to be optimal. However, the
optimality is not established for the other variance estimators we discuss in this section. By
means of our Monte Carlo simulation study we attempt to gain insights in how the different
variance estimators perform for both OLS MPA and GLS MPA. The theoretical (potentially
optimality) properties are beyond the scope of this research.

3 Monte Carlo simulation set-up

3.1 Data generating processes

In this section, we explain the design of the data generating processes (DGPs) for our simulation
study. The bias-efficiency trade-off of the MPA estimators depends, among other things, on the
the degree of cross-unit coefficient heterogeneity and the variance of the individual OLS or
feasible GLS estimator, which is shown in the last expression of (2.4.3). The size of the cross-
unit error correlations determines the relative efficiency gain by GLS compared to OLS. Further,
in a finite sample, the performance of feasible GLS is particularly dependent on the sample size.
Therefore, to compare the estimators, we consider multiple DGP combinations with respect to
coefficient heterogeneity, signal-to-noise ratio, sample size, and cross-unit error correlations. We
also consider DGPs in which the exogeneity condition is violated within units to compare the
robustness with respect to MS(F)E of the estimators in this situation.

Following Wang et al. (2019), we consider the panel data model

yit = βi1 + βi2x2,it + βi3x3,it + εit, i = 1, . . . , N ; t = 1, . . . , T, (3.1.1)

for which we separate four DGPs by their degree of coefficient heterogeneity. We define DGP 1
with completely homogeneous coefficients as

βik = 1 for all i and k = 1, 2, 3.

Further, letting d·e and b·c denote the ceiling and the floor function, respectively, we define DGP
2 with weakly heterogeneous coefficients as

βi1, βi2 =

1, i = 1, . . . , bN/2c

3, i = dN/2e, . . . , N,
βi3 =

1, i = 1, . . . , bN/3c

3, i = dN/3e, . . . , N ;

DGP 3 with strongly heterogeneous coefficients as

βi1, βi2 =



1, i = 1, . . . , bN/4c

2, i = dN/4e, . . . , bN/2c

3, i = dN/2e, . . . , b3N/4c

4, i = d3N/4e, . . . , N,

βi3 =



1, i = 1, . . . , bN/5c

2, i = dN/5e, . . . , b2N/5c

3, i = d2N/5e, . . . , b3N/5c

4, i = d3N/5e, . . . , N ;

and DGP 4 with completely heterogeneous coefficients as

βik = 0.1× i× k for all i and k = 1, 2, 3.

We generate the explanatory variables xk,it, for k = 2, 3 and for all i, t, independently from a
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standard normal distribution. Further, we generate the error terms εit, for all i, t, independently
from a normal distribution with mean zero and, to obtain a predetermined signal-to-noise ratio
R2, unit dependent variances. Contemporaneous cross-unit error correlations are obtained by
means of the Cholesky decomposition of a predetermined correlation matrix with typical off-
diagonal elements ρ. The actual size of the cross-unit correlations in our DGPs can deviate from
ρ, being lower between units with higher degrees of heterogeneity and for units that have larger
coefficients. That is, we consider heterogeneous cross-unit error correlations by construction.
It holds, though, that in a DGP constructed with 2ρ the cross-unit correlations are twice as
high as in a DGP constructed with ρ. This results from the fact that we apply the Cholesky
decomposition of the correlation matrix and not of the variance-covariance matrix, while we
consider DGPs in which the variances across units can differ due to cross-unit heterogeneous
coefficients. To obtain DGP samples with endogenous variables, we consider a similar approach
as for the generation of cross-unit error correlations. For the derivation of the error variances
and a detailed explanation of the generation of cross-unit error correlations and endogenous
variables, we refer to Appendix A.1, A.2, and A.3, respectively.

We consider DGP combinations of N = 10 units, moderate and large sample sizes T = 20, 80,
cross-unit error correlations constructed with ρ = 0, 0.4, 0.8, and high and moderate signal-to-
noise ratios R2 = 0.9, 0.4. For the DGPs with endogenous variables, we only consider T = 80

and apply the Cholesky decomposition of a correlation matrix which has a moderate correlation
of 0.4 between the explanatory variables and errors.

3.2 Evaluation and estimation

To gain insight in the performance of GLS MPA relative to OLS MPA, we perform a Monte
Carlo simulation study with 100 replications for the different DGP combinations explained in
Section 3.1. For each DGP combination, we consider the GLS MPA, OLS MPA, (individual)
OLS and feasible GLS, and pooling estimators. Following Wang et al. (2019), we evaluate the
performance of each estimator in terms of their (sample) squared risk:

R̂H(β̂) =
1

100

100∑
j=1

||β̂j − β||2H , (3.2.1)

where β̂j denotes a specific estimate in the DGP combination of replication j and β the true
DGP coefficient vector. For the estimation by MPA and the evaluation of all estimators, we let
H = X ′X, focusing on forecast accuracy, to make our results comparable with those of Wang
et al. (2019).

Because the consistency of the variance estimators for OLS and GLS depends on the structure
of the variance of the error terms, we consider both the cross-unit error correlations robust and
the non-robust estimators explained in Section 2.6 for the MPA estimators. For GLS MPA, the
assumption of within-unit homoscedasticity for the consistency of the efficient variance estimator
in (2.6.5) is always met. This is due to the design of our simulation DGPs. However, because the
minimization of Mallows criterion in (2.5.1) may produce different results for different variance
estimators, we consider both the robust and non-robust variance estimator.

Considering the model screening and group assignment by the C-Lasso, we follow Wang et al.
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(2019) and Su et al. (2016) by applying the tuning parameter λ = cλS
2
yT
−1/3, where S2

y is the
sample variance of the dependent variable y in (2.1.2). Because the C-Lasso is computationally
expensive, all C-Lasso group estimations are performed with cλ = 0.25. This value provides the
best results on average in terms of risk in preliminary simulations of 50 replication for a few
DGP combinations over the grid cλ = 0.0625, 0125, 025, 0.5, 1. We realize that this procedure
may be a point of discussion, which we note in Section 5. Further, we let the maximum number
of groups in the group selection estimation for each pooling strategy be equal tom = 1, . . . , N−1

and therefore leave out the individual OLS or feasible GLS estimator.
The simulation study is implemented in software package MATLAB1, including some ad-

justed versions of the original C-Lasso optimization code by Su et al. (2016). An overview of
the programs and files can be found in Appendix A.4.

4 Results

4.1 Moderate sample size

In this subsection we consider the simulation results for a moderate number of T = 20 observa-
tions for each of the N = 10 units, which are presented in Table 1. Note that all numbers are
divided by the squared risks of the (individual) OLS estimator, which is why the OLS estimator
is not included in the table. Of the 24 different DGP combinations, GLS MPA only performs
best twice: for high cross-unit error correlations in the strongly heterogeneous panels of DGP 3.

Considering the results for a high signal-to-noise ratio, R2 = 0.9, GLS MPA outperforms
OLS MPA in the strongly and completely heterogeneous panels of DGP 3 and 4 for high cross-
unit error correlations, ρ = 0.8. This is, however, only by a small margin. As expected, the
pooled estimator performs best in all the combinations of the homogeneous panel of DGP 1, but
performs by far worst in the heterogeneous panels. The OLS MPA estimator performs best in
the other situations. We further notice that the feasible GLS estimator performs better than the
OLS estimator for high error correlations, particularly in the homogeneous panel. Interestingly,
all estimators fail to outperform OLS in the completely heterogeneous panel of DGP 4 for high
error correlations, resulting in squared risk ratios larger than one.

We find similar results in the case of a moderate signal-to-noise ratio, R2 = 0.4. However,
compared to the individual OLS estimator, GLS MPA and OLS MPA perform better than
for R2 = 0.9 in the strongly heterogeneous panels of DGP 3 and 4, and worse in the weaker
heterogeneous panels. In contrast to the theoretical and simulation results of Wang et al. (2019),
the pooling estimator does not compete with MPA in heterogeneous panels for a lower signal-
to-noise ratio. However, we find a large decrease in its risk ratio relative to R2 = 0.9. Further,
we notice that the squared risk of GLS scales linearly with that of OLS for the different signal-
to-noise ratios, such that the squared risk ratios are constant over R2 = 0.9, 0.4. The same
holds for the pooling estimator in the homogeneous panels of DGP 1. Interestingly, in the
presence of error correlations, OLS MPA under the inconsistent non-robust variance estimator
often performs better than under the consistent robust estimator, particularly for the lower
signal-to-noise ratio.

1All programs are written in MATLAB R2019a.
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Table 1: Squared risk comparison correctly specified model: GLS MPA, OLS
MPA, feasible GLS, and pooling forecasts for the different DGPs described
in Section 3.1, for N = 10 and T = 20 under different cross-unit error
correlations constructed by ρ and signal-to-noise ratios R2. All numbers are
divided by the squared risk of the individual OLS estimators.

GLS MPA OLS MPA GLS Pool

DGP rba non-rbb rbc non-rbd

R2 = 0.9

ρ = 0

1 0.660 0.619 0.455 0.384 1.128 0.093*

2 0.600 0.561 0.407 0.363* 1.133 14.510
3 0.804 0.794 0.682* 0.683 1.123 12.956
4 0.886 0.887 0.815* 0.841 1.124 13.547

ρ = 0.4

1 0.580 0.550 0.511 0.423 0.908 0.205*

2 0.586 0.552 0.435 0.382* 1.054 19.388
3 0.796 0.792 0.723* 0.730 1.055 17.596
4 0.982 0.988 0.929* 0.965 1.081 19.136

ρ = 0.8

1 0.443 0.425 0.586 0.494 0.612 0.314*

2 0.530 0.504 0.483 0.428* 0.865 39.480
3 0.767 0.765* 0.772 0.776 0.908 39.352
4 1.309 1.314 1.310 1.342 1.019 50.897

R2 = 0.4

ρ = 0

1 0.668 0.628 0.469 0.398 1.128 0.093*

2 0.648 0.618 0.489 0.463* 1.133 1.160
3 0.655 0.630 0.531 0.505* 1.123 1.046
4 0.640 0.615 0.516 0.496* 1.124 1.092

ρ = 0.4

1 0.596 0.566 0.524 0.432 0.908 0.205*

2 0.637 0.613 0.517 0.498* 1.054 1.557
3 0.684 0.666 0.586 0.562* 1.055 1.423
4 0.673 0.651 0.579 0.561* 1.081 1.528

ρ = 0.8

1 0.452 0.432 0.591 0.498 0.612 0.314*

2 0.571 0.555 0.567 0.551* 0.865 3.110
3 0.698 0.690* 0.705 0.724 0.908 3.087
4 0.728 0.721 0.697 0.696* 1.019 3.902

a Applying the robust variance estimator in (2.6.4).
b Applying the non-robust variance estimator in (2.6.5).
c Applying the robust variance estimator in (2.6.1).
d Applying the non-robust variance estimator in (2.6.2).
* Best forecast for a particular DGP with respect to risk.

A possible explanation for the fact that GLS MPA does not convincingly outperform OLS
MPA is the sample size. As noted in Section 2.3, a sufficiently large sample size is required
for an accurate estimate of the error variance Ω for the feasible GLS estimator. At the same
time, in some cases where OLS MPA outperforms GLS MPA, feasible GLS outperforms OLS.
This opposes our (intuitive) reasoning in Section 2.4, in which we compare the MS(F)E of the
pooling averaging estimators and argue that the efficiency gained by GLS could lead to a better
performing GLS pooling averaging estimator. However, in most of these occurrences, feasible
GLS performs only slightly better than OLS or GLS MPA performs only slightly worse than
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OLS MPA. More accurate results obtained by a larger number of simulation replications could
perhaps answer if our reasoning about the efficiency gain in GLS MPA by GLS is false.

Our results for the OLS MPA and pooling estimators, in the absence of error correlations,
deviate slightly from the results of Wang et al. (2019). Concerning OLS MPA, a possible expla-
nation is that they consider two other variance estimators for the weight selection by Mallows
criterion, while we consider their between-unit heteroscedasticity consistent (non-robust) and
our cross-unit error correlation consistent (robust) variance estimators. Further, we determine
the tuning parameter of the C-Lasso by a few screening simulations and not within each repli-
cation. With respect to both the OLS MPA and pooling estimators, a reason for the differences
could be a deviation in generating the simulation samples, for instance, in our construction of
a predetermined signal-to-noise ratio. Further, we base our simulation results on 100 replica-
tions, while Wang et al. (2019) consider 1,000 replications. Although our simulation results are
generally stable, slight deviations may be accounted to this fact.

4.2 Large sample size

In this subsection we explain the simulation results for a large number of T = 80 observations
for each of the N = 10 units. These are presented in Table 2. The GLS MPA estimator performs
best in 9 of the 24 DGP combinations, which is, as expected, substantially more than for T = 20.
GLS MPA performs particularly well for high error correlations, while OLS MPA often performs
best in the absence of error correlations. Similar to the results for a moderate sample size in
Section 4.1, we notice that in some situations OLS MPA outperforms GLS MPA, while feasible
GLS outperforms OLS. In accordance with the results for T = 20, it holds that in most of these
cases feasible GLS performs only slightly better than OLS or GLS MPA performs only slightly
worse than OLS MPA. Further, the robust and non-robust variance estimators generally give
similar results for both MPA estimators. Some explanations for deviations from the simulation
results of Wang et al. (2019), in the absence of error correlations, are discussed in Section 4.1.

For a high signal-to-noise ratio, R2 = 0.9, GLS MPA outperforms OLS MPA in the ho-
mogeneous and heterogeneous panels of DGP 1, 3, and 4 respectively, for moderate cross-unit
error correlations, ρ = 0.4. Under high error correlations, GLS MPA outperforms all other
considered estimators in the homogeneous panels of DGP 1 and the heterogeneous panels of
DGP 2 and 3. The pooling estimator performs best in the homogeneous panels of DGP 1 for
ρ = 0, 0.4, but, opposed to what we expect, slightly worse than GLS MPA for ρ = 0.8. In the
completely heterogeneous panel of DGP 4, the feasible GLS estimator outperforms all others for
high error correlations and is slightly worse than the OLS estimator for zero and moderate error
correlations. In all other situations, particularly in the absence of error correlations, OLS MPA
performs best.

Considering a moderate signal-to-noise ratio, R2 = 0.4, OLS MPA outperforms GLS MPA in
the absence of error correlations, as expected. However, there is no clear situation with respect to
coefficient heterogeneity in which GLS MPA performs better than OLS MPA for moderate error
correlations. GLS MPA outperforms OLS MPA in the homogeneous and strongly heterogeneous
panels of DGP 1 and 3, while OLS MPA performs better in the weakly heterogeneous and
completely heterogeneous panels of DGP 2 and 4. We must note that the differences are small.
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Table 2: Squared risk comparison correctly specified model: GLS MPA, OLS
MPA, feasible GLS, and pooling forecasts for the different DGPs described in
Section 3.1, forN = 10 and T = 80 under different cross-unit error correlations
constructed by ρ and signal-to-noise ratios R2. All numbers are divided by
the squared risk of the individual OLS estimators.

GLS MPA OLS MPA GLS Pool

DGP rba non-rbb rbc non-rbd

R2 = 0.9

ρ = 0

1 0.451 0.443 0.401 0.387 1.058 0.096*

2 0.442 0.436 0.381 0.369* 1.063 61.788
3 0.740 0.739 0.695 0.692* 1.061 55.883
4 1.349 1.354 1.295 1.305 1.062 58.580

ρ = 0.4

1 0.379 0.370 0.474 0.426 0.808 0.202*

2 0.428 0.421 0.407 0.386* 0.977 82.048
3 0.679 0.678* 0.732 0.728 0.986 75.496
4 1.407 1.407 1.456 1.472 1.014 82.277

ρ = 0.8

1 0.312* 0.305 0.563 0.491 0.477 0.313
2 0.384 0.377* 0.466 0.435 0.770 166.224
3 0.583 0.582* 0.706 0.699 0.822 167.482
4 2.343 2.346 2.223 2.241 0.949* 218.513

R2 = 0.4

ρ = 0

1 0.458 0.450 0.404 0.389 1.058 0.096*

2 0.484 0.480 0.443 0.435* 1.063 4.665
3 0.757 0.756 0.721* 0.723 1.061 4.230
4 0.731 0.733 0.680* 0.681 1.062 4.431

ρ = 0.4

1 0.379 0.370 0.479 0.430 0.808 0.202*

2 0.452 0.447 0.452 0.440* 0.977 6.209
3 0.766* 0.766 0.775 0.779 0.986 5.720
4 0.760 0.763 0.741* 0.745 1.014 6.211

ρ = 0.8

1 0.315 0.308* 0.565 0.493 0.477 0.313
2 0.393 0.388* 0.475 0.447 0.770 12.516
3 0.643* 0.644 0.793 0.815 0.822 12.593
4 0.861* 0.864 0.917 0.933 0.949 16.329

a,b,c,d,* See notes to Table 1.

Under high error correlations, GLS MPA outperforms all other considered estimators. The
differences between GLS MPA and OLS MPA are substantially larger than for moderate error
correlations. Considering the performance of the pooling estimator for a moderate signal-to-noise
ratio, we get similar results as for T = 20. That is, the pooling estimator does not compete with
the other estimators in all heterogeneous panels.

Next, we discuss the simulation results in the presence of endogeneity, which are presented
in Table 3. In general, we find that GLS MPA outperforms all estimators in the heterogeneous
panels and the pooling estimator performs best in the homogeneous panels. All estimators,
except the pooling estimator, often have results close to individual OLS. Interestingly, OLS
MPA does not outperform GLS MPA in any situation, while we expect OLS MPA to be better
in the absence of error correlations, which is the case when the exogeneity condition is satisfied.
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Table 3: Squared risk comparison endogenous variables model: GLS MPA,
OLS MPA, feasible GLS, and pooling forecasts for the different DGPs de-
scribed in Section 3.1, for N = 10 and T = 80 under different cross-unit error
correlations constructed by ρ, and signal-to-noise ratios R2. All numbers are
divided by the squared risk of the individual OLS estimators.

GLS MPA OLS MPA GLS Pool

DGP rba non-rbb rbc non-rbd

R2 = 0.9

ρ = 0

1 0.991 0.990 0.990 0.990 1.001 0.985*

2 0.940 0.940* 0.944 0.943 1.005 8.968
3 0.953* 0.953 0.959 0.959 1.007 11.294
4 0.968 0.967* 1.022 1.022 1.002 4.427

ρ = 0.4

1 0.990 0.990 0.991 0.990 0.997 0.987*

2 0.950 0.950* 0.959 0.958 0.996 9.182
3 0.953* 0.953 0.969 0.969 0.996 11.696
4 0.982 0.981* 1.027 1.028 0.998 4.479

ρ = 0.8

1 0.990 0.990 0.993 0.992 0.993 0.989*

2 0.975 0.974* 0.981 0.980 0.992 9.523
3 0.975 0.975* 0.994 0.994 0.992 12.370
4 1.001 1.001 1.027 1.027 0.998* 4.562

R2 = 0.4

ρ = 0

1 0.896 0.895 0.887 0.884 1.011 0.829*

2 0.666 0.663* 0.685 0.681 1.035 4.299
3 0.766 0.765* 0.825 0.826 1.039 4.425
4 0.766 0.764* 0.907 0.908 1.020 2.976

ρ = 0.4

1 0.885 0.883 0.903 0.894 0.965 0.851*

2 0.683 0.679* 0.719 0.712 0.983 5.018
3 0.789 0.788* 0.865 0.870 0.987 5.359
4 0.810 0.807* 0.942 0.944 0.998 3.320

ρ = 0.8

1 0.877 0.875 0.920 0.906 0.908 0.873*

2 0.782 0.779* 0.827 0.817 0.924 6.713
3 0.828 0.827* 0.925 0.929 0.929 7.934
4 0.917 0.916* 1.002 1.005 0.990 4.026

a,b,c,d,* See notes to Table 1.

However, the two MPA estimators generally outperform individual OLS. This indicates that
MPA makes a better trade-off between bias and efficiency, also in the case when the individual
OLS and feasible GLS estimators are biased due to endogeneity.

5 Conclusion

In this research, we propose an extension of the OLS MPA estimator proposed by Wang et al.
(2019) to (feasible) GLS and compare the performance of this GLS MPA estimator to that
of OLS MPA. We ask ourselves whether and in which situations GLS MPA performs better
than OLS MPA in terms of MS(F)E due to the gain in efficiency by GLS in the presence of
contemporaneous cross-unit error correlations. Because in this case the OLS variance estimators
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considered by Wang et al. (2019) are inconsistent, we also examine the performance of OLS MPA
when applying a variance estimator which is consistent in case of cross-unit error correlations.
We perform an extensive Monte Carlo simulation study in which we compare the squared risk
of the GLS MPA, OLS MPA, (individual) OLS and feasible GLS, and pooling estimators for
different DGP combinations with respect to coefficient heterogeneity, sample size, cross-unit error
correlations, and signal-to-noise ratio. To compare the robustness with respect to the MS(F)E of
the estimators, we also consider DGP combinations in which the exogeneity condition is violated.

Based on our simulation results, we conclude that GLS MPA convincingly outperforms OLS
MPA in panels with a large number of observations per unit and high cross-unit error correla-
tions. In particular, for a moderate signal-to-noise ratio, GLS MPA outperforms all considered
estimators. The results for moderate error correlations do not lead to a clear conclusion, as the
performances of OLS MPA and GLS MPA alternate over the degrees of heterogeneity in the
considered panels. For a moderate number of observations, OLS MPA often performs best. We
find that none of the considered estimators performs best in all situations, which is in accor-
dance with the findings of Wang et al. (2019). The pooling estimator performs best in most
homogeneous panels and (individual) OLS or feasible GLS outperform MPA in completely het-
erogeneous panels in many situations. Further, the differences between the considered variance
estimators for OLS MPA and GLS MPA are often small, which suggests that the importance
of their consistency is negligible. At last, in case of endogeneity and a large number of obser-
vations, GLS MPA outperforms all estimators in almost all heterogeneous panels, though often
by a small margin. In general, MPA outperforms OLS under endogeneity, proving to be more
robust with respect to MS(F)E in this case.

As a point of discussion, we must note that the simulation results are based on 100 replica-
tions because the C-Lasso is computationally very expensive with respect to time. Even though
the results are stable, more accurate results may be obtained by more replications. Further, the
tuning parameter of the C-Lasso used for group assignment to shrink the model space is deter-
mined by a few screening simulations because of the same argument of computational expenses.
Although the results over the grid of tuning parameters proved to be quite similar, one could
argue whether a different, more extensive screening would lead to different conclusions.

As a suggestion for future research, it is interesting to find out whether or not there exists
a theoretical asymptotic optimality result for the GLS MPA estimator—and if so, under which
conditions this optimality would hold true. We think that our simulation study provides some
insight in these situations. One could further extend the simulation experiment by considering
more versatile data generating processes.
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A Appendix

A.1 Predetermined DGP sample coefficient of determination

We show how to we obtain a predetermined coefficient of determination for the DGP samples
of the simulation study. For each unit i it holds that

R2
i = 1− SSres,i

SStot,i

a−→ 1− var(εit)

var(yit)
,

where SSres,i and SStot,i denote the residual sum of squares and the total sum of squares,
respectively. Then, following the panel data model in (3.1.1), we can derive that

var(yit) = var(βi1 + βi2x2,it + βi3x3,it + εit)

= β2i2 + β2i3 + σ2i ,

because xk,it ∼ i.i.d.N(0, 1), βik is fixed, E[εit] = 0, var(εit) = σ2i , and E[xk,itεit] = 0 due to
exogeneity. Then, it holds that

R2
i = 1− σ2i

var(yit)

= 1− σ2i
β2i2 + β2i3 + σ2i

.
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For a simulation DGP sample with a predetermined R2
i we get the expression

σ2i =
(1−R2

i )

R2
i

(β2i2 + β2i3), (A.1.1)

which we apply to generate the error terms for each unit such that

εit ∼ N(0, σ2i ).

A.2 Generating cross-unit correlated error terms

We explain how we obtain cross-unit correlated error terms in our DGP samples of the simulation
study. We define the N ×N contemporaneous correlation matrix R, having typical off-diagonal
elements ρ, and the T × N matrix with generated uncorrelated error terms U = [u1, . . . , uN ].
Then we construct contemporaneously correlated error terms by

E = [ε1, . . . , εN ] = UL

where L is the upper triangular Cholesky factorization of R.
If the variances of all units are identical, which is only the case for the homogeneous panel

model of DGP 1, the cross-unit correlation of the constructed error terms is identical for all
units and equal to ρ. In other cases, ρ denotes the correlation of the first group of units in
the particular DGP, which has the smallest coefficients. That is, the actual size of the cross-
unit correlation is lower between units with higher degrees of heterogeneity and for units that
have larger coefficients. The latter is due to the higher variance, in absolute terms, of their
error terms, as we show in (A.1.1). However, as noted in Section 3.1, it holds that in a sample
constructed with 2ρ the cross-unit correlations are twice as high as one constructed with ρ. This
covariance structure originates from the fact that we use the Cholesky decomposition of the
correlation matrix and not of the variance-covariance matrix, while we consider DGPs in which
the variances across units may differ, resulting in heterogeneous cross-unit error correlations.

A.3 Generating endogenous variables

We explain how we obtain endogenous variables in our DGP samples for the simulation study.
That is, having E[xkitεit] 6= 0 for k = 2, 3 and for all i, t. Defining the correlation matrix

RXε =

 1 0 ρXε

0 1 ρXε

ρXε ρXε 1

 ,

we correlate the explanatory variables with the error terms within each unit i for all t by

[x∗2,it, x
∗
3,it, ε

∗
it] = [x2,it, x3,it, εit]J,

where x∗2,it, x
∗
3,it, and ε

∗
it are the correlated DGP variables and J is the upper triangular Cholesky

factorization of RXε. As noted in Section 3.1, we only consider ρXε = 0.4.
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A.4 MATLAB programs

We provide an overview of the programs implemented for our Monte Carlo simulation study in
MATLAB (R2019a).2 Further, we must note that the functions for the C-Lasso of Su et al.
(2016) require the additional optimization software CVX in MATLAB.3 The programs and files
are ordered in multiple folders and explained below.

C-Lasso:

– C_Lasso_groups.m: Function for C-Lasso estimation of the group structure for different
numbers of groups.

– CLasso_tuningParam_Check.m: Script for selecting a proper tuning parameter for the
C-Lasso using simulate.m.

– criterion.m: Function for convergence criterion of the estimation algorithm for PLS.m
(original by Su et al. (2016)).

– get_groups.m: Function which determines the groups where each unit should be assigned
to following PLS.m (original by Su et al. (2016)).

– PLS.m: Function for penalized least squares of the C-Lasso to determine the group coeffi-
cients for a given number of groups (original by Su et al. (2016), requires CVX software).

MPA:

– constr_P.m: Function that constructs the restriction projection matrix of a specific pool-
ing strategy (see (2.2.2) and (2.2.2)).

– min_MPA_Cp.m: Function that minimizes the Mallows criterion (see (2.5.1) and (2.5.2)).
– MPA_Cp.m: Function for the Mallows criterion for a linear panel data regression model

(see (2.5.1)).
– MPA.m: Function for GLS MPA or OLS MPA estimation in a linear panel data regression

model, including model shrinkage by the C-Lasso.

Simulation:

– betas_dgp.mat : File with DGP coefficients for DGP 1, 2, 3, and 4 (constructed by con-
str_beta.m).

– constr_beta.m: Function that constructs the DGP beta coefficient vectors for DGP 1, 2,
3, and 4.

– genr_endogenous_variables.m: Generates endogenous variables for a specific DGP, pro-
viding the X and y data, and the errors.

– genr_errors.m: Generates the error terms with specific variances, cross-unit correlations,
based on beta coefficients of the DGP (used in genr_variables.m and
genr_endogenous_variables.m).

– genr_variables.m: Generates (exogenous) variables for a specific DGP, providing the X
and y data, and the errors.

– s.mat : File with random generator.
2The MATLAB programs, including random generators and original output, are provided on request.
3We use the standard bundle downloaded at http://cvxr.com/cvx/download/.
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– simulate_endogenous.m: Function for a simulation of specific DGP for endogenous vari-
ables, in which the linear panel data regression model is estimated by all estimators and
their squared risks are computed.

– simulate.m: Function for a simulation of specific DGP for correctly specified model, in
which the linear panel data regression model is estimated by all estimators and their
squared risks are computed.

– Simulation_endogenous.m: Script for the simulation for endogeneity, which can be re-
garded as an example.

– Simulation.m: Script for the simulation for correctly specified model, which can be re-
garded as an example.

Other:

– FGLS.m: Function for feasible GLS estimation in a linear panel data regression model.
– L_A.m: Function for computing the squared loss of an estimate or forecast.
– Pool.m: Function for pooled estimation in a linear panel data regression model.
– SUR.m: Function for system OLS estimation in a linear panel data regression model.

Results:

– Folder with .mat files of simulation results for T = 20 and T = 80, for the different DGPs
1, 2, 3, and 4, and the R2 and ρ combinations, including the endogeneity results for T = 80.

22


