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Abstract

In this study we compare the forecasting performance of a multinomial logit (MNL)

model with that of an artificial neural network (ANN). We also implement a hy-

brid model, which uses an ANN as a diagnostic tool to detect nonlinearities in the

data and then incorporates the nonlinear relations found into an MNL model. We

use a scanner data set containing information on 2798 Catsup purchases with four

different brands. Price and whether the product was on display or featured in an

advertisement at the time of purchase is given, and we also construct a brand loyalty

term. Data is split up into a training and test set and different data partitions are

evaluated. Forecasting performance is measured with accuracy, the negative predic-

tion ratio and evaluation of confusion matrices. The MNL with an 80/20 data split

yields an accuracy of 72.1% on the test set, while the ANN with data partitioning

of 65/35 performs slightly better with an accuracy of 72.3%. The hybrid model

outperforms both with an accuracy of 73.2% and thus we conclude that this is the

most suitable model to forecast individual brand choices on Catsup.

The views stated in this thesis are those of the author and not necessarily those of

Erasmus School of Economics or Erasmus University Rotterdam.
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1 Introduction

Since the introduction of barcodes and barcode scanners, it has become very easy for

grocery stores to keep track of their customers’ purchase behaviour. The data they collect

can tell them which brand of a product is bought, when it is bought - and since a lot of

supermarkets use loyalty cards nowadays - by whom. When they combine this with their

data on which promotional activities were happening at the time of each purchase, they

have a very valuable data set on their hands. This data can be used to infer preferences

of individual households and forecast their future purchase decisions. Naturally, being

able to accurately predict these decisions is very valuable to grocery retailers in terms of

maximizing profits and maintaining or improving their market position.

A traditional technique in the field of econometrics to model choice behaviour is the

Multinomial Logit (MNL) model, which has been shown to be quite successful. It is

popular because of the closed form of its choice probabilities. The MNL is based on

a utility function that is assumed to be linear. This prevents the model from taking

any nonlinearities in the data into account, which has a negative effect on its predictive

capability.

Another approach is to make use of an Artificial Neural Network (ANN). This non-

linear statistical model is based on the human brain and can be trained to recognize

data patterns. When nonlinear relations are present in the data, the neural network is

expected to outperform the MNL as it can generalize these relations better. However, the

ANN is sometimes referred to as a black box, because its structure does not reveal any

information about the data itself.

In this study the goal is to compare the forecasting performance of a MNL with that

of a three-layer ANN, and determine which is more suitable to model and forecast brand

choice behaviour of individual households. For this we make use of a data set containing

information on individuals’ choices to purchase brands of Catsup. It contains data for 300

households and 2798 purchases. Moreover, a hybrid model is formed in an attempt to take

advantage of the best qualities of both models. This is done by having the ANN detect

nonlinearities in the data, which are then incorporated in the MNL model specification.

As neural networks are being used more and more in the machine learning field, it is

valuable to test and document its abilities in as many settings as possible.

Our approach to modeling the MNL and ANN is based on that of Agrawal and Schor-

ling (1996), however, instead of brand shares, we forecast individual choices. Brand

loyalty is also incorporated into both models, as opposed to just the MNL. Furthermore

we improve on the training method used for the ANN by implementing regularization

and softmax outputs and by making use of cross-validation to optimize parameters. The

hybrid approach is based on a study by Bentz and Merunka (2000), and involves a par-

tially connected three-layer neural network and shared weights. Forecasting performance
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is measured by splitting the data up into a training and test set and making use of metrics

such as accuracy and negative prediction ratio.

We find that the data does contain nonlinear elements which cause the simple ANN

to slightly outperform the MNL in predictive capabilities. The MNL and ANN manage

to get a 72.1% and 72.3% accuracy on the test set respectively. The hybrid model detects

nonlinear relations between variables and leads us to include price2 in the MNL model.

This new specification yields a 73.2% accuracy on the test set, meaning the hybrid model

outperforms both the MNL and ANN.

2 Literature Review

The multinomial logit model is a well-known discrete choice model that has proven to

be a useful forecasting tool in numerous applications. It has often been shown to be

more suitable than other traditional statistical models such as multinomial probit (Dow

and Endersby, 2004), regression (Gensch and Recker, 1979) and log-linear models (Green,

Carmone, and Wachspress, 1977). In this study, we are interested in modeling individuals’

choices of purchasing a specific brand of a grocery product. Previous studies on this

topic using MNL models have been done by Guadagni and Little (1983) and Gonul and

Srinivasan (1993).

Another model that can be used for this purpose is the artificial neural network. In the

last few decades, ANN has become a popular machine learning tool. The model replicates

the way the neurons in the human brain interact and learn from new data inputs. The

reason why the neural network is so popular is because it is able to recognize patterns in

data and classify unseen patterns by nonlinearisation. It can also be used for forecasting,

which is the objective in this study.

The ANN consists of an input and output layer and, in between, one or more hidden

layers. Each layer has a certain amount of nodes which are connected to nodes in other

layers. Through these connections, of which each is assigned a weight, the input is trans-

formed into an output signal. Often, biases are also included in a neural network, which

are nodes that always send an output signal of 1 and do not depend on the output signals

of the nodes in the previous layer. These bias nodes capture the intercept term present

in a regular regression model. Without these, the nodes in the neural network would not

be able to output anything other than zero, if the inputs were equal to 0. The ANN

needs to be trained with a training data set before it can apply what it has learned. The

most commonly used training algorithm is called the ‘backpropagation’ algorithm, which

is based on gradient descent (Hastie, Tibshirani, and Friedman, 2009, p. 395).

An example of a paper where a discrete choice model is compared with ANN is Agrawal

and Schorling (1996). The forecasted choice probabilities are aggregated to obtain market

shares for each brand of the three grocery products. Another example, where the focus
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is on individual brand choice, is Kaya et al. (2010). This study also uses aggregated

brand shares when evaluating predictive power. Both papers find that the ANN mostly

outperforms the discrete choice model. However, this is not always the case. Sometimes

no clear distinction in forecasting performance can be made, as is shown by Hensher and

Ton (2000). It is therefore useful to compare the forecasting performance of discrete choice

models and neural networks in as many settings as possible.

Other models that have been used to predict brand choices are the multinomial probit

model (Paap and Franses, 2000), multiple regression (Queen, 1994) and models making

use of discriminant analysis.

3 Data

To empirically compare the forecasting performance of the MNL and ANN, this study

uses a data set provided by Nielsen (Jain, Vilcassim, and Chintagunta, 1994) containing

information on purchase decisions of individual households for several Catsup brands.

The data can be obtained from the R package Ecdat (Croissant, 2016). There are 300

households, each indicated by an id number, with a total amount of 2798 purchases of

Catsup. The number of observations available for each household varies between 5 and

44.

The customers could choose from four products: three different sizes of Heinz (41, 32

and 28 oz) and Hunt’s 32 oz. For each observation, the price of all four products is given,

whether the products were featured in a newspaper advertisement and/or on display in

the store at the time of purchase, and the brand the customer ended up choosing. The

price of the product that the customer has purchased is the actual price paid (minus any

possible discounts or coupons), while the price for the other three brands is the shelf price.

In Table 1 some summary statistics of the data can be found. The fraction of times each

brand is on special display in the store and is featured in an advertisement is given. We

note that the brand with the biggest market share, Heinz 32, has the lowest average price

and is displayed the most in the store.

Table 1: Summary statistics of Catsup data per brand

Brand

Heinz 41 Heinz 32 Heinz 28 Hunt’s 32

Display 0.023 0.099 0.076 0.045
Feature 0.033 0.065 0.069 0.046
Price ($) 4.634 3.143 4.316 3.355
Market share 0.065 0.521 0.304 0.110
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4 Methodology

In this study we deal with a multinomial discrete random variable, namely which of

the available brands of a grocery product is bought in the supermarket. This random

variable, given by Yit, can take on the values j = 1, ..., J and indicates which alternative

j household i is predicted to buy at time t. yit denotes the actual purchase made. As the

number of observations available varies per household, we define the number of purchases

of household i as Ti. We use K explanatory variables that inform us of the marketing-

mix present for each brand at the time of purchase. These are denoted by the (1 ∗ K)

alternative-specific vector xitj.

This study will compare the forecasting capabilities of a multinomial logit model with

that of a feed-forward neural network. Our approach is based on the study done by

Agrawal and Schorling (1996). We build on this study by adding a measure of brand

loyalty to both the MNL and ANN and improving on the neural network’s training algo-

rithm. Moreover, we also evaluate the performance of a hybrid model that is based on

both the MNL and ANN. Results for each model are obtained in R (R Core Team, 2019)

and descriptions of all programmes can be found in Appendix B. In this section we will

elaborate on the models and performance measures used.

4.1 Brand Loyalty

For each household, multiple observations are available. It might therefore be valuable

to include a measure of a customer’s brand loyalty, as this could improve the forecasting

performance of both the MNL and the ANN. Agrawal and Schorling (1996) do include a

brand loyalty term in their MNL specification and this estimation procedure is explained

in their study. In this study, we use another measure that is introduced by Guadagni and

Little (1983). The brand loyalty is calculated by exponential smoothing of past purchase

decisions consumers have made, as shown by the recursive function

ψij(t) = aψij(t− 1) + (1− a)I(yit = j), (1)

where ψij(t) denotes the brand loyalty to brand j of customer i at time t, a is a smoothing

constant set by the user and I(A) is the identity function which is equal to 1 if A is true

and 0 otherwise. For the first observation, ψij(1) is set to a if brand j was the first brand

bought by customer i and (1 − a)/(J − 1) for all other brands. This brand loyalty term

is then added to the set of explanatory variables.

4.2 Multinomial Logit Model

For the MNL, we first specify a utility function containing a brand-specific intercept and

the alternative-specific variables xitj. The utility that household i gets from purchasing
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brand j at time t, where j = 1, ..., J , is given by

uitj = αj +
∑
k

βkxkitj + ζitj. (2)

In (2), αj is the brand-specific intercept, xkitj the marketing-mix variables consumer i

experiences for brand j at time t, and βk the parameters for each variable with k = 1, ..., K.

Household i will only purchase brand j at time t if uitj > uitl for all l 6= j. Finally, MNL

requires the error term of the utility function ζitj to be identically and independently

distributed and to follow a type I extreme value distribution.

As shown by McFadden (1973), given that the error distribution assumption stated

above holds, the choice probabilities of MNL are given by the following formula:

P (Yit = j|xitj) = Pitj =
exp(αj +

∑
k βkxitj)∑

l exp(αl +
∑

k βkxitl)
, (3)

where Pitj denotes the probability of household i choosing to buy brand j at time t. For

identification, we set the choice-specific intercept αJ = 0.

Estimation of the coefficients is done with Maximum Likelihood Estimation (MLE).

The likelihood function of the MNL model is given by

L(β) =
N∏
i=1

Ti∏
t=1

J∏
j=1

P (Yit = j|xitj)I(yit=j), (4)

where I(A) is an indicator function that is equal to 1 if A is true and 0 otherwise. From

this likelihood function, we get the following log-likelihood

l(β) =
N∑
i=1

Ti∑
t=1

J∑
j=1

logP (Yit = j|xitj)I(yit = j). (5)

There are numerous optimisation algorithms that can be used with MLE. We use the

Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm, which is a quasi-Newton method

that approximates the Hessian. It is a popular method, although convergence may some-

times be slow when estimating a large amount of parameters (Mai, Toulouse, and Bastin,

2014). In our case it seems suitable, as our model will not require a big amount of

parameters to be estimated.

The predicted choice probabilities for the test set can then be calculated as

P̂itj =
exp(α̂j +

∑
k β̂kxkitj)∑

l exp(α̂l +
∑

k β̂kxkitl)
, (6)

where α̂j and β̂k are the ML estimates. Then, for each observation in the test set, the

forecasted choice will be given by the brand that has the highest predicted choice prob-

ability, thus ŷit = arg max
j

P̂itj. The variance of the estimated parameters is calculated
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as

Var(θ̂) = I(θ̂)−1 =

(
−E

[
δ2l(θ̂)

δθ̂δθ̂′

])−1
, (7)

where I(θ̂) is the Fisher information matrix, which is equal to the negative Hessian re-

turned during optimization. Standard errors are computed by taking the square root of

the diagonal elements of the variance matrix.

A reason the MNL is a popular choice model is the closed form of the choice proba-

bilities. Moreover, the model parameters can easily be interpreted using the (log-)odds

ratio. The log odds ratio for the MNL relative to base case J is as follows

log
P (Yit = j|xitj)
P (Yit = J |xitJ)

= αj +
∑
k

βk(xkitj − xkitl), (8)

When all variables are kept constant except the k-th variable for alternative j, then pa-

rameter βk can be interpreted as the change in the log of the odds ratio when xkitj increases

with one unit. However, a disadvantage is the Independence of Irrelevant Alternatives

(IIA) property, which implies that the odds ratio between two alternatives should not

depend on the existence of another alternative. Naturally, this usually does not hold in

practice, which is why the multinomial probit is sometimes used as a workaround. How-

ever, for J alternatives, a J − 1-dimensional integral will need to be calculated in the

probit model, which makes it computationally difficult when J > 2. For this reason the

simpler logistic model is usually preferred.

4.3 Artificial Neural Network

To estimate the brand choice probabilities for each household in the testing set, we use a

feed-forward single hidden layer neural network. Feed-forward means that the connections

in the network do not form a cycle. The output layer contains J nodes, one for each brand,

and the input layer Q nodes, one for each marketing-mix variable of each brand, the brand

loyalty variables and a bias node. The optimal number of nodes in the hidden layer is

determined with cross-validation. The hidden layer also contains a bias node. We make

use of the backpropagation training algorithm. The input of each node will be the sum of

the outputs of the previous nodes multiplied by their corresponding weights. The input

of the input layer will simply be the data. This network is illustrated in Figure 1.

The transformation steps between the different layers can be summarized by the equa-

tions below:

zmit = σ(x′itαm), m = 1, ...,M, (9)

P (Yit = j|xit) = φj(z
′
itβj), j = 1, ..., J, (10)
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Figure 1: Three-layer feed-forward neural network with bias nodes

where xit is a (Q ∗ 1) vector of input data for individual i at time t plus a bias, with

corresponding weight vector αm of size (Q∗1). zmit denotes the output of hidden node m,

transformed by a certain activation function σ and zit is the (M ∗1) vector (z1it, ..., zMit)
′,

where M is the total number of nodes in the hidden layer. In the second step, weights βj

of size (M ∗ 1) are used to transform the output of the hidden layer to input for node j

in the final layer. That input is then transformed to class probabilities conditional on the

input P (Yit = j|xit) using another function φj(T ). Similar to the MNL, the forecasted

choice will be the brand with the highest predicted choice probability.

For the hidden layer, we will use the sigmoid function as activation function, meaning

that the input of the hidden nodes is transformed to an output value between 0 and 1.

σ(x) =
1

1 + exp(−x)
, (11)

This function is a popular function to use as it assures that a small change in input values

will only cause a small change in output values.

It is common to use a different function for the output layer. The softmax function

transforms the outputs to values summing up to one, which is very appropriate for our

goal of classification, where we want the outputs of the ANN to be class probabilities. In

the final layer, we will therefore make use of the softmax function

φj(T ) =
exp(Tj)∑J
k=1 exp(Tk)

. (12)

The backpropagation algorithm updates the weights assigned to connections based on

the ‘loss’ obtained in the previous run through the training set. The weights are updated

from right to left, so starting with the connections between the last hidden layer and the

output layer. As loss function we use the Cross-Entropy (CE), which is calculated as
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R(θ) = −
N∑
i=1

Ti∑
t=1

J∑
j=1

yitj logPitj, (13)

where θ denotes the set of all weights of the ANN, yitj is equal to I(yit = j) and Pitj is the

probability of individual i choosing to buy brand j at time t, P (Yit = j|xit), as estimated

by the ANN.

To minimize R(θ) we make use of gradient descent. We therefore need to derive the

gradient of (13). As θ consists of parameter vectors α and β, we take the partial derivative

of R(θ) for both parameters. Below the derivation for the weights between the hidden

and output layer can be seen

δR(θ)it
δβjm

= −
J∑

k=1

yitk
Pitk

δPitk

δβjm
,

= −
J∑

k=1

yitk
Pitk

φ′k(z′itβk)zmit,

= −
J∑

k=1

yitk(δjk − Pitj)zmit,

= (Pitj − yitj)zmit,

= ∆itjzmit,

(14)

where βjm is the connection weight between output node j and hidden node m, zmit is the

sigmoid output value of hidden node m for individual i at time t, and δjk is an indicator

function that is 1 when j = k and 0 otherwise.

The derivative of the loss function with respect to the weights between the input and

hidden layer is given by

δR(θ)it
δαml

= −
J∑

k=1

yitk
Pitk

δPitk

δαml

,

= −
J∑

k=1

yitk
Pitk

δPitk

δzmit

δzmit

δαml

,

= −
J∑

k=1

J∑
j=1

yitk
Pitk

φ′k(z′itβk)βjmσ
′(x′itαm)xitl,

=
J∑

j=1

∆itjβjmσ
′(x′itαm)xitl,

(15)

where αml is the connection weight between hidden node m and input node l, and xitl is
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the input value of input node l for individual i at time t.

The initial weights are randomly drawn from the normal distribution with a mean

of 0 and a standard deviation of 1 and then multiplied by 0.01 so they are close to 0,

but not equal to 0. This is important, because if the weights are all equal to the same

value, then the derivative of the loss function will be the same for every node. All weights

are then updated with the same value causing the neural network to be symmetric. If

this happens, the ANN will not perform better than a linear model. Therefore, careful

selection of initial weights is crucial. It can also speed up the learning process of the ANN.

The weights are then updated for the r + 1-th iteration as follows

α
(r+1)
ml = α

(r)
ml − γ

N∑
i=1

Ti∑
t=1

δR(θ)it

δα
(r)
ml

, (16)

β
(r+1)
jm = β

(r)
jm − γ

N∑
i=1

Ti∑
t=1

δR(θ)it

δβ
(r)
jm

, (17)

where γ denotes a specific learning rate. This rate can be set by the user. This should

be done carefully, as a too large learning rate will cause the model to shoot past the

minimum of the loss function, and bounce back and forth, perhaps even increasing the

loss as the number of epochs increases, while a too small learning rate will require a large

amount of epochs to approach the minimum.

To update the weights, the derivatives of both the sigmoid and softmax function are

needed, as can be seen in equations (14) and (15). It can easily be shown that the

derivative of the sigmoid is

σ′(x) = σ(x)(1− σ(x)). (18)

The derivative of the softmax function with respect to its j∗-th input can be written as

δφj(T )

δTj∗
= φj(T )(δjj∗ − φj∗(T )), (19)

where δjj∗ denotes the Kronecker delta which equals 1 if j = j∗ and 0 otherwise. This

derivative is used to simplify (14).

It is important to note that we do not want to globally minimize R(θ), as we want

to avoid overfitting. Our ANN should not be trained to get the highest accuracy on our

training set, but to be able to classify unseen observations accurately. Therefore, it is

necessary to implement something that will avoid this problem and thus improve model

performance. Regularization is a popular way to do this. In this study we make use of

the weight decay method, specifically L2 regularization. This method adds a term to the
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loss function that penalizes large weights. The total loss will then be R(θ) + λJ(θ), with

J(θ) = 1/2
∑
km

β2
km + 1/2

∑
ml

α2
ml. (20)

The λ ≥ 0 is the regularization rate, which can be set by the user. A larger value will

penalize large weights more, thus making the weights shrink towards zero. To the weight

update formulas (16) and (17) we then need to add the terms −γλαml and −γλβjm
respectively. The maximum number of training epochs is set to 50000.

4.4 Hybrid Model

A big limitation of the MNL model is that the utility function is assumed to be linear. We

therefore expect the ANN to outperform the MNL in forecasting when nonlinearities are

present in the data. However, as Vroomen, Franses, and Nierop (2004) state, a drawback

of ANN is that its weights are difficult to interpret. Unlike the MNL parameters, which

can be interpreted using odds or log-odds ratios, the weights obtained after training

are meaningless. This is a reason why some call the neural network a ‘black box’. To

circumvent these problems, we attempt to create a hybrid model that uses the best of

the MNL and ANN. This hybrid approach is based on the study done by Bentz and

Merunka (2000) and uses a neural network to detect nonlinearities in the data set. The

nonlinearities found are then modeled by adding corresponding terms to the MNL model

specification.

Bridle (1990) shows that his softmax output network with no hidden layer and shared

weights is identical to the MNL. This network is partially connected, as each alternative

has its own hidden nodes and connections which do not interact with each other. The

weights corresponding to the same attribute for each alternative are kept equal, as the

coefficients in a MNL utility function are also equal across alternatives. This model forms

the base for the neural network that we use to detect nonlinear elements in the data.

We consider a partially connected three-layer feed-forward neural network with shared

weights and J parts for J brands. By adding a hidden layer, we gain the possibility to

model choice probabilities derived from nonlinear utility functions. The ANN is therefore

a generalization of the MNL. The setup of the neural network is shown in Figure 2.

We use the shared weights technique introduced by LeCun et al. (1989) where weights

corresponding to the same attribute are initialized to be the same value. The weights

are then updated with the average error across all alternatives. Apart from this, the

same backpropagation approach is applied to this ANN as described in subsection 4.3. In

principle, this means that J separate neural networks are trained at the same time, after

which the outputs are merged. Naturally, for this training process we also need to find

the optimal number of hidden nodes, which is equal for all alternatives, and the optimal

learning and regularization rate. This is done with cross-validation.
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Figure 2: Partially connected neural network with shared weights and bias nodes (Q
inputs and M hidden nodes for each brand)

Once the ANN has been trained, we can identify nonlinear relations between variables

by plotting the utility per brand j which is given by the input of each output node

against a variable, while keeping others fixed. To be able to clearly see the relations

between variables we make use of Locally Weighted Scatterplot Smoothing (LOWESS),

which fits a smooth line to the datapoints. After identifying which terms might be valuable

additions to our model, we can confirm this by including them in the MNL and comparing

the forecasting performance on the test set, in the same way as for the regular MNL model.

This hybrid approach will provide us with interpretable coefficients as well as an expected

increase in forecasting capabilities due to the nonlinear elements detected by the neural

network.

4.5 Data Partitioning

To evaluate the forecasting performance of the MNL and ANN model, we need to compare

the predictions made by both models with the actual outcomes. Therefore, we split up the

data into a training set and a test set. The former will be used to estimate the coefficients

of the MNL model and to train the neural network, and the latter will be used to compare

the forecasts with the actual brand choices. We then use these comparisons to measure

the forecasting ability of both models.

It is well-known that the amount of observations in the estimation set affects the fore-

casting performance of the MNL model, and the same goes for the size of the training set

for ANN, as is shown by Foody, McCulloch, and Yates (1995). Therefore, three different

data partitions (50/50, 65/35 and 80/20) are used to evaluate the effect that number

of observations has on quality of predictions. To illustrate, with the 65/35 partitioning,

the first 65% of available observations for each household will be used to estimate MNL

coefficients and train the ANN, while the latter 35% will be used to determine the ability
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to make accurate predictions.

4.5.1 Multinomial Logit Model

To estimate the smoothing constant a in the brand loyalty term, we use the MNL with

the 80/20 data split. The log-likelihood of the model is optimized using different values

for a, namely 0.7, 0.75, 0.8, 0.85 and 0.9. As the goal of this study is to compare model

performance, this rough estimation is sufficient (Bentz and Merunka, 2000). The optimal

a found is then used to create brand loyalty terms for all MNL, ANN and hybrid models.

4.5.2 Artificial Neural Network

The ANN also contains a couple of parameters for which we need to find the optimal value,

namely η and λ and the number of hidden nodes to use in the hidden layer. Therefore,

we reserve a small part of the training data set for validation. This validation set will not

be used for training, so to the ANN these observations will be new, or ‘unseen’. As we

are trying to optimize the ANN’s predictive capabilities, and not how well it can fit the

training data, we will use the validation set to determine the optimal number of hidden

nodes, and the values of our learning rate and regularization rate. This will be done

by training the ANN multiple times with different parameters, and then computing the

accuracy on the validation set. The parameter combination with the maximum accuracy

is then used to make the actual forecasts for the test set.

The validation set is taken to be the last 25% of available observations in the training

set for all three data partitions. For the number of hidden nodes we try out the values

4 up to and including 13, as from preliminary analyses it is found that a smaller or

larger number of hidden nodes does not improve model performance. The learning rates

evaluated are 0.001, 0.005, 0.01, 0.05, 0.1 and 0.15, and the regularization rates 0.0001,

0.001, 0.01 and 0.1.

4.5.3 Hybrid Model

For the hybrid model, only the 80/20 data split is used so the ANN has the biggest

training set possible, and thus the biggest opportunity to learn the nonlinear relations

that might be present in the data. We then again create a validation set by taking 25%

of the training set, and maximize the accuracy on this data set while varying the number

of hidden nodes and two parameter values η and λ. As the hidden layer needs to contain

the same amount of hidden nodes for each alternative, we try out 1 through 6 nodes

per brand. For the learning and regularization rate, the same values as for the ANN are

tested. After training the neural network and identifying nonlinear terms to include in

the MNL, we again use the 80/20 data split to estimate the MNL coefficients and evaluate

forecasting performance.
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4.6 Performance Measures

To compare the predictive capabilities of the models, we make use of a couple of perfor-

mance measures. First, we calculate the accuracy of our model, which is given by the

formula

Accuracy =
#correct predictions

#total predictions
(21)

Calculating the accuracy is a very intuitive way of measuring forecasting performance,

however, solely using this measure is not a good idea. For example, when dealing with

a highly skewed data set, a model predicting only the most common class would score

a relatively good accuracy, while it is not a good model. In our data set, a model that

solely predicts Heinz 32, would score an accuracy of over 50%.

The Negative Prediction Ratio (NPR) might therefore also be a useful performance

measure, as it uses the number of times that the predicted probability of the actual choice

was the lowest out of all predicted probabilities. It is calculated as

NPR = 1− #times actual choice has lowest predicted probability

#total predictions
(22)

A confusion matrix, however, will most likely give us the most insight into the predic-

tive capability of each model. The confusion matrix cross references the actual choice with

the predictions, allowing us to see how many times each choice is correctly (or wrongly)

predicted for each brand.

5 Results

In this section we present and discuss the results for each of the models separately. Then,

making use of the earlier specified performance measures, we compare them and determine

which is better suited to predict individuals’ choices in purchasing Catsup. There are

J = 4 Catsup brands, namely Heinz 41 (1), Heinz 32 (2), Heinz 28 (3) and Hunt’s 32 (4).

5.1 Multinomial Logit Model

The brand loyalty smoothing constant a is found by estimating the MNL model multiple

times for different values of a and choosing the one for which the negative log-likelihood

is minimal. Using 80% of the data as the training set, we find a = 0.75 is the optimal

smoothing constant and therefore use this to create four brand loyalty terms for each

brand. These terms are used in all models that include brand loyalty that follow.

We estimate the MNL model multiple times for three different data partitions, both

including and excluding the brand loyalty terms to assess the increase in forecasting
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performance that the addition of these terms brings forth. Table 2 shows the accuracy

and negative prediction ratio on both the estimation and test set for all models.

Table 2: Forecasting performance of different multinomial logit model specifications

Training set Test set

Data split Accuracy NPR Accuracy NPR

No brand loyalty
80/20 0.619 0.952 0.617 0.951
65/35 0.619 0.956 0.614 0.946
50/50 0.624 0.963 0.600 0.938

Brand loyalty
80/20 0.724 0.967 0.721 0.989
65/35 0.732 0.970 0.711 0.978
50/50 0.752 0.980 0.705 0.969

It is clear to see that the addition of brand loyalty terms has greatly increased the

model’s predictive capability. Furthermore, it is worth noting that the accuracy on the

training set seems to go up when we use a smaller training set, while the test set accuracy

goes down. This is most likely caused by the skewness of the data set and the way the

data partitioning is done.

The 80/20 MNL including brand loyalty yields the highest accuracy and negative

prediction ratio on the test set out of all models. We therefore take a closer look at this

model’s estimated coefficients, which can be found in Table 3.

Table 3: Multinomial logit model estimates for 80/20 data split

α1 α2 α3 Display Feature Price Brand loyalty

Coeff. 1.80∗ 0.73∗ 2.31∗ 1.08∗ 1.25∗ −1.39∗ 2.52∗

S.E. 0.15 0.09 0.12 0.12 0.14 0.07 0.10

Log-lik. 1624.27

Note: * Significant at 5% significance level

The intercept term for Hunt’s 32 (α4) is set to 0 for identification. All coefficient

values are according to our expectations, as we only expect an increase in price to have

a negative effect on the probability of choosing to buy a product. When the price of, for

example, Heinz 41 goes up by one unit, then the log of the odds ratio of choosing Heinz

41 over Hunt’s 32 goes down with -1.39.

In Table 4 the confusion matrix of the predictions on the test set is shown and we

see that the brand with the smallest market share, Heinz 41, is almost never predicted.

However, in the rare case that it is, the model usually gets it right. From all observations

predicted to be Heinz 32, 80.5% is correct. Overall, the MNL does a relatively good job
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Table 4: Confusion matrix test set predictions by 80/20 MNL with brand loyalty

Reference

Heinz 41 Heinz 32 Heinz 28 Hunt’s 32

Prediction

Heinz 41 6 0 1 0
Heinz 32 8 215 31 13
Heinz 28 25 44 148 22
Hunt’s 32 1 3 4 24

at modeling customer’s preferences in buying Catsup.

5.2 Artificial Neural Network

Modeling the ANN is quite a computationally expensive task, as the model has to be

trained multiple times to find the optimal combination of parameters and each training

consists of 50000 epochs. We use a fully-connected three-layer feed-forward neural network

with sixteen input nodes and a bias node in the input layer, and four output nodes, each

giving the choice probability of the corresponding brand. The data is split up into three

sets, namely the training, validation and test set. For each of these subsets we calculate

the loss, accuracy and negative prediction ratio after training with the optimal parameter

combination. These results are shown in Table 5.

Table 5: Forecasting performance of ANN with three data partitions

Training set Validation set Test set

Data split Loss Accuracy NPR Loss Accuracy NPR Loss Accuracy NPR

80/201 0.645 0.762 0.977 0.805 0.718 0.961 0.720 0.703 0.989
65/352 0.522 0.801 0.986 0.848 0.700 0.944 0.777 0.723 0.980
50/503 0.502 0.809 0.982 0.801 0.710 0.982 0.815 0.709 0.967

1: # hidden nodes = 10, η = 0.05, λ = 0.001
2: # hidden nodes = 7, η = 0.1, λ = 0.0001
3: # hidden nodes = 12, η = 0.05, λ = 0.0001

The loss calculated for the ANN models includes the regularization loss J(θ) which

depends on the neural network connection weights. As these weights are different for

each ANN and are randomly initialized, we have to be careful in comparing the loss

across models.

We see that the accuracy on the validation and test set is always lower than that of

the training set. This means that our ANN is still overfitting to some extent and can

still improve on its ability to generalize. As with the MNL, we find that for a smaller

training set the accuracy on the training set is higher than for a larger set. Noteworthy

is that the neural network trained with the largest training set scores the lowest accuracy
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on the training and test set, but the highest on the validation set. Maximizing validation

accuracy is used to determine the optimal combination of parameters, however it seems

as if this leads to a neural network that is overfitting on the validation set.

While the 50/50 ANN does fit well onto the training set, it also has the largest decrease

in accuracy compared with the test set out of the three models. The 65/35 neural network

outperforms the other two data partitions on this performance metric. Therefore, we will

use this ANN in the comparison across all models. With the help of regularization, the

weights have stayed close to 0. The weight matrices for the 65/35 ANN can be found in

Appendix A.1.

Table 6: Confusion matrix test set predictions by 65/35 ANN with brand loyalty

Reference

Heinz 41 Heinz 32 Heinz 28 Hunt’s 32

Prediction

Heinz 41 14 1 4 0
Heinz 32 18 375 50 21
Heinz 28 43 71 258 34
Hunt’s 32 2 14 15 65

In Table 6 the confusion matrix is shown for the neural network with the highest

accuracy on the test set. From these results, and those for the 80/20 MNL, we see that

correctly predicting the Heinz 41 and Hunt’s 32 categories is a difficult task for both

models. This makes sense as these brands have the smallest market shares, thus there are

not many observations that the ANN can learn from.

5.3 Hybrid Model

The first step of the hybrid approach is to train the partially connected neural network

that we specified earlier. This is done with the first 80% of all available observations for

each household. Using cross-validation we find that the optimal number of hidden nodes

to use per alternative is 3, meaning that the hidden layer contains 12 nodes. The optimal

learning rate is η = 0.15 and the regularization rate λ = 0.0001. We train the neural

network using a maximum of 50000 epochs. Then we extract the predicted utilities for

all households and purchase occasions from the ANN by taking the input of each output

node. By plotting these inputs on the explanatory variables, we can discover any nonlinear

relations that are present in the data set.

We focus on plotting the utility function for Heinz 32 as this brand is purchased the

most and is therefore the most evenly distributed. However, the same effects are found

to a smaller extent for the other three brands. Multiple relations between variables have

been assessed and the important and relevant ones have been highlighted in this section.
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Figure 3: Utility for Heinz 32 plotted against price given whether product was on display
during purchase

In Figure 3 the predicted utility of buying Heinz 32 would yield is plotted against its

price. It is obvious to see that the LOWESS line is not linear, but instead starts to get

less steep from a certain price point upwards. To capture this nonlinear aspect we can

include price squared in the MNL as an additional explanatory variable.

The utility is plotted against price conditional on the display variable, which is 1 if

the product was on display at the time of purchase and 0 if not. The difference in slopes

of the lines indicates that there is some sort of relation between the two marketing-mix

variables. When a product is on display then an increase in price has a smaller negative

effect on utility than when it is not on display. Therefore another potential variable would

be price multiplied by the display dummy.

Figure 4: Utility for Heinz 32 plotted against brand loyalty given whether product was
featured during purchase

Finally, from Figure 4 we conclude that when a product is featured in an advertisement
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the brand loyalty customers feel towards that brand matters less to their utility than

when it is not featured. Therefore, loyalty multiplied by feature is another potential extra

variable. The plot for utility against loyalty conditional on display, which can be seen

in Appendix A.2, looks nearly identical to Figure 4. Loyalty multiplied by display is

therefore also an option. As before, the nonlinear LOWESS lines indicate that loyalty

squared might also be a good addition.

We have identified 5 potential additions to our MNL model, namely price2, price*display,

loyalty2, loyalty*feature and loyalty*display. After some preliminary logistic regressions,

we settle on evaluating the following model specifications, all with a 80/20 data partition-

ing:

a: Original model + price2

b: Original model + brand loyalty2

c: Original model + brand loyalty*feature

d : Original model + price2 + brand loyalty*feature

Various model specifications have been analyzed and only those that did not decrease

the training set accuracy have been selected to investigate further.

Table 7: Forecasting performance of several 80/20 MNL model specifications

Original MNL a b c d

Accuracy 0.721 0.732 0.721 0.721 0.732
NPR 0.989 0.989 0.991 0.989 0.989
Log-lik. 1624.27 1591.83 1621.06 1623.55 1590.92

In Table 7 the accuracy and negative prediction ratio on the test set is shown for all

4 model specifications. Only model specifications a and d outperform the original model

in terms of accuracy. However, the brand loyalty*feature term is not significant at a 5%

significance level, as can be seen in Appendix A.3. Therefore, we will only take a closer

look at specification a.

Table 8: Multinomial logit model estimates for 80/20 data split: specification a

α1 α2 α3 Display Feature Price Brand loyalty Price2

Coeff. 1.77∗ 0.74∗ 2.31∗ 1.06∗ 1.26∗ −3.70∗ 2.55∗ 0.31∗

S.E. 0.16 0.10 0.13 0.12 0.15 0.38 0.10 0.05

Log-lik. 1591.83

Note: ∗ Significant at 5% significance level

A possible reason that the coefficient for price2 is positive is that when the price of a

product is relatively high, the customer might think this is an indication of quality and
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will therefore be willing to purchase the more expensive Catsup. With additional data on

the perception of product quality that consumers have, this suspicion could be confirmed.

Table 9: Confusion matrix test set predictions by 80/20 hybrid model

Reference

Heinz 41 Heinz 32 Heinz 28 Hunt’s 32

Prediction

Heinz 41 6 0 2 0
Heinz 32 8 215 25 11
Heinz 28 25 43 154 24
Hunt’s 32 1 4 3 24

5.4 Model Comparison

After determining for the MNL, ANN and hybrid model which parameters, data partitions

and additional variables lead to the best accuracy on the test set, we can now decide on

which model is most appropriate for our goal of forecasting individual brand choice.

Table 10: Comparison forecasting performance MNL, ANN and hybrid model

MNL1 ANN2 Hybrid3

Accuracy 0.721 0.723 0.732
NPR 0.989 0.980 0.989

1: Data partition: 80/20, including brand loyalty
2: Data partition: 65/35, # hidden nodes = 7, η = 0.1, λ = 0.0001
3: Data partition: 80/20, including brand loyalty and price2

In Table 10 the three models and their forecasting performance metrics are shown. As

the ANN slightly outperforms the MNL we can conclude that there are indeed nonlineari-

ties in the data set that should be taken into account. The hybrid model outperforms both

the MNL and ANN with respect to accuracy and has a negative prediction ratio equal to

that of the MNL. This means that the hybrid approach, where nonlinear relations are first

analyzed after which nonlinear terms can be added to the utility function specification of

the MNL, is the most suitable for modeling individual brand choice with this data set.

However, this does not mean that the hybrid model will outperform the other two every

time when considering similar scanner data sets. Neural networks are very case-specific

and sometimes certain data needs a specific ANN architecture. Nevertheless this result is

still useful as empirical result for this specific data set, and as stepping stone for future

research in the same domain.
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6 Conclusion

The goal of this study was to compare the forecasting performance of a multinomial logit

model, an artificial neural network and a hybrid model that combines the two. To do this,

we used a scanner data set containing information on the Catsup purchasing behaviour

of 300 households. Four different brands could be bought, namely Heinz 41, Heinz 32,

Heinz 28 and Hunt’s 32, and there were in total 2798 observations. The data was split

into a training and a test set and three different data partitions were used to evaluate

the effect of the length/size of the training set on forecasting performance. Out of three

models, we found that the hybrid model based on the approach of Bentz and Merunka

(2000) is most suitable for forecasting individual brandchoice with this data set.

The first model applied was the multinomial logit model. This discrete choice model

assumes that the utility function is a linear function, and thus limits its own predictive

capability when there are nonlinear relations between variables. The 80/20 data partition

led to an accuracy on the test set of 72.1%. We then also trained an artificial neural

network with one hidden layer containing 7 hidden nodes and a bias on the training set of

the 65/35 data partition. This yielded an accuracy of 72.3%, which is only slightly better

than the MNL model. However, this did tell us that nonlinearities were present in the

data. This was confirmed by our third and final model: the hybrid model that combines

the best of both worlds. First, a partially connected three-layer ANN with shared weights

was used as a diagnostic tool that detects nonlinearities in the data. Plotting the ANN

utilities against the explanatory variables confirmed the existence of several nonlinear

relations between variables. After trying out several MNL model specifications, we found

that the original MNL model plus the term price2 yields 73.2% accuracy. Therefore, this

hybrid model has greater predictive capabilities than the MNL and ANN, regarding this

forecasting purpose and specific data set, and is therefore most appropriate for our aim.

One problem we ran into is the level of skewness in the data itself. Logically, with

scanner data on grocery products, there are popular and less popular brands. However,

this imbalance makes it hard for all models to properly identify the effects of each variable

on the choice, and the relations between them. Sampling with replacement to create equal

shares for all brands could be a solution to this problem.

Furthermore, the ANN we used in this study was relatively simple and thus biased

on the training set. In future research, using a more complex ANN that can avoid over-

fitting is advised. Moreover, another data set or extra explanatory variables could help

increase the accuracy of all three models. More customer characteristics or time and

day of purchase would maybe further improve forecasting performance. Finally, different

weight initialization techniques could be employed as the initial connection weights used

in an ANN greatly affect the outcome. Incorporating these improvements would certainly

improve forecasting performance even more.
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Appendix A Results

A.1 ANN Connection Weights

Table 11: 65/35 ANN connection weights after training: input and hidden layer

Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7

Display Heinz 41 −0.62 −0.41 −0.44 −0.46 −0.92 −0.53 −0.96
Display Heinz 32 −0.65 0.20 0.59 0.37 0.17 −0.25 0.00
Display Heinz 28 −0.52 −0.68 1.75 −0.85 −0.56 −1.19 −1.43
Display Hunt’s 32 0.94 −2.36 0.90 0.45 −0.91 −0.12 −1.28
Feature Heinz 41 0.19 −0.27 0.14 1.22 1.02 0.43 0.25
Feature Heinz 32 −1.37 0.36 0.65 −0.62 −0.81 2.71 1.84
Feature Heinz 28 −1.11 0.92 1.97 0.78 −0.82 1.45 −1.83
Feature Hunt’s 32 −1.08 −1.95 0.33 −0.95 −0.73 1.00 0.26
Price Heinz 41 0.91 −0.43 1.43 −2.65 1.08 0.55 1.54
Price Heinz 32 −4.73 −1.56 −0.11 −0.05 −1.38 −0.12 −0.83
Price Heinz 28 1.75 −0.36 −0.49 2.32 −0.12 −1.97 0.42
Price Hunt’s 32 0.16 3.04 −0.17 0.68 −0.58 1.77 −1.02
Loyalty Heinz 41 0.29 0.94 −2.84 −0.12 0.66 0.07 −2.99
Loyalty Heinz 32 −0.26 0.54 −0.14 0.76 0.13 2.95 1.40
Loyalty Heinz 28 −0.92 0.43 0.51 −0.28 0.88 −0.30 −1.84
Loyalty Hunt’s 32 0.43 −1.03 −0.56 −1.39 −1.12 −1.64 1.91

Bias −0.47 0.89 −3.04 −1.01 0.57 1.09 −1.52

Table 12: 65/35 ANN connection weights after training: hidden and output layer

Brand 1 Brand 2 Brand 3 Brand 4

Node 1 −0.16 3.77 −1.26 −2.33
Node 2 2.22 −0.22 1.57 −3.58
Node 3 −4.44 1.40 4.14 −1.11
Node 4 −0.96 3.31 −0.51 −1.84
Node 5 2.70 0.32 −1.38 −1.61
Node 6 0.86 3.02 −1.49 −2.40
Node 7 −2.85 2.41 −2.91 3.35

Bias 0.83 −5.06 0.90 3.33
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A.2 Scatterplot Utility of Hybrid Model

Figure 5: Utility for Heinz 32 plotted against brand loyalty given whether product was
on display during purchase

A.3 Hybrid Multinomial Logit Model Estimates

Table 13: Multinomial logit model estimates for 80/20 data split: specification d

α1 α2 α3 Display Feature Price Brand loyalty Price2 Brand loyalty*Feature

Coeff. 1.77∗ 0.74∗ 2.31∗ 1.06∗ 1.42∗ −3.71∗ 2.59∗ 0.31∗ −0.65
S.E. 0.16 0.10 0.13 0.12 0.18 0.39 0.10 0.05 0.47

Log-lik. 1590.92

Note: ∗ Significant at 5% significance level

Appendix B Code

All the code for this thesis was written in R and can be found in the zip-file “Thesis Code

443139.zip”. Below a list can be found of all programmes included:

• MNL.R Multinomial logit model that forecasts individual brand choice using Catsup

scanner data and a data partitioning set by the user. Also optimizes brand loyalty

smoothing constant.

• ANN.R Artificial neural network predicts individual brand choice with neural network

with optimal parameter combination and a data partitioning set by the user.

• Hybrid.R Hybrid model programme trains several neural networks, chooses the

one with best parameter combination and then plots consumer utility (given by

ANN) against variable conditional on others. User can then add terms to MNL

specification and make predictions. Uses 80/20 data split.
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