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1 Introduction

A popular delectation of football fans is to place bets on the results of impending matches. As

football and betting on said matches has become more and popular over the last decades, there

also has been increased interest in forecasting the results of tournaments by the statistical and

machine learning field. Football is a highly unpredictable sport, the outcome of matches are

dependent on many unknown variables where luck can be the decisive factor in the end. This

makes for a perfect study ground for testing the performance of models in areas where not all

explanatory variables are available and where it is hard to optimize the usage of the known data.

Whereas, the performance can immediately be measured against other competitive models by

computing the performance of the predictions against the bookmakers.

The statistical model that has seen a lot of adoption in the football match outcome pre-

diction field is a Poisson regression model (Schauberger and Groll, 2018). The main advantage

of the model, is the assumption that the amount of goals each team scores during a match is

independent of the opposing team. This relaxation may not be the most appropriate but it eases

the use of the model as there is no dependencies of one team in respect to the performance on

the opposing team. Therefore an optimal performance can be achieved by identifying significant

dependent variables and using those in the Poisson regression.

In the machine learning department there have been multiple algorithms that have been get-

ting attention. An advantage of these techniques is that they do not make the vital assumption

the Poisson model does, thus creating an environment where expected performance between

teams can be measured. Joseph et al. (2006) have shown using Bayesian network that, while

using a relatively small sample size, accurate forecasts can be made. Under the prerequisite

that the model is built by someone adept in the field for the variable selection. Similarly, Loef-

felholz et al. (2009) presented multiple versions of neural networks to predict match outcomes

in the NBA. Their algorithm managed to predict the winning team on a higher average then

a team of basketball experts. Another algorithm which has shown potential is random forests.

Its usefulness is shown, for example, by Groll et al. (2018), who correctly predict the winning

team in the 2014 FIFA world cup, even though another team was the evidently favored team.

Furthermore, Schauberger and Groll (2018) presented that different variants of random forests

algorithms outperform conventional regressions in terms of accuracy. They also have shown

that random forests show to perform on par or even better as a multitude of well renowned

bookmakers.

2



Since random forests reliably perform well, we will further look into random forests and

possible alterations. That brings us to our main research question, namely: ”Should we adapt

random forest estimation to get a good performance in respect to football match forecasting?”.

To answer this research question we theorize multiple sub-questions: ”How can we adapt ran-

dom forest estimation in a feasible way, such that performance is improved?” and ”How can

random forest estimation techniques perform as well as our benchmark, the bookmakers?”. A

particular adaption which we will delve deeper into is proposed by Lechner and Okasa (2019).

The results of a match will be ordered to a loss-draw-win basis. To answer our research question

we will follow a similar course as Goller et al. (2018). We gather data of the German Fussball

Bundesliga from over 10 years, to predict match outcomes of the latest seasons. The predictions

are made on a game-by-game basis, for each match we estimate the probability of each outcome

occurring. This way we simulate the whole competition multiple times and rank all the teams

within a confidence interval.

Furthermore, using the framework given by Lechner and Okasa (2019), we will map the trees

in the random forest to a neural network and further optimize the parameters to create a neural

ordered random forest (Biau et al. (2018); Sethi (1990)). By fine tuning the network parame-

ters a higher emphasis is placed on certain variables, which in turn lead to better predictions.

The advantage of this approach, over using fully connected neural network, is that there are

less parameters to optimize thus less data points are needed. This is favourably, since neural

networks often require a big sample to make accurate predictions. Similarly, the framework

allows use to preserve the robustness and to an extent the interpretability of random forests.

The rest of this research is structured as follows. Section 2 is dedicated to the origin of the

data set and the adaptions made. We will discuss the methods used in our research in Section

3. In Section 4 we show the results of the empirical research we did. In Section 5 we give our

conclusion on this research and in Section 6 we hold a discussion on topics for future researches

and possibilities for enhancements.

2 Data Collection

Our research is based on the German football competition the Bundesliga. We collect data

based on the 08/09 season is collected up until the current season, 18/19. This totals up to

elevens full seasons, for a total of 3366 observations (matches). To make proper predictions, we

collect a multitude of variables, which will be discussed below.
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To make an estimation of how well a team can perform, we gather data on the structure

of the team and the club, the extended list of variables can be found in the Appendix. Fea-

tures that are used are, age and height structure of the team and market value of the players.

As source we use www.transfermarkt.com, whose accuracy is discussed by Franck and Nüesch

(2012) and Bryson et al. (2013). Due to time constraints we opted to only update these variables

on a season by season basis, thus players leaving the team on a halfway point are recorded to

stay at the club for the whole season and new players joining the club during the mid season

are recorded as have been with club from the start. This may cause possible inconsistencies as

players can play for two clubs at the same time, but we do not expect the impact of this to be

significant. Furthermore, when computing variables based on the 11 best players of a team, we

firstly base the ranking on the MV of the players, then if there are any, the first missing data

point within the top 11 is replaced by the 12th’ best player, the second missing data point by

the 13th’, etcetera. Then, if Q replacement of data took place, but we also need to compute

somethings based on the 12th to 21th player for the same variable, we compute this ratio based

on the (12 +Q)-th to (21 +Q+ F )-th player, where F is the number of data points that were

missing here to create this variable.

We also keep track of a variable based on where a match is played. Using data gathered from

www.google.com/maps, we calculate the distance in time with a car from stadium to stadium

for the outgoing team and capacity of the stadiums based on www.wikipedia.com. Similarly,

we collect data on the social-economic circumstances, like GDP, based on where the clubs are

situated, from www.regionalstatistik.de.Furthermore, the importance of the matches can be re-

trieved by using the television revenues accumulated from matches. We use the data found on

www.fernsehgelder.de for the season from 12/13 to 18/19. The data points before season 12/13

are computed based on a regression of the revenue of the latter seasons.

Another set of variables that we use are based on the relation between Bundesliga matches

and those of other competitions. From www.fifa.com we gather data based on when the world

cup takes place to mark the corresponding seasons. Furthermore, by using the schedules from

www.uefa.com and www.kicker.de, we get the data for which teams and when matches for

the Champions League are played out. The schedule of the Bundesliga itself is taken from

www.football-data.co.uk. The same source is used to get the statistics based on the performance

of the teams based on their records in the previous season. If a team is new to the Bundesliga

because of a promotion, we base their match statistics on the average of the worst 3 teams of the

previous season. We also use the same source to measure how well our algorithms perform. By

looking at the performance our algorithms achieve by the bookmakers we can measure how well
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the algorithm functions. We collect the promised returns from the following six bookmakers

to measure our performance, Bet&Win (BW), Interwetten (IW), Pinnacle (PS), William Hill

(WH) and VC BET (VC). The promised returns are based on the Friday afternoon odds for

the weekend matches and the odds from Tuesday afternoon are used for the matches during the

week.

3 Methodology

This section is used to review the current literature of random forest estimation and its deviation,

the ordered random forest estimation. Furthermore, the theoretical groundworks will be laid

for extensions on the existing literature. Finally, it will be described how these methods are

used to replicate Goller et al. (2018), and expanded upon, using the framework given by Biau

et al. (2018).

3.1 Random forest

Initially Breiman (2001) introduced random forests as an extension of the ideas proposed by

Ho (1998). Since then, random forests have become a powerful tool for predictions in the ma-

chine learning field. The concept of random forests is to grow a multitude of single trees and

randomly aggregate them. Over these aggregated trees the average is taken for regressions or

a majority vote for classification. Here a regression tree is defined as a tree with as response

value a probability distribution of the possible outcomes, whereas, a classification tree is a tree

with a class as response value (Breiman, 1984).

To reduce the possibility of overfitting to the data, we make use of bootstrap aggregation

(bagging) for each tree. Bagging is it randomly picking of data points from our data with re-

placement, such that a new data set is created to build the tree upon. The advantage of bagging

is that variance between the trees gets reduced.

We create each tree independently by repeatedly make a binary split on one of the end-nodes

(leaves). We pick the leaf with the lowest Gini coefficient as the potential leaf to split. The

Gini coefficient is calculated by

Gini = 1−
t=k∑
t=0

P 2
t ,

where k are the possible classes and Pk is the percentage of observations in that class. To

decrease the variance of outcomes between the trees further, (Friedman et al., 2001) proposed
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to only use subset of the possible covariates at each split. As such, we randomly draw c out of

C possible covariates without replacement. We take the recommended value c =
√
C for our

research. We then iterate over all of the c covariates. The variable with corresponding value

which can split the leaf in such a way, that the weighted Gini coefficient of the suggested splitted

data is the lowest, is considered as the next splitting variable. This is under the condition that

the potential split on the leaf does indeed reduce the Gini coefficient compared to the coefficient

of the leaf itself. The splitting of the leaves is repeated until a minimum amount of L(x) leaves

is attained or the predictor space cannot be split to reduce the gini index given the covariates,

where L(x) is the leaf which accomadates x. The goal of the splits is to partition the predictor

space in such a way that, the regression values within a partition are similar, but the values in

different splits differentiate by a substantial amount.

Thus, the algorithm takes a sample b of size N via bootstrapping, with the b data points a

regression tree Tb(x) is created, where x is the the evaluation point. The tree is grown by, at

each split, choosing c out of the C possible covariates, to base a split on. Until the minimum

amount of L(x) total leaves is attained. Thus, the accumulation of B regressions trees Tb(x)

gives the random forest estimate RFB(x) as

RFB(x) =
1

B

B∑
b=1

Tb(x) with Tb(x) =
1

|{i : Xi ∈ L(x)}
∑

{i:Xi∈L(x)}

Yi.

Here we define the covariates and the outcomes as Xi and Yi, respectively.

3.2 Ordered random forest estimation

To make full use of all given data, we have to take into account the structure of football match

results. In other words, the outcome of football matches can be classified as a problem with

an ordered outcome of lose, draw or win, whereby taking full effect of this categorization the

accuracy can be increased. The usage of a model for predicting an ordered outcome in football

is not often used in the literature, with a few exceptions like Hothorn et al. (2006) and Hornung

(2017). We will follow the proposed method by Lechner and Okasa (2019) to include the ordered

outcomes accurately in our model, as is fully explained in Goller et al. (2018). The model pro-

vides us with outcomes probabilities and marginal effects for each category. All while handling

the higher dimensional variable spaces by taking full advantage of the random forest framework.

A more technical explanation of the ordered random forest estimator will now be dis-

cussed. We define an ordered outcome variable which has m ordered classifications possible
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as Yi ∈ {1, ...,M}. Furthermore, a sample size N , with i = 1, ..., N , is considered. The classifi-

cation probabilities of the different outcomes evaluated at x, in other terms P [Yi = m|Xi = x],

are estimated given a set of binary indicators Ym,i = 1(Y1 ≤ m) for m = 1, ...,M − 1 by com-

puting the cumulative probabilities. In order to perform this estimation, a random forest has

to be created for each of the M − 1 binary indicators, thus giving Ŷm,i = P̂ [Ym,i = 1|Xi = x].

Creating these M − 1 random forest estimations can be a computational demanding task, but

since we only make use of three classes in our framework the size of the problem is diminished.

Because the summation of the cumulative probabilities has to be one, the M -th class’ prob-

ability does not have to be calculated, since it must hold that ŶM,i = 1. Afterwards, for every

m categories and for all i the probabilities are computed via the cumulative probabilities. The

outcome is directly taken from the ordered random forest estimation for the first category, where

we define P̂ tot
1,i = Ŷ1,i. All subsequent classes have their individual probabilities estimated by

making use of the preceding categories. In other words, by taking the probability estimated

for the m-th class minus the probability for the preceding class, the probability of the secluded

class can be calculated as P̂ tot
m,i = Ŷm,i − Ŷm−1,i. For continuity we define that, if a probability

becomes negative because of this computation we set its value to zero. To put it another way,

if P̂ tot
m,i < 0 then P̂ tot

m,i = 0. To make sure the summation of the final probabilities equals to one,

we rescale all the probabilities of the categories m = 1, ...,M as

P̂m,i =
P̂ tot
m,i∑M

m=1 P̂
tot
m,i

,

here the probabilities P̂m,i are defined as the conditional ordered outcome probabilities P̂m,i =

P̂ [Yi = m|Xi = x]. Therefore, we now have probabilities for all the different categories.

3.3 Neural network adaption of the ordered random forest

As extension on the current literature we suggest the usage of a neural ordered random forest.

This extends on both the theories described in Section 3.1 and 3.2 by making use of the methods

explained by Biau et al. (2018). The main idea is to make an one-on-one mapping between a

tree and a neural network (Welbl (2014); Richmond et al. (2015)) and combine this with the

use of ordered random forests (Lechner and Okasa, 2019) to make optimal predictions. We will

first discuss how a tree is mapped to a neural network. Secondly, how we need to make small

changes to the neural network to make backpropagation possible.
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3.3.1 Mapping a tree to a neural network

For every tree in the random forest a mapping is made between the nodes in the tree to a neural

network. The neural network is given three hidden layers, where, for every of the inner tree

nodes, a neuron is connected in the first hidden layer. In the second hidden layer a neuron is

placed for every leaf node. The connections (perceptrons) between the first two hidden layers

are placed such that every node which is passed in the tree between the root and a certain leaf,

which all have a node in the first hidden layer, are connected to a leaf node in the second hidden

layer.

A visualization of this can be seen in Figure 1. The main idea is to minimize an empirical

mean squared error from the predictions of this network, over an bagged sample. If the extra

training and fine tuning of the network will lead to better predictions than ordered random

forest shall be seen in Section 4.

(a) A random tree (b) The predictor space

(c) Neural network

Figure 1: Mapping of a tree from the predictor space to a neural network as in accordance
with Biau et al. (2018).
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First hidden layer

To create the same structure as a classical neural network we have to define certain characteris-

tics. At every split in the generated tree, we divide the data in relation to the presented variable

value. This splits the predictor space with the use of hyperplanes H = {H1, ...,HK−1}, here

we have K − 1 hyperplanes as we define K as the total number of leaves in the tree. Here we

define that the data points xj which fall below the variable value αj are given a +1 code and the

others a −1 code, for a given dimension j ∈ {1, ..., d}, where d is the number of total variables.

Then, each Hk ∈ H is specified as {x ∈ [0, 1]d : hk(x) = 0}, where [0, 1]d is one of the subsets

attained after a split and hk(x) = xjk−αjk for a jk ∈ {1, ..., d}. Thus, the activation function of

the neurons in the first hidden layer is defined as τ(hk(x)) = τ(xjk −αjk), with given threshold

function τ(u) = 2 1u≥0 − 1. Furthermore, the vector of weights in the first hidden layer is a

binary indicator vector for a variable jk.

Altogether, for every neuron in the first hidden layer there is a corresponding inner tree

node, and consequently a split. Thus, for a given input x, there is a neuron which records

the relative position to the corresponding split. Therefore the output of the first layer can be

described as a vector ±1 vectors (τ(h1(x)), ..., τ(hK−1(x))). This vector construes all decisions

made within the inner tree nodes, therefore, the value of τ(hk(x)) is +1 when x falls on one

side of the hyperplane Hk or −1 when it is on the other side. Since, all neurons in the first

layer are connected to only one input x(jk) with a weight of 1, the leaf of x can be quite trivially

determined in the second layer.

Second hidden layer

The leaf node of x is determined by using the output of the first layer, the (K − 1)-vector of

±1-bits. This is done by using adequate thresholds with a mix of the weighted bits. We define

L = {L1, ..., LK} as the set of all the leaves in a tree. In the second hidden layer we use one

neuron for each leaf in the tree, that brings us to having K neurons in the second hidden layer.

A perceptron is created between neuron k from the first hidden layer to k′ in the second hidden

layer if and only if the hyperplane Hk is associated with the path taken during the sequence

of splits when following a path from the root the leaf Lk. Thus, the output of the first hidden

layer is seen as a vector (u1(x), ..., uK(x)), where ui(x) is a vector of ±1-bits.

For a given neuron k′ in the second hidden layer, the output v′k(x) ∈ {−1, 1} is τ(
∑

k−→k′ bk,k′

uk(x) + b0k′), here we define k −→ k′ as a perceptron between k and k′ and bk,k′ = ±1 is their
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respective weight. The offset b0k = −l(k′) +
1

2
, where the length of the path from the root to

L′k is l(k′). Hence, the value of the threshold functions is
1

2
if x ∈ Lk′ and otherwise it is lower

than −1

2
. Consequently, output vk′(x) = 1 if and only if for x the leaf node is Lk′ . Altogether

the output of the second hidden layer can be seen as the vector (v1(x), ..., vK(x)) of ±1-bits,

which are equal to -1 except for the bit with a value of +1 corresponding to the leaf L(x).

Output layer

In the output layer we make use of the output of the second hidden layer, vector (v1(x), ..., vK(x)).

The output layers computes the average Ȳk′ of the Yi given the Xi which fall into Lk′ . Another

notation for this is tn(x) =
∑K

k′=1wk′vk′(x) + bout, with wk′ =
1

2
Ȳk′ for all k′ ∈ {1, ...,K},

and bout =
∑K

k′=1 Ȳk′ . Here we see that the baseline of the outcome is based on bout, the

summation of all possible outcomes dictated by all the leaves. Here all the leaves are weighted

the same, regardless of how many data points landed in the leaf during the original tree creation.

3.3.2 Backpropagation

Every tree in the random forest RFB(x) is now mapped to a neural network with Kn−1 neurons

in the first hidden layer and Kn neurons in the second. We now consider the q-th tree Tq(x),

we know that the structure of the network is fixed, since after the tree building phase in the

random forest algorithm the trees do not change anymore, thus, the weights and offsets of the

layers will be fixed as well. To increase the performance of our forest, we will now try to let

the weights vary by performing backpropagation training. The parameters are tuned by trying

to minimize an empirical mean squared error over a sample which is randomly taken without

replacement over our data set. This sample is different for each tree to avoid overfitting to the

data.

A condition of backpropagation training is that the activation functions must be differ-

entiable, thus, the original function τ(u) = 2 1u≥0 − 1 gets replaced with a similar function

which can be differentiated. This new function is the hyperbolic tangent activation function

σ(u) : tanh(u) =
e2u − 1

e2u + 1
. A different σ(u) is used for the two hidden layers. In the first hidden

layer σ1(u) = σ1(γ1u) and in the second hidden layer σ2(u) = σ2(γ2u) for all neurons. The

hyperparameters γ1 and γ2 are strictly positive and decide on how quickly the transition from

-1 to 1 goes. A larger γ means that the conversion goes at a faster rate and as γ approaches
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infinity, so will the activation function converge to the original threshold function.

Backpropagation is a gradient descent algorithm. Which comes down to updating the

weights based on the L (X) empirical error of the neural network based on a data point xi

in a bagged data set. During the bagging of this data set, the data points that were already

taken for the validation of the neural network are excluded. This is to avoid too much bias to

the performance of a bagged set in relation to the validation set. First the error rate is calcu-

lated following L (X) = (Y − Ŷ )2, here Y is the true outcome of X and Ŷ is the probability

the network estimated for the given outcome. Then, using the error rate each weight wi in the

vector of weights in the second hidden layer is updated with wi = −L(xi) ∗ (ui(x)) ∗ v′′i (x) ∗ δ,
where v′′i (x) is the derivative of the v′i(x) and δ is the learning rate which usually take the scale

of 10−5. The derivative of v′′i (x) is based on σ(u) which has the derivative function 1 − σ(u)2

and can therefore be easily computed. This backprogagation is repeated for many bagged data

sets based on the epoch hyperparameter. One epoch is to calculate the error rate and perform

the backpropogation once. In the end the weights of the epoch are chosen that give lowest

total error rate in respect to the validation data set. The weights of the first hidden layer are

not updated, this is to keep the structure of the tree intact to allow for a certain extent of

interpretability of the otherwise black box method of neural networks.

3.4 Estimating match outcomes with random forests

Now we will discuss how these methods are used in the empirical research. In order to look at

the performance of the algorithms, we will use the gathered football data from the season 08/09

to 16/17 to create the ordered random forests and neural ordered random forests, respectively.

As the neural forest requires standardized data, we use standardized data sets for both forest

algorithms.

For both ordered random forests and neural ordered random forests, we create 30 trees with

100 leaves each per forest and the size of the bagged data needed for creating a tree is halve of

our total training data set size. Only halve the data size is used to speed up the progress of the

forest creation, as with some experimentation showed that the performance did not improve

with a bigger data size. Furthermore, for ordered neural random forests, we perform 100 epochs

a tree with
1

9
of our training data as validation data and

1

3
of the training data size for the

bagged data for parameter optimization. Additionally, we use a learning rate of 10−4 and the

values 100 and 1 are initialized for γ1 and γ2, respectively. These parameters are chosen in

accordance with Biau et al. (2018), while keeping in mind total runtime and making sure that
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tree creation algorithm is cut short such that the leaves do have an uncertainty in them to a

certain extent.

The estimated forests are used to predict the outcomes from every match in both season

17/18 and 18/19. Then, based on the probabilities of each outcome occurring and a randomly

drawn number between 0 and 1, a final result is chosen. This is to recreate some variance

between the outcomes as seen in football. Given the final results predicted for every match,

points are distributed for the teams, 0 points for a loss, 1 for a draw and 3 for a win. The

seasons are both simulated a total of 15 times, this to create less bias to the randomness that

can occur. For each team all the points are aggregated and divided by the total amount of

simulations to get the final standings for each team with an estimated number of total points.

We also calculate the standard deviation of these standings to have certain confidence interval.

Furthermore, we also use the predicted outcomes to compare our performance to the book-

makers. We calculate our performance for each bookmaker individually given the different

betting strategies. For each of the strategies applies that, if a bet is placed, the total amount

per bet for a match is standardized to a total of 1. The returns of the bets are aggregated over

the whole season, and finally the average and standard deviation are computed of the accumu-

lation of returns of all the simulation.

The first betting strategy, Always bet proportionally (ABP), is to bet on every match pro-

portional to the odds predicted with the random forest. Thus, if we predict the odds of the

outcomes to be 0.6, 0.2 and 0.2, for a home win, a draw and home lose, respectively, we also

bet on the outcomes with 0.6, 0.2 and 0.2 per category, respectively. So if the true outcome

is a home win and the return by the bookmaker for that is 4, we compute the return for that

match to be (0.6 ∗ 4)− 1 = 1.4.

A variant on the first strategy Always bet proportionally net revenues (ABPNR), tries to

account for the margin of profit the bookmakers use on all the returns. We thus try to rescale

the bookmaker odds to calculate the net earnings as it were, for a fairer comparison to the odds

the bookmakers predict. Unfortunately, we do not know how the bookmakers distribute the

margins. Therefore, for simplicity’s sake we assume that they distribute the margins propor-

tionally to the odds. For a discussion on this topic we refer to Levitt (2004), Paul and Weinbach

(2008) and Paul and Weinbach (2012). To calculate the net earnings we invert the bookmaker’s

returns, to get the odds these returns imply, next we standardize these odds to sum up to 1

and finally we invert these odds again to receive the net returns.
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The last strategy, Bet only for expected positive yield (BOFEPY), is based on the idea that

we only will bet on matches where the predicted earnings of the match are lower than the

risk taken. As we are betting a total of 1 each match, we at least want the return in of the

categories multiplied with the predicted odd to exceed that. For example, we predict the odds

to be 0.6, 0.2 and 0.2 with the bookmaker returns set at 1.04, 1.25 and 6, respectively. Then,

as 0.2 ∗ 6 = 1.2 > 1, we will perform the bet. If none of the categories would have an expected

yield higher than 1, no bet would be placed.

4 Results

In this section we will present the different results found in our research. In Section 4.1 we

discuss the results found of predicting the seasons’ outcomes using the ordered random forest

algorithm. Similarly, in Section 4.2 the results of the predictions of the neural ordered random

forest are presented. Lastly, Section 4.3 provides a better look into what variables have had a

high importance during the tree building phase.

4.1 Ordered random forest

4.1.1 Point predictions

The predicted points per team and the actual points for the 17/18 season are reported in Ta-

ble 1. Similarly, the results of the 18/19 season can be found in the Appendix. We observe

that the majority of the points per club can be forecasted reasonably well. Although, The

standard deviation of the points per team is rather high for each team. This can be explained

by the uncertainty we tried to maintain by drawing a semi-random outcome proportionally to

the predicted odds and the relatively small simulation count.

Furthermore, we notice that the upper echelon of teams have rather accurate predictions,

but in the lower halve there are a few teams who performed a bit above expectations and vice

versa. This falls within our expectations, because a certain set of variables only updates on

a seasonal basis, so certain on-seasons developments are not taken into account for. Not to

mention, the data used for teams that are just promoted is based on the previous season’s worst

teams, therefore the predictions can differ quite a bit from the realized points.

In Figure 2 a more clear visualization is presented of the difference between expected and

the actual gained points per team for both predicted seasons. The figure shows that, although
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Table 1: Ordered random forest prediction and realization of final standings in the Bundesliga
17/18 season.

Team Predicted points Actual points

FC Bayern Munich 77.4 (7.0) 84
Borussia Dortmund 66.7 (6.5) 55
RB Leipzig 54.5 (4.9) 53
Bayer 04 Leverkusen 52.2 (6.4) 55
FC Schalke 04 51.2 (7.2) 63
Mönchengladbach 50.8 (7.7) 47
VfL Wolfsburg 48.6 (5.7) 33
TSG 1899 Hoffenheim 47.7 (7.2) 55
1. FC Köln 45.9 (7.2) 22
Hertha BSC 42.4 (4.9) 43
FC Augsburg 41.6 (7.5) 41
Hamburger SV 40.9 (8.4) 31
Werder Bremen 39.9 (8.6) 42
Hannover 96 39.2 (7.5) 39
SC Freiburg 38.4 (6.9) 36
Eintracht Frankfurt 38.1 (9.2) 49
1. FSV Mainz 05 37.8 (7.2) 36
VfB Stuttgart 34.3 (7.2) 51

The standard deviation is given within brackets.

there are some teams that deviate from the regression line, mostly the teams have an accurate

prediction. Such that, the regression line has a slope close to 1 and cuts the x-axis close to 0

in both seasons. This means that on average the points gained per team are pretty accurately

predicted, but there is some variance deviating from the trend on both sides of the spectrum,

indicating that there is not a specific bias. Additionally, it is notable that the larger deviations

from the regression line mostly occur in the 17/18 season.

(a) 17/18 Season (b) 18/19 Season

Figure 2: Ordered random forest predictions against actual points of Bundesliga teams.
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4.1.2 Betting strategies

The resulting returns from the different betting strategies for both predicted seasons are given

in Table 2. Immediately it becomes clear that the ABP strategy, gives quite bad returns. An

obvious cause is that the returns from the bookmakers are not profitable against the risk taken.

So when we account for the net returns with ABPNR, we do see a positive return in the latter

season. The likely cause is that the accuracy is higher in the latter season than the former. As

the accuracies are 40.3% (0.02%) and 41.6% (0.02%), with the standard deviation given within

brackets, respectively. Which could be argued as that the latter season is more predictable than

the former, as there are also less big deviations from the predicted points to the actual points

earned.

The last betting strategy considered, BOFEPY, also performs well according to the tables.

With a positive average return by all the bookmakers for both seasons, with even more outstand-

ing numbers in the latter season. Which in turn are also likely caused by the higher accuracy.

Since the standard deviation is still relatively large even when we have positive returns, there

will be a decent part of a confidence intervals that will result into negative returns. Thus, if

this betting strategy is used there is still a modest probability for negative returns.

Table 2: Returns in percentage of betting strategies by different bookmakers over the 17/18
and 18/19 Bundesliga seasons of the ordered random forest.

Season Strategy B365 BW IW PS WH VC

17/18 ABP -17.6 (3.6) -18.2 (3.5) -18.4 (3.6) -10.5 (3.6) -19.7 (3.5) -15.4 (3.5)
ABPNR -2.7 (3.8) -3.3 (3.7) -2.3 (3.8) -3.7 (3.7) -2.2 (3.7) -4.1 (3.6)
BOFEPY 0.0 (1.6) 0.4 (1.1) 0.7 (1.2) 0.3 (1.8) 0.2 (1.1) 0.4 (1.4)

18/19 ABP -12.3 (3.0) -12.1 (2.9) -12.9 (3.0) -5.3 (3.0) -13.7 (2.9) -9.1 (3.0)
ABPNR 3.3 (3.1) 2.9 (3.1) 2.7 (3.1) 4.5 (3.1) 2.5 (3.1) 2.6 (3.1)
BOFEPY 2.6 (1.7) 2.1 (1.6) 1.9 (1.6) 1.9 (1.9) 0.4 (1.4) 1.8 (1.6)

The standard deviation is given within brackets.

4.2 Neural ordered random forest

4.2.1 Point and rank predictions

Like for the ordered random forest the results of the predicted points and the actual points for

the 17/18 season are presented in Table 3, with the results for 18/19 found in the Appendix.

Take note that the predicted points per team are all fairly close to each other. This is caused

by the specification of bout, which is biased to being equally distributed over the outcomes. A
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more in depth discussion on this topic is found in Section 6. Additionally, we take note of the

standard deviation being decently high due to us taking a semi-random outcome proportionally

based on the predicted odds, to preserve a part of the randomness found in typical football

match outcomes and our use of only a limited number of simulations.

Table 3: Neural ordered random forest prediction and realization of final standings in the
Bundesliga 17/18 season.

Team Predicted points Actual points

FC Bayern Munich 58.4 (5.4) 84
Borussia Dortmund 55.1 (6.3) 55
RB Leipzig 52.9 (10.3) 53
FC Schalke 04 52.5 (8.0) 63
Bayer 04 Leverkusen 51.9 (9.9) 55
Mönchengladbach 51.5 (7.0) 47
TSG 1899 Hoffenheim 50.7 (8.54) 33
Eintracht Frankfurt 50.4 (10.2) 55
FC Augsburg 49.9 (7.3) 22
Hamburger SV 47.3 (8.4) 43
1. FC Köln 46.7 (5.5) 41
VfL Wolfsburg 46.6 (8.9) 31
Hertha BSC 46.4 (5.6) 42
1. FSV Mainz 05 46.3 (9.6) 39
VfB Stuttgart 44.7 (9.7) 36
Werder Bremen 44.7 (5.6) 49
SC Freiburg 44.4 (9.4) 36
Hannover 96 43.4 (7.3) 51

The standard deviation is given within brackets.

As the point distribution is close to each other and, similarly to the ordered random forest,

the standard deviation being decently high, point predictions may not be the most suitable

use of the current implementation of the neural ordered random forest. This made us look at

another performance measure of the algorithms, the mean squared error.

Table 4 shows for the 17/18 season, the predicted rank for both algorithms, the actual rank

and the squared error between those. In the Appendix a similar table is shown for season

18/19. We notice that the neural ordered random forest has a lower mean squared error than

it’s ordered random forest counterpart. The mean squared error being 16.2 and 24.7, respec-

tively. The lower error is mainly caused by reducing the error for the few rankings with a big

error. Similarly, the 18/19 season also sees a lower mean squared error for the neural forest
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over the other algorithm. The mean squared error values for the neural algorithm is 10.4 and

for the ordered forest it is 10.9. These lower mean square error could indicate a substantive

way to make use of the current model. By, instead of making point prediction, making ranking

predictions of the final tournament rankings.

Table 4: Predicted rankings and the squared error of the 17/18 Bundesliga season.

Predicted rank Squared error

Team Ordered Neural Actual rank Ordered Neural

FC Bayern Munich 1 1 1 0 0
Borussia Dortmund 2 2 4 4 4
RB Leipzig 3 3 6 9 9
Bayer 04 Leverkusen 4 5 5 1 0
FC Schalke 04 5 4 2 9 4
Mönchengladbach 6 6 9 9 9
VfL Wolfsburg 7 12 16 81 16
TSG 1899 Hoffenheim 8 7 3 25 16
1. FC Köln 9 11 18 81 49
Hertha BSC 10 13 10 0 9
FC Augsburg 11 9 12 1 9
Hamburger SV 12 10 17 25 49
Werder Bremen 13 16 11 4 25
Hannover 96 14 18 13 1 25
SC Freiburg 15 17 15 0 4
Eintracht Frankfurt 16 8 8 64 0
1. FSV Mainz 05 17 14 14 9 0
VfB Stuttgart 18 15 7 121 64

4.2.2 Betting strategies

We present the results of the betting strategies for the predicted seasons in Table 5. The

main take away visible is that the results are proportionally the same as those of the ordered

random forest, but worse across the board. For instance the ABP strategy sees a decrease

of about 5% return over all the bookmakers, but also a decrease in the size of the standard

deviation. We argue this is caused by the lower accuracy of the neural ordered random forest.

The accuracy is 36.3% (0.03%) in the 17/18 season and 37.9% (0.04%) for the 18/19 season,

where the standard deviation is given within brackets. A decrease in accuracy of about 4% for

each season. Similar to ABP, the returns of ABPNR observe about the same trend, resulting

into that there is only one positive average return, for bookmaker Pinnacle in the 18/19 season.
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The BOFEPY strategy also sees a decrease in returns, with some of the returns going down 8%,

while others see a decrease of about 3%. To top it off, the standard deviation sees an increase

for all bookmakers. We argue this is caused by the specification of bout, which causes a bias

to equally distributed odds over the outcomes. The biased odds can randomly add additional

matches to bet on. Resulting into a worse performance, as the bets are not that favourable,

and more variety in total returns.

Table 5: Returns in percentage of betting strategies over the 17/18 and 18/19 Bundesliga
seasons of the neural ordered random forest.

Season Strategy B365 BW IW PS WH VC

17/18 ABP -21.5 (2.2) -23.9 (2.4) -23.9 (2.0) -15.6 (2.5) -24.2 (2.1) -21.9 (2.5)
ABPNR -6.8 (2.3) -9.2 (2.5) -8.1 (2.2) -8.9 (2.6) -6.9 (2.2) -10.9 (2.6)
BOFEPY -5.1 (2.8) -4.8 (2.7) -3.0 (2.3) -5.0 (2.6) -3.9 (3.3) -5.9 (3.5)

18/19 ABP -16.1 (1.8) -16.7 (1.9) -19.0 (1.8) -8.6 (1.9) -18.5 (1.9) -14.1 (2.0)
ABPNR -0.7 (1.9) -2.0 (1.9) -3.7 (1.9) 0.3 (1.9) -2.6 (2.0) -2.5 (2.1)
BOFEPY -5.8 (3.3) -6.4 (3.6) -7.4 (2.6) -4.1 (3.0) -7.2 (4.1) -5.0 (3.7)

The standard deviation is given within brackets.

4.3 Variable selection

An important factor of the performance of a random forest algorithm, is if there is an ade-

quate pool of explanatory variables to pick from. Thus, by identifying which variables are often

picked during the tree building phase and which variables often occur in the same branch, we

can classify the importance of certain sets of variables. For this, all the variables that were

used to perform a split within the tree were tracked, this data was used over all the simulations

to calculate the average and the standard deviation. The resulting table can be found in the

Appendix.

The average of the variables used showed that the most important set of variables are those

which differentiate the two teams in terms of size of the club. As a bigger club in terms of

revenue can buy more expensive players and can give better support to those players, they are

also more likely to win a match. Therefore, it falls within expectations that the most picked

variables refer mostly to the difference in, the amount of TV revenue earned per year, the total

market value of the club and a mix of those. But we also see that variables like, the unemploy-

ment rate in the area and the Log GDP are important. These can indicate multiple things, but

probably the most important factor is that there seems to be a correlation between bigger clubs

and well-off areas.
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Additionally, the variables that are arguably not connected to the club size specifically but

the team itself, like share of left foot players and the amount of fouls, yellow cards and goals

in a previous season etcetera, play only an average amount of play during the splitting phase.

This is most likely caused by that these stats do not directly or indirectly imply the size of the

club nor if a team is good or bad. On the contrary, boolean variables for traditional and yo-yo

teams, or teams participating in the Champions League were barely picked at all. Although,

these do indicate the size of the club to a certain extend, they do not allow for subtle difference

between the clubs, so they would see the most use during splitting when there are only a few

matches left to consider. As we cut off the splitting progress of the leaves early to allow for a

distribution of odds within a leave, these variables are not favoured to be picked.

5 Conclusion

It is exceedingly important for machine algorithms to be able to make accurate predictions in

highly unpredictable fields. We thus set out to develop a good variant on the random forest

algorithm, which can make accurate predictions in the uncertain field of football predictions.

Therefore, in this research we address the research question: ”Should we adapt random for-

est estimation to get a good performance in respect to football match forecasting?”. To get a

satisfactory answer we created the following sub-questions: ”How can we adapt random forest

estimation in a feasible way, such that performance is improved?” and ”How can random forest

estimation techniques perform as well as our benchmark, the bookmakers?”.

To answer the first sub-question, we dived deeper into two things. Firstly, improvement of

the random forest algorithm through adaptions, and secondly, variable importance. If we first

consider the former, we adapted the random forest algorithm to the ordered random forest and

the neural forest algorithm. Then, through the results we came across that it is important how

we define the performance. The ordered random forest managed to make rather accurate point

predictions per team. On the other hand the neural ordered random forest had a lower value

in terms of the mean squared error in ranking the teams over the predicted seasons.

When we consider variable importance to improve forest estimation, we noticed in the re-

sults that certain sets of variables are the most prevailing during data splitting. The variables

that saw the most use were those, which could capture the difference in size of the clubs the

best. Furthermore, as a result of cutting off the tree growing process early, binary variables
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that showed the difference between only certain sets of teams, saw almost no use. Therefore,

we proclaim that more variables that indicate the size of the clubs but also team features could

lead to better predictions.

The latter sub-question concerned, we use the two random forest adaptations and different

betting strategies to identify the performance of the adaptations. In the results we saw that

the ordered random forest performed decent in comparison to the bookmakers, when always

a bet was placed proportional to the odds predicted while trying to account for the profit the

bookmakers make on each bet. Additionally, when a different betting strategy was used, which

only places a bet when the expected returns on one of the outcomes is positive, we saw positive

average returns over all the bookmakers. The neural ordered random forest performed overall

worse for all the betting strategies, netting up to only seeing a positive average return on one

of the bookmakers when accounting for their profit margin.

To tackle the main question, we combine the results of the sub-questions. We measure

the performance of two different alterations of the random forest. In the results we find that

the two implementations excel in different things. The neural ordered random forest performs

better when trying to predict the ranking of the teams in the tournament, while the ordered

random forest outperformed the other algorithm in terms of accuracy, point predictions and

performance compared to the bookmaker benchmark. Concluding from the results, we find

that different alterations of the random forest algorithm have different effects on the given

performance measures. Thus, we suggest to delve deeper into the particular algorithms given in

this research or other adaptions of the random forest algorithm to find an optimal performance

given the desired target performance measure.

6 Discussion

During this research, a multitude of limitations manifested itself. As such, we will now discuss

these limitations in our research. Furthermore, we give pointers on to how these challenges can

be avoided or solved in future exploration of this research field.

No data based on on-season developments: A major disadvantage of the performance of the

algorithms compared to the bookmakers is that the random forests do not make use of the

latest season developments. An improvement for future research is to update all the covariates

based on all the events that happen, e.g. players cannot participate during upcoming matches

due to injuries or suspensions. This allows for more accurate predictions and improvement of
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the results. However, this would not work if the given data is yet unavailable, when one would

want to predict a tournament that is yet to begin. Not to mention, a different way of basing

the variables of newly promoted teams, can also lead to more accurate predictions of these teams

Specification of bout in neural forests: A major flaw for our neural forest is likely the specification

of bout. The main concern is that it uses the average of the odds of all the leaves, without any

notice to the importance of said leaf. As many leaves held more data points during the training

set, that information can be used to put an emphasis on certain leaves when computing bout.

As of now the neural networks in the neural forests predict a probability based on the average

of the leaves, and not particularly the leaf where the data point would end up on. This leads

to the odds per outcomes being biased to being equally distributed over the outcomes. Thus,

creating more randomness in the outcomes. A better specification of bout can lead to major

improvements in the predictions and we put an emphasis on this as the main topic for future

research.

Backpropagation algorithm in neural forests: The backpropagation algorithm used to tune the

weight parameters in our research is rather bare bones. Similar to not using the latest tree

building techniques, this is due to time constraints during the research. An example of an im-

proved algorithm is Adam proposed by Kingma and Ba (2014). By using multiple data points

to update the weights once and having a momentum parameter, the empirical error would con-

verge to a minimum faster. Under the assumption such a minimum exists.

Optimization of weights in the first hidden layer: Another potential improvement for the neural

ordered random forest is to let the weights of the first hidden layer update during the back-

propagation phase. This would give the opportunity to the neural network to find more hidden

correlations between certain features. The drawback is that the ease of interpretability of the

tree gets lost, but this would also allow for the adoption of a fully-connected neural network

with two hidden layers. Where the tree structure gets used to initialize the starting weights,

while also allowing for new connections to be made during the backpropagation phase.

Missing latest developments in forest building techniques: Due to time constraints during the

research, it was out of our scope to also implement all of the latest tree building techniques. An

example of such a technique is the honest splitting rule introduced by Wager and Athey (2018)

and Athey et al. (2019). The honest splitting rule entails that during the phase where the best

split is sought, different data is used for measuring what leaf should be split compared to what

variable should be used to split the data.
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A Data appendix

Table 6: All variables used during the research.

Variable Reference to Unit Update

Season ID - category yearly

TV revenue home euro yearly

TV revenue away euro yearly

TV revenue difference home-away euro yearly

Club market value home euro yearly

Club market value away euro yearly

Club market value difference home-away euro yearly

Club market value / TV revenue home euro yearly

Club market value / TV revenue away euro yearly

Club market value / TV revenue difference home-away euro yearly

Club market value - TV revenue home euro yearly

Club market value - TV revenue away euro yearly

Club market value - TV revenue difference home-away euro yearly

Market value share home euro yearly

Standardized market value home euro yearly

Standardized market value away - yearly

Standardized market value difference home-away - yearly

Unemployment rate home percentage yearly

Unemployment rate away percentage yearly

Unemployment rate difference home-away percentage yearly

Log GDP home euro yearly

Log GDP away euro yearly

log GDP difference home-away euro yearly

Previous game earned points home numerical match

Previous game earned points away numerical match

Previous game earned points share of total home percentage match

Previous game earned points share of total away percentage match

Impending Champions League match (2 weeks or less) home boolean match

Impending Champions League match (2 weeks or less) away boolean match

Just had Champions League match (2 weeks or less) home boolean match

Just had Champions League match (2 weeks or less) away boolean match

Champions League this season home boolean yearly

Champions League this season away boolean yearly

Current season is before world cup - boolean yearly

Current season is after world cup - boolean yearly

Stadium capacity - numerical once

Distance away team travelled - numerical once
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Table 6 continued from previous page

Variable Reference to Unit Update

Time travelled away team - minutes once

Previous season goals home numerical yearly

Previous season points home numerical yearly

Previous season goals at half time home numerical yearly

Previous season shots home numerical yearly

Previous season target shots home numerical yearly

Previous season fouls home numerical yearly

Previous season corners home numerical yearly

Previous season yellow cards home numerical yearly

Previous season red cards home numerical yearly

Previous season goals home numerical yearly

Previous season points home numerical yearly

Previous season goals at half time away numerical yearly

Previous season shots away numerical yearly

Previous season target shots away numerical yearly

Previous season fouls away numerical yearly

Previous season corners away numerical yearly

Previous season yellow cards away numerical yearly

Previous season red cards away numerical yearly

Previous season points home - points away home-away numerical yearly

Previous season goals home - goals away home-away numerical yearly

Market value average difference home-away euro yearly

Market value standard deviation difference home-away euro yearly

Ratio top 3 to top 12-14 market value home ratio yearly

Ratio top 3 to top 12-14 market value difference home-away ratio yearly

Ratio top 11 to top 12-21 market value home ratio yearly

Ratio top 11 to top 12-21 market value difference home-away ratio yearly

Age mean difference home-away numerical yearly

Age standard deviation difference home-away standard deviation yearly

Age top 11 difference home-away numerical yearly

Ratio top 11 to top 12-21 age difference home-away ratio yearly

Number of players older than 20 years difference home-away numerical yearly

Minimum aged player difference home-away numerical yearly

Maximum aged player difference home-away numerical yearly

Share left foot difference home-away percentage yearly

Share two feet difference home-away percentage yearly

Share left foot in top 11 difference home-away percentage yearly

Share two feet in top 11 difference home-away percentage yearly

Height mean difference home-away numerical yearly

Height standard deviation difference home-away standard deviation yearly

Height mean top 11 difference home-away numerical yearly
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Table 6 continued from previous page

Variable Reference to Unit Update

Height standard deviation top 11 difference home-away standard deviation yearly

Yo-yo club home boolean once

Yo-yo club away boolean once

Other club home boolean once

Other club away boolean once

Traditional club home boolean once

Traditional club away boolean once

B Results 18/19 season appendix

Table 7: Ordered random forest prediction and realization of final standings in the Bundesliga
18/19 season.

Team Predicted points Actual points

FC Bayern Munich 78.9 (6.3) 78
Borussia Dortmund 66.7 (7.9) 76
RB Leipzig 56.0 (7.1) 66
Bayer 04 Leverkusen 51.1 (6.0) 58
TSG 1899 Hoffenheim 48.9 (6.8) 51
Mönchengladbach 48.7 (8.0) 55
Eintracht Frankfurt 46.2 (7.7) 54
FC Schalke 04 45.5 (8.8) 33
VfB Stuttgart 45.5 (7.6) 28
VfL Wolfsburg 44.9 (7.9) 55
Werder Bremen 44.7 (6.7) 53
Hertha BSC 43.5 (8.8) 43
1. FSV Mainz 05 42.2 (7.5) 43
Hannover 96 42.1 (6.2) 21
FC Augsburg 41.8 (8.4) 32
SC Freiburg 37.7 (7.2) 36
Fortuna Düsseldorf 36.3 (5.8) 44
1. FC Nuremberg 33.2 (6.2) 19

The standard deviation is given within brackets
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Table 8: Neural ordered random forest prediction and realization of final standings in the
Bundesliga 18/19 season.

Team Predicted points Actual points

FC Bayern Munich 57.3 (9.5) 78
Borussia Dortmund 53.3 (9.7) 76
RB Leipzig 52.7 (7.7) 66
TSG 1899 Hoffenheim 51.9 (8.4) 51
Bayer 04 Leverkusen 51.5 (7.3) 58
1. FSV Mainz 05 49.5 (10.6) 43
Eintracht Frankfurt 49.3 (6.9) 54
Mönchengladbach 49.3 (7.3) 55
Werder Bremen 49.2 (7.4) 53
FC Schalke 04 48.8 (6.0) 33
Fortuna Düsseldorf 48.3 (7.9) 44
Hertha BSC 48.0 (5.9) 43
FC Augsburg 47.7 (11.0) 32
VfL Wolfsburg 47.7 (8.4) 55
VfB Stuttgart 47.6 (8.0) 28
1. FC Nuremberg 44.9 (6.3) 19
Hannover 96 44.3 (6.3) 21
SC Freiburg 43.6 (10.0) 36

The standard deviation is given within brackets
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Table 9: Predicted rankings and the squared error of the 18/19 Bundesliga season

Predicted rank Squared error

Team Ordered Neural Actual rank Ordered Neural

FC Bayern Munich 1 1 1 0 0
Borussia Dortmund 2 2 2 0 0
RB Leipzig 3 3 3 0 0
Bayer 04 Leverkusen 4 5 4 0 1
TSG 1899 Hoffenheim 5 4 9 16 25
Mönchengladbach 6 8 5 1 9
Eintracht Frankfurt 7 7 7 0 0
FC Schalke 04 8 10 14 36 16
VfB Stuttgart 9 15 16 49 1
VfL Wolfsburg 10 14 6 16 64
Werder Bremen 11 9 8 9 1
Hertha BSC 12 12 11 1 1
1. FSV Mainz 05 13 6 12 1 36
Hannover 96 14 17 17 9 0
FC Augsburg 15 13 15 0 4
SC Freiburg 16 18 13 9 25
Fortuna Düsseldorf 17 11 10 49 1
1. FC Nuremberg 18 16 18 0 4

C Variable selection appendix

Table 10: Accumulation of variable selection during the tree building phase over the
simulation. Given for the ordered random forest (ORF) and neural ordered random forest
(NORF), for both forest 1, which encapsulates the forest that predicts the home team win

versus draw or loss, and forest 2, which predicts home win or draw versus loss

forest 1 mean (st. dev.) forest 2 mean (st. dev.)

Variable (full names found in Table 6) ORF NORF ORF NORF

Season ID 27 (5.7) 35 (6.9) 34 (7.6) 29 (5)

TV revenue 50 (3.9) 45 (11.1) 46 (17.7) 53 (6.2)

TV revenue 33 (17.9) 42 (5.6) 53 (5.1) 66 (15.2)

TV revenue diff. 73 (7.5) 75 (11.3) 100 (10.4) 81 (12.7)

Club MV 46 (5.8) 48 (9.9) 58 (8.3) 50 (7.3)

Club MV 41 (7.7) 48 (10.6) 46 (8.2) 56 (8.6)

Club MV diff. 74 (10) 68 (13.5) 70 (13.5) 78 (7.7)
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Table 10 continued from previous page.

forest 1 mean (st. dev.) forest 2 mean (st. dev.)

Variable (full names found in Table 6) ORF NORF ORF NORF

Club MV / TV revenue 53 (10.4) 48 (7.9) 40 (15.3) 45 (8.6)

Club MV / TV revenue 57 (9.8) 38 (9) 49 (8.4) 53 (8.9)

Club MV / TV revenue diff. 67 (7.3) 66 (7.1) 54 (13.3) 69 (8.2)

Club MV - TV revenue 37 (7.7) 39 (8.4) 46 (4.9) 59 (13.6)

Club MV - TV revenue 42 (5.8) 49 (5.5) 40 (6.2 32 (13.1)

Club MV - TV revenue diff. 70 (14) 75 (10.1) 67 (9.9) 50 (10)

MV share 35 (8.9) 41 (15.1) 50 (8.9) 57 (16.5)

Standardized MV 44 (10.5) 36 (13.3) 35 (10.8) 37 (9.8)

Standardized MV 46 (6) 39 (8) 53 (15.1) 42 (6.2)

Standardized MV diff. 66 (15.3) 55 (7.5) 75 (20.8) 64 (11)

Unemployment rate 33 (9.4) 50 (8.4) 53 (9.4) 49 (3.7)

Unemployment rate 41 (10.2) 42 (18.1) 39 (6.3) 58 (15.5)

Unemployment rate diff. 57 (8.9) 48 (11) 57 (10.1) 53 (7)

Log GDP 44 (5.3) 37 (4.7) 51 (7.1) 45 (9.5)

Log GDP 58 (12.9) 56 (8) 31 (12.6) 44 (7.5)

log GDP diff. 59 (9) 75 (7) 47 (11.7) 56 (4.3)

Pg. earned points 10 (5.3) 19 (4.2) 15 (3.2) 9 (7.7)

Pg. earned points 17 (5.4) 19 (4.4) 15 (4.5) 10 (6.6)

Pg. earned points share of total 68 (7.4) 72 (11.4) 70 (7.9) 72 (8.5)

Pg. earned points share of total 62 (8.1) 64 (6.8) 67 (13.4) 49 (9.8)

Im. Champions League match 2 (1.1) 2 (1.2) 2 (1.2) 6 (3.9)

Im. Champions League match 1 (1.6) 3 (2.6) 2 (1.2) 4 (2.4)

Past Champions League match 6 (4.1) 2 (0.9) 2 (1.4) 3 (2.3)

Past Champions League match 3 (1.7) 3 (1.2) 2 (2.7) 0 (3)

Champions League this season 5 (2.9) 3 (2.2) 0 (2.2) 4 (2.6)

Champions League this season 2 (1) 1 (2) 4 (2.6) 4 (2.2)

Current season is before world cup 4 (1.8) 3 (2.1) 4 (2) 2 (1.9)

Current season is after world cup 2 (3.6) 0 (3.9) 6 (2.9) 3 (2.6)

Stadium capacity 22 (8.2) 15 (7.3) 35 (7.7) 36 (7.6)

Distance away team travelled 54 (7.8) 56 (11) 55 (7.2) 60 (8.1)

Time travelled away team 48 (6.3) 36 (16.4) 50 (5.5) 58 (10.8)

Ps. goals 30 (5.6) 23 (6.1) 25 (6.6) 44 (13.5)
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Table 10 continued from previous page.

forest 1 mean (st. dev.) forest 2 mean (st. dev.)

Variable (full names found in Table 6) ORF NORF ORF NORF

Ps. points 33 (6) 34 (7.2) 40 (8.3) 37 (5.1)

Ps. goals at half time 27 (6.3) 22 (5.3) 36 (7.6) 24 (9)

Ps. shots 36 (8.7) 37 (8.8) 32 (7.8) 38 (6.1)

Ps. target shots 31 (6.5) 39 (7.7) 38 (8) 38 (7.4)

Ps. fouls 37 (5.2) 28 (10) 25 (11.6) 39 (7.1)

Ps. corners 35 (7.3) 44 (7.8) 26 (10.3) 34 (6.9)

Ps. yellow cards 38 (6.4) 40 (12.6) 32 (5.5) 24 (10.7)

Ps. red cards 20 (3.4) 18 (6.3) 25 (6.4) 21 (3.6)

Ps. goals 28 (5.3) 30 (6.8) 27 (5.4) 33 (7.5)

Ps. points 28 (7.5) 41 (5.4) 33 (6.5) 29 (3.5)

Ps. goals at half time 26 (4.7) 21 (12) 19 (7.9) 24 (6.3)

Ps. shots 36 (5.3) 50 (11.4) 34 (5.7) 36 (6.9)

Ps. target shots 40 (7.1) 34 (12.5) 31 (5.8) 26 (9.4)

Ps. fouls 36 (11.4) 37 (8.1) 35 (7.9) 24 (10.2)

Ps. corners 23 (14.2) 29 (8.5) 25 (6.6) 36 (7.3)

Ps. yellow cards 35 (5.5) 38 (8.9) 27 (5.2) 28 (5.3)

Ps. red cards 15 (5.1) 16 (4.8) 17 (4) 17 (4.2)

Ps. points home - points away 41 (8.5) 47 (6.2) 43 (6) 33 (13.1)

Ps. goals home - goals away 44 (7.8) 33 (7.6) 41 (6.1) 34 (10.5)

MV average diff. 55 (7.6) 49 (8) 44 (10.9) 47 (7.6)

MV st. dev. diff. 45 (10) 58 (7.9) 42 (9.5) 48 (4)

Ratio top 3 to top 12-14 MV 33 (2.3) 35 (6.1) 30 (6.9) 28 (4.9)

Ratio top 3 to top 12-14 MV diff. 45 (8.5) 50 (6.3) 42 (8.4) 47 (6.2)

Ratio top 11 to top 12-21 MV 27 (14.1) 38 (19) 36 (4) 37 (7.3)

Ratio top 11 to top 12-21 MV diff. 53 (9.2) 56 (7.9) 44 (8) 44 (7.8)

Age mean diff. 56 (8) 60 (12.7) 46 (4.9) 41 (8.1)

Age st. dev. diff. 56 (8) 54 (9.3) 53 (10) 41 (8.3)

Age top 11 diff. 48 (5.1) 35 (7.4) 47 (8.7) 35 (8.6)

Ratio top 11 to top 12-21 age diff. 49 (5.6) 53 (5.6) 54 (9.4) 54 (11.5)

N. of players older than 20 years diff. 44 (12) 27 (9.4) 32 (5.7) 28 (11.4)

Minimum aged player diff. 11 (5.4) 14 (4.3) 13 (3.7) 12 (5.1)

Maximum aged player diff. 9 (6.7) 13 (7.1) 11 (3.7) 17 (5.3)
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Table 10 continued from previous page.

forest 1 mean (st. dev.) forest 2 mean (st. dev.)

Variable (full names found in Table 6) ORF NORF ORF NORF

Share left foot diff. 47 (9.3) 41 (7.5) 45 (5.6) 60 (19.2)

Share two feet diff. 39 (11.3) 34 (6.3) 57 (10.8) 48 (8.3)

Share left foot in top 11 diff. 20 (6.6) 27 (9.3) 22 (6.3) 27 (8.5)

Share two feet in top 11 diff. 15 (3.6) 11 (7.6) 14 (4.6) 16 (3.5)

Height mean diff. 46 (3.9) 43 (10) 55 (8.6) 44 (8.4)

Height st. dev. diff. 56 (10.2) 58 (7.9) 53 (9.3) 38 (11.5)

Height mean top 11 diff. 42 (5) 38 (5.9) 38 (5.4) 37 (6.4)

Height st. dev. top 11 diff. 55 (10) 47 (10.7) 45 (4.2) 48 (7.9)

Yo-yo club 2 (1.3) 3 (1.4) 3 (2) 1 (2.7)

Yo-yo club 4 (1.9) 3 (2.2) 2 (0.9) 0 (2.3)

Other club 0 (1.8) 1 (2.2) 4 (2.6) 3 (1.2)

Other club 7 (3.8) 5 (3) 0 (2) 2 (1.5)

Traditional club 4 (1.9) 3 (2.1) 3 (1.5) 2 (2.2)

Traditional club 4 (1.7) 0 (2) 1 (2.5) 0 (2)

D Programming code appendix

In the attachment all the programs written are given. These programs are rather long, therefore,

we opted to only include the description of all the files here.

D.1 Variable creation

scraper.java

Scrapes team data from www.transfermarkt.com using the JSoup package. This data is written

to csv files which are read in makevariables.java.

makevariables.java

Uses data received from the csv files made in scraper.java to create the variables used in this

research. These variables are then written to a new set of csv files, which are used in csv-

maker.java.
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csvmaker.java

Uses the variables made in makevariables.java, but as they were not in the same structure as

the rest of the database yet, rewrites the order the variables are given to match the structure

with the rest of the database. These structured variables are then written to a final csv file,

which content can be directly added to the rest of the database.

D.2 Random forests

Tree.java

Class which creates a tree instance. It contains a number of functions to manage the structure

of the tree, it also can set and retrieve data regarding the tree.

randomForest.java

This class performs basically all the computations regarding a random forest. During the tree

building phase it computes where and with what data splits have to be made, this information

is passed on to the tree instance in Tree.java. Additionally, it contains a set of functions to

compute and return performance measures in regard to the forest created.

main.java

Reads the database files and uses functions in randomForest.java to create random forests which

are used as a ordered random forest. Furthermore, it retrieves the performance measures and

returns it as the output.

NeuralNetwork.java

Class functions as pseudo-extension on the tree instance. The class also adds an additional set

of functions similar to randomForest.java to perform backpropagation on the network and to

compute performance measures based on neural network.

mainNN.java

Similar to main.java, but now uses the random forests created as neural ordered random forests.
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