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Abstract

In most medical centers the use of duration models is now part of everyday operation.

Often only the relative risk information from a duration models is used to order patients

and assign them to distinct risk groups. In contrast, applications from marketing re-

search predominantly use the the richer absolute risk predictions in the form of hazard

rates and survival probabilities. Many of these applications can transfer to medicine,

provided the predictions are reliability and accurate. Due to the high consequences of

medical decisions external validation of proposed models is paramount before imple-

mentation. This paper elaborates and applies established external validation methods.

Increased attention is given to the lesser known calibration to determine to what ex-

tend the absolute risk predictions match with observed data, and calibrate them if need

be. The methods are applied on two new validation data sets with the aim to validate

the recently published ERASL risk scores. It was found that the model overall orders

patients moderate to well for the Okayama data set, and poorly in the Rotterdam data

set. Furthermore, was found that the original model systematically over estimates re-

currence free survival. This was corrected successfully by embedding the ERASL risk

scores in a Weibull calibration model.
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1 Introduction

How long will it take before the cancer recurs? This question prominently arises for patients just after

surgery. Therefore it may come as no surprise that for researchers who investigate treatments and se-

lection criteria, time-to-event data often provide the most insights. Analysis of duration data is however

complicated by the way it is collected. Because durations are often measured within a fixed time window,

it frequently occurs that at the end of the window the event did not take place. In this case the obser-

vation is said to be (right) censored. These censored cases however still provide valuable information,

and if not taken into account cause selection bias. To circumvent this issue over the past decades Pro-

portional Hazard (PH) models have been developed, and incorporate the censored observations in their

likelyhood function. Once estimated the PH model can be applied in both a relative and absolute manner.

For the aim of simply stratifying patients into distinct risk groups a specification of the linear predictor

(LP) suffices, as it contains all relative risk information. The LP, also known as risk score or prognostic

index, is the scalar value resulting from the linear combination of explanatory variables and their associ-

ated coefficients. The coefficients are most often estimated by maximising the partial likelyhood as first

proposed by Cox (1972); Cox (1975). Particularly convenient about this partial likelyhood is that there

no need to specify the baseline hazard to obtain the coefficients.

In case the baseline hazard is modeled and estimated an absolute risk description can be obtained in the

form of the hazard rate, h(t), or the survival probability, S(t), at a time t. In addition to incorporating

the dynamic nature of risk, these also allow for direct comparison between patients, diseases, and treat-

ments.

In the medical literature (surprisingly) little attention is given to evaluating the absolute risk and even

less on the validation or practical applications thereof. Interestingly in marketing research this richer

expression of the data is more closely investigated and has numerous applications in the field of strategic

planning, customer valuation and the timing of promotions (Helsen and Schmittlein, 1993). These deci-

sion models could potentially generalize and aid medical decision making as well.

In any application however, the out of sample performance of the PH model is of paramount importance

(Steyerberg and Harrell, 2016). Unfortunately their performance is rarely assessed outside their deriva-

tion cohorts. Internal validation by means of cross validation or bootstrap is an important first step,

though external validation of the model is key in showing a more general pattern rather than mere local

results. As described by Royston and Altman (2013) and Rahman et al. (2017) the validation process

should ideally be performed on numerous independent data sets and assess: if the model is correctly

specified, to what extend the LP can correctly order cases (discrimination), and if the predicted survival

probabilities from the survival function match with the observed data (calibration).

3



According to Moons et al. (2009) if despite correct model specification systematic over- or under- pre-

diction is found, calibrating the model using the new data set should be investigated first before one

resorts to re-estimating the model in its entirety. In contrast to the latter, calibrated models incorpo-

rates information from both the derivation and validation data sets, hereby improving the stability and

generalisability of its predictions. Earlier van Houwelingen (2000) investigated this very matter and used

a transformation of time to represent PH model in a Weibull format. He demonstrated that this Weibull

model can be used to assess the calibration of the model without the need of risk groups, and provides a

natural way to calibrate predictions. Unfortunately did van Houwelingen (2000) not describe the intuition

behind the transformation and link the between the Weibull and PH model in much detail. Furthermore

is, to the best of my knowledge, the method never applied after its publication in 2000.

Viewing the above it is clear that the application of the survival probabilities is relatively unexploited

in medicine. Though only conditional on that the predictions are reliable and unbiased, they can tap

into their great potential. Therefore the central aim of this paper is to elucidate the external validation

process with increased focus upon the accuracy and calibration of survival probabilities. To this end I

will discuss and apply the techniques described by Royston and Altman (2013) and van Houwelingen

(2000) to two recently published PH models by Chan et al. (2018). The validation will be performed

on two new data sets from The Netherlands and Japan and will hereby also add to the empirical literature.

The remainder of this paper will be organized as follows: in section 2, I discuss the medical context of

the Early Recurrence After Surgery for Liver tumour (ERASL) score, and the empirical questions that

remain. Section 3 contains a description of the data sets that are used. Next in section 4, I will detail

the methods applied to validate and calibrate the model. Whereafter in section 5 and 6 the results and

discussion are presented.

2 Medical Context

Liver cancer is a deadly disease affecting millions of people world wide (Ferlay et al., 2015). For patients

with sufficient liver reserve a resection of the tumor is indicated to improve survival (Vogel et al., 2018).

Although the aim of surgery is curation, in 30-50% of patients the cancer recurs within the first 2-years

(Poon et al., 2002; Lise et al., 1998).

Recurrence can originate from incomplete resection, intrahepatic metastasis or multicentric occurence.

For each, different risk factors and presentation have been described. The most notable difference is the

time until recurrence. Recurrence due to intrahepatic metastasis usually presents within the first two

years after surgery, and is often accompanied with diffuse morphology and vascular invasion (Portolani

et al., 2006). Multi-centric occurrence is often found more than two years after surgery and usually

presents with a few well defined lesions in the cirrhotic remnant liver.
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Especially early recurrences form a major challenge. The survival in this group is substantially lower,

and the gain from the performed surgery is less clear. Personalized risk prediction of recurrence can aid

patients and doctors to decide on whether to perform surgery, the use of adjuvtant chemotherapy, and

the intensity of the follow-up.

Both the preoperative (ERASL-pre) and postoperative (ERASL-post) risk scores are developed to predict

early recurrence of Hepato Cellular Carcinoma (HCC). Chan et al. (2018) assessed the discriminatory

power and calibration of the models in four external validation cohorts from Japan, US, China and

Italy. Although several external cohorts are used for validation, the findings are not yet replicated by

an independent research group. Also was the calibration only visually assessed and relied heavily on

categorization in to risk groups. It was found that in all validation cohorts the ERASL-pre model over

estimates recurrence free survival (RFS) for the low and intermediate risk groups. Researchers have not

treated this lack of calibration, potential extension or re-calibration of the model in much detail. Fur-

thermore, is the model derived in a hepatitis B prevalent region and uncertainty still exists how well the

model generalizes to other areas and will also be investigated here.

3 Data

The data is obtained from the Erasmus Medical Center based in Rotterdam, the Netherlands, and from

the Okayama University Hospital in Japan. The data sets contain clinical parameters from patients with

HCC who received resection with curative intent.

The Rotterdam Cohort is collected from 2000 until 2017, containing data from 315 surgeries in 308

patients. The recurrence and survival status of patients was last updated in May-2019. In total 175 pa-

tients experienced recurrence, of which 126 were found in the first two years after surgery. The maximum

follow-up length was 7 years and 5 months. The Japanese cohort is collected between 2007 and 2016,

and contains 331 surgeries from 303 patients. Survival parameters where last updated February-2016. In

total 161 patients experienced recurrence, of which 121 recurred within the first two years after surgery.

The maximum follow-up length was 4 years and 7 months.

In both centers criteria for resection follow the the Barcelona Staging System (Bruix et al., 2001). All

patients were discussed at multidisciplinary meeting and had a sufficient performance status, adequate

size and function of the remnant liver, and an excision of the tumor with clear margins was deemed

possible. After surgery follow-up, including CT and laboratory assessment, was generally performed at

3, 6 and 12 months after discharge and yearly there after for 5 years.

Definitions of the dependent variable and explanatory variables are inline with those described by Chan

et al. (2018). The dependent variable, recurrence free survival (RFS), is defined as the time between date

of surgery and date of recurrence. For patients who did not experience recurrence or who were lost in
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follow up were censored at the date of last radiological examination.

Explanatory variables used in the ERASL scores are: Gender, Albumin (g/l), Bilirubin (µmol/l), serum

AFP (µg/l), diameter of largest tumor (cm), and the number of tumors. Microvascular invasion is the

only variable added in the postoperative risk score, and is defined as tumor invasion of small vessels only

identified upon histological examination. Patients with missing data will be excluded from analysis.

Further is the study exempted by the Medical Research Ethics Committee (MREC). The committee

concluded that this study is not subject to the Medical Research Involving Human Subjects Act (WMO)

and complies to the declaration of Helsinki (Association et al., 2001).

4 Methodology

This research will focus upon the validation of the ERASL scores. The validation process consists of

three stages in which the misspecification, discrimination and calibration will be assessed using the

methods and performance measures discussed by Royston and Altman (2013); Rahman et al. (2017);

van Houwelingen (2000). First a brief discussion regarding duration models is given, and notation is

introduced. Subsequently the misspecification and discrimination statistics used are discussed, whereafter

extension of the analysis by means of calibration is explained in more detail.

4.1 Duration model

For estimation a sample is drawn with individuals denoted as i ∈ {1, ..., N}. Furthermore we define a ran-

dom variable T ∈ [0,∞) for the duration of a spell, with t the realization thereof. T follows a probability

density function f(t) with corresponding cumulative density function F (t) = P [T ≤ t] =
∫ t

0 fi(u)du. The

survival function S(t) is defined as p[T > t] and thus holds S(t) = 1− F (t).

Besides the density functions and survival function the hazard function λ(t) is used. The hazard function

describes the rate at which spells end at a given time t. More formally λ(t) = limh→0
P [t≤T<t+h|T≥t]

h ,

or as used more often λ(t) = f(t)
S(t) . Furthermore is the cumulative hazard function defined as the hazard

function integrated from 0 to t, Λ(t) =
∫ t

0 λ(u)du.

Below is shown that the following general relationships hold. Equations 1 and 2 form intermediate results

and form the support of equations 3 and 4. These last two are regularly used to convert between survival

and cumulative hazard function.
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S(t) = 1− F (t)
d

dt
S(t) = d

dt
(1− F (t))

d

dt
S(t) = f(t)

f(t) = − d

dt
S(t) (1)

λ(t) = f(t)
s(t)

= − 1
s(t) · −f(t)

= − 1
s(t) · −(− d

dt
S(t))

= −d[log(s(t)]
dt

(2)

λ(t) = −d[log(s(t)]
dt∫ t

0
λ(u)du =

∫ t

0
− d

du
[log(s(u)]du

Λ(t) = −log(S(t)) (3)

S(t) = exp(−Λ(t)) (4)

4.1.1 Proportional hazards model

To make the hazard function conditional upon patient characteristics the baseline hazard function λ0(t),

dependent only upon time t, is scaled by exp(x′iβ) hereby increasing or decreasing the hazard at all

durations. The function exp(x′iβ) maps explanatory variables xi = (x1i, ..., xpi) with corresponding

coefficients β = (β1..., βp) onto the domain [0,1]. This leads to the following expression of the conditional

hazard function.

λ(t|xi) = λ0(t) exp(x′iβ) (5)

The β coefficients in equation 5 are often estimated by means of a Cox Proportional Hazards (CPH)

model. In this research the CPH model is used in the assessment of the calibration slope, the offset

regression and in the forward selection procedure used to examine model adjustments. A brief overview

of the CPH model and its estimation is given in appendix section 7.3. The CHP model is also used by

Chan et al. (2018) to establish the weights of the ERASL scores. The Linear Predictor (LP) is the scalar

value resulting from the linear combination of explanatory variables and their associated weights. The

specification of the LP’s for the ERASL risk scores are added in Appendix section 7.2.

4.2 Misspecification

As an overall test to assess if the relative risks are correctly specified the calibration slope will be computed.

The measure is calculated by performing a CPH regression with the LP as the only explanatory variable

as shown in equation 6. The estimated coefficient is tested with H0 : α1 = 1. An α1 sufficiently close to

1 provides the first evidence that the model is correctly specified (van Houwelingen, 2000).

λ(t|xi) = λ0(t) exp(α1 ∗ LP ) (6)

To further investigate to what extend coefficients would differ if they are re-estimated in the validation

cohort a CPH model as shown in equation 7 is estimated. Here the LP is used as an offset with its

coefficient constrained to 1. The β∗ coefficients represent the differences between the derivation and

validation cohort. A Likelihood Ratio (LR) test will be used to asses if β∗ is jointly significantly different

from the null vector.

λ(t|xi) = λ0(t) exp(x′iβ∗ + 1 ∗ LP ) (7)
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4.3 Discrimination

Discrimination measures assess the ordering of risk scores. A model discriminates well if patients who

experience recurrence earlier are assigned higher risk scores compared to those experiencing recurrence

later. Discrimination is also known as separation, since the survival curves of models that discriminate

well between risk groups lie farther apart. Numerous metrics have been proposed, though most are cre-

ated around the concordance statistic C = P [LPi > LPj |ti < tj ]. C is the probability that individual i

with event time before individual j was assigned a higher risk score. This research will evaluate the same

metrics as Chan et al. (2018) to aid the comparison, and are briefly mentioned below.

For the calculation of Harrels C-index, random pairs are drawn. The proportion of concordant pairs

over all usable pairs is calculated to estimate C (Harrell et al., 1982). The Gönen and Hellers K-statistic

is obtained in a similar manner though is based on the reverse definition of concordance K = P [t <

tj |LPi > LPj ] (Gönen and Heller, 2005).

The Royston and Sauerbrei’s D statistic measures the observed difference in survival times between

subjects with high and low predicted risk. For the calculation the LPs are ordered, whereafter the order

statistics can be written in terms of Expected Standard Normal Order Statistics (rankits) on which a

CPH regression is fitted. After scaling, the estimated coefficient can be interpreted as an estimate for

the log hazard ratio comparing two-equaly sized prognostic groups defined by dichotomising the distri-

bution of LP’s at the median value (Royston and Sauerbrei, 2004). Often the statistic is displayed in its

explained variation R2
D form. The scaling factors σ2 and κ for duration models are approximately π2/6

and
√

8/π respectively.

R2
D = D2/κ

σ2 +D2/κ2 (8)

Finally the hazard ratios between risk groups are calculated by running the following regression. Here

the ERASL low riskgroup is taken as the reference category.

λ(t|xi) = λ0(t) exp(α1 ∗ ERASL_intermediate+ α2 ∗ ERASL_high)

4.4 Calibration

In contrast to the discrimination measures, the calibration assessment looks at the models ability to

accurately predict absolute risk levels. Below in subsection 4.4.1 two visualization methods are discussed

that display to what extend predictions match the observed data. A weakness however is that these

visualizations heavily rely upon risk groups to calculate the Kaplan-Meier survival estimates. The num-

ber of risk groups and thresholds are often arbitrarily chosen. Furthermore, though useful for general

conclusions and intuition, the visualizations do not suggest how to adjust the model to achieve accurate

survival probabilities. Therefore, in subsection 4.4.2 the analysis is extended by rewriting the model in

the Weibull format. Subsequently is shown how the Weibull model can be used to to attain a calibrated

probabilities.
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4.4.1 Visualization

To visualize the accuracy of the survival estimates Chan et al. (2018) compare the predicted survival

function to the observed Kaplan-Meier curves for each risk group. The procedure is outlined in Royston

and Altman (2013) and will also be followed here.

By means of interpolation a continuous baseline survival function is constructed form the published

baseline survival probabilities given at 1, 3, 6, 12, 18 and 24 months after surgery. Thereafter survival

functions are calculated for each individual using S(t, P Ii) = S0(t)exp(PIi). These survival functions are

then averaged per risk group and plotted together with the risk group Kaplan-Meier survival curve. The

visualization allows the researcher to observe deviations overtime time and across risk groups.

In a second visualization the same information is displayed though from a different perspective. Here

the predicted survival probabilities at fixed points in time (e.g. 1 and 2 years after surgery) are plotted

against the Kaplan-Meier estimates and compared against the 45 degree line.

4.4.2 Weibull calibration model

The aim of the Weibull calibration model is not only to assess performance without the need of risk groups,

but also improve the local usability of the risk score. The validation data is first used to assess the ap-

propriateness of the baseline hazard and LP, whereafter the model is tuned rather than refit in its entirety.

The model was first proposed by van Houwelingen (2000). The link between the PH and Weibull model

was also previously discussed by Jain and Vilcassim (1991) in their appendix. Here a more detailed

version is presented. First is discussed how the the hazard function in equation 5 can be rewritten to

attain a linear expression in x′β. Secondly, it is demonstrated that the linearization coincides with a

Weibull model. Finally is shown how the Weibull model can be conveniently used to calibrate duration

models.

Linearization

Below the survival function is expressed in terms of its baseline survival function using the equation 4
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and 5 and the definition of the cumulative hazard.

S(t|xi) = exp(−Λ(t|xi))

= exp(−
∫ t

0
λ(u|xi)du)

= exp(−
∫ t

0
λ0(u)exp(x′iβ)du)

= exp(−
∫ t

0
λ0(u)du · exp(x′iβ))

= [exp(−Λ0(t))]exp(x′
iβ)

= S0(t)exp(x′
iβ) (9)

Next is shown that by using equation 3 and substitution of equation 9 the cumulative hazard function

can be written as follows.

Λ(t|xi) = −ln(S(t|xi))

= −ln(S0(t)exp(x′
iβ))

= −ln(S0(t) · exp(x′iβ) (10)

Deducing that taking the log on both sides again results in an additive relation of x′β on the log of the

cumulative hazard.

ln(Λ(t|xi)) = ln(−ln(S(t|xi)))

= ln(−ln(S0(t))) · exp(x′iβ)

= ln(−ln(S0(t))) + ln(exp(x′iβ))

= ln(−ln(S0(t))) + x′iβ

= ln(Λ0(t)) + x′iβ (11)

Expression 11 provides the key to the linearization in xiβ resulting in equation 12 and completes the

derivation.

ln(Λ0(t)) + x′iβ + ε = 0

ln(Λ0(t)) = −x′iβ + ε (12)

Weibull model

The linearization shown in equation 12 can also be viewed as the linear representation of a Weibull model,

the link is presented next. A start will be made from the Weibull hazard function and build up to the

linearization of the survival function that matches equation 12. The Weibull distribution can be param-

eterized in many ways, here the parameterisation pressented by Therneau and Lumley (2015); Hunter

(2011) is followed.

Let θ1 be the scale parameter and θ2 be the shape parameter. Then the baseline hazard function of the

Weibull function is known to be λ0(t) = θ−θ2
1 θ2t

θ2−1. Below first the derivation of the baseline cumulative
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hazard is shown.

λ0(t) = θ−θ2
1 θ2t

θ2−1∫ t

0
λ0(u)du =

∫ t

0
θ−θ2

1 θ2u
θ2−1du

Λ0(t) = θ2

θθ2
1
·
∫ t

0
uθ2−1du

Λ0(t) = θ2

θθ2
1
· 1
θ2
tθ2

Λ0(t) = tθ2

θθ2
1

=
(
t

θ1

)θ2

(13)

The cumulative hazard is formed by scaling the baseline cumulative hazard, resulting in equation 14.

Λ(t|xi) =
(
t

θ1

)θ2

· exp(x′iβ) (14)

Equation 14 is subsequently substituted in equation 4 leading to the following expression of the survival

function.

S(t|x) = exp(−Λ(t|x))

= exp

(
−
(
t

θ1

)θ2

· exp(x′iβ)
)

(15)

To also attain an additive and linear expression of x′iβ a log transformation is used. Let Y = log(T ), and

substitute T = eY in equation 15 to attain the following expression.

S(t|x) = exp

(
−
(
t

θ1

)θ2

· exp(x′iβ)
)

P (Y ≥ y|x) = exp

(
−
(
ey

θ1

)θ2

· exp(x′iβ)
)

= exp(−θ−θ2
1 · eyθ2 · ex

′β)

= exp(−e−ln(θ1)θ2 · eyθ2 · ex
′β)

= exp(−exp(−ln(θ1)θ2 + yθ2 + x′β)) (16)

To further show that the linearisation of the argument matches with the linearization obtained in equation

12 a change of variables is performed as proposed by Therneau and Lumley (2015); Hunter (2011). Let

the scale parameter be σ = 1
θ2 , the intercept as µ = ln(θ1), and finally let the coefficient parameter be

γ = −βσ. Substituting this in the equation 16 results in:

P (Y ≥ y|x) = exp(−exp(− 1
σ
µ+ 1

σ
y − 1

σ
γx))

= exp(−exp( 1
σ

(y − µ− γx))) (17)

The argument of equation 17 can be linearized by equating to zero and addition of an error term W . The
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equation is reorganized and y is back transformed substituting y = ln(t).

1
σ

(y − µ− γx) = W

1
σ

(ln(t)− µ− γx) = W

1
σ
ln(t)− 1

σ
µ− 1

σ
γx) = W

1
σ
ln(t) = 1

σ
µ+ 1

σ
γx+W

ln(t) = µ+ γx+ σW (18)

As explained by Rodriguez (2010) it can be shown that if error term W follows a extreme value type 1

distribution, then T will follow a Weibull distribution. Further, observing that the linearization of the

proportional hazards model equation 12 complies with equation 18 concluding the proof of the link.

Calibration model

Using this link van Houwelingen (2000) proposed the following calibration model using T∗ = Λ0(t).

ln(T∗) = µ+ γ(LP ) + σW (19)

The parameters have the following interpretation. The intercept µ describes the correction for the overall

risk level, graphically rotating the survival curves around the fixed point (t = 0; S(t) = 1). Where, σ

controls the shape of the baseline. Finally γ parameter moderates the impact of the LP, graphically

expanding or contracting the distance between the risk-groups survival curves.

Once the parameters of equation 19 are estimated survival probabilities can be retrieved using equation

17 leading to the following expression.

S(t|x)cal = P [T > t|x] = exp(−exp( 1
σ

(ln(−ln(S0(t)))− µ− γ′x))) (20)

The improvement will be assessed using the two previously discussed visualizations. Note that in this

manner accurate probabilities are attained by using the new data to only estimate three parameters.

Apart form the calibration slope, the misspecification and discrimination measures will not change. Since

the monotone transformations do not change the ordering of the risk scores or the allocation of patients

to one of the risk groups.

4.4.3 Addition of covariates

If major departures are discovered in the earlier discussed offset regression. It might be useful to refit parts

of the model using a forward selection process, starting with an empty CPH model with the coefficient

of the LP constrained to one. Then in successive rounds the variable that significantly improves the

fit the most is added. After each addition the model is re-estimated the model and the is procedure

repeated. Note however, that in this manner also the baseline hazard is re-estimated, and that with

each addition the model further departs from the original. This procedure should therefore be considered
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model building rather than model calibration. Before being implemented this newly found model should

go through another round of validation.

5 Results

In the following section first the baseline characteristics and the distribution of the ERASL scores are

reported, whereafter the general properties about the risk groups are displayed. In the next three sections

the results of the misspecification, discrimination, and calibration analysis will be discussed.

5.1 Baseline characteristics

In table 1 the baseline characteristics for the studied cohorts are summarized, information from the Hong

Kong derivation cohort is added to aid comparison. Intrestingly a Recurrence Free Survival (RFS) of 21,

31 and 66 months was found for the Rotterdam, Okayama and Hong Kong cohort respectively. Further

differences in the proportion of microvascular invasion was found with 58%, 70% for the Rotterdam and

Okayama validation cohorts and 27% for Hong Kong derivation data set. Lastly, a notable difference

exist with regard to cause of the disease. In the Okayama data set the cause is most often ascribed to

Hepatitis C (48%) were in Hong Kong Hepatitis B (84%) is most prominent. In the Rotterdam cohort

hepatitis infections occur less often overall with 25% of patients presenting with Hepatitis B and 14%

with Hepatitis C.
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Table 1: Baseline Characteristics

Variables Rotterdam Okayama Hongkong

(derivation)

Patient factors

n 261 331 451

Male gender, n (%) 181 (69) 269 (81) 387 (86)

Age [years, mean (SD)] 60 (14) 66 (10) 56 (11)

Hepatitis B, n (%) 66 (25) 79 (24) 380 (84)

Hepatitis C, n (%) 37 (14) 159 (48) 18 (4)

Child-Pugh grade, n (%) n=259 n=296

A 249 (96) 290 (89) 442 (98)

B 10 (4) 6 (2) 9 (2)

C 0 (0) 0 (0) 0 (0)

ALBI grade, n (%)

1 210 (80) 215 (65) 329 (73)

2 49 (19) 115 (35) 119 (26)

3 2 (1) 1 (0) 3 (1)

Albumin [g/L, mean (SD)] 42 (5.6) 40 (4.7) 40 (4.4)

Bilirubin [umol/L, median (IQR)] 10 (7, 15) 12 (9, 15) 10 (7, 13)

AFP [ug/L, median (IQR)] 8 (3, 143) 104 (37, 944) 52 (5, 585)

Tumor characteristics

Tumor size [mm, median (IQR)] 54 (30, 92) 35 (23, 58) 40 (25, 60)

Solitary tumor, n (%) 196 (75) 229 (69) 350 (77)

Microvascular invasion, n (%) 125 (58) n=215 233 (70) 121 (27)

Clinical outcome

Recurrence within 2 years, n (%) 108 (41) 135 (41) 162 (35.9)

Recurrence-free survival [months (95% CI)] 26,1 (21, 37) 31 (24, 41) 66 (48, 83)

In figure 1 the distributions of the ERASL-pre and ERASL-post scores are displayed. The scores are

centered on the published median values of 2.558 and 2.333 for the ERASL-pre and post score respectively.

First it can be observed that the median values in the Hong Kong derivation cohort differ from the ones

published for the pre and post scores. Further could be noted that for both the pre and post scores the

Rotterdam distribution is skewed to the left where the Hong Kong and Okayama cohorts are skewed to

the right.
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Figure 1: Distribution ERASL LP

3 2 1 0 1 2
0

50 Hong Kong

3 2 1 0 1 2
0

25

Fr
eq

ue
nc

y

Rotterdam

3 2 1 0 1 2
ERASL-pre - 2.558

0

50 Okayama

3 2 1 0 1 2
0

50
Hong Kong

3 2 1 0 1 2
0

25

Fr
eq

ue
nc

y

Rotterdam

3 2 1 0 1 2
ERASL-post - 2.332

0

50 Okayama

Distributions of the ERASL pre and post risk scores in the Hong Kong derivation cohort and the Rotterdam

and Okayama validation cohorts. The scores are centered on the median values described in the paper by

Chan et al. (2018). In each histogram the left and right black lines represent the 50th and 85th percentile

respectively.

5.2 ERASL risk groups

The risk groups for the Rotterdam and Okayama cohort are constructed according to the formulation
displayed in appendix 7.2 and follow the paper by Chan et al. (2018). Table 2 and 3 show the risk
group sizes, median survival and the relative risk with the low risk group taken as the reference category.
It can be observed that for the Rotterdam cohort only 4 (2%) patients are assigned to the high risk
group. Furthermore, differences between risk groups in terms of median survival and hazard ratios are
overall greater in the Okayama cohort compared to the Rotterdam cohort. Also can be seen that the
differences between risk groups increase as information regarding the microvascular invasion is added in
the ERASL-post score.

Table 2: ERASL-pre

Cohort Group n (%) Median RFS, months (95%CI) Hazard Ratio (95%CI)

Rotterdam Low 202 (77) 27.89 (21.78, 38.60) 1

Intermediate 55 (21) 17.22 (7.39, 42.80) 1.47 (0.94, 2.30)

High 4 (2) 4.27 (0.49, not reached) 2.03 (0.50, 8.26)

Okayama Low 206 (62) 47.08 (36.50, not reached) 1

Intermediate 96 (29) 14.36 (11.04, 24.00) 2.66 (1.84, 3.85)

High 28 (8) 4.04 (2.99, 17.70) 5.35 (3.26, 8.77)
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Table 3: ERASL-post

Cohort Group n (%) Median RFS, months (95%CI) Hazard Ratio (95%CI)

Rotterdam Low 133 (62) 31.77 (24.02, 39.80) 1

Intermediate 78 (36) 17.08 (10.61, 25.10) 1.89 (1.24, 2.87)

High 4 (2) 5.65 (0.49, not reached) 6.48 (1.98, 21.19)

Okayama Low 208 (63) 47.57 (36.99, not reached) 1

Intermediate 94 (28) 13.93 (10.12, 19.80) 3.01 (2.08, 4.36)

High 28 (8) 4.04 (3.45, 11.90) 5.85 (3.56, 9.60)

5.3 Misspecification

Calibration slope

Table 4 shows that the calibration slopes or shrinkage factors for the Okayama cohort are closer to one

than for the Rotterdam cohort. Furthermore is clear that the factors are larger for the post-operative

model. The LR test only indicates that coefficient for the the Rotterdam ERASL-pre score is significantly

different from 1.

Table 4: Regression on the LP

ERASL-pre ERASL-post

Rotterdam Okayama Rotterdam Okayama

β (SE) 0.41 (0.15) 0.83 (0.11) 0.82 (0.17) 0.89 (0.10)

p-value <0.000 0.106 0.286 0.257

Baseline survival

As discussed in the the methodology section the LP in the proportional hazards model scales the baseline

hazard. Also the one to one relationship between the the cumulative hazard and the survival function is

derived. For ease of interpretation figure 2 shows the baseline survival function. In stead of showing the

baseline survival with LP=0, the LP is set to the median ERASL values to match the values published

by Chan et al. (2018). As can be observed are the survival functions for both cohorts and risk scores

lower than the ones used to obtain the ERASL survival probabilities.
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Figure 2: Survival function Median ERASL
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Offset regression

The coefficients resulting from the offset regressions represent the difference between the coefficients

published by Chan et al. (2018) and coefficients obtained if the model was refit on the validation data.

The results are added in tabel 7 and 8 in appendix section 7.4. Except for the ERASL-post risk score in

the Rotterdam cohort, all joint tests for coefficients equal to zero were rejected. In the univariate analysis

most notable was that less weight was assigned to the gender variable. Furthermore was the difference

for the albigrade>1 significantly different from zero in the ERASL-pre offset regression on the Rotterdam

cohort.

5.4 Discrimination

In table 5 the discrimination measures are displayed. All discrimination measures are higher in the

Japanese cohort, and are higher for the ERASL-post score.

Table 5: Measures of discrimination

Measure of discrimination ERASL-pre ERASL-post

Rotterdam Okayama Rotterdam Okayama

Harrel C 0.588 (0.032) 0.682 (0.027) 0.650 (0.026) 0.709 (0.022)

Gönen & Heller’s K 0.674 (0.007) 0.699 (0.006) 0.677 (0.006) 0.705 (0.006)

Royston-Sauerbrei’s Rd2 0.046 (0.036) 0.239 (0.057) 0.163 (0.059) 0.298 (0.060)

5.5 Calibration

The coefficients estimated for the Weibull model are shown in table 6. Using the earlier discussed change

of variables the proportional hazard interpretation can be attained by dividing γ by −σ. This results

in the values 0.40 and 0.81 for the ERASL-pre and post in the Rotterdam cohort and 0.84 and 0.89 for

Okayama, and confirm with the estimates attained by regression on the LP. Furthermore the µ estimates

are all negative varying between -0.53 and -1.97 and represent the mismatch in the overall risk level.
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Furthermore deviations from 1 for the σ parameter are larger for Rotterdam than for Okayama. The

estimates for σ are significantly different from one for the of the pre-ERASL scores.

Table 6: Weibull calibration model

ERASL-pre ERASL-post

Rotterdam Okayama Rotterdam Okayama

µ -1.97 (0.00) -0.60 (0.12) -0.92 (0.06) -0.53 (0.13)

γ -0.49 (0.01) -0.97 (0.00) -0.93 (0.00) -1.02 (0.00)

σ 1.23 (0.02) 1.16 (0.05) 1.15 (0.13) 1.14 (0.09)

Figure 3 and 4 show the calibration plots for the Rotterdam and Okayama cohorts. Since a kaplan meier

curve can only be estimated for a group, the patient level risk functions attained from the model are

averaged per risk group. The smooth solid lines represent the original model, and the dashed curves

results after the calibration described above. Calibrated survival probabilities where obtained with the

estimates in table 6 and equation 19.

For the Rotterdam cohort the high risk group is not displayed as there were deemed to too few data

points to provide additional insight. In both the pre-operative and post-operative setting the origional

ERASL models systematically overestimate the RFS for the low and intermediate risk groups, and is seen

in both the Rotterdam and Okayama cohorts. Further can also be observed that the lines predicted by

the origional ERASL model lie further apart than the kaplan meier curves. The calibrated model follows

the kaplan meier curves much closer. Though now under estimation of the calibrated model is visible for

the high risk group.

Figure 3: Calibration plot Rotterdam
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Figure 4: Calibration plot Okayama
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An alternative visualization that shows to what extend predictions match the observed data, is displayed

in figure 5. The predicted survival probabilities are plotted against the observed Kaplan Meier estimate

at 12 and 24 months after surgery. The colors green, yellow, and red represent the risk groups. The

original and calibrated models are distinguished by full and dashed lines respectively.

What stands out from figure 5 is that the survival probabilities of the original ERASL model are too

optimistic and depart from the ideal 45 degree line. Similar to what is observed in figure 4, the calibrated

version slightly underestimates the survival probabilities of the high risk group.

Figure 5: Calibration plot Okayama
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After the calibration the calibration slopes for the calibrated pre and post models are 0.97 (0.35), 0.98

(0.20), and 0.95 (0.12), 0.96 (0.20) for the Rotterdam and Okayama cohort respectively. Also the mis-

match in baseline hazard is resolved for the pre-operative model, and strongly reduced for the post-

operative model (not shown).

5.6 Variable addition or partial refit

To investigate the impact of the Hepatitis B and C infections. These are added one by one to the model

with the LP constraint to 1. The coefficients for these variables did not achieve significance in both the
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pre- and post operative models for both cohorts.

Modification of coefficients from variables already included in the risk score was also investigated. Start-

ing with the LP of the original models constraint to one, variables were added in a stepwise forward

selection manner. For the Rotterdam cohort in the pre-operative model, non of the variables achieved

significance. In the post operative setting only micro-vascular invasion was significantly different from

zero with coefficient 0.638 (p=0.03). For the Japanese cohort the only variable achieving significance

in the pre- and post operative models was gender with coefficients -0.752 (p=0.0015) and -0.644 (p=

0.0052).

6 Discussion

As seen in table 1 the overall patient populations appear similar. Yet a remarkable difference in the

median RFS of almost three years is seen between the derivation and our validation cohorts. This differ-

ence is also observed in all other validation cohorts published by Chan et al. (2018), and raises questions

about the patient selection in the Hong Kong derivation cohort. The authors have failed to mention

this result or investigated its origin, though the impact on the predicted survival probabilities might be

profound. Even though the survival data is censored at 24 months, it is likely that the excellent long

term survival translates to the baseline survival function. Evidence of the mismatch between baseline

survival functions for our cohorts is shown in figure 2. As the baseline survival function is a key part in

forming the predictions it is likely to affect the accuracy of the risk score.

Another point of interest is that the published 50th and 85th quantiles on which the risk score thresholds

are based, do not match the quantiles of the derivation cohort as can be seen in figure 1. This causes

the proportion of cases in the intermediate and high risk group to be smaller than the intended 35% and

15%, as shown in in tables 2 and 3. This result can also be observed in the other validation cohorts

published by Chan et al. (2018). Although the categorization does not affect the relative risks or the in-

dividual survival estimates, summary statistics describing the high risk group are less stable and warrant

a different interpretation.

Further, regarding the distribution of the ERASL risk scores can be stated that, overall the spread

and center of mass in the validation cohorts are similar to the derivation cohort. However, as can be seen

in figure 1 are the ERASL scores in the Rotterdam cohort skewed towards the left, potentially reflecting

the conservative view towards treatment. This causes there to be a relative absence of high risk patients

in comparison to the Okayama and Hong Kong datasets.

Arguably the most important metrics of a prediction model are the discriminatory measures. These

measures reported in table 5 can best be viewed in relation with those published by Chan et al. (2018).

In the Rotterdam cohort the model performs similar to the Italian validation cohort and substantially
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lower than the Hong Kong derivation cohort. In these European cohorts the discriminatory ability of the

risk score can be seen as moderate to low. On the contrary in the Okayama cohort the models almost

achieve the same level as attained in the derivation data set, and thus hint at a missing variable to

describe the difference between the two regions.

A potential candidate risk factor that might explain this difference is the presence of Hepatitis B or

C. As seen in table 1 strong differences between cohorts exist with respect to the fraction of patients

presenting with Hepatitis B or C. In the stepwise forward selection procedure both variables where never

found to be significant. It appears that although HBV and HCV are important factors for diagnosis and

treatment, they do not accurately reflect the severity of the disease after having accounted for the other

ERASL score variables.

Apart from the models ability to assign the right risk group to each patient, accurate survival prob-

abilities are paramount. Figures 3 and 4 show that the original models are poorly calibrated for the low

and intermediate risk groups. The high risk group appears to fit better, though should be adopted with

caution as the number of cases supporting the Kaplan Meier curve are minimal. Further can be seen that

the original ERSAL models exaggerate the difference in survival between risk groups, as they lie too far

apart. Evidence of this can also be seen in table 4 as all slopes are below one.

Turning now to the Weibull calibration model, where for each cohort and model just three parame-

ters are estimated. On the level of averaged predictions, the lack of calibration seems to be severely

reduced or even eliminated. It should however be noted that moderate lack of fit is still observed in

the Rotterdam intermediate risk group for both pre and post-operative models. Furthermore are the

estimates in the high risk group in japan is sill unstable due to the small sample sizes in this risk group.

To explore if the calibration can further be improved or to what extend the misspecification impacts

the model, the re-estimation of already incorporated variables is inspected. In both the offset regression

as the forward selection procedure the coefficient for the variable gender was negative and strongly sig-

nificant for the Okayama cohort.

For the stepwise selection in the Rotterdam cohort only micro-vascular invasion was found to be sig-

nificant. Looking at the baseline characteristics in table 1 the proportion of patients with micro-vascular

invasion also differs widely. A potential explanation for this might be that, since the presence of micro-

vascular invasion is done by subjective assessment of the pathologist, slight differences in definition cause

the high variety in observed proportions and estimated coefficients.

After careful consideration, the LP was not redefined by re-estimation the coefficients for gender or

microvascular invasion. A general pattern was lacking, and in this application a slight bias is preferential

over an unreliable estimates.
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Further improvements can certainly be made to expand on the above, and address the following limita-

tions. My analysis was performed on validation cohorts with limited sample sizes. Especially conclusions

for the high risk group, clinically most relevant, might be unstable. Repeating the analysis on a larger

cohort is advised. Also should more extensively be looked at model expansion as the difference in dis-

criminatory power between cohorts remain unexplained.

Furthermore, in this research the adequacy of the non-parametric baseline hazard was not established.

Potentially parametric baseline hazard functions improve the efficiency of the model. Future research

could use the flexible Box-Cox formulation of the baseline hazard used by Jain and Vilcassim (1991). The

formulation encapsulates, among others, the commonly used Exponential, Weibull, and Gompertz distri-

butions. Adequacy of these could be tested using the Wald test on appropriate parameter restrictions. To

aid future research, appendix section 8 is added to provide a sketch how the Box-Cox proportional hazard

model can be estimated using the Newton Ralphson method. In addition to alternate specifications of the

baseline hazard, stratification thereof or the addition of time dependent variables could be investigated.

These modeling techniques are all absent in the ERASL risk scores and might prove fertile ground to

improve the model. This however should be considered model building rather than validation, and lied

outside of the scope of this research.

Lastly future research should focus upon the implementation of the model into clinical decision mak-

ing, as abstract survival probabilities might prove hard for patients and doctors to intuitively incorporate

in their decisions. Helsen and Schmittlein (1993) outline numerous applications how the hazard function

can aid decision making. An overview of duration model specifications used to this end can can be found

in the paper of Seetharaman and Chintagunta (2003). One example of a marketing application is in

the determination of customer life time value. Accurate forecasts allows a firm to know if, what type

of marketing intervention and how much to invest in customer acquisition or retention. Parallels with

with medicine can easily be drawn with quality of life as currency equivalent. For a detailed discussion

regarding customer life time value the reader is referred to Gupta et al. (2006); Rosset et al. (2002).

Another interesting marketing application is found in modeling the purchase timing to help decide on

the timing of direct marketing, sales calls. Also here parallels could be drawn for instance in determining

when to best plan the follow-up visit to perform the ct-scan or test the lab values.

In summary, this research aimed to validate two duration models for early recurrence after surgical

resection of hepatocellular carcinoma. Concluding that the models discriminatory power varies between

the Dutch Rotterdam and Japanese Okayama cohort. With a relatively low level of discrimination in the

first and moderate to high in the latter. Furthermore, concluding that the original model systematically

over estimated survival probabilities, and that with the Weibull model only three parameters need to be

estimated calibrate these.
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7 Appendix A

7.1 Code

All used code is made available in the following public Dropbox folder.

https://www.dropbox.com/sh/51glt0iaqimabsn/AAC7LdyDoeiQRjh_CNDeNTXVa?dl=0

7.2 Specification ERASL scores

ERASL-pre score = 0.818 ∗Gender (0: Female, 1: Male)

+ 0.447 ∗ALBI grade (0: Grade 1; 1: Grade 2 or 3)

+ 0.100 ∗ ln(Serum AFP in lg/L)

+ 0.580 ∗ ln(Tumour size in cm)

+ 0.492 ∗ Tumour number (0: Single; 1: Two or three; 2: Four or more)

Risk groups were assigned based on the following cut-offs: ≤2.558 (low), >2.558 to ≤3.521 (intermediate),

and >3.521 (high).

ERASL-post score = 0.677 ∗Gender (0: Female, 1: Male)

+ 0.458 ∗ALBI grade (0: Grade 1; 1: Grade 2 or 3)

+ 0.082 ∗ ln(Serum AFP in lg/L)

+ 0.451 ∗ ln(Tumour size in cm)

+ 0.379 ∗ Tumour number (0: Single; 1: Two or three; 2: Four or more)

+ 0.661 ∗Microvascular invasion (0: no, 1: yes)

Risk groups were assigned based on the following cut-offs: ≤2.332 (low), >2.332 to ≤3.445 (intermediate),

and >3.445 (high).

ALBI grade is calculated as described below and follows the discussion of Johnson et al. (2015); Chan

et al. (2018)

ALBIscore = −0.085 ∗ (albumin g/l) + 0.66 ∗ log10(bilirubin µmol/l)

ALBIgrade =


1 if ALBIscore ≤ −2.60

2 if ALBIscore > −2.60,≤ −1.39

3 if ALBIscore > −1.39
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7.3 Cox Proportional Hazard Model

The CPH model is currently the most widely used duration model due to its ability to estimate relative

risks without the need to specify the baseline hazard. The following subsection will shortly derive the

interpretation and estimation of the coefficients from the Cox Proportional Hazards (CPH) model. Fur-

ther more is shown how the non-parametric survival function can be obtained. Notation is followed as

explained by (Cameron and Trivedi, 2005).

Interpretation

As seen earlier in equation 5 the the conditional hazard function can be written as λ(t|xi) = λ0(t) exp(x′iβ).

By taking the logarithm and differentiating with regard to explanatory variable x1i, it can be observed

that the β1 can be interpreted as the proportional effect on the log hazard rate. ∂ln(λ(t|xi))
∂x1i

= β1i

Estimation

The main reason for the wide spread use of the CPH model is that the coefficients can be estimated

without specification of the baseline hazard. To achieve this place the event times of sample ascending

order (t1 < t2 < ... < tj < ... < tk), and define R(tj) as the set of cases with an event time greater or

equal than event time tj with j ∈ 1, ..., N . Furthermore, define set D(tj) to contain all cases with an

event time equal to tj and finally dj as the number of cases with event time equal to tj .

R(tj) = {l : tl ≥ tj}

D(tj) = {l : tl = tj}

d(tj) =
∑
l 1(tl = tj)

To perform Maximum Likelihood estimation an expression for the probability function is needed and

is presented below. After the hazard function is expanded the baseline hazard can be canceled out.

P [Tj = tj |R(tj)] = P [Tj = tj |Tj ≥ tj ]∑
l∈R(tj)

P [Tl = tj |Tl ≥ tj ]

= λj(tj |xj , β)∑
l∈R(tj)

λl(tj |xl, β)

= λ0(tj)φ(xj , β)∑
l∈R(tj)

λ0(tj)φ(xl, β))

= ���λ0(tj)φ(xj , β)
���λ0(tj)

∑
l∈R(tj)

φ(xl, β))

= φ(xj , β)∑
l∈R(tj)

φ(xl, β))
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The discrete way in which event times are observed cause ties between event times due to grouping. The

formal likelyhood contribution of two events j1 and j2 is written in equation 21.

φ(xj1, β)∑
l∈R(tj)

φ(xl, β)) + φ(xj2, β)∑
l∈R(tj)j1

φ(xl, β)) + φ(xj2, β)∑
l∈R(tj)

φ(xl, β)) + φ(xj1, β)∑
l∈R(tj)j2

φ(xl, β)) (21)

To speed up the computation often the Breslow & Peto approximation is used to resolve ties.

P [Tj = tj |R(tj)] '

∏
m∈D(tj)

φ(xm, β)

[
∑

l∈R(tj)
φ(xl, β)]dj

(22)

With the Breslow estimator the partial likelyhood function is constructed and used to find the model

parameters.

Lp(β) =
N∏
j=1

∏
m∈D(tj)

φ(xm, β)

[
∑

l∈R(tj)
φ(xl, β)]dj

(23)

Non-parametric baseline survival function

In addition to the coefficients, also the baseline survival function from the cox proportional hazard model

can be obtained. This baseline survival function has a similar form as the Kaplan Meier estimates, with

piece wise instantaneous conditional survival probabilities. The following discussion follows Cameron and

Trivedi (2005) and was earlier presented by Kalbfleisch and Prentice (2002).

Let αj be the instantaneous conditional survival probability. Further define S0(tj+1) =
j∏
l=1

αl = αjS(tj).

An individual with duration tj can contribute to the likelyhood function in either one of two ways. It

can either have the event or can be censored. The contributions for the two cases are separately discussed.

Case1: Event at tj

P [T = tj−1]− P [T = tj ]

= S(tj |Xβ)− S(tj+1|Xβ)

= S0(tj)exp(Xβ) − S0(tj+1)exp(Xβ)

= (α−1
j − S0(tj + 1)exp(Xβ) − S0(tj+1)exp(Xβ)

= (α−exp(Xβ)
j − 1) ∗ S0(tj+1)exp(Xβ)

Case2: Censored at tj

P [T > tj ]

= S0(tj+1)exp(Xβ)

=
j∏
l=1

α
exp(Xβ)
l

Full likelyhood then becomes:

L(α, β) =
k∏
j=1

 ∏
l∈D(tj)

(α−exp(Xlβ)
j − 1) ∗

∏
m∈R(tj)

α
−exp(Xmβ)
j


With log likelyhood:

l(α, β) =
k∑
j=1

 ∑
l∈D(tj)

(ln(α−exp(Xlβ)
j − 1) +

∑
m∈R(tj)

−exp(Xmβ) ∗ ln(αj)


Using maximisation of the log likelyhood the αj can be retrieved for every duration j. Then with

S0(tj+1) =
j∏
l=1

αl the baseline survival function can be retrieved.
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7.4 Results offset regression

Table 7: Offset regression ERASL-pre

Rotterdam Okayama

Variable Coef exp(Coef) se(Coef) p-value Coef exp(Coef) se(Coef) p-value

Gender -0.75 0.473 0.213 <0.001 -0.86 0.423 0.227 <0.001

ALBI grade >1 -0.56 0.570 0.254 0.027 0.12 1.132 0.179 0.488

ln(AFP) -0.02 0.977 0.029 0.415 -0.03 0.968 0.030 0.280

ln(Tumor size) -0.25 0.783 0.141 0.082 -0.03 0.973 0.141 0.846

Tumor number -0.38 0.686 0.197 0.056 0.01 1.014 0.115 0.905

LR test with 5 df 22.81 (p=4e-04) 13.45 (p=0.02)

Table 8: Offset regression ERASL-post

Rotterdam Okayama

Variable Coef exp(Coef) se(Coef) p-value Coef exp(Coef) se(Coef) p-value

Gender -0.58 0.557 0.246 0.017 -0.69 0.500 0.228 0.002

ALBI grade >1 -0.52 0.597 0.283 0.069 0.20 1.217 0.181 0.276

ln(AFP) 0.01 1.007 0.032 0.820 -0.03 0.966 0.030 0.254

ln(Tumor size) -0.12 0.886 0.158 0.446 -0.27 0.764 0.164 0.100

Tumor number -0.32 0.729 0.218 0.147 0.09 1.097 0.115 0.419

microvascular 0.30 1.355 0.243 0.212 0.31 1.357 0.217 0.158

LR test with 6 df 11.98 (p=0.06) 14.77 (p=0.02)

8 Appendix B

Below a detailed sketch is shown of how a proportional hazards model with a flexible Box-Cox baseline

hazard function could be estimated using the Newton Ralphson method. First the log likelyhood is

constructed, whereafter the gradient and hessian are derived.
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