
Erasmus University Rotterdam

Erasmus School of Economics

Bachelor Thesis

Econometrics and Operations Research

Application of recurrent neural networks to
momentum trading

Author:

Suet Yin Wong

406994

Supervisor:

S.H.L.C.G. Vermeulen

Second assessor:

X. Xiao

July 4, 2019

The views stated in this thesis are those of the author and not necessarily those of Erasmus School of

Economics or Erasmus University Rotterdam.

Abstract

In recent years, deep learning techniques have been developed to handle complexity in the

data which can not be achieved with traditional econometric techniques. However, the appli-

cation of these techniques to real world problems have not been studied extensively. In this

paper, we aim to investigate whether recurrent neural networks using a LSTM-autoencoder

can contribute to financial time series forecasting and especially, trading strategies. We will

combine different regression methods with a modified momentum strategy suggested by Kim

(2019) and evaluate its performance on S&P 500 data. Our finding indicates that regression

methods using LSTM-autoencoders lead to an improved profitability performance and pre-

dictive accuracy performance compared to regression methods based on shallow learning or

non-recurrent deep learning algorithms. This implies that preserving sequential information

is crucial in time series forecasting, for which recurrent neural networks are designed.

Contents

1 Introduction 3

2 Literature 3

3 Data 5

4 Methodology 5

4.1 Look-back period model . 6

4.2 SVR model . 6

4.3 Deep neural network (DNN) using stacked denoising autoencoders (SdAE) 7

4.4 Recurrent neural network (RNN) using LSTM autoencoders 8

5 Performance measurement 10

5.1 Profitability performance . 11

5.2 Predictive accuracy performance . 11

6 Results 12

7 Conclusion 17

Appendix 20

A Wavelet transform . 20

B Codes . 20

B.1 DataClass.py . 20

B.2 PerformanceClass.py . 24

B.3 main lookback.py . 28

B.4 main svr.py . 32

B.5 main sdae.py . 35

B.6 main lstm.py . 42

B.7 plot.py . 46

1 Introduction

Historically speaking, momentum has been a strong strategy among investors. This asset pricing

anomaly is also known as relative strength strategy and is based on the assumption that stocks

that have an upward (downward) trend in the look-back period will continue to rise (fall).

Portfolios based on this strategy have been proven to generate abnormal returns across different

markets and assets, as reported in Fama and French (1996).

The momentum strategy can be implemented by constructing equally weighted decile portfo-

lios based on the ranking of the stock returns of the look-back period, by means of buying the top

decile and selling the bottom decile. This strategy is known as the winner-minus-loser (WML)

strategy. Jegadeesh and Titman (1993, 2001) have shown that another variant of momentum

strategy, the winner only (WO) strategy, performs well too. In this strategy, only stocks in the

top decile are bought without going short on stocks in the bottom decile.

The contribution of this research to existing literature is that we implement the selective

long/short momentum strategy proposed by Kim (2019) using time series predictions obtained

with recurrent neural networks. In addition, we will compare our findings with the predictions

that are made with shallow learning models as well as other deep learning models. The choice

of using deep features is supported by the ability of artificial neural networks to handle even

more complexity in the data (Sutskever and Hinton (2008)). Hence, our research question can

be formulated as “Can financial time series predictions based on RNN models improve the

performance of momentum strategies?”

The outline of this research paper is as follows. In Section 2, a brief literature review will

be given about the existing momentum strategies. In Section 3, we present a description of

our obtained data. Furthermore, in Section 4 we will explain the models that we have used

for prediction in combination with our trading strategy. Then, in Section 6 we will discuss our

findings that we have obtained from implementing different momentum strategies. To conclude

this paper, we will give a brief summary and provide a clear answer on our research question in

Section 7.

2 Literature

Momentum for investment purposes has a long history, but throughout the years there have

been different approaches and improvements on this strategy, resulting in many sub-variants.

Before this strategy was properly introduced, Jegadeesh and Titman (1993) have shown

that relative strength strategies that buy past winners and sell past losers simultaneously realize

significant excess returns over 3- to 12-month holding periods. They have shown that the

profitability of these strategies are not due to their systematic risk or to delayed stock price

reactions to common factors. Except for the 3-month/3-month strategy, meaning that both

look-back period and holding period are equal to 3 months, all other strategies led to significant

excess returns.

These findings were still supported in their follow-up study Jegadeesh and Titman (2001)

and they argue that the momentum effect represents the strongest evidence against the efficient

markets hypothesis, which says that if there exists any predictable patterns in returns, it will

3

be exploited by investors instantly, until the source of predictability is eliminated.

Existing literature about momentum strategy focuses mainly on cross-sectional momentum

strategies, which contains the above-mentioned strategies. This type of strategy compares assets

and buys (sells) relative winners (losers). On the other hand, strategies that only look at absolute

returns, where the return of assets in the look-back period are examined, are called time-series

momentum strategies. In this case, buy trades are executed if and only if the return of the

asset is positive in the look-back period, and sell trades are executed otherwise. Thus, in cross-

sectional strategies, portfolios are based on the relative performances of the underlying assets,

whereas in the time-series strategies, these portfolios are based on the absolute performances as

stated in Moskowitz et al. (2012).

Under most economic circumstances, the performances of both types of momentum strategies

are exceptional. In contrast to the relatively high Sharpe ratio of momentum compared to

other factors, Barroso and Santa-Clara (2015) have shown that momentum is associated with

high crash risk, which results in reduction of the accumulated returns to zero. Needless to say,

investors are unlikely to use such strategies that experience devastating crashes. The momentum

crashes in 1932 and 2009, as reported in Daniel and Moskowitz (2016), occurred during rebound

periods following bear markets. Moreover, Grundy and Martin (2015) have shown that the

WML strategy has an overall negative beta, which is a measure of systematic risk, due to the

fact that past winners (losers) have a low (high) beta. Controlling for this time-varying beta

would then result in stable returns. Daniel and Moskowitz (2016) and Barroso and Santa-Clara

(2015) contradicted this finding by proving that beta hedging solely does not avoid these crashes.

They used a different method, by estimating the risk with the realized variance (RV) of the daily

returns. The RV turned out to be highly predictable. Hence, they proposed a volatility-scaling

technique for risk management that would lead to elimination of the crashes and significant

improvement of the Sharpe ratios simultaneously.

In Kim (2019), an improved variant of the existing momentum strategies is introduced, by

means of including only the positive aspects from both WML and WO strategies. In other

words, when even the bottom decile generates positive returns, this decile is also identified as

a ‘winner’, and stocks in both bottom and top deciles are bought. On the other hand, when

the top decile realizes negative returns too, this decile is identified as a ‘loser’, which results

in selling stocks in both bottom and top deciles. Therefore, the performance of this strategy

depends on the accuracy of the forecasts. This implies that for this strategy, it is possible to

have two winners or losers simultaneously. Using several machine learning techniques, they have

implemented models to estimate the expected returns to construct their strategies.

In recent years, machine learning algorithms have been widely used in time series predictions.

Especially support vector regression (SVR), a shallow regression algorithm, has been suggested

to perform forecasts accurately when underlying processes are unknown. Alternatively, with the

development of deep learning techniques, Heaton et al. (2016) has shown that results obtained

from regression schemes that are based on deep-learning methods are more pragmatic than

standard methods used in finance.

Kim (2019) has used shallow learning algorithms as well as deep learning algorithms to

predict the returns, and implied that deep learning techniques would lead to improved accuracy

4

of predictions compared to SVR. These models are designed with deep neural networks (DNN)

and therefore can extract hidden features in the data.

However, DNNs do not take any time ordering in the data into account, and therefore, rel-

evant sequential information will go lost. Introducing long-short term memory (LSTM) cells

into the network would solve this problem. Bao et al. (2017) have implemented a combina-

tion of LSTM and stacked autoencoders to forecast stock prices and showed that their model

outperforms other models in terms of accuracy.

3 Data

The data consists of equal-weighted (EW) daily and monthly returns of the momentum portfolios

from January 1927 to March 2019 and is obtained from Kenneth French’s data library (French).

These portfolios contain NYSE, AMEX and NASDAQ stocks with prior return data, and are

constructed by ranking the cumulative returns of stocks from month t−12 to t−2. By skipping

one month in the ranking period, the short-term reversal associated with momentum will be

avoided. According to this ranking, the firms will be put in the corresponding momentum

portfolio. The descriptive statistics of the monthly returns are shown in Table 1, ranked from

the lowest to the highest 10%.

Table 1: Descriptive statistics of the monthly returns

Portfolio Mean (%) Min (%) Max (%) Median (%) St. dev. Skewness Kurtosis Obs.

1 0.964 -38.920 113.980 0.480 0.110 2.824 22.414 1107
2 1.100 -38.420 112.130 0.900 0.090 3.150 32.641 1107
3 1.125 -36.840 74.440 1.170 0.077 2.085 20.550 1107
4 1.221 -31.850 76.850 1.240 0.074 2.529 25.375 1107
5 1.213 -32.670 75.390 1.450 0.068 1.742 20.788 1107
6 1.326 -29.060 62.380 1.580 0.065 1.408 16.407 1107
7 1.335 -30.520 62.930 1.730 0.063 1.104 15.229 1107
8 1.435 -29.180 57.350 1.760 0.062 0.965 14.102 1107
9 1.578 -29.730 42.230 1.900 0.063 0.094 5.883 1107
10 1.776 -32.320 56.600 2.280 0.073 0.106 5.809 1107

The monthly returns range from -38.920% to 113.980%, while the mean of these portfolios

range from 0.964% to 1.776%. The standard deviation remains fairly constant across the port-

folios. Given this large range of returns, a momentum strategy that is implemented accordingly

would be able to generate good excess returns. Furthermore, the skewness of the portfolios

decreases as the momentum portfolio is ranked higher, which is remarkable. In general, a posi-

tive skewness is preferred since this indicates an asymmetric distribution with a tail extending

towards positive values.

4 Methodology

In this section we will discuss three time series prediction models that are used by Kim (2019)

and introduce a model based on recurrent neural networks in Section 4.4.

5

4.1 Look-back period model

The first model that we will discuss, is the look-back period model, This model does not require

any regression methods.
12∏
i=1

(1 + rt−i)− 1 (1)

In Equation 1, monthly returns in the formation period (previous 12 months) are used

to estimate the sign of the monthly return in month t. Then, the sign of the predictions

determines which action is being executed in the corresponding month. Hence, this is a simple,

but an effective approach to incorporate information about past trends in this trading strategy,

denoted by SLSa.

4.2 SVR model

Another method to predict the monthly returns involves a shallow machine learning technique,

which is the support vector regression (SVR). We denote the momentum strategy that corre-

sponds with this prediction method as SLSb. In this model, monthly returns of the formation

period (rt−1, ..., rt−12) are used to forecast rt. For each optimization, the sample that is going to

be used for training and validating contains the most recent 300 input-output pairs, with each

pair consisting of the set (rt′−1, ..., rt′−12) as input, and rt′ as output, for t′ = t− 1, ..., t− 300.

Thus, we will create a rolling window of 300 input-output pairs for each one-step ahead forecast.

First, we consider our sample (xt′ , yt′) ∈ R12 × R of 300 input-output pairs, where xt′ and

yt′ correspond to (rt′−1, ..., rt′−12) and rt′ , respectively. This sample is split into a training set of

270 observation pairs and a validation set of 30 observation pairs. The goal of ε-SVR is to obtain

a function f(x) that maps the input, in our case (rt′−1, ..., rt′−12), to the target variable, rt′ , with

at most ε deviation (Smola and Schölkopf (2004)). In other words, with this configuration we

still accept errors that are smaller than the value of ε. We define the ε-insensitive loss function

as |y − f(x)|ε := max{0, |y − f(x)| − ε (Law and Shawe-Taylor (2017)). Incorporating this loss

function in our linear regression f(x) = w · x + b is equivalent to minimizing Equation 2,

C

N

N∑
t=1

|yt − f(xt)|ε +
1

2
||w||2, (2)

where C is defined as a regularization constant to prevent the regression from over-fitting and

N is the length of our forecast horizon. By introducing slack variables and Karush-Kuhn-Tucker

(KKT) conditions, the optimal weight w∗ is given by
∑N

t=1(αt−α∗t)K(x, xt)
1, where αt and α∗t

are Lagrangian multipliers and K(x, xt) is the kernel function. Thus, our SVR can be written

in the following form,

f(x, v) = f(x,α, α∗) =

N∑
t=1

(αt − α∗t)K(x, xt) + b, (3)

where the Guassian kernel function is defined as K(x, xt) = exp
(
−||xt−xs||2

2γ2

)
, with the kernel

1For in-depth derivations of the optimization problem, please refer to Lu et al. (2009)

6

parameter γ. This function serves for mapping the input into a higher dimension space that can

describe the non-linearity (Henrique et al. (2018)).

As performance measure for our model, we used the mean squared error (MSE) which we

define as 1
30

∑30
i=1(rt−i − r̂t−i)2, where r̂t is the monthly return estimated with SVR in month t.

Using this criterion, we have tuned the parameter set (C, ε, γ) for each point estimator, where

C ∈ {10i, 5·10i : −2 ≤ i ≤ 3}, ε ∈ {10i, 5·10i : −5 ≤ i ≤ −1} and γ ∈ {10i, 5·10i : −5 ≤ i ≤ −1}.
Hence, the optimal combination consists of the values of the hyperparameters that minimizes

the MSE.

4.3 Deep neural network (DNN) using stacked denoising autoencoders (SdAE)

Deep learning applications such as autoencoders are based on machine learning theories, in the

sense that a model is being trained to replicate the input data. Prior to implementation, the

dataset is split up into two smaller samples used for training and validating as in Section 4.2.

The purpose of the training set is to choose the optimal weights of W(·) and b(·). Second, we use

the validating set to prevent over-fitting of the model (Heaton et al. (2016)). The sample sizes

of the training and validating were set identical to the sizes used for SVR-based prediction for

comparison purposes.

In addition to dimensionality reduction, a denoising autoencoder is able to handle corrupted

input data and is therefore more robust than an ordinary autoencoder. Here, we assume that

the original input data follows a stochastic process, where an arbitrary proportion v of the data

is forced to 0. For this so-called “masking noise” process, we have considered noise levels equal

to 0, 0.1, 0.25 and 0.4. Then, the network is being trained with the noise-containing data.

In every hidden layer, a non-linear transformation is applied to the noisy input to obtain a

latent representation of the original data and map this into a reconstructed version, formulated

in Equation 4 and 5,

y = f(Wyx
′ + by), (4)

z = f(Wzy + bz), (5)

where x′ ∈ Rd represents the corrupted input vector, y ∈ Rd′ the latent representation of x

and z ∈ Rd the reconstruction of x, with d = 12 in the first layer and d 6= d′. Here, f is a

non-linear activation function, i.e. a sigmoid function f(x) = 1
1+e−x with a range from 0 to 1.

Lastly, W(·) and b(·) are weight matrices and weight vectors respectively. To increase the learning

speed during pre-training, we normalize our input data with a min-max scaler by applying the

following transformation:

x→ (x− xmin)/(xmax − xmin),

where xmin and xmax are the minimum and maximum values of the data. This transformation

is applied on the first layer only. For the intermediate layers, a “batch normalization” is im-

plemented to standardize the inputs within the network. This has a several advantages, such

as accelerating the network, allowing for higher learning rates for convergence and solving the

vanishing gradients problem. The latter occurs when the activation function gets saturated as

the value of the input increases. This will lead to exponentially decreasing gradients, hence the

name “vanishing gradients problem”.

7

Since z is merely a representation of x, it contains some uncertainty. Therefore, the goal is

to minimize the loss function Ls(x, z) = ||x− z||2 in each layer.

A stacked denoising autoencoder (SdAE) contains multiple layers, where the latent repre-

sentation of the previous layer is used as input for the next layer. Pre-training of the SdAE

is performed in a greedy layer-wise way, meaning that every autoencoder is being trained indi-

vidually and sequentially, while freezing the weights W(·) and biases b(·) of the previous layers.

This routine is repeated until the final layer is reached. Until now, our construction defines a

neural network with an unsupervised learning algorithm. Thus, the last step of this process is

fine-tuning our SdAE with a supervised regression in the final layer, which predicts the monthly

returns in month t.

Figure 1: Stacked autoencoder containing three hidden layers
Source: Kim (2019)

Our SdAE consists of three sequential autoencoders, with one hidden layer per autoencoder

to extract the hidden features. More precisely, the architecture of the whole SdAE is as fol-

lows: twelve input nodes, three hidden layers with six nodes each (6-6-6) and one output node,

which correspond to the monthly returns in the formation period (rt′−1, ..., rt′−12), the latent

representations (y1, ..,y6) and the monthly return of month t rt′ respectively (See Figure 1).

The mapping in the last layer, which is done using a linear regression, provides the estimated

monthly returns, given by r̂t′ =
∑6

j=1wjyj + b. Lastly, with our validation data, consisting of

the most recent 10% of our training data for each point estimator, we will select the parameter

for the noise level that minimizes the MSE.

As for the other hyperparameters in the pre-training as well as in the fine-tuning process, we

have set the learning rate, number of epochs and batch size to 0.0005, 300 and 100, respectively.

4.4 Recurrent neural network (RNN) using LSTM autoencoders

Regular autoencoders do not take the long term dependency of the data into consideration.

Since we are dealing with time series, a recurrent neural network (RNN) will be preferred over

“regular” autoencoders (DNN). Non-recurrent neural networks assume independency between

all of the input vectors, which means that sequential information is not incorporated in the

implementation. However, Bengio et al. (1994) have shown that standard RNNs are solely

8

capable of handling sequences, but are not suitable for learning long term dependencies in

the data. Therefore, LSTM networks differentiate itselves from standard RNNs by creating a

“hidden state” based on the sequential information. These LSTM cells attack the long term

dependency problem in recurrent neural networks, and can be decomposed into four parts: an

input gate, output gate, forget gate and a cell state vector (See Figure 2).

This neural network has the construction of a deep autoencoder, which is a single autoencoder

with multiple layers, rather than a stacked autoencoder. Within a layer, each individual node

represents a LSTM cell, which is shown in detail in Figure 3. Each cell processes one time

step and emits a signal (the cell state) to the subsequent cell. If we have a stacked LSTM

autoencoder, only the state of the last LSTM cell will be passed on to the next autoencoder. In

a LSTM network with multiple layers, each LSTM cell will also emit a signal to the LSTM cell

in the subsequent layer that corresponds to the time step, which means that the states of each

time step will be passed on to the next layer (See Figure 2). Thus, the construction of a deep

LSTM autoencoder makes sure that information about the whole sequence is preserved.

In addition, to remove the noise from the data, Wavelet transform2 (WT) can be applied

to the input vector in case of non-stationary characteristics in the data (Bao et al. (2017)).

Moreover, to reduce the risk of over-fitting, we will apply a two-level wavelet to our time series

data twice.

Figure 2: Difference between a deep LSTM au-
toencoder (i) and a stacked LSTM autoencoder
(ii)

Figure 3: Process inside a LSTM memory cell
Source: Medium

In Equations 6 to 10, it, ft and ot are the input gate, forget gate and output gate at time

t, respectively. C̃t and Ct are defined as the candidate state and regular state of the memory

cell. W(·) and U(·) are weight matrices corresponding to the gate. σ(·) and tanh(·) denote the

sigmoid and hyperbolic tangent activation functions, respectively.

The input layer decides which part of the information will be stored in the cell state in two

steps. The first step consist of the input gate layer and decides which values will be updated.

In the second step, new candidate values for the cell state will be created with the tanh layer:

it = σ(Wixt + Uiht−1 + b) (6)

C̃t = tanh(Wcxt + Ucht−1 + bc) (7)

The forget layer decides which part of the information will be thrown away based on the inputs

2The computations of the Wavelet transform can be found in Appendix A

9

ht−1 and xt:

ft = σ(Wfxt + Ufht−1 + bf) (8)

The next step is updating the old cell state with the information from Equation 6 and 8:

Ct = itC̃t + ftCt−1 (9)

Finally, the output can be generated based on the cell state. Again, a sigmoid layer will be

applied to decide which part of the cell state is used for the output. The final tanh layer outputs

the desirable result:

ot = σ(Woxt + Uoht−1 + VoCt + bo) (10)

ht = ottanh(Ct) (11)

Since choosing the number of layers and its nodes is based on trial-and-error, we have found

that three hidden layers with eight nodes each would lead to promising results. As for the

hyperparameters of this network, we have set the learning rate, number of epochs and batch

size to 0.05, 300 and 100, respectively.

5 Performance measurement

We will evaluate the models in Section 4 by implementing our trading strategy based on the

corresponding predictions. To implement these strategies, only the bottom decile and top decile

portfolios with monthly rebalancing for the period January 1954 to December 2018 are used. As

mentioned earlier, not hedging the risk of momentum would lead to large crashes. Therefore, we

will also consider the volatility-scaled momentum strategy, which manages this risk, in addition

to the plain momentum strategy. First of all, we introduce the following variables,

{rt}Tt=1,monthly returns of plain momentum strategy,

{rt(d)}Dd=1,daily returns in month t of plain momentum strategy

In order to scale the momentum, we need an estimate of the momentum risk. This can be

computed by forecasting the variance using daily returns in the past 6 months for each month.

σ̂2t denotes this variance forecast, with t the corresponding month, as seen in Equation 12:

σ̂2t =
21

126

6∑
τ=1

21∑
d=1

r2t−τ (d), (12)

where the number 21 corresponds to the number of trading days in a month.

Then, the scaled returns r∗t can be obtained by multiplying the returns of the plain momen-

tum strategy with a ratio,

r∗t =
σtarget
σ̂t

· rt (13)

where the ratio between the volatilities corresponds to the weight of this scaled momentum

10

strategy. Furthermore, σtarget is a constant, which corresponds to the target level of volatility

and is set to an annualized volatility of 12%.

5.1 Profitability performance

The aforementioned types of cross-sectional momentum strategies, WO and WML, are able to

generate good profits during stable economic conditions, as shown by Jegadeesh and Titman

(1993, 2001). However, when a market crash occurs, the WO strategy will be exposed to

significant losses since even the top decile will generate negative returns. In contrast, the WML

strategy corrects for different market conditions by buying stocks from the top decile and selling

stocks from the bottom decile simultaneously, resulting in a market-neutral strategy. One pitfall

of the latter strategy is that in times of bull markets, selling stocks from the bottom decile would

also lead to losses.

The selective long/short strategy introduced in Kim (2019) is constructed by combining the

strengths of the pure WML and WO strategies. This strategy can be described as follows

Buy signal if r̂top > 0,

Sell signal if r̂bottom < 0,

No trade otherwise,

for stocks in the top and bottom decile portfolio respectively. Here, r̂(·) denotes the predicted

return of the portfolio in the holding period.

Our main goal is to find the model that is able to generate the highest profits, measured

in cumulative returns, under the same trading strategy as described above. For comparison

purposes, we will also report the performance of the existing WO and WML strategies in the

results.

5.2 Predictive accuracy performance

Despite of the idea that our models are constructed such that their aim is to correctly predict the

sign (or trend) of the returns, we are still interested in the predictive accuracy performance of

these models. Earlier, we have used mean squared error (MSE) as our loss function to obtain the

optimal hyperparameters for each forecasting model. To make a comparison across our models

in Section 4.2, 4.3 and 4.4, we will use the root mean squared error (RMSE) and mean absolute

error (MAE) to measure the predictive accuracy of our models. These measures are defined as

follows:

RMSE =

√√√√ 1

N

N∑
t=1

(r̂t − rt)2, MAE =
1

N

N∑
t=1

|r̂t − rt|,

where rt and r̂t are the true and predicted returns in month t, respectively, and N is the number

of months which is equal to 780. Both measures are quite similar, but the essential difference is

that for RMSE, the weight given to large errors is relatively higher.

Then, to test whether the predictions of two models are significantly different from each

11

other in terms of accuracy, we will perform a Diebold-Mariano (DM) test (Diebold and Mariano

(1995)). Given the actual returns {rt : t = 1, ..., T} and the predicted returns for model i

{r̂t : t = 1, ..., T}, the forecast errors are defined as:

eit = r̂it − rit

and the loss differential is defined as:

dt = g(eit)− g(ejt), for i 6= j

where g(·) is denoted as a loss function, i.e. MSE or RMSE. Model i and j would have the same

predictive accuracy if and only if the expectation of the loss differential is equal to zero. This

boils down to testing the null hypothesis H0 :E(dt) = 0 ∀t against the alternative Ha :E(dt) 6= 0.

For one-step ahead forecasts, the test statistic can by calculated as:

DM =
d̄√

2πf̂d(0)
T

,

where d̄ =
∑T

t=1 dt and f̂d(0) = 1
2π

∑T−1
k=−(T−1) I(k

h−1) 1
T

∑T
t=|k|+1(dt − d̄)(dt−|k| − d̄). Under the

null hypothesis, this test statistic is asymptotic normally distributed (DM → (N0, 1)). Hence,

we will reject H0 on a 5% significance level if |DM | > 1.96.

6 Results

In this section, we will present results of the plain and volatility-scaled selective long/short

momentum strategies based on different models. We denote these strategies as the look-back

period based strategy (SLSa), the support vector regression based strategy (SLSb), the stacked

denoising autoencoder based strategy (SLSc) and the LSTM autoencoder based strategy (SLSd).

We will also report the performances of the pure WML and WO strategy. To investigate the

performance under different economic conditions, we have divided the sample into three periods

of approximately equal duration. During the period January 1954 to December 1978, the econ-

omy was relatively stable without the occurrence of significant market crashes. In the period

January 1979 to December 1998, the stock market crash occurred in 1987. Lastly, the period

January 1999 to December 2018 contains the dot-com bubble burst in 2000 and the financial

crisis of 2008.

It is important to note that all returns that we have obtained after implementing different

variants of momentum strategies are net profits by subtracting the transaction costs of 0.2% for

the period January 1954 to December 1998 and 0.1% for the period January 1999 to December

2018 (Hurst et al. (2017), given a turnover rate of 0.75 (Barroso and Santa-Clara (2015)).

To evaluate the profitability performance of these strategies, the following performance mea-

sures were used: average (monthly) return, maximum (monthly) return, minumum (monthly)

return, annualized return, annualized volatility, Sharpe ratio, kurtosis, skewness and maximum

drawdown (MDD). MDD measures the maximum loss when a trough follows a peak and is an

indicator of downside risk. In this paper, the definitions for the Sharpe ratio and MDD are as

12

follows:

Sharpe Ratio =
Ra
σa
, MDD =

Trough V alue− Peak V alue
Peak V alue

,

where Ra is the annualized return and σa is the annualized volatility. A larger value indicates

a better performance for all of these aforementioned measures, except for annualized volatility,

kurtosis and MDD.

Table 2: Performance summary of plain momentum strategies
A B C D E F G H I

1954 - 1978

WML 0.009 0.175 -0.280 0.094 0.166 0.568 9.993 -1.534 0.399
WO 0.018 0.232 -0.260 0.206 0.206 1.002 5.185 -0.405 0.465
SLSa 0.015 0.232 -0.460 0.151 0.258 0.595 10.065 -1.580 0.579
SLSb 0.016 0.200 -0.260 0.236 0.191 0.990 6.279 -0.792 0.460
SLSc 0.008 0.232 -0.279 0.082 0.200 0.409 4.836 -0.773 0.629
SLSd 0.024 0.232 -0.240 0.310 0.201 1.545 5.924 -0.217 0.299

1979 - 1998

WML 0.011 0.126 -0.199 0.127 0.149 0.854 6.257 -0.797 0.364
WO 0.019 0.171 -0.325 0.230 0.217 1.057 7.455 -1.131 0.367
SLSa 0.012 0.168 -0.325 0.126 0.229 0.552 7.241 -1.330 0.454
SLSb 0.017 0.284 -0.127 0.239 0.178 1.122 5.866 0.625 0.301
SLSc 0.012 0.232 -0.225 0.133 0.195 0.679 3.688 -0.225 0.400
SLSd 0.028 0.171 -0.225 0.365 0.184 1.978 5.324 -0.637 0.225

1999 - 2018

WML 0.003 0.192 -0.601 -0.013 0.277 -0.046 19.884 -2.850 0.849
WO 0.012 0.314 -0.211 0.118 0.235 0.501 5.286 0.000 0.599
SLSa 0.005 0.314 -0.648 -0.017 0.350 -0.048 11.240 -1.698 0.786
SLSb 0.008 0.221 -0.254 0.126 0.212 0.429 6.400 -0.537 0.671
SLSc 0.004 0.314 -0.648 0.133 0.263 -0.767 24.332 -2.774 0.767
SLSd 0.023 0.314 -0.273 0.287 0.226 1.270 7.825 -0.027 0.386

1954 - 2018

WML 0.008 0.192 -0.601 0.070 0.203 0.345 23.887 -2.733 0.849
WO 0.016 0.314 -0.325 0.185 0.219 0.847 5.824 -0.481 0.599
SLSa 0.011 0.314 -0.648 0.089 0.282 0.317 11.674 -1.726 0.786
SLSb 0.014 0.284 -0.260 0.204 0.194 0.835 6.352 -0.385 0.671
SLSc 0.008 0.314 -0.648 0.073 0.220 0.333 17.601 -1.758 0.767
SLSd 0.025 0.314 -0.273 0.319 0.204 1.566 6.740 -0.247 0.386

The columns represent the following performance measures: average monthly return (A), maximum return (B),
minimum return (C), annualized return (D), annualized volatility (E), Sharpe ratio (F), kurtosis (G), skewness

(H), maximum drawdown (I).

In Table 2 the performance summaries of all plain momentum strategies are shown of three

different time periods plus the full time period. Compared to the traditional momentum strate-

gies, the look-back period based SLSa does not perform necessarily better than WML given the

statistics, and additionally, this strategy underperforms the WO strategy. Furthermore, we can

see that an improvement in the performances has been made by introducing SVR as prediction

method, since the SVR-based SLSb performs better than the look-back period based SLSa.

On the other hand, implementing a deep learning model using stacked denoising autoencoders

(SLSc) did not lead to any improvements compared to SLSa and SLSb.

During most periods, SLSd, the strategy based on LSTM-autoencoders, outperforms the

other momentum strategies in the majority of the performance measures. The second best

performing portfolio is the portfolio based on the WO strategy, and is followed by SLSb (SVR-

based strategy). As mentioned before, the period between 1999 and 2018 experienced devastating

market crashes, which is reflected by a relatively low Sharpe ratio and high maximum drawdown

in most strategies. When the Sharpe ratio attains a value below zero, it means that investing

in this portfolio generates lower returns than the risk-free rate. A maximum drawdown close

to 1 indicates that the investment is worthless, since the cumulative return is reduced to nihil.

However, SLSd is still able to perform reasonably well under these economic conditions, given

13

a Sharpe ratio of 1.270 and maximum drawdown of 0.386. Furthermore, if we only consider the

average monthly returns, it is remarkable that SLSd performs almost twice as good as every

other strategy.

In Figures 4-7 the log of the cumulative returns of the plain momentum strategies during

period 1954-1978, 1979-1998, 1999-2018 and 1954-2018 are shown. It can easily be seen that

SLSd is able to generate abnormal returns, given a log cumulative return of approximately 18

over the full period, which corresponds to a cumulative return of 8 × 107. Moreover, SLSd

performs clearly better than the traditional momentum strategies as well as the strategies based

on shallow learning (SLSb) and deep learning (SLSc). Nonetheless, we can see that both WO

strategy and SLSb perform extremely well in Figure 7. However, during the financial crisis in

2008, returns of both strategies experienced a large depreciation, and it took years to recover

from this crash.

Figure 4: Log cumulative returns of plain
momentum strategies in period 1953-1978

Figure 5: Log cumulative returns of plain
momentum strategies in period 1979-1998

Figure 6: Log cumulative returns of plain
momentum strategies in period 1999-2018

Figure 7: Log cumulative returns of plain
momentum strategies in period 1954-2018

In Table 3, the statistics of the trades executed in the selective long/short momentum strate-

gies are presented. During all time periods, the frequency of the long only trade is the highest

among other trades for every strategy (SLSa-SLSd). The simultaneous long and short trade and

no trade has been picked most often in the SLSc strategy. On the other hand, the short only

trade is executed most frequently in the SLSa strategy. Moreover, we notice that the frequencies

of different trades did not vary a lot across the three time periods.

14

Table 3: Long/short statistics of momentum strategies

Long/short Long only Short only No trade

1954 - 1978
SLSa 0.21 0.60 0.19 0.00
SLSb 0.20 0.71 0.02 0.07
SLSc 0.27 0.41 0.13 0.19
SLSd 0.19 0.58 0.17 0.06

1979 - 1998
SLSa 0.20 0..61 0.18 0.01
SLSb 0.27 0.47 0.13 0.13
SLSc 0.27 0.46 0.11 0.16
SLSd 0.20 0.58 0.16 0.06

1999 - 2018
SLSa 0.19 0.56 0.22 0.03
SLSb 0.23 0.63 0.04 0.10
SLSc 0.25 0.40 0.17 0.18
SLSd 0.25 0.52 0.16 0.07

1954 - 2018
SLSa 0.20 0.59 0.20 0.01
SLSb 0.23 0.61 0.06 0.10
SLSc 0.27 0.42 0.14 0.17
SLSd 0.21 0.56 0.17 0.06

We have reported the predictive accuracy performances of the three forecasting models in

Table 4. Since the predicted returns were obtained for the bottom and top decile portfolios

separately, accuracy measures were available for both portfolios. The values for RMSE and

MAE are the lowest for the LSTM model, given values of 0.087 (0.061) and 0.057 (0.045) for the

bottom (top) decile, implying that the predictions made with this model are the most accurate

compared to the other two models. The differences in accuracy measures between the SVR

model and the SdAE model are small, but in general the SdAE model performs slightly better

in terms of accuracy. To check whether the performances are significantly different across the

models, we perform a DM test, assuming the sample size is large enough. If we test for the

differences in predictive accuracies between the SVR model and the SdAE model, we obtain

p-values of 0.380 (0.000) based on RMSE and 0.298 (0.000) based on MAE for the bottom (top)

decile. Based on these results, we can not reject the null hypothesis at a 5% significance level,

if we assume that both series of returns follow the same data generating process. In addition,

testing the LSTM model against the SdAE model gives us p-values of 0.000 (0.000) based on

RMSE and 0.000 (0.000) based on MAE, which confirms that the LSTM model has indeed the

most predictive power.

Table 4: Predictive accuracy performance statistics of ML/DL models

RMSE MAE

Bottom Top Bottom Top

SVR 0.118 0.068 0.072 0.051
SdAE 0.107 0.079 0.076 0.059
LSTM 0..087 0.061 0.057 0.045

We would like to add that nor the long/short statistics, nor the predictive accuracy perfor-

mances across the models depend on whether or not the momentum strategy has been managed

for the risk. Hence, the same results as stated in Table 3 and 4 hold for the volatility-scaled

momentum strategies.

15

Similarly to Table 2, the performance statistics of the different volatility-scaled momentum

strategies are presented in Table 5. The purpose of volatility scaling is to generate more stable

excess returns by managing the momentum risk. We can see that this is indeed the case since

the maximum drawdown and annualized volatility have decreased for most of the momentum

strategies. Among the traditional momentum strategies, it can be noticed that risk-managing

did not have any (positive) effects on the WO strategy, while the returns, volatility, higher-order

moment statistics, Sharpe ratio and maximum drawdown of the WML strategy have improved

substantially. Our empirical results confirm that risk-management leads to a decrease in the

amount of crashes and an increase in the Sharpe ratio for trading strategies associated with a

negative beta. However, despite of this volatility-scaling technique, the WML strategy is still

not able to outperform the WO strategy.

Furthermore, it is remarkable that the volatility-scaled strategies SLSa-SLSc are performing

worse than the plain versions in terms of returns. The reason why volatility-scaling did not

lead to increased returns in these strategies could be due to the fact that relatively more long

trades have been executed compared to short trades, resulting in a small-positive or neutral

beta portfolio. Since Daniel and Moskowitz (2016) and Barroso and Santa-Clara (2015) only

showed the advantages of volatility-scaling on negative beta, further research should be done for

portfolios with varying beta.

On the contrary, all performance statistics of SLSd did improve slightly after volatility-

scaling. Referring to Table 3, the frequencies of the long and short trades of this strategy

did not differ significantly from SLSa-SLSc. Therefore, again we want to emphasize that more

research should be done in this field.

Table 5: Performance summary of volatility-scaled momentum strategies
A B C D E F G H I

1954 - 1978

WML 0.011 0.114 -0.197 0.130 0.131 0.997 6.751 -1.118 0.259
WO 0.017 0.172 -0.284 0.199 0.193 1.034 6.019 -0.668 0.423
SLSa 0.014 0.238 -0.460 0.141 0.261 0.541 9.781 -1.414 0.573
SLSb 0.016 0.172 -0.284 0.186 0.173 1.076 8.046 -0.746 0.293
SLSc 0.009 0.232 -0.279 0.100 0.187 0.537 8.818 -0.611 0.521
SLSd 0.024 0.200 -0.211 0.310 0.192 1.619 4.756 -0.251 0.281

1979 - 1998

WML 0.017 0.155 -0.251 0.208 0.156 1.330 7.886 -0.789 0.315
WO 0.018 0.218 -0.387 0.212 0.223 0.950 9.712 -1.271 0.404
SLSa 0.011 0.168 -0.325 0.117 0.225 0.519 7.397 -1.298 0.518
SLSb 0.018 0.218 -0.204 0.210 0.191 1.100 5.152 -0.376 0.367
SLSc 0.008 0.284 -0.225 0.083 0.199 0.415 7.216 -0.358 0.406
SLSd 0.026 0.284 -0.225 0.338 0.200 1.689 6.783 -0.500 0.344

1999 - 2018

WML 0.006 0.108 -0.240 0.071 0.121 0.579 13.125 -1.453 0.249
WO 0.008 0.187 -0.124 0.095 0.141 0.669 5.066 0.218 0.311
SLSa 0.002 0.314 -0.600 -0.051 0.353 -0.145 10.131 -1.492 0.852
SLSb 0.007 0.187 -0.124 0.078 0.121 0.644 7.445 0.521 0.174
SLSc 0.000 0.314 -0.404 -0.039 0.261 -0.150 9.333 -1.113 0.933
SLSd 0.028 0.314 -0.192 0.350 0.232 1.513 5.519 0.253 0.203

1954 - 2018

WML 0.011 0.155 -0.251 0.135 0.137 0.983 8.647 -0.971 0.314
WO 0.015 0.218 -0.387 0.170 0.189 0.897 8.386 -0.803 0.423
SLSa 0.010 0.314 -0.600 0.071 0.284 0.251 11.216 -1.569 0.852
SLSb 0.013 0.218 -0.284 0.159 0.166 0.959 6.936 -0.350 0.367
SLSc 0.006 0.314 -0.404 0.050 0.216 0.232 9.697 -0.899 0.933
SLSd 0.026 0.314 -0.225 0.331 0.207 1.599 5.762 -0.095 0.344

The columns represent the following performance measures: average monthly return (A), maximum return (B),
minimum return (C), annualized return (D), annualized volatility (E), Sharpe ratio (F), kurtosis (G), skewness

(H), maximum drawdown (I).

Lastly, in Figures 8-11 the log cumulative returns of the volatility-scaled momentum strate-

16

gies are presented. The first thing that we notice is that in Figure 10, the large decline in returns

after the dot-com bubble burst and the financial crisis are less pronounced than in Figure 6 as a

result of risk-managing. Secondly, momentum strategies SLSa and SLSc do show increased prof-

its, in contrast to Table 5. Due to a sufficient decline in the maximum drawdown, while having

constant returns (between the plain and volatility-scaled strategies), an increase in profits can

be achieved. Regardless, our main strategy, SLSd, still outperforms the traditional momentum

strategies as well as the modified momentum strategies (SLSa-SLSc) in every time period.

Figure 8: Log cumulative returns of
volatility-scaled momentum strategies in
period 1953-1978

Figure 9: Log cumulative returns of
volatility-scaled momentum strategies in
period 1979-1998

Figure 10: Log cumulative returns of
volatility-scaled momentum strategies in
period 1999-2018

Figure 11: Log cumulative returns of
volatility-scaled momentum strategies in
period 1954-2018

7 Conclusion

The application of deep learning algorithms, and in particular recurrent neural networks, to

investing strategies have not yet been studied extensively. Therefore, we have investigated

the combination of a LSTM-autoencoder as a prediction model with a selective long/short

momentum strategy, and compared this with the traditional momentum strategies, WO and

WML, and with other existing strategies reported in Kim (2019). In this research, momentum

portfolios consisting of S&P 500 data were used to implement the trading strategies.

17

Empirical results have shown that our proposed strategy is able to generate exceptionally

high returns and can outperform existing strategies, regardless of whether these are based on

traditional trading strategies or the selective long/short trading strategy. As we have seen, this

finding still holds under different economic conditions.

Furthermore, the selective long/short strategy requires an accurate forecast of the sign of

the return, rather than the actual value, which we have evaluated with profitability performance

measures. However, we were also interested in investigating to what extent our model is capable

of producing accurate forecasts of the returns. Given the relatively high values of the accuracy

measures, we suggest that further research needs to be done in developing prediction models

using recurrent deep learning algorithms for financial time series forecasting. Nevertheless, our

model showed the best results in both profitability and predictive accuracy.

In accordance with our findings, we can conclude that a prediction model based on recurrent

neural networks is suitable for the selective long/short momentum strategy. To investigate the

generalization of RNN prediction models to other trading strategies, a follow-up study is highly

recommended.

18

References

W. Bao, J. Yue, and Y. Rao. A deep learning framework for financial time series using stacked autoencoders and

long-short term memory. PLOS ONE, 12:1–24, 2017.

P. Barroso and P. Santa-Clara. Momentum has its moments. Journal of Financial Economics, 116(1):111–120,

2015.

Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with gradient descent is difficult. Trans.

Neur. Netw., 5(2):157–166, Mar. 1994.

K. Daniel and T. J. Moskowitz. Momentum crashes. Journal of Financial Economics, 122(2):221–247, 2016.

F. Diebold and R. Mariano. Comparing predictive accuracy. Journal of Business Economic Statistics, 13(3):

253–63, 1995.

E. Fama and K. French. Multifactor explanations of asset pricing anomalies. The Journal of Finance, 51(1):

55–84, 1996.

K. French. http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html. Accessed: 2019-

05-06.

S. G. Mallat. A theory of multiresolution signal decomposition: The wavelet representation. IEEE Transactions

on Pattern Analysis and Machine Intelligence - PAMI, 11, 01 1989.

B. D. Grundy and J. S. M. Martin. Understanding the Nature of the Risks and the Source of the Rewards to

Momentum Investing. The Review of Financial Studies, 14(1):29–78, 2015.

J. B. Heaton, N. G. Polson, and J. H. Witte. Deep learning in finance. CoRR, abs/1602.06561, 2016.

B. M. Henrique, V. A. Sobreiro, and H. Kimura. Stock price prediction using support vector regression on daily

and up to the minute prices. The Journal of Finance and Data Science, 4(3):183 – 201, 2018.

B. Hurst, Y. Hua Ooi, and L. Pedersen. A century of evidence on trend-following investing. SSRN Electronic

Journal, 01 2017.

N. Jegadeesh and S. Titman. Returns to buying winners and selling losers: Implications for stock market efficiency.

Journal of Finance, 48(1):65–91, 1993.

N. Jegadeesh and S. Titman. Profitability of momentum strategies: An evaluation of alternative explanations.

Journal of Finance, 56:699–720, 04 2001.

S. Kim. Enhancing the momentum strategy through deep regression. Quantitative Finance, 0(0):1–13, 2019.

T. Law and J. Shawe-Taylor. Practical bayesian support vector regression for financial time series prediction and

market condition change detection. Quantitative Finance, 17(9):1403–1416, 2017.

C.-J. Lu, T.-S. Lee, and C.-C. Chiu. Financial time series forecasting using independent component analysis and

support vector regression. Decision Support Systems, 47(2):115 – 125, 2009.

T. J. Moskowitz, Y. H. Ooi, and L. H. Pedersen. Time series momentum. Journal of Financial Economics, 104

(2):228 – 250, 2012.

A. J. Smola and B. Schölkopf. A tutorial on support vector regression. Statistics and Computing, 14(3):199–222,

2004.

I. Sutskever and G. E. Hinton. Deep, narrow sigmoid belief networks are universal approximators. Neural

Computation, 20:2629–2636, 2008.

19

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html

Appendix

A Wavelet transform

The Wavelet function for continuous wavelet transform (CWT) is given by:

φa,δ(t) =
1√
a
φ
(t− δ

a

)
, (14)

where a and δ are scale and translation factors respectively. Also, φ(t) is defined as the basis wavelet, which

satisfies the condition in Equation 15:

Cφ =

∫ ∞
0

|Φ(ω)|
ω

dω <∞, (15)

where ω is the frequency and Φ(ω) the Fourier transfom of φ(t). Given that x(t) ∈ L2(R), we define CWT as

CWTx(a, δ) =
1√
a

∫ +∞

−∞
x(t)φ

(t− δ
a

)
dt, (16)

with the complex conjugate denoted as φ(·).
Then, the inverse transform of CWT is given in the following equation

x(t) =
1

Cφ

∫ +∞

0

da

a2

∫ +∞

−∞
CWTx(a, δ)φa,δ(t)dδ (17)

To remove the redundant information in the coefficients of CWT, we will use the orthogonal projection of our

time series. This results in a discrete wavelet transform, which can be implemented by using the Mallat algorithm

(G. Mallat (1989)). This algorithm uses “father wavelets” φ(t) and “mother wavelets” ψ(t) that describe high-

frequency and low-frequency parts of the data, respectively. We can formulate these two types of wavelets as:

φj,k(t) = 2−
j
2 φ(2−j − k) (18)

ψj,k(t) = 2−
j
2ψ(2−j − k) (19)

where j corresponds to the level.

The reconstructed time series consist of a sequence of projections on the mother wavelets and the father

wavelets. The multiscale approximation of x(t) takes the following form:

x(t) =
∑
k

sJ,kφJ,k(t) +
∑
k

dJ,kψJ,k(t) +
∑
k

dJ−1,kψJ−1,k(t) + ...+
∑
k

d1,kψ1,k(t) (20)

where J is the number of multiresolution scales, kε{0,1,2,..}, jε{0,1,2,..,J} and the expansion coefficients are

defined as:

sJ,k =

∫
φJ,kx(t)dt (21)

dj,k =

∫
ψj,kx(t)dt (22)

B Codes

B.1 DataClass.py

import numpy as np

import pandas as pd

import math

from sklearn.preprocessing import MinMaxScaler

20

class DataClass:

def __init__(self):

pass

@staticmethod

def get_data():

pf = [’Lo PRIOR’, ’PRIOR 2’, ’PRIOR 3’, ’PRIOR 4’, ’PRIOR 5’, ’PRIOR 6’\

, ’PRIOR 7’, ’PRIOR 8’, ’PRIOR 9’, ’Hi PRIOR’]

#import daily equal weighted returns

dr = pd.read_csv(’C:/Users/suety/Dropbox/Thesis/Data/daily.csv’,\

skiprows=24364)

dr[’date’]= pd.to_datetime(dr[’date’], format=’%Y%m%d’).dt.date

dr = dr.set_index(’date’)

dr.index = pd.to_datetime(dr.index)

#import monthly equal weighted returns

mr = pd.read_csv(’C:/Users/suety/Dropbox/Thesis/Data/monthly.csv’,\

skiprows=1121, nrows=1107)

mr[’date’]= pd.to_datetime(mr[’date’], format=’%Y%m’).dt.date

mr[pf] = mr.loc[:,pf].divide(100)

mr = mr.set_index(’date’)

mr.index = pd.to_datetime(mr.index)

dr = dr.drop([’PRIOR 2’, ’PRIOR 3’, ’PRIOR 4’, ’PRIOR 5’, ’PRIOR 6’\

, ’PRIOR 7’, ’PRIOR 8’, ’PRIOR 9’], axis=1)

mr = mr.drop([’PRIOR 2’, ’PRIOR 3’, ’PRIOR 4’, ’PRIOR 5’, ’PRIOR 6’\

, ’PRIOR 7’, ’PRIOR 8’, ’PRIOR 9’], axis=1)

return dr, mr

@staticmethod

def get_data_scaled(self):

dr, mr = self.get_data()

drh = pd.DataFrame(dr[’Hi PRIOR’].copy())

mrh = pd.DataFrame(mr[’Hi PRIOR’].copy())

drl = pd.DataFrame(dr[’Lo PRIOR’].copy())

mrl = pd.DataFrame(mr[’Lo PRIOR’].copy())

sigmaL, mrScaled_lo = self.volScaler(drl, mrl)

sigmaH, mrScaled_hi = self.volScaler(drh, mrh)

mr_scaled = pd.concat([mrScaled_lo, mrScaled_hi], axis=1)

21

return mr_scaled, sigmaL, sigmaH

##

Scale returns based on monthly volatility

@staticmethod

def volScaler (dailyReturns, monthlyReturns):

dailyReturns = dailyReturns.copy()[’1927-07-01 00:00:00’:’2018-11-30’]

newMonth = dailyReturns.index[0].month

rm = np.zeros(shape=(1098,1))

cumsum = 0

idx = 0

for d, row in dailyReturns.iterrows():

if d.month == newMonth:

cumsum += dailyReturns.loc[d].copy().values**2

if idx == 1097:

rm[idx,:] = cumsum

else:

rm[idx,:] = cumsum

cumsum = 0

newMonth = d.month

cumsum = dailyReturns.loc[d].copy()**2

idx+=1

idx=0

predSig = pd.DataFrame(monthlyReturns[’1928-01-01 00:00:00’:’2018-12-01

00:00:00’].copy())

for m, row in predSig.iterrows():

window = rm[idx:idx+6].copy()

predSig.loc[m] = (21/126)*window.sum(axis=0)

idx+=1

mr_sc = pd.DataFrame(monthlyReturns.copy()[’1928-01-01 00:00:00’:’2018-12-01

00:00:00’].copy())

for month, row in mr_sc.iterrows():

mr_sc.loc[month,:] = (math.sqrt(12)/(predSig.loc[month,:])**0.5)*row

return (predSig, mr_sc)

22

##

Create rolling window for train and test set

@staticmethod

def create_dataset(dataset, portfolio, lookback, scaler):

dataX, dataY = [], []

for i in range(len(dataset) - lookback):

a = dataset[i:(i + lookback),portfolio]

dataX.append(a)

dataY.append(dataset[(i + lookback),portfolio])

x_data = np.array(dataX)

y_data = np.array(dataY)

y_data = y_data.reshape(len(y_data),1)

x_train=np.zeros(shape=(x_data.shape[0]-300,270,12))

y_train=np.zeros(shape=(x_data.shape[0]-300,270,1))

x_test=np.zeros(shape=(x_data.shape[0]-300,30,12))

y_test=np.zeros(shape=(x_data.shape[0]-300,30,1))

x_pred=np.zeros(shape=(x_data.shape[0]-300,1,12))

x = np.zeros(shape=(x_data.shape[0]-300,300,12))

y = np.zeros(shape=(x_data.shape[0]-300,300,1))

for i in range(x_data.shape[0]-300):

x_train[i,:,:] = x_data[i:i+270,:]

y_train[i,:,:] = y_data[i:i+270]

x_test[i,:,:] = x_data[i+270:i+300,:]

y_test[i,:,:] = y_data[i+270:i+300]

x_pred[i,:,:] = x_data[i+300,:]

x[i,:,:] = x_data[i:i+300,:]

y[i,:,:] = y_data[i:i+300]

if scaler:

sc = MinMaxScaler()

x_train[i,:,:] = sc.fit_transform(x_train[i,:,:])

x_test[i,:,:] = sc.transform(x_test[i,:,:])

x_pred[i,:,:] = sc.transform(x_pred[i,:,:])

x[i,:,:] = sc.transform(x[i,:,:])

return x_data, y_data, x_train, y_train, x_test, y_test, x_pred, x, y

##

23

Create matrix with look-back structure

@staticmethod

def create_x(dataset, lookback):

dataX = []

for i in range(len(dataset) - lookback):

a = dataset[i:(i + lookback)]

dataX.append(a)

x_data = np.array(dataX)

return x_data

##

Reshape into n samples x timesteps x n features matrix for LSTM

@staticmethod

def reshape3D(dataX):

dataX = dataX.reshape((dataX.shape[0],dataX.shape[1],1))

return dataX

B.2 PerformanceClass.py

import pandas as pd

import numpy as np

import math

from dateutil.relativedelta import relativedelta

import matplotlib.pyplot as plt

from sklearn.metrics import r2_score

class Performance:

def __init__(self):

pass

##

define WO strategy

@staticmethod

def WOstrat (monthlyReturns):

mr = monthlyReturns[’1954-01-01’:’2018-12-01’].copy()

pr = pd.DataFrame(0, index=np.arange(len(mr)), \

columns={’Return’}).set_index(mr.index)

for i, row in pr.iterrows():

r2 = mr.loc[i,’Hi PRIOR’]

24

if i <= mr.index[539]:

t = 0.002

if i > mr.index[539]:

t = 0.001

pr.loc[i] = r2 - t*0.75

return pr

##

define WML strategy

@staticmethod

def WMLstrat (monthlyReturns):

mr = monthlyReturns[’1954-01-01’:’2018-12-01’].copy()

pr = pd.DataFrame(0, index=np.arange(len(mr)), \

columns={’Return’}).set_index(mr.index)

for i, row in pr.iterrows():

r1 = -mr.loc[i,’Lo PRIOR’]

r2 = mr.loc[i,’Hi PRIOR’]

if i <= mr.index[539]:

t = 0.002

if i > mr.index[539]:

t = 0.001

pr.loc[i] = r1 + r2 -t*0.75

return pr

##

define selective long/short strategy

@staticmethod

def SLSstrat (predictedReturns, monthlyReturns):

pr = pd.DataFrame(0, index=np.arange(len(predictedReturns)), \

columns={’Return’}).set_index(predictedReturns.index)

mr = monthlyReturns[’1954-01-01’:’2018-12-01’].copy()

for i, row in predictedReturns.iterrows():

r1=0

r2=0

if predictedReturns.loc[i,’Lo PRIOR’] < 0:

25

r1 = -mr.loc[i,’Lo PRIOR’]

if predictedReturns.loc[i,’Hi PRIOR’] > 0:

r2 = mr.loc[i,’Hi PRIOR’]

if i <= mr.index[539]:

t = 0.002

if i > mr.index[539]:

t = 0.001

pr.loc[i] = r1 + r2 - t*0.75

return pr

##

calculate performance of subgroups

#0 1954-1978

#1 1979-1998

#2 1999-2018

#3 1954-2018

@staticmethod

def performanceStat (portfolioReturns):

smpl_0 = portfolioReturns[’1954-01-01’:’1978-12-01’]

smpl_1 = portfolioReturns[’1979-01-01’:’1998-12-01’]

smpl_2 = portfolioReturns[’1999-01-01’:’2018-12-01’]

smpl_3 = portfolioReturns[’1954-01-01’:’2018-12-01’]

smpl = [smpl_0, smpl_1,smpl_2,smpl_3]

info=[’Mean’,’Max’, ’Min’,’Ann. Vol.’,’Kurtosis’,’Skewness’,’Ann.

Return’,’Sharpe Ratio’,’MDD’]

stat = pd.DataFrame(columns = info)

for i, val in enumerate(smpl):

meanReturn = val.mean()[0]

maxReturn = val.max()[0]

minReturn = val.min()[0]

kurReturn = val.kurtosis()[0]+3

skewReturn = val.skew()[0]

volReturn = val.std()[0]*math.sqrt(12)

stat.loc[i,0:6] =

[meanReturn,maxReturn,minReturn,volReturn,kurReturn,skewReturn]

for s in range(4):

stat.loc[s,’Ann. Return’] =

(smpl[s].copy().add(1).prod()**(12/len(smpl[s]))-1).values

stat.loc[s,’Sharpe Ratio’] = stat.loc[s, ’Ann. Return’]/stat.loc[s,’Ann.

Vol.’]

26

plusOne = smpl[s].copy()+1

d = (plusOne).cumprod()

dd = 1 - d.div(d.cummax())

stat.loc[s, ’MDD’] = dd.max()[0]

return(stat)

##

calculate cumulative returns of strategies

SWMLa

WML

WO

@staticmethod

def cumReturn(returns, period):

if period == 0:

returns = returns[’1954-01-01’:’2018-12-01’]

if period == 1:

returns = returns[’1954-01-01’:’1978-12-01’]

if period == 2:

returns = returns[’1979-01-01’:’1998-12-01’]

if period == 3:

returns = returns[’1999-01-01’:’2018-12-01’]

creturns = (returns.copy()+1).cumprod() #cumulative returns

return creturns

##

plot predicted and true returns

@staticmethod

def plot2(prediction, true):

plt.plot(true)

plt.plot(prediction)

plt.legend([’True’,’Prediction’])

return plt.show()

##

predictive accuracy measures

@staticmethod

def pred_accuracy(y_true, y_pred):

mape = np.mean(np.abs((y_true - y_pred) / y_true)) * 100

r2 = r2_score(y_true, y_pred)

return mape, r2

##

statistics for long/short in SLS strategy

27

@staticmethod

def longshort(predictedReturns):

count_matrix = pd.DataFrame(0, index=np.arange(len(predictedReturns)),\

columns = [’long/short’,’long’,’short’,’no trade’])\

.set_index(predictedReturns.index)

for i, row in count_matrix.iterrows():

bottom = predictedReturns.loc[i,’Lo PRIOR’]

top = predictedReturns.loc[i,’Hi PRIOR’]

if bottom < 0 and top > 0:

count_matrix.loc[i,’long/short’] = 1

elif bottom < 0:

count_matrix.loc[i,’short’] = 1

elif top > 0:

count_matrix.loc[i,’long’] = 1

else:

count_matrix.loc[i,’no trade’] = 1

count_list = [count_matrix[’1954-01-01’:’1978-12-01’],\

count_matrix[’1979-01-01’:’1998-12-01’],\

count_matrix[’1999-01-01’:’2018-12-01’],

count_matrix[’1954-01-01’:’2018-12-01’]]

idx=0

stat = np.zeros(shape=(4,4))

for item in count_list:

count0 = item.sum()

total0 = count0.sum()

stat[:,idx] = count0/total0

idx+=1

return stat

B.3 main lookback.py

import numpy as np

import pandas as pd

from dateutil.relativedelta import relativedelta

import matplotlib as plt

from PerformanceClass import *

from DataClass import *

28

import pickle

def load(file1, file2, file3):

fp = open(file1, "rb")

pkl1 = pickle.load(fp)

fp.close()

fp = open(file2, "rb")

pkl2 = pickle.load(fp)

fp.close()

fp = open(file3, "rb")

pkl3 = pickle.load(fp)

fp.close()

data1 = pkl1.get("pred")

data2 = pkl2.get("pred")

data3 = pkl3.get("pred")

data = [data1, data2, data3]

return data

#%%##

Load predicted returns (plain)

values_plain_LB = load("plain_lb.pkl", "plain_wo.pkl", "plain_wml.pkl")

#%%##

Load predicted returns (volatility)

values_vol_LB = load("vol_lb.pkl", "vol_wo.pkl", "vol_wml.pkl")

#%%##

Get data

dt = DataClass()

lb = Performance()

dr, mr = dt.get_data()

#%%##

Get volatility scaled monthly returns (and predicted volatiliies)

mr_scaled, sigmaL, sigmaH = dt.get_data_scaled(dt)

#%%##

SWMLb: look-back period-based selective long/short strategy

29

def lookbackPrediction(monthlyreturn, skip = False):

lbreturn = monthlyreturn[’1954-01-01’:’2018-01-01’].copy()

calculate predictions (signs) of monthly returns

for i, row in monthlyreturn.loc[’1954-01-01’:’2018-12-01’].iterrows():

lbreturn.loc[i,[’Lo PRIOR’,’Hi PRIOR’]]= \

((monthlyreturn.loc[i+relativedelta(months=-12):i+relativedelta(months=-1)\

,[’Lo PRIOR’,’Hi PRIOR’]]+1).prod(axis=0)-1)

if skip:

for i, row in monthlyreturn.loc[’1954-01-01’:’2018-12-01’].iterrows():

lbreturn.loc[i,[’Lo PRIOR’,’Hi PRIOR’]]= \

((monthlyreturn.loc[i+relativedelta(months=-12):i+relativedelta(months=-2)\

,[’Lo PRIOR’,’Hi PRIOR’]]+1).prod(axis=0)-1)

return lbreturn

Implement WO, WML and SLS strategy on look-back based predictions

values_plain_LB=[lb.SLSstrat(lookbackPrediction(mr, skip = False), mr),\

lb.WOstrat(mr),lb.WMLstrat(mr)]

values_vol_LB=[lb.SLSstrat(lookbackPrediction(mr_scaled, skip = False), mr),\

lb.WOstrat(mr_scaled),lb.WMLstrat(mr_scaled)]

#%%##

Performance statistics of strategies implemented with plain monthly returns

stat_plain_LB = lb.performanceStat(values_plain_LB[0])

stat_plain_WO = lb.performanceStat(values_plain_LB[1])

stat_plain_WML = lb.performanceStat(values_plain_LB[2])

Performance statistics of strategies implemented with volatility scaled monthly

returns

stat_vol_LB = lb.performanceStat(values_vol_LB[0])

stat_vol_WO = lb.performanceStat(values_vol_LB[1])

stat_vol_WML = lb.performanceStat(values_vol_LB[2])

longshort_LB = lb.longshort(lookbackPrediction(mr))

longshort_LB_sc = lb.longshort(lookbackPrediction(mr_scaled))

#%%##

Save data

plain_dict = {"plain_0": lb.cumReturn(lb.SLSstrat(lookbackPrediction(mr), mr),0),\

"plain_1": lb.cumReturn(lb.SLSstrat(lookbackPrediction(mr), mr),1),\

"plain_2": lb.cumReturn(lb.SLSstrat(lookbackPrediction(mr), mr),2),\

"plain_3": lb.cumReturn(lb.SLSstrat(lookbackPrediction(mr), mr),3),\

30

"pred": values_plain_LB[0]}

fp = open("plain_lb.pkl","wb")

pickle.dump(plain_dict, fp)

fp.close()

plain_dict = {"plain_0": lb.cumReturn(lb.WOstrat(mr),0),\

"plain_1": lb.cumReturn(lb.WOstrat(mr),1),\

"plain_2": lb.cumReturn(lb.WOstrat(mr),2),\

"plain_3": lb.cumReturn(lb.WOstrat(mr),3),\

"pred": values_plain_LB[1]}

fp = open("plain_wo.pkl","wb")

pickle.dump(plain_dict, fp)

fp.close()

plain_dict = {"plain_0": lb.cumReturn(lb.WMLstrat(mr),0),\

"plain_1": lb.cumReturn(lb.WMLstrat(mr),1),\

"plain_2": lb.cumReturn(lb.WMLstrat(mr),2),\

"plain_3": lb.cumReturn(lb.WMLstrat(mr),3),\

"pred": values_plain_LB[2]}

fp = open("plain_wml.pkl","wb")

pickle.dump(plain_dict, fp)

fp.close()

vol_dict = {"vol_0": lb.cumReturn(lb.SLSstrat(lookbackPrediction(mr_scaled),

mr_scaled),0),\

"vol_1": lb.cumReturn(lb.SLSstrat(lookbackPrediction(mr_scaled),

mr_scaled),1),\

"vol_2": lb.cumReturn(lb.SLSstrat(lookbackPrediction(mr_scaled),

mr_scaled),2),\

"vol_3": lb.cumReturn(lb.SLSstrat(lookbackPrediction(mr_scaled),

mr_scaled),3),\

"pred": values_vol_LB[0]}

fp = open("vol_lb.pkl","wb")

pickle.dump(vol_dict, fp)

fp.close()

vol_dict = {"vol_0": lb.cumReturn(lb.WOstrat(mr_scaled),0),\

"vol_1": lb.cumReturn(lb.WOstrat(mr_scaled),1),\

"vol_2": lb.cumReturn(lb.WOstrat(mr_scaled),2),\

"vol_3": lb.cumReturn(lb.WOstrat(mr_scaled),3),\

"pred": values_vol_LB[1]}

fp = open("vol_wo.pkl","wb")

pickle.dump(vol_dict, fp)

fp.close()

vol_dict = {"vol_0": lb.cumReturn(lb.WMLstrat(mr_scaled),0),\

"vol_1": lb.cumReturn(lb.WMLstrat(mr_scaled),1),\

"vol_2": lb.cumReturn(lb.WMLstrat(mr_scaled),2),\

31

"vol_3": lb.cumReturn(lb.WMLstrat(mr_scaled),3),\

"pred": values_vol_LB[2]}

fp = open("vol_wml.pkl","wb")

pickle.dump(vol_dict, fp)

fp.close()

B.4 main svr.py

from sklearn.svm import SVR

from sklearn.metrics import mean_squared_error , mean_absolute_error

from sklearn.model_selection import GridSearchCV, TimeSeriesSplit

from sklearn.metrics import make_scorer

from sklearn.preprocessing import MinMaxScaler, StandardScaler, MaxAbsScaler

import numpy as np

import pandas as pd

from PerformanceClass import *

from DataClass import *

import matplotlib.pyplot as plt

import pickle

from math import sqrt

#%%##

Load predicted returns (plain)

fp = open("plain_svr.pkl", "rb")

pkl = pickle.load(fp)

fp.close()

returnSVR = pkl.get("pred")

#%%##

Load predicted returns (volatility)

fp = open("vol_svr.pkl", "rb")

pkl = pickle.load(fp)

fp.close()

returnSVR = pkl.get("pred")

#%%##

Get data

dt = DataClass()

svr = Performance()

dr, mr = dt.get_data()

#%%##

Get volatility scaled monthly returns (and predicted volatiliies)

32

mr_scaled, sigmaL, sigmaH = dt.get_data_scaled(dt)

volscale = True

if volscale:

mr = mr_scaled

#%%##

Data preprocessing

trueYL = mr.loc[’1954-01-01’:’2018-12-01’, ’Lo PRIOR’].copy().values.reshape(780,1)

trueYH = mr.loc[’1954-01-01’:’2018-12-01’, ’Hi PRIOR’].copy().values.reshape(780,1)

prepare data

dataXL, dataYL, trainXL, trainYL, testXL, testYL, predXL, XL, YL =

dt.create_dataset(mr.values, 0, 12, scaler = False)

dataXH, dataYH, trainXH, trainYH, testXH, testYH, predXH, XH, YH =

dt.create_dataset(mr.values, 1, 12, scaler = False)

#%%##

SWMLb: SVR-based selective long/short strategy

from hypopt import GridSearch

Grid-search all parameter combinations using a validation set.

def predictSVR2(trainX, trainY, testX, testY, predX):

param_grid = [{’C’: [1e-2, 1e-1, 1e0, 1e1, 1e2, 1e3,\

5*1e-2, 5*1e-1, 5e0, 5*1e1, 5*1e2, 5*1e3],\

’gamma’: [1e-5, 1e-4, 1e-3, 1e-2, 1e-1,\

5*1e-5, 5*1e-4, 5*1e-3, 5*1e-2, 5*1e-1],\

’epsilon’: [1e-5, 1e-4, 1e-3, 1e-2, 1e-1,\

5*1e-5, 5*1e-4, 5*1e-3, 5*1e-2, 5*1e-1],\

’kernel’: [’rbf’]}]

final_pred = np.zeros(shape=(780,1))

for i in range(final_pred.shape[0]):

opt = GridSearch(model = SVR(), param_grid = param_grid)

opt.fit(trainX[i], trainY[i].ravel(), testX[i], testY[i].ravel(), scoring =

’neg_mean_squared_error’)

final_pred[i] = opt.predict(predX[i,:])

print(’Prediction ’,i+1,’ of ’,780)

return final_pred

pred_lo_SVR = predictSVR2(trainXL, trainYL, testXL, testYL, predXL)

pred_hi_SVR = predictSVR2(trainXH, trainYH, testXH, testYH, predXH)

returnSVR = mr[’1954-01-01’:’2018-12-01’].copy()

returnSVR.loc[:,’Lo PRIOR’] = pred_lo_SVR

returnSVR.loc[:,’Hi PRIOR’] = pred_hi_SVR

33

#%%##

#Plot predicted and true returns of full dataset

svr.plot2(returnSVR.loc[:,’Lo PRIOR’].values, trueYL)

svr.plot2(returnSVR.loc[:,’Hi PRIOR’].values, trueYH)

#Predictive accuracy

mape_lo_SVR, r2_lo_SVR = svr.pred_accuracy(trueYL, returnSVR.loc[:,’Lo PRIOR’].values)

mape_hi_SVR, r2_hi_SVR = svr.pred_accuracy(trueYH, returnSVR.loc[:,’Hi PRIOR’].values)

rmse_lo_SVR = sqrt(mean_squared_error(returnSVR.loc[:,’Lo PRIOR’].values, trueYL))

rmse_hi_SVR = sqrt(mean_squared_error(returnSVR.loc[:,’Hi PRIOR’].values, trueYH))

mae_lo_SVR = mean_absolute_error(returnSVR.loc[:,’Lo PRIOR’].values, trueYL)

mae_hi_SVR = mean_absolute_error(returnSVR.loc[:,’Hi PRIOR’].values, trueYH)

print(’rmse low’, rmse_lo_SVR)

print(’rmse high’, rmse_hi_SVR)

#%%##

Implement SLS strategy on svr based predictions

mr_copy = mr[’1954-01-01’:’2018-12-01’].copy()

longshort_SVR = svr.longshort(returnSVR)

if volscale:

stat_vol_SVR = svr.performanceStat(svr.SLSstrat(returnSVR, mr_copy))

else:

stat_plain_SVR = svr.performanceStat(svr.SLSstrat(returnSVR, mr_copy))

#%%##

Save data

if volscale:

vol_dict = {"vol_0": svr.cumReturn(svr.SLSstrat(returnSVR, mr_copy),0),\

"vol_1": svr.cumReturn(svr.SLSstrat(returnSVR, mr_copy),1),\

"vol_2": svr.cumReturn(svr.SLSstrat(returnSVR, mr_copy),2),\

"vol_3": svr.cumReturn(svr.SLSstrat(returnSVR, mr_copy),3),\

"pred": returnSVR}

fp = open("vol_svr.pkl","wb")

pickle.dump(vol_dict, fp)

fp.close()

else:

plain_dict = {"plain_0": svr.cumReturn(svr.SLSstrat(returnSVR, mr_copy),0),\

"plain_1": svr.cumReturn(svr.SLSstrat(returnSVR, mr_copy),1),\

34

"plain_2": svr.cumReturn(svr.SLSstrat(returnSVR, mr_copy),2),\

"plain_3": svr.cumReturn(svr.SLSstrat(returnSVR, mr_copy),3),\

"pred": returnSVR}

fp = open("plain_svr.pkl","wb")

pickle.dump(plain_dict, fp)

fp.close()

B.5 main sdae.py

import keras

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

from PerformanceClass import *

from DataClass import *

import pickle

from sklearn.preprocessing import MinMaxScaler, StandardScaler, MaxAbsScaler

from sklearn.metrics import mean_squared_error, mean_absolute_error

from math import sqrt

#Seed

np.random.seed(55)

#%%##

Load predicted returns (plain)

fp = open("plain_sae.pkl", "rb")

pkl = pickle.load(fp)

fp.close()

returnDNN = pkl.get("pred")

#%%##

Load predicted returns (volatility)

fp = open("vol_sae.pkl", "rb")

pkl = pickle.load(fp)

fp.close()

returnDNN = pkl.get("pred")

#%%##

Get data

dt = DataClass()

sae = Performance()

dr, mr = dt.get_data()

#%%##

Get volatility scaled monthly returns (and predicted volatiliies)

35

mr_scaled, sigmaL, sigmaH = dt.get_data_scaled(dt)

volscale = True

if volscale:

mr = mr_scaled

#%%##

Data preprocessing

trueYL = mr.loc[’1954-01-01’:’2018-12-01’, ’Lo PRIOR’].copy().values.reshape(780,1)

trueYH = mr.loc[’1954-01-01’:’2018-12-01’, ’Hi PRIOR’].copy().values.reshape(780,1)

prepare data

dataXL, dataYL, trainXL, trainYL, testXL, testYL, predXL, XL, YL =

dt.create_dataset(mr.values, 0, 12, scaler = True)

dataXH, dataYH, trainXH, trainYH, testXH, testYH, predXH, XH, YH =

dt.create_dataset(mr.values, 1, 12, scaler = True)

denoising autoencoder (if True, this is SDAE with masking noise)

default value

denoising = False

gaussian = False

masking = True

if gaussian:

denoising = True

noise = [0.1,0.15,0.3,0.5]

if masking:

denoising = True

noise = [0,0.1,0.25,0.4]

if denoising:

def masking_noise(dataX, noiseparam):

#Masking noise

if masking:

mat = dataX

prop = int(mat.size * noiseparam)

i = [np.random.choice(range(mat.shape[0])) for _ in range(prop)]

j = [np.random.choice(range(mat.shape[1])) for _ in range(prop)]

mat[i,j] = 0

dataX = mat

#Gaussian noise

if gaussian:

noise = np.random.normal(loc=0, scale=noiseparam, size=dataX.shape)

dataX = dataX + noise

36

return dataX

#%%##

SWMLc: DNN-using SAE-based selective long/short strategy

from keras.layers import Input, Dense, BatchNormalization, Dropout

from keras.models import Model, Sequential

from keras.optimizers import Adam, SGD, Adadelta

from keras import backend as K

Hyperparameters

learning_rate = 0.0005

n_epochs = 300

batch_size = 100

n_inputs = 12

n_outputs = 12

n_hidden = 6

Turn on drop out layers by setting dropout = True

dropout = False

dropout_rate = 0.1

if dropout:

dropout_layers = 1

else:

dropout_layers = 0

def neuralNetwork(dataX, dataY, trainX, trainY, testX, testY, dataXTrue, noise):

reset memory

keras.backend.clear_session()

##

print(’*************************** AUTOENCODER 1 ****************************’)

if denoising:

dataXd = masking_noise(dataX, noise)

else:

dataXd = dataX

in1 = Input(shape=(n_inputs,))

e1 = Dense(n_hidden, activation = ’sigmoid’) (in1)

if dropout:

x = Dropout(dropout_rate) (e1)

else:

x = e1

b1 = BatchNormalization() (x)

37

d1 = Dense(n_outputs, activation = ’sigmoid’) (b1)

encoder1 = Model(in1, e1)

decoder1 = Model(in1, d1)

decoder1.compile(loss=’mean_squared_error’, optimizer=Adam(lr=learning_rate))

decoder1.fit(dataXd, dataX, batch_size=batch_size, \

epochs=n_epochs, validation_split = 0.1, shuffle = False, verbose = 0)

##

print(’*************************** AUTOENCODER 2 ****************************’)

Get latent representation

get_hidden1 = K.function([encoder1.layers[1].input],

[encoder1.layers[1].output])

hidden1 = get_hidden1([dataX])[0]

if denoising:

hidden1d = masking_noise(hidden1, noise)

else:

hidden1d = hidden1

in2 = Input(shape=(n_hidden,))

e2 = Dense(n_hidden, activation = ’sigmoid’) (in2)

if dropout:

x = Dropout(dropout_rate) (e2)

else:

x = e2

b2 = BatchNormalization() (x)

d2 = Dense(n_hidden, activation = ’sigmoid’) (b2)

encoder2 = Model(in2, e2)

decoder2 = Model(in2, d2)

decoder2.compile(loss=’mean_squared_error’, optimizer=Adam(lr=learning_rate))

decoder2.fit(hidden1d, hidden1, batch_size=batch_size, \

epochs=n_epochs, validation_split = 0.1, shuffle = False, verbose = 0)

###

print(’*************************** AUTOENCODER 3 ****************************’)

Get latent representation

get_hidden2 = K.function([encoder2.layers[1].input],

[encoder2.layers[1].output])

hidden2 = get_hidden2([hidden1])[0]

38

if denoising:

hidden2d = masking_noise(hidden2, noise)

else:

hidden2d = hidden2

in3 = Input(shape=(n_hidden,))

e3 = Dense(n_hidden, activation = ’sigmoid’) (in3)

if dropout:

x = Dropout(dropout_rate) (e3)

else:

x = e3

b3 = BatchNormalization() (x)

d3 = Dense(n_hidden, activation = ’sigmoid’) (b3)

encoder3 = Model(in3, e3)

decoder3 = Model(in3, d3)

decoder3.compile(loss=’mean_squared_error’, optimizer=Adam(lr=learning_rate))

decoder3.fit(hidden2d, hidden2, batch_size=batch_size, \

epochs=n_epochs, validation_split = 0.1, shuffle = False, verbose = 0)

##

print(’*************************** FINE TUNING *****************************’)

FineTune = Sequential()

if denoising:

trainX = masking_noise(trainX, noise)

for layer in encoder1.layers: # exclude last layer from copying

FineTune.add(layer)

if dropout:

FineTune.add(Dropout(dropout_rate))

FineTune.add(BatchNormalization())

for layer in encoder2.layers: # exclude last layer from copying

FineTune.add(layer)

if dropout:

FineTune.add(Dropout(dropout_rate))

FineTune.add(BatchNormalization())

for layer in encoder3.layers: # exclude last layer from copying

FineTune.add(layer)

if dropout:

FineTune.add(Dropout(dropout_rate))

39

FineTune.add(BatchNormalization())

for layer in FineTune.layers:

layer.trainable = True

FineTune.add(Dense(units=1, activation=’linear’, input_shape=(n_hidden,)))

FineTune.compile(loss=’mean_squared_error’, optimizer=Adam(lr=learning_rate))

FineTune.fit(trainX, trainY, validation_data = (testX, testY), shuffle = False, \

epochs=n_epochs, batch_size = batch_size, verbose = 0)

pred = FineTune.predict(dataXTrue)

FineTune.summary()

return (pred, FineTune)

def predictSAE(dataX, dataY, trainX, trainY, testX, testY, predX):

final_pred = np.zeros(shape=(780,1))

for i in range(final_pred.shape[0]):

if denoising:

mse = 1

for n in noise:

pred, model = neuralNetwork(dataX[i], dataY[i], trainX[i], trainY[i],

testX[i], testY[i], testX[i], n)

if mean_squared_error(pred, testY[i]) < mse:

best_model = model

mse = mean_squared_error(pred, testY[i])

final_pred[i] = best_model.predict(predX[i])

print(’Noise: ’,n)

print(’Prediction ’,i+1,’ of ’,780)

return final_pred

pred_lo_SAE = predictSAE(XL, YL, trainXL, trainYL, testXL, testYL, predXL)

pred_hi_SAE = predictSAE(XH, YH, trainXH, trainYH, testXH, testYH, predXH)

returnDNN = mr[’1954-01-01’:’2018-12-01’].copy()

returnDNN.loc[:,’Lo PRIOR’] = pred_lo_SAE

returnDNN.loc[:,’Hi PRIOR’] = pred_hi_SAE

#%%##

40

Plot predicted and true returns of full dataset

sae.plot2(returnDNN.loc[:,’Lo PRIOR’].values,trueYL)

sae.plot2(returnDNN.loc[:,’Hi PRIOR’].values,trueYH)

Predictive accuracy

mape_lo_SAE, r2_lo_SAE = sae.pred_accuracy(trueYL, returnDNN.loc[:,’Lo PRIOR’].values)

mape_hi_SAE, r2_hi_SAE = sae.pred_accuracy(trueYH, returnDNN.loc[:,’Hi PRIOR’].values)

rmse_lo_SAE = sqrt(mean_squared_error(returnDNN.loc[:,’Lo PRIOR’].values, trueYL))

rmse_hi_SAE = sqrt(mean_squared_error(returnDNN.loc[:,’Hi PRIOR’].values, trueYH))

mae_lo_SAE = mean_absolute_error(returnDNN.loc[:,’Lo PRIOR’].values, trueYL)

mae_hi_SAE = mean_absolute_error(returnDNN.loc[:,’Hi PRIOR’].values, trueYH)

print(’rmse low’, rmse_lo_SAE)

print(’rmse high’, rmse_hi_SAE)

#%%##

Implement SLS strategy on DNN-using SAE based predictions

mr_copy = mr[’1954-01-01’:’2018-12-01’].copy()

longshort_SAE = sae.longshort(returnDNN)

if volscale:

stat_vol_SAE = sae.performanceStat(sae.SLSstrat(returnDNN, mr_copy))

else:

stat_plain_SAE = sae.performanceStat(sae.SLSstrat(returnDNN, mr_copy))

#%%##

Save data

if volscale:

vol_dict = {"vol_0": sae.cumReturn(sae.SLSstrat(returnDNN, mr_copy),0),\

"vol_1": sae.cumReturn(sae.SLSstrat(returnDNN, mr_copy),1),\

"vol_2": sae.cumReturn(sae.SLSstrat(returnDNN, mr_copy),2),\

"vol_3": sae.cumReturn(sae.SLSstrat(returnDNN, mr_copy),3),\

"pred": returnDNN}

fp = open("vol_sae.pkl","wb")

pickle.dump(vol_dict, fp)

fp.close()

else:

plain_dict = {"plain_0": sae.cumReturn(sae.SLSstrat(returnDNN, mr_copy),0),\

"plain_1": sae.cumReturn(sae.SLSstrat(returnDNN, mr_copy),1),\

"plain_2": sae.cumReturn(sae.SLSstrat(returnDNN, mr_copy),2),\

41

"plain_3": sae.cumReturn(sae.SLSstrat(returnDNN, mr_copy),3),\

"pred": returnDNN}

fp = open("plain_sae.pkl","wb")

pickle.dump(plain_dict, fp)

fp.close()

B.6 main lstm.py

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

from PerformanceClass import *

from DataClass import *

import pickle

from sklearn.preprocessing import MinMaxScaler, StandardScaler

from sklearn.metrics import mean_squared_error, mean_absolute_error

import keras

from math import sqrt

#Seed

np.random.seed(55)

#%%##

Load predicted returns (plain)

fp = open("plain_lstm.pkl", "rb")

pkl = pickle.load(fp)

fp.close()

returnRNN = pkl.get("pred")

#%%##

Load predicted returns (volatility)

fp = open("vol_lstm.pkl", "rb")

pkl = pickle.load(fp)

fp.close()

returnRNN = pkl.get("pred")

#%%##

Get data

dt = DataClass()

saelstm = Performance()

dr, mr = dt.get_data()

#%%##

Get volatility scaled monthly returns (and predicted volatiliies)

42

mr_scaled, sigmaL, sigmaH = dt.get_data_scaled(dt)

volscale = True

if volscale:

mr = mr_scaled

#%%##

Data preprocessing

trueYL = mr.loc[’1954-01-01’:’2018-12-01’, ’Lo PRIOR’].copy().values.reshape(780,1)

trueYH = mr.loc[’1954-01-01’:’2018-12-01’, ’Hi PRIOR’].copy().values.reshape(780,1)

Wavelet transform

import pywt

import mad

from statsmodels import robust

def waveletSmooth(x, wavelet="haar", level=2, DecLvl=2):

calculate the wavelet coefficients

coeff = pywt.wavedec(x, wavelet, mode="per", level=DecLvl)

calculate a threshold

sigma = robust.mad(coeff[-level])

uthresh = sigma * np.sqrt(2*np.log(len(x)))

coeff[1:] = (pywt.threshold(i, value=uthresh, mode="soft") for i in coeff[1:])

reconstruct the signal using the thresholded coefficients

y = pywt.waverec(coeff, wavelet, mode="per")

return y

wav_lo = waveletSmooth(mr.iloc[:,0])

wav_lo = wav_lo.reshape(len(wav_lo),1)

wav_hi = waveletSmooth(mr.iloc[:,1])

wav_hi = wav_hi.reshape(len(wav_hi),1)

prepare data

dummy, dataYL, dummy, trainYL, dummy, testYL, dummy, dummy, YL =

dt.create_dataset(mr.values, 0, 12, scaler = False)

dummy, dataYH, dummy, trainYH, dummy, testYH, dummy, dummy, YH =

dt.create_dataset(mr.values, 1, 12, scaler = False)

prepare data

dataXL, dummy, trainXL, dummy, testXL, dummy, predXL, XL, dummy =

dt.create_dataset(wav_lo, 0, 12, scaler = False)

dataXH, dummy, trainXH, dummy, testXH, dummy, predXH, XH, dummy =

dt.create_dataset(wav_hi, 0, 12, scaler = False)

#%%##

SWMLd: RNN-using LSTM-autoencoder selective long/short strategy

43

from keras.layers import Input, Dense, BatchNormalization, Dropout, LSTM,

RepeatVector, TimeDistributed

from keras.models import Model, Sequential

from keras.optimizers import Adam, SGD, Adadelta

from tqdm import tqdm

from keras import backend as K

#Hyperparameters

learning_rate = 0.05

n_epochs = 300

batch_size = 100

n_inputs = 1

n_outputs = 1

n_hidden = 6

def LSTMNetwork(trainX, trainY, testX, testY, trueX):

#reset memory

keras.backend.clear_session()

model = Sequential()

model.add(LSTM(8, input_shape = (12,1), return_sequences = True))

model.add(Dropout(0.2))

model.add(LSTM(8, return_sequences = True))

model.add(Dropout(0.2))

model.add(LSTM(8, return_sequences = False))

model.add(Dropout(0.2))

model.add(Dense(1, activation = ’linear’))

model.compile(loss=’mse’, optimizer = Adam(lr = learning_rate))

model.fit(trainX, trainY, batch_size = batch_size, epochs = n_epochs,

validation_data = (testX, testY), shuffle = False, verbose = 0)

pred_true = model.predict(trueX)

return (pred_true)

def predictLSTM(trainX, trainY, testX, testY, predX):

final_pred = np.zeros(shape=(780,1))

for i in range(final_pred.shape[0]):

#Reshape data for LSTM cells

trainX3 = dt.reshape3D(trainX[i])

testX3 = dt.reshape3D(testX[i])

predX3 = dt.reshape3D(predX[i])

44

final_pred[i] = LSTMNetwork(trainX3, trainY[i], testX3, testY[i], predX3)

print(’Prediction ’,i+1,’ of ’,780)

return final_pred

pred_lo_LSTM = predictLSTM(trainXL, trainYL, testXL, testYL, predXL)

pred_hi_LSTM = predictLSTM(trainXH, trainYH, testXH, testYH, predXH)

returnRNN = mr[’1954-01-01’:’2018-12-01’].copy()

returnRNN.loc[:,’Lo PRIOR’] = pred_lo_LSTM

returnRNN.loc[:,’Hi PRIOR’] = pred_hi_LSTM

#%%##

Plot predicted and true returns of full dataset

saelstm.plot2(returnRNN.loc[:,’Lo PRIOR’].values, trueYL)

saelstm.plot2(returnRNN.loc[:,’Hi PRIOR’].values, trueYH)

Predictive accuracy

mape_lo_LSTM, r2_lo_LSTM = saelstm.pred_accuracy(trueYL, returnRNN.loc[:,’Lo

PRIOR’].values)

mape_hi_LSTM, r2_hi_LSTM = saelstm.pred_accuracy(trueYH, returnRNN.loc[:,’Hi

PRIOR’].values)

rmse_lo_LSTM = sqrt(mean_squared_error(returnRNN.loc[:,’Lo PRIOR’].values, trueYL))

rmse_hi_LSTM = sqrt(mean_squared_error(returnRNN.loc[:,’Hi PRIOR’].values, trueYH))

mae_lo_LSTM = mean_absolute_error(returnRNN.loc[:,’Lo PRIOR’].values, trueYL)

mae_hi_LSTM = mean_absolute_error(returnRNN.loc[:,’Hi PRIOR’].values, trueYH)

print(’rmse low’, rmse_lo_LSTM)

print(’rmse high’, rmse_hi_LSTM)

#%%##

Implement SLS strategy on RNN-using LSTM-autoencoder based predictions

mr_copy = mr[’1954-01-01’:’2018-12-01’].copy()

longshort_LSTM = saelstm.longshort(returnRNN)

if volscale:

stat_vol_LSTM = saelstm.performanceStat(saelstm.SLSstrat(returnRNN, mr_copy))

else:

stat_plain_LSTM = saelstm.performanceStat(saelstm.SLSstrat(returnRNN, mr_copy))

#%%##

Save data

45

if volscale:

vol_dict = {"vol_0": saelstm.cumReturn(saelstm.SLSstrat(returnRNN, mr_copy),0),\

"vol_1": saelstm.cumReturn(saelstm.SLSstrat(returnRNN, mr_copy),1),\

"vol_2": saelstm.cumReturn(saelstm.SLSstrat(returnRNN, mr_copy),2),\

"vol_3": saelstm.cumReturn(saelstm.SLSstrat(returnRNN, mr_copy),3),\

"pred": returnRNN}

fp = open("vol_lstm.pkl","wb")

pickle.dump(vol_dict, fp)

fp.close()

else:

plain_dict = {"plain_0": saelstm.cumReturn(saelstm.SLSstrat(returnRNN,

mr_copy),0),\

"plain_1": saelstm.cumReturn(saelstm.SLSstrat(returnRNN, mr_copy),1),\

"plain_2": saelstm.cumReturn(saelstm.SLSstrat(returnRNN, mr_copy),2),\

"plain_3": saelstm.cumReturn(saelstm.SLSstrat(returnRNN, mr_copy),3),\

"pred": returnRNN}

fp = open("plain_lstm.pkl","wb")

pickle.dump(plain_dict, fp)

fp.close()

B.7 plot.py

Plotting cumulative returns

from PerformanceClass import*

from DataClass import*

import matplotlib.pyplot as plt

import pickle

volscale = False

def load(file, arg):

fp = open(file, "rb")

pkl = pickle.load(fp)

fp.close()

if arg == "vol":

data = [pkl.get("vol_0"),pkl.get("vol_1"),pkl.get("vol_2"),pkl.get("vol_3")]

if arg == "plain":

data =

[pkl.get("plain_0"),pkl.get("plain_1"),pkl.get("plain_2"),pkl.get("plain_3")]

return data

def plotCR(wml, wo, lb, svr, sae, lstm, i):

plt.plot(np.log(wml[i]))

46

plt.plot(np.log(wo[i]))

plt.plot(np.log(lb[i]))

plt.plot(np.log(svr[i]))

plt.plot(np.log(sae[i]))

plt.plot(np.log(lstm[i]))

plt.xticks(rotation=45)

plt.ylabel(’Log cumulative Returns’)

plt.grid(True)

plt.legend([’WML’,’WO’,’SLSa’,’SLSb’, ’SLSc’, ’SLSd’])

return plt.show()

if volscale:

vol_LB = load("vol_lb.pkl", "vol")

vol_WML = load("vol_wml.pkl", "vol")

vol_WO = load("vol_wo.pkl", "vol")

vol_SVR = load("vol_svr.pkl", "vol")

vol_SAE = load("vol_sae.pkl", "vol")

vol_LSTM = load("vol_lstm.pkl", "vol")

plotCR(vol_WML, vol_WO, vol_LB, vol_SVR, vol_SAE, vol_LSTM, 0)

plotCR(vol_WML, vol_WO, vol_LB, vol_SVR, vol_SAE, vol_LSTM, 1)

plotCR(vol_WML, vol_WO, vol_LB, vol_SVR, vol_SAE, vol_LSTM, 2)

plotCR(vol_WML, vol_WO, vol_LB, vol_SVR, vol_SAE, vol_LSTM, 3)

else:

plain_LB = load("plain_lb.pkl", "plain")

plain_WML = load("plain_wml.pkl", "plain")

plain_WO = load("plain_wo.pkl", "plain")

plain_SVR = load("plain_svr.pkl", "plain")

plain_SAE = load("plain_sae.pkl", "plain")

plain_LSTM = load("plain_lstm.pkl", "plain")

plotCR(plain_WML, plain_WO, plain_LB, plain_SVR, plain_SAE, plain_LSTM, 0)

plotCR(plain_WML, plain_WO, plain_LB, plain_SVR, plain_SAE, plain_LSTM, 1)

plotCR(plain_WML, plain_WO, plain_LB, plain_SVR, plain_SAE, plain_LSTM, 2)

plotCR(plain_WML, plain_WO, plain_LB, plain_SVR, plain_SAE, plain_LSTM, 3)

47

	Introduction
	Literature
	Data
	Methodology
	Look-back period model
	SVR model
	Deep neural network (DNN) using stacked denoising autoencoders (SdAE)
	Recurrent neural network (RNN) using LSTM autoencoders

	Performance measurement
	Profitability performance
	Predictive accuracy performance

	Results
	Conclusion
	Appendix
	Wavelet transform
	Codes
	DataClass.py
	PerformanceClass.py
	main_lookback.py
	main_svr.py
	main_sdae.py
	main_lstm.py
	plot.py

