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Abstract

Economic forecasts are of major importance to set government policies and to make invest-
ment decisions. A recent development in economic forecasting is to combine shrinkage and
variable selection methods with factorisation. This research assesses the usefulness of this
approach in the context of forecasting contemporary Nigerian real GDP growth. A novel
type of data set including real GDP growth rates of 52 African countries and a data set
containing 35 economic indicators are used to make predictions. Five shrinkage and vari-
able selection methods are used, including least angle regression, ridge regression, elastic
net regularisation, bagging, and boosting. A simulation study shows these methods are
very effective when the explanatory power of many variables is low. However, their effec-
tiveness is only limited in the application of forecasting Nigeria’s economic growth, due to
the low explanatory power of the data. A factor-based approach is generally preferred to
using variables directly, although boosting without factors is the optimal method in terms
of predictive accuracy. The best shrinkage and variable selection methods that use factors
perform more than 20% better than the autoregressive benchmark, indicating these methods
can be of added value in practice. Yet, the out-of-sample period of five years does not allow
for strong conclusions. Therefore, more extensive data should be used in future research to
verify the robustness of the results.

The views stated in this thesis are those of the author and not necessarily those of Erasmus School of
Economics or Erasmus University Rotterdam.
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1 Introduction

Nigeria has the largest economy in Africa and with around 200 million inhabitants it is one of
the most populated countries in the world. The country’s primary source of welfare is oil, which
makes economic growth subject to oil shocks (Ogundipe et al., 2014). The political environment
has also considerably impacted economic developments in Nigeria. The country was led by
military regimes until 1999, after which the country became a democracy. However, even in the
present day corruption remains a severe problem (Nwankwo, 2014). Nevertheless, the country
managed to realise relatively stable growth during the past decade. However, the economic
growth was interrupted in 2016 by the first economic downturn in years. This recession was
primarily caused by declining oil prices, an excessive amount of imports, and low investment
rates (Agri et al., 2017). The main goal of this paper is to investigate whether such short-term
economic developments in Nigeria can be predicted well by combining shrinkage and variable
selection methods with factorisation.

The approach of combining shrinkage and variable selection methods is based on the method-
ology of Kim and Swanson (2018), who use this approach to forecast various economic variables
in the United States. First, factors are generated from the data using principal component
analysis (PCA) to reduce the dimensionality of the data. Then, shrinkage and variable selec-
tion methods are used to decrease the magnitude of coefficients or the number of variables in
the model, which reduces the forecast variance. Various factor models are considered, includ-
ing factor augmented autoregression (FAAR), ridge regression, least angle regression (LARS),
elastic net regularisation, bagging, and boosting. The forecasting performance of the models is
compared to autoregressive and random walk models. A simulation study is performed to inves-
tigate the differences between the methods when used in combination with factors. Thereafter,
the methods are applied to make one-year-ahead out-of-sample forecasts of Nigerian real gross
domestic product (GDP) growth from 2012 until 2016. The methods are compared in terms of
their predictive accuracy. Moreover, it is evaluated whether a factor-based approach is preferred
to the direct use of explanatory variables.

To forecast economic growth, two large data sets are considered. The first consists of real
GDP growth rates of 52 African countries from 1963 until 2016, which is obtained from Franses
and Vasilev (2019). This data set is used to investigate whether cross-country relations can be
used to predict economic growth. The second data set consists of 35 economic indicators and is
primarily retrieved from the World Bank’s World Development Indicators (WDI) database. The
explanatory power of both data sets is first compared by using them independently, thereafter
a combination of the two is considered.

The social relevance of this paper is twofold. First, providing accurate predictions of economic
growth is of vital importance for the Nigerian government, as the government budget is largely
dependent on the state of the economy. Furthermore, more accurate economic growth forecasts
contribute to an improved implementation of fiscal policy (Lledó and Poplawski-Ribeiro, 2013).
In addition, the Central Bank of Nigeria uses economic forecasts to adjust monetary policy,
which can aid to stimulate or dampen economic growth. Second, accurate information regarding
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economic growth in Nigeria is of interest to investors, as the value of investments is dependent
on the growth outlook.

From a scientific perspective, a contribution to the literature is made by further exploring
the effectiveness of shrinkage and variable selection methods in combination with factorisation
in a new context. Previous research found the best method to depend both on the time period
and the variable to be predicted (Kim and Swanson, 2014, 2018), hence insight is provided
into which of the methods is most suitable to forecast Nigerian real GDP growth. Above that,
the predictive power of a new type of data set containing regional economic growth rates is
researched by using GDP growth rates of African countries as explanatory variables. Moreover,
the applicability of economic indicator data to make economic forecasts in Africa has until now
remained relatively unexplored, with the exception of South Africa.

In the simulation study, it is found shrinkage and variable selection methods can outperform
ordinary least squares (OLS) in terms of forecasting accuracy, especially in case the explanatory
power of many variables is low. The preferred method is based on a trade-off between variance
and bias, as the number of variables and the size of coefficients differ among them. The effective-
ness of combining a factor-based approach with shrinkage and variable selection is only limited
in the context of forecasting Nigerian real GDP growth, as the benchmark models are hardly
outperformed. The explanatory power of individual variables in both data sets is low, which
leads to relatively better performance of factor models in general. The best method in terms of
forecasting accuracy is boosting together with variables of both data sets without factorisation,
however, the model’s forecasts are very volatile and therefore not suitable in practice. Bagging
and boosting with factors constructed using a combination of the data sets generate more sta-
ble forecasts and are able to reduce the mean squared prediction error (MSE) by more than
20% compared to the autoregressive benchmark, which indicates this approach can be useful to
forecast economic growth in Nigeria.

The paper is organised as follows. Section 2 discusses relevant literature. Section 3 provides
an overview of the models used in the simulation and empirical studies. The simulation study is
discussed in Section 4. The data and methodology used to forecast Nigerian real GDP growth
are presented with the results in Section 5. Section 6 concludes the paper.

2 Literature Review

2.1 Economic Growth in Africa and Nigeria

Economic development in Africa has been slow historically, which largely results from the pur-
suance of poor economic policies as well as unfavourable natural factors (Sachs and Warner,
2001). However, fundamental changes in the economy have led to substantially better eco-
nomic performance during the last two decades (Rodrik, 2016). Arbache and Page (2007) study
commonalities in the economic growth of African countries and find they partly follow the same
business cycles. Above that, Arbache and Page (2007) find economic correlations in Sub-Saharan
Africa are seemingly based on institutions rather than geography and natural resources. This
paper investigates whether cross-country relations in Africa can be used to predict economic
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growth in Nigeria, which is done by using the real GDP growth rates of African countries as
explanatory variables. The application of a data set containing regional economic growth rates
is novel in a forecasting context.

Arbache and Page (2007) note the economic growth of African countries is volatile and di-
verse, therefore it is detrimental to know which factors influence economic growth within Nigeria.
Various studies investigate the determinants of economic growth in Nigeria. For instance, the
economy is found to benefit from oil shocks (Omisakin and Olusegun, 2008; Ogundipe et al.,
2014). In addition, high inflation negatively impacts GDP growth in Nigeria (Chimobi, 2010).
Furthermore, Akinlo (2004) finds inflows of foreign direct investment (FDI) contribute posi-
tively to economic growth, although the effects are small, dependent on the sector, and only
occur after a prolonged time period. Moreover, he finds increases in exports, the labour force,
and human capital augment economic growth, whereas an expansion of the money supply as a
share of GDP has an adverse effect. Nurudeen and Usman (2010) find government consumption
has a negative impact on economic growth overall, although the effects depend on the type of
expenditure; increased expenditure on health care, communication, and transportation do exert
positive influences on the economy. This study is related to the work of Nwankwo (2014), who
finds that corruption significantly deteriorates growth in Nigeria.

Besides causal variables, leading indicators can be used to predict economic growth. For
example, Ikoku (2010) finds the stock market is a leading indicator of Nigeria’s economy. The
application of economic indicators to predict the economic growth of African countries has
been relatively unexplored. Existing literature primarily focuses on South Africa, which is the
most developed African country. Gupta and Kabundi (2011) forecast economic growth in South
Africa using a data set containing 267 variables, which includes financial data, global commodity
prices, data on major trading partners, confidence indices, and business surveys. They use PCA
to obtain factors, which are subsequently used as explanatory variables in the predictive model.
This factor model outperforms other models when predicting short-term economic growth in
South Africa (Gupta and Kabundi, 2011). In a comparable study, Cepni et al. (2019) make use
of economic indicators to forecast GDP growth rates in Brazil, Indonesia, Mexico, South Africa,
and Turkey. Their data set includes economic indicators relating to housing, new orders, the
labour market, prices, interest rates, exchange rates, stock prices, the money supply, and real
production. Above that, they include variables that capture uncertainty regarding the economy,
trade, monetary policy, and migration. To forecast GDP growth in emerging markets they make
use of a factor-based approach in combination with shrinkage and variable selection methods,
which jointly significantly improves predictive accuracy.

This paper combines variables that cause economic growth in Nigeria with a myriad of
economic indicators in a second data. By using this data set for forecasting, a contribution
to the existing literature is made by combining variables known to affect or predict economic
growth into a single model. Also, new insights are provided into the effectiveness of economic
indicator data in making economic forecasts for a less developed African economy. Similar to
the aforementioned research, factorisation is used as a dimension reduction technique. Factor
models are constructed using shrinkage and variable selection methods, which are discussed next.
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2.2 Shrinkage and Variable Selection Methods

Shrinkage methods, also known as regularisation methods, reduce the magnitude of coefficients
in a regression model towards zero. On the other hand, variable selection methods select a subset
of variables to include in a model. Therefore, variable selection can be seen as an extreme case of
shrinkage, where coefficients are shrunk all the way to zero. Both methods aim to diminish the
size of the coefficients, which helps to reduce the variance of the model and to avoid overfitting.
These two properties make these methods particularly beneficial in the application of forecasting.
However, there is a trade-off, since shrinking coefficients comes at the expense of increased bias.

Kim and Swanson (2018) combine different factor models with a variety of shrinkage and
variable selection methods to forecast 11 macroeconomic variables in the United States. This is
done by first generating factors from the explanatory variables and subsequently using shrinkage
and variable selection methods with the estimated factors. However, they also test the perfor-
mance of shrinkage and variable selection methods without the use of factors. In this paper,
both approaches are used to model Nigerian GDP growth. The subset of shrinkage and variable
selection methods used is in this research is briefly described below.

Least angle regression is a variable selection method introduced by Efron et al. (2004). The
method resembles forward selection, which starts with an empty model and iteratively adds
the predictor that is most correlated with the current residuals. This greedy algorithm does
not allow for a model with highly correlated variables. As an alternative, forward stagewise
regression follows a similar procedure, however, in each iteration, it only increases the coefficient
of the most correlated variable with a small step. Although this method may provide a better
model fit, it also more computationally intensive. LARS aims to accelerate the forward stagewise
regression by increasing the step size and adjusting coefficients of multiple predictors at the same
time. Similar to forward selection, LARS iteratively adds the variable that is most correlated
with the current residuals to the model. Then, the coefficients of the variables in the model
are increased into their joint least squares direction until some other variable becomes just as
correlated with the current residuals. At that point, a new variable is added to the model and
the algorithm repeats itself until all variables are included in the model.

The second method considered is ridge regression, which is a form of penalised regression
where coefficients are given a squared penalty in the objective function (Hoerl and Kennard,
1970). This method has the advantage that it has a closed-form solution, however, it does not
lead to a parsimonious model as coefficients are not reduced all the way to zero. To overcome
this caveat, Tibshirani (1996) introduced the least absolute shrinkage and selection operator
(lasso). Lasso uses an absolute penalty term instead of a squared penalty, therefore it is able
to create sparse models. However, lasso only allows the number of regressors to at maximum
be equal to the sample size and it tends to select one variable from a highly correlated group
of variables somewhat arbitrarily (Zou and Hastie, 2005). To alleviate these problems, Zou
and Hastie (2005) developed elastic net regularisation, which includes both a squared and an
absolute penalty in the objective function. Although this method is seemingly different from
LARS, Zou and Hastie (2005) show the solution of elastic net regularisation can be computed
efficiently with an adjusted version of the LARS algorithm, which is called LARS-EN.
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The final two methods considered, bagging and boosting, make use of machine learning to
achieve shrinkage and variable selection. Bagging, short for bootstrap aggregation, is introduced
by Breiman (1996). This method bootstraps the training sample multiple times and computes
coefficients for each sample. Subsequently, with each bootstrapped sample a different prediction
is made and the bagging forecast is computed as the average of the forecasts. Bühlmann and
Yu (2002) show this computationally intensive method can asymptotically be seen as a form of
shrinkage, where the amount of shrinkage for each coefficient is inversely related to the absolute
value of the t-statistic. Next, boosting aims to combine many models with low accuracy into
a single accurate model (Freund and Schapire, 1997). Numerous boosting algorithms exist,
some of these are based on the aforementioned forward stagewise regression (Efron et al., 2004).
With this method, the coefficient of the predictor that is most correlated with the residuals is
increased with a small step, which by itself contributes little to the model’s accuracy. However,
by repeating this procedure a large number of times a single accurate model can be created.

In literature, there is no consent on which shrinkage or variable selection method is opti-
mal. As an illustration, Kim and Swanson (2014, 2018) find the preferred method depends on
both the macroeconomic variable to predicted and the time period considered. In this paper,
the performance of shrinkage and variable selection methods is first compared in a simulation
study. Afterwards, it is evaluated which method is most suitable in the context of forecasting
contemporary Nigerian real GDP growth.

3 Regression Models

This section provides an overview of the regression models used in the simulation and empirical
studies, commencing with the benchmark models. Subsequently, the procedure to generate and
select factors is elaborated upon. Then, the implementation of shrinkage and variable selection
methods is discussed. For simplicity, it is assumed all models make use of one lag of factors,
which is analogous to the application of these models in the simulation study. However, the
models may also be applied without the use of factors and they can easily be extended to
include more lags than one. These adjustments are both made in the empirical study.

As a convention, vectors are written in bold and matrices are capitalised. Moreover, esti-
mated variables are denoted with a hat and normalised variables with a tilde. The time span is
assumed to be T periods and time is denoted by subscript t. The dependent variable is assumed
to be a T × 1 vector y with elements yt for t = 1, ..., T . Explanatory variables are denoted
by T × N matrix X, where N is the amount of explanatory variables. Individual explanatory
variables are denoted by xi,t for i = 1, ..., N and t = 1, ..., T . Factors are denoted by T × N
matrix F , with F r denoting the first r factors. The tth row of F is denoted by Ft and the jth

factor by fj with elements fj,t for t = 1, ..., T .

3.1 Autoregressive Model

An autoregressive (AR) model is used as a benchmark model, as this simple linear model is
difficult to beat when forecasting economic growth (Marcellino, 2008). The AR(p) model is
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described by

yt = β0 +

p∑
i=1

βiyt−i + εt, (1)

where p denotes the lag order and εt is an error term. The lag order p is chosen such that the
Bayesian information criterion (BIC) is minimised. The restriction 1 ≤ p ≤ 5 is imposed, as
information from more than five years is unlikely to have explanatory power. In selecting the
lag order, the sample size is kept the same for each p by discarding the first five observations.
Therefore, the BIC is computed in this settings as

BIC(p) = (T − 5) ln(σ̂2
p) + (p+ 1) ln(T − 5), (2)

where T denotes the sample size, p is the autoregressive order, and σ̂2
p = 1

T

∑T
i=6 ε̂

2
t is the

estimated variance of the residuals when p autoregressive terms are included in (1). After the
optimal p is found, OLS is used to estimate (1) and to obtain coefficients. Then, one-step ahead
forecasts are made as

ŷAR
t+1 = β̂0 +

p∑
i=1

β̂iyt+1−i. (3)

3.2 Random Walk Model

The second benchmark model is the random walk (RW) model, which assumes the dependent
variable takes a random step at each point in time. Predictions with this model are made as

ŷRW
t+1 = yt, (4)

which has the clear advantage that no parameters need to be estimated.

3.3 Factor Augmented Autoregression

In order to incorporate a high-dimensional T × N matrix X with explanatory variables into a
parsimonious model, the information contained in the data is summarised by r factors with r <<
N . Factors F are constructed using standardised explanatory variables X̃ as F = X̃W , where
W = [w1, ...,wN ] is a N ×N coefficient matrix that gives weights to each of the variables. The
weights, also known as loadings, are determined using PCA. This method iteratively maximises
the variance contained in each factor, while restricting the weight vector to have unit length
and to be orthogonal to any other weight vector. This leads to the following optimisation for
i ∈ 1, ..., N :

argmax
wi

w>i X̃
>X̃wi : wi ·wj =

{
1 if j = i

0 if j < i.
(5)

The solution to (5) is given by each wi being equal to an eigenvector of the covariance matrix
of X̃, where the columns of W are ordered such that the first eigenvector corresponds to the
largest eigenvalue1. After obtaining weights W using PCA, factors are estimated as F̂ = X̃W .
1Matrix X̃ is a standardised version of X, therefore the same results can be obtained by applying PCA to the
correlation matrix of X.
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To reduce the dimension of the explanatory variables, a subset of factors from F̂ needs to be
selected. The factors are ordered by the variance of X̃ captured, therefore it is natural to select
the first r factors, as they likely contain most information. Following Kim and Swanson (2018),
an adjusted BIC developed by Bai and Ng (2002) is used to select the number of factors in the
empirical study. This information criterion makes an adjustment to the standard BIC to better
handle panel data and is computed as

BICpanel(r) = V (r, F̂ r) + rV (rmax, F̂
rmax)

(
(N + T − r) ln(NT )

NT

)
, (6)

where rmax is the maximum amount of factors considered and V (r, F̂ r) is the mean of squared
residuals obtained after regressing X̃ on the first r estimated factors denoted by F̂ r. More
formally,

V (r, F̂ r) = min
Λ

1

NT

N∑
i=1

T∑
t=1

(x̃i,t − F̂ rt λri )2, (7)

where the r×1 vector λki is estimated using OLS and F̂ rt is a vector corresponding to the first r
elements in row t of F̂ . The number of factors r with the lowest information criterion is selected
using rmax = 20.

The T × r matrix F̂ r is used in all shrinkage and variable selection methods. Above that,
factors are used in the FAAR model, which extends (1) by including r lagged factors. Ordinary
least squares is used to estimate

yt = β0 +

p∑
i=1

βiyt−i + F̂ rt−1γ + εt, (8)

where γ is a r × 1 vector of coefficients. Estimated coefficients from (8) are used to make
one-step-ahead predictions as

ŷFAAR
t+1 = β̂0 +

p∑
i=1

β̂iyt+1−i + F̂ rt γ̂. (9)

The performance of the FAAR model indicates the usefulness of a factor approach when com-
pared to the AR(p) model, but simultaneously serves as a benchmark for shrinkage and variable
selection methods that also use factors as explanatory variables.

3.4 Least Angle Regression

Least angle regression is a variable selection method introduced by Efron et al. (2004). The
implementation of LARS is akin to that of Kim and Swanson (2018). Before using the LARS
algorithm, estimated residuals ẑ are obtained from the AR(p) model. The first r standardised
factors are denoted by F̃ r, with f̃j corresponding to jth standardised factor. Let Gi denote
the set of factors included in the model at iteration i, with F̃Gi denoting a T × i matrix of
standardised factors in the active set. Furthermore, let µ̂i = F̃ rβ̂i be the explained part of the
model. Here, β̂i is a r × 1 coefficient vector with elements β̂ij for j = 1, ..., r. The set G0 is
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empty and β̂0 = 0 such that µ̂0 = 0. The LARS algorithm proceeds as follows for i = 1, ..., r:

1. Compute the correlations between the factors and the current residuals as ĉ = F̃ r>(ẑ −
µ̂i−1), with elements ĉj corresponding to each of the j factors. Add factor j with the
highest correlation |ĉj | that is not in Gi−1 to the active set Gi.

2. Let FGi = [..., f̃jsj , ...]j∈Gi be a T × i matrix of factors in the active set multiplied with the

the sign of the correlation sj = sign{ĉj}. Moreover, let AGi =
(
1>i
(
F>GiFGi

)−1
1i

)−1/2
,

where 1i is a i × 1 vector of ones. Then, compute the weighting vector wi = AGi ×(
F>GiFGi

)−1
1i with i elements wi,j for j ∈ Gi.

3. Compute the equiangular vector as ui = F̃Giwi.

4. Update µ̂i−1 = µ̂i−1 + γ̂ui, in which the step length is determined as

γ̂ = min
j /∈Gi

+

{
c∗ − ĉj
AGi − am

,
c∗ + ĉj
AGi + aj

}
, (10)

where min+ means the lowest positive element is selected, c∗ = max{|ĉj |}, and aj is the
jth column of F̃ rui. Intuitively, this means that the coefficients of factors in the active set
are altered in such a way that they move towards their joint squares solution, until some
other factor becomes as correlated as the factors currently included in the model.

5. For each j ∈ Gi, update the coefficient as β̂i−1
j = β̂ij + wi,j . Otherwise, set β̂ij = β̂i−1

j .

Each iteration of the LARS algorithm produces a different coefficient vector, where the num-
ber of non-zero elements is equal to the iteration count. In the last iteration, the coefficient
estimates are equal to OLS estimates. Tenfold cross-validation is used to find the optimal coef-
ficient vector. This method splits the sample into ten sub-samples of equal size, each containing
an equal number of consecutive years. The reason for using cross-validation is that with a limited
sample size all observations are used to validate which coefficient vector is optimal. In addition,
it enhances sub-sample stability, as each time period is predicted once. Cross-validation applies
the following procedure for i = 1, ..., 10:

1. Apply the LARS algorithm using all sub-samples excluding i, providing r + 1 different
coefficient β̂0, ..., β̂r.

2. Use linear interpolation to acquire 1,000 coefficients vectors b̂1, ..., b̂k, ..., b̂1000 from the
r + 1 coefficient vectors.

3. Make out-of-sample forecasts for the observations in sub-sample i using each of the 1,000
coefficient vectors and store the sum of squared residuals (SSR).

After applying this procedure, the optimal index kopt (out of 1,000) is chosen to be the smallest
index with the average SSR within one standard deviation of the lowest average SSR. In this way,
a coefficient vector from an earlier iteration is selected, which implies the model becomes more
sparse. After obtaining the optimal index, the LARS algorithm is applied on the entire sample
and again linear interpolation is used to acquire 1,000 coefficient vectors b̂1, ..., b̂k, ..., b̂1000.
Then, the LARS coefficients are selected as β̂LARS = b̂kopt . Finally, forecasts are made with
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standardised factors F̃ rt as
ŷLARS
t+1 = ŷAR

t+1 + F̃ rt β̂
LARS. (11)

3.5 Ridge Regression

Ridge regression is a form of penalised regression introduced by Hoerl and Kennard (1970). This
shrinkage method adds a squared penalty term for coefficients to the standard ordinary least
squares equation. Following Kim and Swanson (2018), estimated residuals ẑ from the AR(p)
model are regressed on r standardised factors, such that the optimisation problem becomes

β̂Ridge = argmin
β
||ẑ − F̃ rβ||22 + λ||β||22, (12)

where λ is the ridge parameter and || · ||p denotes the Lp norm. As shown by Hoerl and Kennard
(1970), the solution to (12) is given by

β̂Ridge =

[
Ir + λ

(
F̃ r>F̃ r

)−1
]−1

β̂OLS (13)

where Ir is a r × r identity matrix, and β̂OLS are ordinary least squares estimates obtained by
regressing F̂ r on ẑ. Given that the factors are orthogonal, it holds that F̃ r>F̃ r = Ir, such that
(13) can be simplified to

β̂Ridge = (1 + λ)−1β̂OLS, (14)

thereby directly showing the relation between the ridge parameter and OLS estimates. As λ→ 0

the ridge regression produces the same estimates as OLS, whereas as λ → ∞ the coefficients
become zero. A downside of the ridge estimator is that coefficients are shrunk towards zero, but
they do not exactly become exactly zero.

The optimal ridge parameter is found using cross-validation, where a grid of λ ranging from
zero to 100 with step size 0.01 is used. The cross-validation procedure is similar to that described
in section 3.4. However, the 10,001 different coefficient vectors are compared directly, such that
there is no need for interpolation. Moreover, the optimal λ is simply selected to be the one that
yields the lowest average SSR, because the number of variables with ridge regression cannot be
reduced by choosing a different parameter. Using the optimal coefficient vector selected using
cross-validation, forecasts are made as

ŷRidge
t+1 = ŷAR

t+1 + F̃ rt β̂
Ridge. (15)

3.6 Elastic Net Regularisation

Elastic net (EN) regularisation adds a L1 norm penalty to optimisation problem (12) of ridge
regression, which yields

β̂NEN = argmin
β
||ẑ − F̃ rβ||22 + λ1||β||1 + λ2||β||22, (16)
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where λ1 and λ2 are two tuning parameters. The cases λ1 = 0 and λ2 = 0 lead to ridge
regression and lasso, respectively. If both parameters are non-zero, then double shrinkage is
applied. Therefore, Zou and Hastie (2005) refer to this method as the naive elastic net (NEN)
and suggest scaling the coefficients as follows:

β̂EN = (1 + λ2)β̂NEN. (17)

As shown by Zou and Hastie (2005), for a fixed value of λ2 the elastic net problem can be solved
with the same method as lasso regularisation by making a straightforward data adjustment.
In turn, the solution path of lasso can be computed with the LARS algorithm by restricting
the sign of the coefficients to agree with the current correlation and allowing factors to be
removed if this restriction is violated (Efron et al., 2004). Combining these findings, elastic
net regularisation can compute coefficients efficiently using a slightly adjusted version of the
LARS algorithm named LARS-EN. As done by Kim and Swanson (2018), LARS-EN is used to
compute the entire solution path for λ2 ∈ {0, 0.01, 0.1, 1, 10, 100}, which yields six different series
of coefficient vectors. First, the optimal index for each λ2 is found using the cross-validation
procedure described in Section 3.4. Afterwards, the optimal λ∗2 is selected to be the parameter
for which the optimal index provides the lowest average SSR. Then, LARS-EN is applied to the
full sample with λ∗2 and linear interpolation is used to get 1,000 coefficient vectors. Subsequently,
β̂EN is selected using the optimal index belonging to λ∗2 and forecasts are made as

ŷEN
t+1 = ŷAR

t+1 + F̃ rt β̂
EN. (18)

3.7 Bagging

In line with the methodology Kim and Swanson (2018), bagging is performed the shrinkage way
using the following procedure of Bühlmann and Yu (2002):

1. Estimate FAAR model (8) using OLS to obtain estimated coefficients β̂0, ..., β̂p for the
autoregressive part, estimated coefficients γ̂ = [γ̂1, ..., γ̂r] for the factors, and estimated
residuals ε̂.

2. Compute t-statistics for the estimated factors using Newey-West standard errors, which
are denoted by tj for j = 1, ..., r.

3. If tj < c, set the shrinkage coefficient ψj(tj) of factor j to zero, where c is a constant
critical value. Otherwise,

ψj(tj) = 1− Φ(tj + c) + Φ(tj − c) + t−1
j (φ(tj − c)− φ(tj + c)), (19)

where φ is the standard normal probability density function and Φ is the standard normal
cumulative density function. The function ψj(tj) is a monotonically increasing function
that converges to one as tj increases.

Bagging is implemented with c = 1.96, which corresponds to the standard normal critical value
for a two-tailed test at the 5% level. In this way, variables that are insignificant are set to zero,
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whereas variables with t-statistics just above the critical value are shrunk. Forecasts are made
with unadjusted autoregressive coefficients and shrunk coefficients of γ̂ using

ŷBagging
t+1 = β̂0 +

p∑
i=1

β̂iyt+1−i +

r∑
j=1

ψj(tj)γ̂j f̂j,t, (20)

where f̂j,t denotes the estimated value of factor j at time t.

3.8 Boosting

Boosting aims to improve the model’s accuracy by repeatedly making use of weak learning
algorithms, which are algorithms that only slightly improve upon the current model specifica-
tion. Analogous to Kim and Swanson (2018), L2Boosting with componentwise linear least of
Bühlmann and Hothorn (2007) is implemented. In each iteration, the coefficient of the variable
that reduces the squared forecast error the most is increased.

Residuals ẑ from the AR(p) model are used as the dependent variable and estimated factors
F̂ r are used as explanatory variables. The algorithm is initialised with iteration limit m and
r × 1 coefficient vector β̂0 = 0. Moreover, T × T matrix D0 = 0T×T is used to capture the
model complexity and T × 1 vector µ0 is the explained part of the model, which is set equal to
the mean of the dependent variable2. Then, the following procedure is applied for i = 1, ...,m:

1. For j = 1, ..., r, regress f̂j on the current residuals ẑ−µi−1 to obtain estimated residuals
ε̂j . Then, compute the sum of squared residuals as ε̂>j ε̂j and denote the index of the factor
with the lowest SSR as j∗i .

2. Let b̂ be the estimated coefficient obtained by regressing f̂ji∗ on ẑ− µi−1. Update µi =
µi−1 + νb̂f̂ji∗ , where 0 < ν ≤ 1 is a step length parameter. Update β̂i = β̂i−1 + νb̂ej∗i ,
where ej∗i is a unit vector with element j∗i equal to one.

3. Compute the projection matrix of the selected factor as P i = f̂ji∗(f̂>ji∗ f̂ji
∗)−1f̂ji∗ . Then,

update Di = Di−1 + νP i(IT −Di−1), where IT is an identity matrix with rank T . Finally,
an information criterion suggested by Bai and Ng (2009) is computed as

ICi = ln
(

(ẑ − µi)>(ẑ − µi)
)

+
ln(T ) · dfi

T
, (21)

where dfi = tr(Di) is the estimated degrees of freedom. This information criterion aims
to select the best coefficient vector based on model fit and model complexity, which are
captured by the squared residuals and the trace of di, respectively.

Following Kim and Swanson (2018), boosting is applied with step length parameter ν = 0.5. The
iteration limit is set to m = 100, which preliminary analysis showed to be sufficient to ensure
the minimum IC is found. Let i∗ = argmini ICi, then set β̂Boosting = β̂i

∗ to make forecasts as

ŷBoosting
t+1 = ŷAR

t+1 + F̂ rt β̂
Boosting. (22)

2This is zero in this application, due to the inclusion of a constant in the AR(p) model.
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4 Simulation Study

The simulation study serves to compare the functioning and the forecasting performance of
the different shrinkage and variable selection methods when factors are used as explanatory
variables. The methodology of the simulation study is discussed in Section 4.1 and the results
are presented in Section 4.2.

4.1 Methodology

Assume there are N explanatory variables, T observations in the estimation sample, and v

observations in the forecasting sample. Then, data is generated as follows:

1. Generate a random N × N matrix A with elements ai,j
i.i.d.∼ N (0, 1) for i = 1, ..., N and

j = 1, ..., N . Let Σ = A>A be a random semi-positive definite N ×N covariance matrix.

2. Generate T + v observations of explanatory variables X from a multivariate normal dis-
tribution, with zero mean and covariance matrix Σ.

3. Compute the mean and standard deviation of the N variables in X using only the first T
observations (estimation sample). Then, normalise the full matrix X using the mean and
standard deviation obtained from estimation sample to get normalised matrix X̃.

4. Apply PCA to the covariance matrix of X̃ in the estimation sample to obtain a N × N
matrix W of factor loadings. Thereafter, a (T + v) × N matrix of factors is obtained as
F = WX̃.

5. Generate the dependent variable yt = F 20
t−1γ + εt for t = 2, ..., T + v, where F 20

t−1 is a
1× 20 vector containing the first 20 factors at time t− 1, γ is a 20× 1 coefficient vector,
and εt ∼ N (9, 0).

To generate the data, N = 50 explanatory variables are used and the forecast sample contains
v = 100 observations. Two different coefficient vectors are considered and the size of the estima-
tion sample T varies to include 50, 100, and 1,000 observations. The first data generating process
(DGP) uses γ = [3, 1.5, 0, 0, 2, 0, ..., 0]>, such that only the first, second, and fifth factor are used
to generate the dependent variable. The second DGP uses γ = [2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, ..., 0]>,
which corresponds to a coefficient of two for the first 10 factors and zero for the others.

After generating the data, the estimated factors are set equal to the generated factors F̂ = F .
This is done as the goal of the simulation study is to compare the performance of shrinkage and
variable selection methods and not to assess the performance of PCA. The standardised matrix
F̃ is obtained by normalising matrix F using the mean and standard deviation of the first T
observations. Afterwards, the models described in Section 3 are used to estimate coefficients with
r = 20, which corresponds to the number of factors with coefficients in the DGP. Thereafter,
each model makes one-step ahead forecasts for observations T + 1, ..., T + v, which are used to
compute the mean squared prediction error (MSE) is computed as

MSE =
1

v

T+v∑
t=T+1

(yt − ŷt)2. (23)
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For each configuration, the procedure outlined above is repeated 100 times. Given that
the estimated and generated factors are equal, the coefficients from the regression models can
directly be compared to the coefficients in the DGP. However, LARS, ridge regression, and
elastic regularisation use standardised factors in the models, therefore coefficient estimates in
terms of the original factors can be retrieved for by dividing the estimated coefficients by the
standard deviation of the factors. The differences between coefficient estimates are investigated
and the sensitivity to changes in parameters are explored.

The methods are compared using five performance measures. First, the average amount
of non-zero coefficients in the model is computed. Second, the fraction of instances where the
number of non-zero coefficients in the estimated model is exactly equal to the number of factors
used in the DGP is measured. Third, the fraction of cases where factors that are in the DGP
have non-zero coefficients is computed. Lastly, the forecasting accuracy in terms of MSE is
examined, which is reported as a ratio to the benchmark AR(p) model.

The simulation study is performed using MATLAB 2019a and the code used can be found in
Appendix A.

4.2 Results

Before discussing the results of the simulation, the functioning of the different factor models is
illustrated using one iteration of the simulation with DGP 1 and T = 100. In this case, the
dependent variable is generated using the first, second, and fifth factor with coefficients of three,
one and a half, and two, respectively.

The least squares estimates of FAAR in Figure 1 are found to be fairly close around the true
values. However, the coefficients of factors that are not included in the DGP are not exactly
zero, which leads to noise when using this model for forecasting. The goal of the shrinkage and
variable selection models is to reduce this noise by shrinking these coefficients towards zero or
by excluding them from the model. As seen in Figure 2, bagging estimates are exactly the same
as FAAR estimates for c = 0, as no coefficients and shrunk. The bagging estimator improves
as c increases by excluding more factors that are not in the DGP. With the critical value set
at 1.96, the bagging estimate includes one factor too many (factor 16), however, this factor has
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Figure 1: Estimated FAAR coef-
ficients with true parameters values
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Figure 2: Estimated bagging coefficients as
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been shrunk slightly. The model’s estimates could be improved by increasing the parameter c
more in this case.

The coefficients obtained using ridge regression are shown in Figure 3a as a function of
parameter λ. As the ridge parameter increases, all coefficients are gradually shrunk towards
zero. This is a weakness of ridge regression provided that coefficients of factors that are included
in the DGP also become smaller than their true values. In addition, the coefficients of factors
that are not in the DGP only approximate zero. The optimal parameter value is λ = 3.46 as
seen in Figure 3b, which leads to a small amount of shrinkage and coefficient estimates close to
that of FAAR.
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Figure 3: Estimated ridge coefficients in (a) as a function of λ with true parameters values
[3, 1.5, 0, 0, 2, 0, ..., 0]. Average sum of squared residuals from tenfold cross-validation in (b) with stan-
dard deviations. The dashed black line indicates the optimal coefficients in (a) with the corresponding
cross-validation error in (b).

The coefficient estimates of LARS are displayed in Figure 4a as a function of the number of
iterations. As expected, the LARS algorithm iteratively includes the factors with the highest
coefficient; the first factor is included in the first iteration, the fifth in the second, and the
second in the third. At each iteration, the coefficients are jointly increased into their least
squares direction. In the final iteration, the estimates resemble those of FAAR. As shown in
Figure 4b, the lowest cross-validation error is found at around seven iterations. However, the
optimal coefficient vector is selected to be that which takes the fewest iterations and is within

0 1 2 3 4 5 6 7 8 9 1011121314151617181920

Iteration

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Factor

(a) Algorithm

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Iteration

0

100

200

300

400

500

600

M
e

a
n

 s
u

m
 o

f 
s
q

u
a

re
d

 r
e

s
id

u
a

ls

(b) Cross-validation

Figure 4: Estimated LARS coefficients in (a) as a function of the number of iterations with true
parameters values: [3, 1.5, 0, 0, 2, 0, ..., 0]. Average sum of squared residuals from tenfold cross validation
(b) with standard deviations. The dashed black line indicates the optimal coefficients in (a) with the
corresponding cross-validation error in (b).
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one standard deviation of the lowest average cross-validation error. In effect, the algorithm stops
around the correct value of three iterations indicated by the dashed black line in Figure 4.

Estimated coefficients of elastic net regularisation are shown in Figure 5a and bear close
resemblance to the LARS estimates displayed Figure 4a. An explanation for this is found in
Figure 5b, where the optimal value of λ2 is extremely close to zero. Therefore, elastic net
regularisation practically reduces to lasso. However, as shown by Efron et al. (2004), lasso is a
restricted version of LARS, hence elastic net regularisation produces almost identical estimates
as LARS when λ2 is close to zero. Moreover, it can be concluded from Figure 5b that using a
small grid of λ2 suffices, given that the coefficient estimates are stable for small values of this
parameter.
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Figure 5: Estimated elastic net regularisation coefficients in (a) as a function of the number of iterations
with optimal the λ2 and in (b) as a function of λ2 with true parameters values [3, 1.5, 0, 0, 2, 0, ..., 0].
Average sum of squared residuals from tenfold cross-validation in (c) with standard deviations. The
dashed black line indicates the optimal coefficients in (a), optimal λ2 in (b), and the corresponding
cross-validation error in (c).

Figure 6a shows coefficient estimates of boosting with ν = 0.5. This figure shows great
similarities with LARS and elastic net regularisation in terms of model construction. However,
the key difference is that boosting increases only one coefficient at the time and makes smaller
increments in the coefficients. Therefore, boosting requires more iterations and computation
time. Figure 6a displays that as the algorithm proceeds variables are starting to be included
with very small coefficients, which results from using a small step size. As shown in Figure

0 20 40 60 80 100

Iteration

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Factor

(a) Algorithm

0 0.2 0.4 0.6 0.8 1

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Factor

(b) Coefficients

Figure 6: Estimated boosting coefficients in (a) as a function of the number of iterations with the
selected ν and in (b) as a function of ν with true parameters values: [3, 1.5, 0, 0, 2, 0, ..., 0]. The dashed
black line indicates the optimal coefficients in (a) and ν = 0.5 in (b).
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6b, changes in parameter ν do not have major consequences as long as it is above 0.1. This is
because the optimal coefficient vector for each value of ν is selected with an information criterion
that depends on the size of coefficients and not on the number of iterations.

As we are now acquainted with the functioning of the different methods, we proceed by
looking at general results obtained after 100 iterations with different DGPs and sample sizes,
which are displayed in Table 1. First, Panel A shows LARS and elastic net regularisation are the
best methods in terms of variable selection. For these methods, the average number of factors
selected is close to the correct value of three and the fraction of instances where only the factors
from the DGP are included is closest to one. Also, these two methods always include factors
one, two, and five in the model when the sample size is at least T = 100. Both FAAR and
ridge regression have non-zero coefficients for all factors, whereas bagging and boosting include
too many (more than three) factors on average. This could be improved upon by using a larger
c for bagging or increasing the penalty for model complexity in the information criterion used
by boosting. However, it turns out that these two models perform best in terms of forecasting
accuracy, with bagging having the lowest MSE overall. LARS and elastic net regularisation
perform worst in terms of predictive accuracy, possibly because the cross-validation procedure
is aimed at improving variable selection rather than forecasting accuracy. As expected, variable
selection and forecasting accuracy improve greatly when the sample size increases.

Table 1: Performance of variable selection and forecasting with simulated data.

Panel A: DGP 1
T = 50 T = 100 T = 1000

Avg. # Corr. # Corr. MSE Avg. # Corr. # Corr. MSE Avg. # Corr. # Corr. MSE
factors factors incl. ratio factors factors incl. ratio factors factors incl. ratio

AR(1) 1.00 1.00 1.00
Rand. Walk 1.92 1.98 1.99
FAAR 20.00 0.00 1.00 0.27 20.00 0.00 1.00 0.21 20.00 0.00 1.00 0.16
Ridge 20.00 0.00 1.00 0.29 20.00 0.00 1.00 0.23 20.00 0.00 1.00 0.16
LARS 3.13 0.86 0.96 0.32 3.07 0.95 1.00 0.26 3.00 1.00 1.00 0.17
Elastic Net 3.12 0.83 0.96 0.31 3.04 0.97 1.00 0.25 3.00 1.00 1.00 0.17
Bagging 4.19 0.36 1.00 0.21 3.95 0.38 1.00 0.19 4.01 0.38 1.00 0.16
Boosting 6.17 0.07 1.00 0.24 6.03 0.06 1.00 0.20 4.32 0.25 1.00 0.16

Panel B: DGP 2
T = 50 T = 100 T = 1000

Avg. # Corr. # Corr. MSE Avg. # Corr. # Corr. MSE Avg. # Corr. # Corr. MSE
factors factors incl. ratio factors factors incl. ratio factors factors incl. ratio

AR(1) 1.00 1.00 1.00
Rand. Walk 1.95 1.95 2.01
FAAR 20.00 0.00 1.00 0.13 20.00 0.00 1.00 0.10 20.00 0.00 1.00 0.08
Ridge 20.00 0.00 1.00 0.16 20.00 0.00 1.00 0.11 20.00 0.00 1.00 0.08
LARS 11.98 0.06 0.96 0.19 10.76 0.52 1.00 0.13 10.03 0.97 1.00 0.09
Elastic Net 11.90 0.08 0.96 0.18 10.44 0.72 1.00 0.13 10.00 1.00 1.00 0.09
Bagging 10.54 0.61 1.00 0.11 10.42 0.68 1.00 0.09 10.52 0.56 1.00 0.08
Boosting 13.47 0.03 1.00 0.15 12.47 0.08 1.00 0.11 11.87 0.18 1.00 0.08

Data is generated as yt = F 20
t−1γ+εt, with different coefficient vectors and εt ∼ N (0, 9). Twenty factors F 20

t are obtained by applying PCA to
50 normalised variables X with zero mean and covariance matrix Σ = A>A, where A is a random matrix will standard normally distributed

elements. DGP 1 uses γ = [3, 1.5, 0, 0, 2,

15︷ ︸︸ ︷
0, ..., 0]> and DGP 2 uses γ = [

10︷ ︸︸ ︷
1, ..., 1,

10︷ ︸︸ ︷
0, ..., 0]>. An estimation sample of size T is used to estimate

coefficients. The autoregressive order of the AR(p) model is determined using BIC selection with 1 ≤ p ≤ 5. The table shows the average
amount of factors included in the model, the fraction of instances in which the number of factors included in the model is equal to the number
of factors included in the DGP, and the fraction of instances in which the factors in the DGP are included in the model. Estimated coefficients
are used to make 100 one-step ahead forecasts, providing MSE estimates. Best results per sample size and DGP are indicated in bold.
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Panel B of Table 1 shows simulation results when the dependent variable is generated by the
first 10 factors with coefficients of two. By including more factors in the DGP, the accuracy of
variable selection has decreased for all methods with the exception of bagging. Bagging performs
particularly well in this case as all coefficients are relatively large in magnitude, such that they
are clearly significant based on t-statistics. However, as T increases LARS and elastic net
regularisation again prove to be the best variable selection techniques, as the average amount of
factors included is close to ten and the fraction in which only ten factors are included approaches
to one. Bagging performs best in terms of forecast accuracy, closely followed by FAAR. FAAR
performs better in this setting, because in the first DGP 17 out of 20 factors in the model only
added noise compared to 10 out 20 for the second DGP. For the same reason, ridge regression
performs relatively better in this simulation. Again, the forecasting accuracy increases and
converges across methods as the sample size increases.

It can be concluded from the simulation study that each method has its strengths and
weaknesses. First, FAAR always includes all variables, implying it performs well when many
of the variables considered have explanatory power. On the other hand, this leads to noisy
estimates if this is not the case. For ridge regression largely the same holds as for FAAR,
however, it can reduce forecast variance by shrinking coefficients at the cost of increased bias.
Both LARS and elastic net regularisation fare well in terms of variable selection, however, the
coefficients are generally (too) small. Bagging can effectively include variables that significantly
impact the dependent variable, yet it could disregard variables with small t-statistics. This
could be the case if explanatory variables either have large variance or only a minor effect on the
dependent variable. Boosting seems to work well generally, however, it is prone to overfitting
and by incorporating many variables in the model the forecast variance becomes large.

5 Forecasting Nigerian GDP growth

The simulations showed shrinkage and variable selection methods may effectively enhance fore-
casting accuracy, although there is no clear method of preference. In this section, it is inves-
tigated whether the same methods can be successfully applied in the context of forecasting
real Nigerian GDP growth. The data used for this purpose is examined in Section 5.1, the
methodology is explained in Section 5.2, and the results are discussed in Section 5.3.

5.1 Data

Two data sets are used to forecast the economic growth in Nigeria. Section 5.1.1 describes the
first data set consisting of real annual GDP growth rates in Africa and examines the growth
pattern of Nigeria. Thereafter, a second data set that includes numerous economic indicators is
discussed in Section 5.1.2.

5.1.1 African GDP Growth

The first data set includes real GDP growth data of 52 African countries from 1963 until 2016,
which is provided by Franses and Vasilev (2019). These countries include all African countries,
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except for eSwatini (former Swaziland) and South Sudan. The entire time series is retrieved from
the WDI database of the World Bank for 34 countries. For the remaining 18 countries, economic
growth rates are predominantly missing in the first two decades of the sample. These missing
growth rates are imputed by PCA. More specifically, demographic, production, and financial
data is used to construct factors for each category. Subsequently, real GDP growth rates are
regressed on the categorical factors and the estimated coefficients are used to impute real GDP
growth. A full list of countries with summary statistics can be found in Table 6 in Appendix B.

The data is used to forecast Nigerian GDP growth, therefore a metric of interest is the
correlation between the economic growth of African countries and the economic growth of Nigeria
in the subsequent year. As shown in Figure 7, this correlation is predominantly positive, albeit
small with an average correlation of 0.04. Uganda and Sierra Leone are most positively correlated
with coefficients of 0.32 and 0.30, respectively. On the other hand, Eritrea and Zimbabwe are
most negatively correlated with coefficients of -0.22 and -0.19. In line with the findings of Arbache
and Page (2007), neither other large oil-producing countries nor countries around Nigeria have
higher correlations than other African countries. Instead, the highest correlations are found in
southeastern Africa.

The economic growth rates of Africa and Nigeria over time are summarised in Table 2. On
average, economic growth in Africa was 4.0% from 1963 until 2016. Growth has accelerated
recently, with the average economic growth rate from 2000 until 2016 amounting to 4.5% per

Figure 7: One year lagged correlation between economic growth of African countries and Nigeria from
1963 until 2016. Figure created with MapChart using data retrieved from Franses and Vasilev (2019).
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Table 2: Annual real GDP growth rate (%) of Africa and summary statistics for Nigeria from 1963-2016.

Africa Average Nigeria

Time Period GDP Growth Correlation GDP Growth Minimum Maximum

1963 - 1981 4.31 (6.07) 0.05 4.35 (10.60) -15.70 25.00
1982 - 1999 3.16 (6.16) 0.01 1.16 (5.83) -10.80 12.80
2000 - 2016 4.50 (4.59) -0.06 7.00 (7.36) -1.60 33.70

1963 - 2016 3.98 (6.31) 0.04 4.12 (8.43) -15.70 33.70

Standard deviations are indicated in parentheses and computed as the average of the standard deviations
of individual countries. The correlation is the average one year lagged correlation of economic growth of
African countries with Nigeria. Nigeria is excluded from the average correlation.

year. Moreover, fluctuations in economic growth rates have decreased, as the average standard
deviation of economic growth dropped from 6.2% per year in the period 1982-1999 to 4.6%
per year in the period 2000-2016. The standard deviations remain high relative to the mean,
indicating economic growth is still largely unstable. Economic growth rates in Africa differ
greatly across countries. For example, Equatorial Guinea realised the highest average growth
rate with 12.7%, whereas Libya’s economy grew on average with 0.3% per year.

Comparing Nigeria’s economic growth to the African average, it can be seen in Table 2 that
the average over the whole sample is similar. However, Nigeria’s growth is more volatile with
a large standard deviation of 8.4%. Interestingly, from 1982 until 1999 the economic growth
of Nigeria is 2.5% lower than the African average, whereas it is 2.5% higher than the African
average in the period from 2000 until 2016. The causes of the large variation of Nigeria’s
economic performance over time are discussed next.

One of the most important factors in explaining growth rates in Nigeria, especially at the
start of the sample period, is the occurrence of political events. In 1966, the government was
overthrown by a military coup and a counter-coup took place later that year, which likely
initiated the economic decline in 1966 visible in Figure 8. Following these events, the east of
Nigeria declared independence and formed the Republic of Biafra in 1967. A civil war started
between Nigeria and Biafra in the same year, which lasted until 1970. The initial decline in
economic growth seen in Figure 8 is largely attributable to the exclusion of economic activity
on Bifrian territory from the statistics (Nafziger, 1972). However, Nigeria reconquered territory
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Figure 8: Real annual GDP growth rate (%) of Nigeria from and the change in US$ per barrel of Brent
Crude oil (%) from 1963-2016. Data retrieved from the World Bank’s WDI database and the FRED
Economic Database of the Federal Reserve Bank of St. Louis.
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rapidly during the war, explaining the sharp increase in GDP in 1969 and 1970. After this
period, the political environment remained unstable. Two other noteworthy events include coup
in 1975 and a failed coup attempt in 1976, which possibly harmed economic growth. Nigeria
has only become a stable democracy in 1999, which likely contributed to more steady economic
growth in the 21st century.

Besides political forces, Nigeria is also subject to oil shocks. As seen in Figure 9, crude
petroleum and natural gas contributed to one-third of all economic value in 1981, but also
before this period oil was the most important driver of the economy. Therefore, increased
oil prices during the first oil crisis during 1973-1974 and the second oil crisis starting in 1979
enhanced economic growth during these periods. The relatively low economic growth in the
sub-period from 1982 until 1999 is partly attributable to the 1980s oil glut, as oil remained the
most important source of economic value. Nigeria’s economy changed substantially after the
turn of the century. The tertiary sector grew greatly, whereas the share of crude petroleum
and natural gas production decreased. Figure 9 shows the latter sector accounted for 29% of
real GDP in 1999, which starkly contrasts with 6% in 2016. Yet, this difference is overstated
as oil and natural gas account for more than 90% of exports and trade activity has increased
significantly. In addition, the oil price was relatively low in 2016. Therefore, a large drop in the
oil price around 2015 shown in 8 still largely explains the first economic decline after prolonged
economic expansion.

A noticeable observation in Figure 8 is that of 2004, where the real GDP growth rate amounts
to 33.7%. Despite high growth during the last sub-sample, this magnitude of growth is implau-
sible as no remarkable events occurred. As shown by Jerven (2016), this statistical outlier is a
result of a data revision. Before the revision, real GDP growth was computed with 1990 prices
and the growth rate was estimated to be 10%. The revised rates are computed with 2010 prices,
which resulted in an estimated 89% increase in GDP and an excessive growth in 2004 (Jerven,
2016). This observation has a significant impact on summary statistics displayed in Table 2.
Excluding this observation from the last sub-sample makes the economic growth appear a lot
more stable; the annual growth rate reduces from 7.0% to 5.3% and the standard deviation
decreases from 7.4% to 2.7%.
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Figure 9: Sectors contributing to real GDP growth in Nigeria in 1981, 2000, and 2016. Data retrieved
from the 2018 Statistical Bulletin of the Central Bank of Nigeria.

20



5.1.2 Economic Indicators

The second data set includes 35 economic indicators and ranges from 1982 until 2016. The data
is predominantly extracted from the WDI database and from the 2018 Statistical Bulletin of the
Central Bank of Nigeria. Two variables are retrieved from the Edstats Query database of the
World Bank and the FRED Economic database of the Federal Reserve Bank of St. Louis. The
economic indicators include official and real exchange rates, five loan and interest rates variables,
three domestic saving and investment variables, four variables relating to human capital and
labour, the M1 and M2 money supply, the Nigerian stock market, consumer inflation, government
and household consumption expenditure, six real output variables for different sectors, FDI, four
import and export variables, the global price of Brent crude oil, and the real GDP of India, the
United States, and the world.

The partitioning of the data set is based on the methodology of Banerjee and Marcellino
(2006), however, the number of indicators used is restricted by the data availability for Nigeria
in this time span. For example, no data is included relating to economic sentiment, employment,
new orders, productivity, or wages. On the other hand, several country-specific variables are
included. For example, FDI is added as this variable positively influences growth in Nigeria
(Akinlo, 2004). Above that, the oil price is included as it greatly affects real output. Moreover,
government expenditure on health and government expenditure on education are included as
separate variables as they have divergent effects on economic growth (Nurudeen and Usman,
2010). Lastly, the GDPs of Nigeria’s current most important trade partners, India and the
United States, are added.

Some of the time series include missing or aberrant observations, which in most cases are
replaced with the mean of the previous and subsequent year. Nominal and real values, as well as
indices, are transformed by computing the percentage growth, whereas the difference between
consecutive years is taken for the inflation rate and any interest rate (spread) to make the time
series stationary. A detailed overview of the economic indicators and the data adjustments is
provided in Appendix B.

5.2 Methodology

To model economic growth in Nigeria, four different sets of variables X are considered:

1. African GDP growth data from 1963 until 2016, where X includes N = 51 consisting of
the economic growth rates of the African countries excluding Nigeria. One year of lagged
explanatory variables or factors is included in each of the models.

2. African GDP growth data from 1963 until 2016, where X includes the same N = 51

variables. Four years of lagged explanatory variables or factors are included in each of
the models. This leads to 51 × 4 = 254 explanatory variables and r × 4 factors to be
considered, where r is the number of factors selected. This is done as more distant years
may be informative in case the Nigerian economy lags behind several years on other African
economies. The factors loadings are estimated as above, using one year of data.
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3. Economic indicator data from 1982 until 2016, where X includes N = 35 variables. One
year of lagged explanatory variables or factors is included in each of the models.

4. African GDP growth data and economic indicator data from 1982 until 2016, where X
includes N = 84 variables. One year of lagged explanatory variables or factors is included
in each of the models.

Based on the fitting of an AR(1) model several aberrant observations are found. These
observations are treated by including indicator variables in the AR(p) model, FAAR, ridge
regression, and bagging3. For the first and second sets of explanatory variables, dummy variables
are included for the period from 1966 up to and including 1970, which covers the period of the
Nigerian civil war and one year leading up to it. For all data sets an indicator variable for 2004
is used, as this observation is found to be a statistical outlier.

The procedure to handle the data is comparable to the way data is generated in the simulation
study. Forecasts for a given year are made with explanatory variables X, which contains all data
up to the year to be predicted. Forecasts are made as follows:

1. Compute the mean and standard deviation of the N variables in X to obtain normalised
matrix X̃.

2. Apply PCA to the covariance matrix of X̃ to obtain a N ×N matrix W of factor loadings.
Factors are then estimated as F̂ = WX̃.

3. Find the number of factors r to be included using information criterion (6) proposed by
Bai and Ng (2002).

4. Compute the mean and standard deviation of the r variables in F̂ r to obtain normalised
matrix F̃ r.

5. Compute the coefficients using factors F̂ r and F̃ r for all models as outlined in Section
3. Moreover, compute coefficients with the N explanatory variables directly using X for
boosting and using X̃ for LARS and elastic net regularisation.

6. Use coefficient estimates to make one-step ahead forecasts with each of the methods.

The goal of this paper is to investigate the usefulness of shrinkage and variable selection
methods in forecasting contemporary Nigerian real GDP growth, therefore predictions are made
for the years 2012 until 2016. After forecasts have been made, the MSE is computed with the
five years of forecasts using (23). This measure is used again used to assess predictive accuracy
with the AR(p) model as a benchmark. Above that, it is examined which variables or factors
are most important in the different models.

One should note that an expanding window is used to estimate the coefficients, which is
done to make use of all available information. This implies that factor loadings W may change
over time as they are re-estimated for each forecast. Furthermore, explanatory variables are also
used directly to make predictions, which helps to assess the benefits of a factor-based approach
in forecasting. Only LARS, elastic net regularisation, and boosting are used without factors,
because they can, in contrast to the other methods, include more variables than observations
3The other methods make use of estimated AR(p) residuals, therefore they are indirectly treated.
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in the model. In total eleven different models are considered: AR(p) and random walk as
benchmarks; LARS, elastic net regularisation, and boosting with explanatory variables; FAAR,
ridge regression, LARS, elastic net regularisation, bagging, and boosting with factors.

The forecasts are made using MATLAB 2019a and the code is provided in Appendix A.

5.3 Results

In this section, the performance of shrinkage and variable selection methods is discussed with
the application of forecasting Nigeria’s economic growth. To construct forecasts, African GDP
growth data is used in Section 5.3.1, economic indicator data is used in Section 5.3.2, and the
two data sets are jointly used in Section 5.3.3. This section only reports key results; details on
estimated coefficients and factors loadings can be found in Appendix C.

5.3.1 Forecasting using African GDP Growth Data

Table 3 shows the performance of the different methods when forecasting Nigerian real GDP
growth using African real GDP growth data. The benchmark autoregressive model includes one
lag with an autoregressive coefficient of 0.13 and a constant term of 2.75. The random walk
model performs better, achieving a 9% lower MSE.

First, we examine the left-hand side of Table 3, in which only the previous year of data is used
for forecasting. In this setting, variable selection methods with explanatory variables themselves
do not forecast better than the benchmark models. Both LARS and elastic net regularisation
include Uganda in the model, with coefficients of 0.00 and 0.20, respectively. As seen in Figure
10a, the low coefficients provide forecasts that are extremely close to that of the AR(1) model.

Table 3: Performance of models forecasting Nigerian GDP growth from 2012-2016 using African GDP
growth data from 1963-2016.

One lag Four lags

# variables/ MSE MSE # variables/ MSE MSE
factors incl. ratio factors incl. ratio

Benchmark AR(1) 7.40 1.00 7.40 1.00
Random Walk 6.77 0.91 6.77 0.91

Variable
LARS 1.00 7.40 1.00 1.00 7.38 1.00
Elastic Net 1.00 7.53 1.02 1.00 7.92 1.07
Boosting 15.60 9.26 1.25 48.60 11.85 1.60

Factor

FAAR 6.80 6.53 0.88 27.20 33.12 4.48
Ridge 6.80 6.82 0.92 27.20 7.71 1.04
LARS 1.00 7.39 1.00 1.00 7.40 1.00
Elastic Net 1.00 7.39 1.00 1.00 7.54 1.02
Bagging 0.00 7.74 1.05 0.20 18.01 2.44
Boosting 1.00 6.72 0.91 2.00 9.86 1.33

One-step ahead forecasts are made for the years 2012 until 2016 using an expanding window. The au-
toregressive order of AR(p) is determined using BIC selection with 1 ≤ p ≤ 5. The number of explana-
tory variables and factors shown is the mean from five coefficient estimates. Factors are obtained by
PCA on the estimation sample consisting of 51 real GDP growth rates of African countries. The amount
of factors considered is selected using an adjusted BIC with a maximum of 20. The results on the left-
hand side are obtained by including one lag of variables or factors in the model, whereas the right-hand
side includes four lags. The best results are indicated in bold.

23



2012 2013 2014 2015 2016

Year

-2

0

2

4

6

8

10

12
G

D
P

 G
ro

w
th

 %

Actual

AR(1)

Random Walk

LARS

Elastic Net

Boosting

FAAR (F)

Ridge (F)

LARS (F)

Elastic Net (F)

Bagging (F)

Boosting (F)

(a) One lag

2012 2013 2014 2015 2016

Year

-2

0

2

4

6

8

10

12

G
D

P
 G

ro
w

th
 %

Actual

AR(1)

Random Walk

LARS

Elastic Net

Boosting

FAAR (F)

Ridge (F)

LARS (F)

Elastic Net (F)

Bagging (F)

Boosting (F)

(b) Four lags

Figure 10: Nigerian GDP growth forecasts from 2012-2016 made using using African GDP growth
data. The models used to make forecasts include one lag of variables or factors in (a) and four lags in
(b). The F in parentheses indicates the model uses factors to make forecasts, whereas the other models
use explanatory variables directly.

These low coefficients are not unexpected, as the correlations between the economy of African
countries and are generally low. Boosting includes 15.6 countries in the model on average, which
is indicative of overfitting. Figure 10a shows boosting forecasts are far off and extremely volatile.

Factor models include eight factors for the first three years and six factors for the last two
years of forecasts. Although the number of factor changes, the factor loadings of five out of six
factors are almost constant. In the last year of forecasts, six factors explain 42.1% of the total
variance in the data, indicating there are some commonalities in the growth rates of African
countries. Factor models on the left-hand side of Table 3 perform substantially better than
models that use variables directly. FAAR has the best forecasting accuracy with a MSE 12%
lower than the autoregressive benchmark and 4% lower than the random walk model. The
largest coefficients of FAAR are -0.70 for the first factor, -0.38 for the fifth factor, and 0.36
for the sixth factor. The interpretation of these factors is not directly clear as they include
51 loadings. The first factor mainly has large negative loadings for countries in central and
south Africa and a sole large positive loading for Eritrea, whereas the other two factors are very
diverse. As shown in Figure 10a, the GDP growth forecasts of FAAR are higher than that of
other factor models. Ridge regression produces similar forecasts, although it has slightly smaller
coefficients than FAAR. LARS and elastic net regularisation both have a minuscule coefficient
for the first factor. On the other hand, bagging does not include any factors at all, wherefore
the forecasts are analogous to that of the AR(1) model. Boosting has a coefficient of -0.23 for
the (standardised) first factor, which results in above-average forecasting accuracy. However,
Figure 10a indicates none of the factor models forecasts the actual decline in economic growth.

On the right-hand side of Table 4 the results are shown where four lags of variables or factors
are included in the model. Again, variables selection methods that use explanatory variables
directly are found to be ineffective. LARS and elastic net regularisation now include Uganda at
the second lag instead of the first, which does not lead to better forecasting accuracy. Boosting
includes even more variables than before, which again results in poor forecasting performance.

The factors used with four lags are the same as in the previous setting, as they are computed
with the same data. However, the factor models now consider four times as many factors,
which translates to 32 and 24 factors for the first three and last two forecasts, respectively.
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Interestingly, the first factor still has the highest coefficient in all models, although this factor is
included at the second lag for FAAR and ridge regression, whereas it is included at the third lag
for LARS, elastic net regularisation, and boosting. However, as indicated by the MSE ratios,
all models perform worse than the benchmark models. Moreover, the forecasts with one year of
data in Figure 10b vary a lot more than those in Figure 10a, due to the inclusion of four times
as many variables. The forecasts in 10b are generally also more off, showing the inclusion of
additional years of data is ineffective.

In general, it can be concluded the predictive power of the African GDP growth data set
is low, both with and without the use of factors. Yet, the factor-based approach is slightly
preferred when one lag is included. A likely explanation for the poor forecasting performance
of the models includes that Nigeria is leading instead of lagging other economies. Above that,
Nigeria’s main trade partners are located outside of Africa, such that trade is hardly affected by
economic developments within Africa.

5.3.2 Forecasting using Economic Indicator Data

Table 4 shows the forecasting performance using economic indicator data. The optimal autore-
gressive order is again one, however, the autoregressive coefficient is higher with 0.24 and a
lower constant of 2.17. This indicates economic growth in Nigeria has become more persistent
in recent years, as the sample starts 19 years later compared to the African GDP growth data.
Nonetheless, the predictive accuracy of the autoregressive model has deteriorated marginally,
therefore, the random walk model again outperforms the AR(1) model.

Variable selection methods LARS and elastic net regularisation both select the economic
activity in the construction sector in real terms as sole explanatory variables, with coefficients
of 0.02 and 0.50, respectively. The use of this variable as an economic indicator is somewhat

Table 4: Performance of models forecasting Nigerian GDP growth from 2012-2016 using economic
indicator data from 1982-2016.

# vars/factors incl. MSE MSE ratio

Benchmark AR(1) 7.50 1.00
Random Walk 6.77 0.90

Variable
LARS 1.00 7.48 1.00
Elastic Net 1.00 6.99 0.93
Boosting 22.00 11.29 1.50

Factor

FAAR 20.00 20.65 2.75
Ridge 20.00 5.68 0.76
LARS 1.00 7.51 1.00
Elastic Net 1.00 7.78 1.04
Bagging 4.20 7.40 0.99
Boosting 10.60 6.96 0.93

One-step ahead forecasts are made for the years 2012 until 2016 using an expanding window. The autore-
gressive order of AR(p) is determined using BIC selection with 1 ≤ p ≤ 5. The number of explanatory
variables and factors shown is the mean from five coefficient estimates. Factors are obtained by PCA on
the estimation sample consisting of 35 Nigerian economic indicators. The amount of factors considered
is selected using an adjusted BIC with a maximum of 20. One lag of variables or factors is included in
the model. The best results are indicated in bold.
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Figure 11: Nigerian GDP growth forecasts from 2012-2016 made using economic indicator data. The
models used to make forecasts include one lag of variables or factors. The F in parentheses indicates the
model uses factors to make forecasts, whereas the other models use explanatory variables directly.

effective, as elastic net regularisation outperforms the autoregressive model. This finding is not
surprising, as particularly housing activity leads the state of the economy (Penm and Terrell,
1994). However, as indicated in Figure 11, the forecasts are fairly comparable to that of the
autoregressive model. Boosting includes many variables, with the largest coefficients being 0.60
for the 3-month deposit rate, 0.51 for the interest rate spread, -0.33 for the lending interest
rate, and 0.19 for construction. The positive coefficients for the deposit and interest rate are
surprising, as increases in these variables are expected to affect the economy negatively. As
shown in Figure 11, the forecasts of this model are inaccurate, especially in 2012.

For the factor models, the maximum of 20 factors is selected for all five forecasts. The first
five factors explain more than half of the total variation in the data, which is expected as many
of the economic indicators are strongly interrelated. The 20 factors together explain 96.6% of
the total variance in the data. The loadings of the first few factors remain largely constant
over the five forecasts, however, factors 15 until 20 change greatly. As a result, the information
used by factor models changes from one year to year. The factor-based approach with economic
indicator data produces mixed results. The FAAR model has large coefficients for many factors,
which leads to volatile and poor estimates. On the other hand, ridge regression does better in
terms of forecasting by shrinking the coefficients of FAAR. In fact, it is the only model to beat
both benchmark models. The largest coefficients of ridge regression are for factors 1, 14, and 15.
The first factor has high positive coefficients for variables relating to trade, the money supply,
the stock market, and total government expenditure. Gross capital formation, the stock market,
and India’s GDP are most present in factor 14, whereas factor 15 is very diverse. As seen in
Figure 11, LARS and elastic net regularisation with factors again provide similar forecasts as the
AR(1) model, due to minute coefficients for the first factor. Bagging includes factors 1, 14, and
15 in the model with coefficients slightly smaller than FAAR, but larger than ridge regression.
In effect, the bagging forecasts are between the forecasts made by these two models (see Figure
11). Boosting includes the same three factors, but also has sizeable coefficients for around eight
other factors. The boosting model beats the autoregressive benchmark, but not the random
walk model in terms of predictive accuracy.

Overall, a distinct difference between the forecasts in Figure 10 and 11 is that various models
that use economic indicator data are able to predict a decrease in real GDP growth in Nigeria,
whereas this was not the case with models that use African GDP growth data. This may partially
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be attributed to a higher autoregressive term in the AR(1) model. With economic indicator
data, factor models generally perform better than models that use explanatory variables directly.
Ridge regression is the only model to beat both benchmarks, which suggests the predictive power
of economic indicators is limited. This is in contrast to the findings of Gupta and Kabundi (2011),
who show this type of data is improves short-term forecasts of South African economic growth.
The difference in results may be caused by economic indicator data being less effective for less
developed countries. Moreover, the number of economic indicators used in this research could
be too modest to make accurate forecasts.

5.3.3 Forecasting using Combined Data

Both the African GDP growth data and the economic indicator data are able to provide some,
but limited explanatory power. In both cases a different model is found to be optimal, however,
in both cases it is a factor model. We next examine whether a combination of the two data
sets can provide improved forecasts of real Nigerian GDP growth. The joint data set consists
of 86 variables, including GDP growth data from 51 countries and 35 economic indicators. The
results with combined data are shown in Table 5. The autoregressive model is the same as in
Section 5.3.2, given that the data sample also ranges from 1982 until 2016.

First, looking at the variable selection methods, LARS and elastic net regularisation include
activity in the construction sector as the sole explanatory variable. This is in line with the
results of Section 5.3.2, although the coefficients are smaller. Boosting includes 22 variables,
with the largest coefficients being 0.44 for South Africa, -0.38 for Niger, -0.28 for Mauritius, and
0.22 for construction. Despite the reason for including these three countries being unknown,
Figure 12 shows the forecasts are surprisingly accurate. Boosting performs 30% better than the
autoregressive benchmark in terms of the MSE, due to good predictions from 2013 until 2016.

Table 5: Performance of models forecasting Nigerian GDP growth from 2012-2016 using African GDP
growth and economic indicator data from 1982-2016.

# vars/factors incl. MSE MSE ratio

Benchmark AR(1) 7.50 1.00
Random Walk 6.77 0.90

Variable
LARS 1.00 7.50 1.00
Elastic Net 1.00 7.54 1.00
Boosting 32.20 5.22 0.70

Factor

FAAR 11.80 13.67 1.82
Ridge 11.80 7.28 0.97
LARS 1.00 7.50 1.00
Elastic Net 1.00 7.50 1.00
Bagging 0.40 5.61 0.75
Boosting 2.40 5.92 0.79

One-step ahead forecasts are made for the years 2012 until 2016 using an expanding window. The autore-
gressive order of AR(p) is determined using BIC selection with 1 ≤ p ≤ 5. The number of explanatory
variables and factors shown is the mean from five coefficient estimates. Factors are obtained by PCA on
the estimation sample consisting of 51 African GDP growth rates and 35 Nigerian economic indicators.
The amount of factors considered is selected using an adjusted BIC with a maximum of 20. One lag of
variables or factors is included in the model. The best results are indicated in bold.
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Figure 12: Nigerian GDP growth forecasts from 2012-2016 made using African GDP growth and
economic indicator data. The models used to make forecasts include one lag of variables or factors.
The F in parentheses indicates the model uses factors to make forecasts, whereas the other models use
explanatory variables directly.

However, GDP growth in 2012 is greatly overestimated, which brings the model’s robustness
into doubt.

Continuing with factor models, forecasts for the years 2012 until 2016 are made with 14,
13, 11, 11, and 10 factors, respectively. For the final forecast, the 10 selected factors explain
61.8% of the total variance in the data. The performance of the factor models varies once more.
FAAR produces poor forecasts due to the inclusion of all factors. The highest coefficients of
FAAR are for the first, second, and seventh factor. The interpretation of the factors is particu-
larly cumbersome as they are formed by a mixture of African countries and Nigerian economic
indicators. However, the first factor shows great similarities to the first factor of the African
growth data, although it is augmented with real GDP variables. The second factor corresponds
to the difference between the first factor found with economic indicator and economic growth
rates of some African countries. Factor seven contains a mixture of variables from both data sets
and has no clear interpretation. LARS and elastic net regularisation both include the second
factor with small coefficients, making the estimates similar to that of the AR(1) model. Bagging
makings relatively good forecasts by including the second factor or no factors at all depending
on the iteration. As shown in Figure 12, bagging models the downward trend better than other
models, which leads to 25% reduction in the MSE compared to the autoregressive benchmark.
Boosting includes the first, second, and seventh factor. The coefficients are considerably smaller
than that of FAAR, which enhances the forecasting accuracy. The model performs 21% better
than the autoregressive benchmark. Figure 12 shows better forecasting performance primarily
results from an accurate prediction of 2016.

All in all, methods that combine both data sets perform best, as three methods are able to
beat both benchmark models. However, a drawback of the factor models is that factors have
no clear economic explanation, because they are constructed from two different, unrelated data
sources. Moreover, the forecasting performance of the different methods remains mixed.

To summarise, it is not easy to beat the autoregressive and random walk models in the
context of forecasting Nigerian GDP growth. Shrinkage selection methods clearly outperform
FAAR when the number of factors (with low explanatory power) increases, which is in line with
the outcome of the simulation study. There is no preferred method, as each data has a different
method performing best in terms of predictive accuracy. Factor models perform slightly better
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than models that incorporate explanatory variables directly when the data sets are used inde-
pendently. Using a combination of the two data sets leads to the best forecasting performance,
with boosting directly applied to the explanatory variables making the most accurate predic-
tions. However, machine learning methods with factors also outperform the benchmark models,
which shows shrinkage and variable selection methods with factorisation can be useful.

6 Conclusion

This research has investigated the effectiveness of combining shrinkage and variable selection
methods in the context of forecasting contemporary real GDP growth in Nigeria. Our main
finding is that this approach only provides limited gains in forecasting accuracy compared to
simple benchmark models. A simulation study showed shrinkage and variable selection methods
may offer significant advantages compared to least squares, particularly when the explanatory
power of many variables is low. The preferred method is largely dependent on a bias-variance
trade-off. The application of real GDP growth rates of African countries as explanatory variables
to forecast Nigerian economic growth is ineffective. Similarly, most shrinkage and variable
selection methods cannot beat the benchmark models when using economic indicator data.
Combining the two data sets leads the best models in terms of predictive accuracy. Boosting
improves on the autoregressive benchmark by 30%, however, the inclusion of over 30 variables
leads to volatile forecasts that are undesirable in practice. Bagging and boosting in combination
with factors constructed from the combined data outperform an AR(1) model with more than
20%, while simultaneously providing more stable forecasts. This result indicates shrinkage and
variable selection methods in combination with factorisation can provide added value when
forecasting real GDP growth in Nigeria.

Shrinkage and variable selection methods combined with factorisation may be applied in
practice to forecast economic growth in Nigeria, provided that small gains in predictive accuracy
can be of great value to the Nigerian government or investors. However, the results indicate the
optimal method is data-dependent, therefore this approach requires thorough testing prior to
implementation. Above that, the limitations of this research should be taken into account when
constructing a model based on the findings of this paper.

The limitations of the research mainly stem from the data. First, the amount of economic
indicators available in Nigeria for a time period of more than 30 years is very limited, which leads
to the inclusion of fewer variables than in comparable studies. Second, the data may be subject
to measurement errors. The African GDP growth data set contains information starting from
1963, when economic activity was measured with a lot less precision than nowadays. Moreover,
some economic indicators are found to have extremely high variance even after adjusting and
transforming the data, which makes it undesirable to include these variables in a model. Lastly,
only five years of data are used for out-of-sample forecasting, due to the small sample size of the
economic indicator data. This period is too short to make a reliable comparison of the methods,
therefore a longer forecasting period should be used to verify the robustness of results.

Given the data limitations, future research should focus on the implementation of alternative
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data. A sufficiently large data set may be maintained while discarding older observations by
using data measured at a higher frequency. Data or factors observed at different frequencies can
be combined using mixed-data sampling models. Above that, it is of interest to investigate the
use of Nigerian survey data as additional economic indicators, given that this type of informa-
tion is becoming more widely available. Future research may also be dedicated to the use of
alternative types of factorisation to model economic growth in Nigeria. For example, Kim and
Swanson (2018) consider sparse principal component analysis, which enhances the interpretabil-
ity of factors by inducing sparseness in factor loadings. Lastly, it is of interest to perform a
similar study using a panel of African countries in order to generalise the findings of this paper.
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Appendix A

This appendix includes the code that is used to perform the analyses in this paper, which is
compatible with MATLAB 2019a. The overview includes code written by the author, in addition
to several non-standard functions written by other authors. Each piece of code includes a short
description and gives credit in case the work of another author is used.

General

This subsection includes code that is both used in the simulation study and to make forecasts
of Nigerian real GDP growth.

Bagging

1 function [beta] = bagging(y,X_other,X_shrink,c)

2 % BAGGING Performs bagging the shrinkage way.

3 % [beta] = bagging(y,X_other,X_shrink,c) performs bagging the shrinkage

4 % way. Dependent variable y is a T x 1 vector explained by T x M matrix

5 % X_other and T x N matrix X_shrink. The variables in X_other are not

6 % shrunk and may be empty. The parameter c denotes the threshold t-value

7 % below which all coefficients are shrunk to zero. The output is a

8 % (M+N) x 1 coefficient vector.

9 %

10 % Original function: @bagging_shrink2

11 % Orginal author: Hyun Hak Kim

12 % Author: Fabian Neefjes

13 % Reference: 'Empirical Comparison of Forecasting Methods' by Stock and

14 % Watson, 2005

15

16

17 [t,m] = size(X_other);

18 [~,n] = size(X_shrink);

19 X = [X_other X_shrink]; % concatenate explanatory variables

20

21 [beta,~,resid] = mvregress(X,y); % find coefficients using OLS

22

23 sige = (resid'*resid)/(t-(m+n)); % sample covariance matrix

24 tmp = sige*diag(inv(X'*X)); % squared vector Newey-West std. errors

25 tstat = beta./(sqrt(tmp)); % compute t-statistics

26

27 t_shrink = tstat(m+1:end); % select t-statistics of coeff. to be shrunk

28 t_shrink = real(t_shrink); % convert t-statistics to real numbers

29

30 psi = zeros(n,1); % initialize shrinkage coefficients

31 for k = 1:n

32 if abs(t_shrink(k))<c % set coefficient to zero if |t|<c

33 psi(k) = 0;

34 else % compute shrinkage coefficient

35 psi(k) = 1 - normcdf(t_shrink(k) + c) + ...

36 normcdf(t_shrink(k) - c)+ (normpdf(t_shrink(k) - c) - ...
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37 normpdf(t_shrink(k) + c)) / t_shrink(k);

38 end

39 end

40 beta = [beta(1:m);beta(m+1:end).*psi]; % compute coefficient vector

Boosting

1 function [beta_IC, beta, IC_m]= boosting(y, X, nu, M)

2 % BOOSTING Performs componentwise L2 boosting.

3 % [beta_IC, beta, IC_m]= boosting(y,X,nu,M) boosts according to the

4 % componentwise L2 boosting algorithm. Dependent variable y is a T x 1

5 % vector that is explained using T x N matrix X. Parameter nu is denotes

6 % the step-length taken and should be a scalar between 0 and 1. Parameter

7 % M is the iteration limit. The output beta_IC is the optimal N x 1

8 % vector of boosted coefficients. The optimal coefficient vector is

9 % selected using an adjusted BIC from the matrix beta contiaing all

10 % coefficient estimates. IC_m is the index in beta of the optimal

11 % coefficient vector.

12 %

13 % Original function: @com_boost_ic

14 % Orginal author: Hyun Hak Kim

15 % Author: Fabian Neefjes

16 % Reference: 'Boosting Algorithms: Regularization, Prediction and Model

17 % Fitting' by Buhlmann and Hothorn, 2007

18

19 [t,n]=size(X);

20

21 % Set initial function to mean of dependent variable

22 mean_y = mean(y);

23 PHI(:,1) = mean_y * ones(size(y,1),1);

24

25 % Create empty matrix for current and all coefficients

26 beta(:,1) = zeros(size(X,2),1);

27 B(:,:,1) = zeros(t,t,1);

28

29 for m = 1:M

30 %% Perform Boosting

31 u = y - PHI(:,m); % subtract explained part from Y to update ...

residuals

32

33 SSR = zeros(n,1);

34 for i = 1:n % loop over all explanatory variables

35 z = X(:,i); % select explanatory variable

36 [~,~,E] = mvregress(z,u); % regress residuals on explanatory variable

37 SSR(i) = sum(E.^2); % compute sum of squared residuals

38 end

39 [~,i_m] = min(SSR); % find index explanatory variable with ...

lowest SSR

40 zz = X(:,i_m); % select best explanatory variable

41 b = mvregress(zz,u); % regress best explanatory variable on ...
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residuals

42 phi = b'*zz; % compute explained part by new regressor

43 PHI(:,m+1) = PHI(:,m) + nu * phi; % update total explained part

44 %% Calculate stopping time

45 pm = zz*inv(zz'*zz)*zz'; % compute projection matrix of added regressor

46 B(:,:,m+1) = B(:,:,m) + nu * pm * (eye(t)- B(:,:,m)); % compute L2 ...

boosting hat-matrix

47 df = trace(B(:,:,m+1)); % compute degress of freedom

48 sig2m = (y-PHI(:,m+1))'*(y-PHI(:,m+1)); % compute sum of squared errors

49 IC(m,1) = log(sig2m) + (log(t) * df) / t ; % compute modified BIC

50 loc = zeros(size(X,2),1); % create vector to select ...

regressor

51 loc(i_m,1) = 1; % select one regressor

52 beta(:,m+1) = beta(:,m) + nu * b * loc; % update beta

53 end

54 [~,IC_m] = min(IC); % find lowest IC

55 beta_IC = beta(:,IC_m+1); % select beta with lowest IC

Cross-Validation

1 function [s_opt, b_opt, res_mean, res_std] = cv(fun, K, steps, sparse, X, y, ...

varargin)

2 % CV Performs K-fold cross validation on a function.

3 % [S_OPT, B_OBT, RES_MEAN, RES_STD] = CROSSVALIDATE(FUN, K, STEPS,

4 % SPARSE X, Y, ...) performs simple K-fold cross-validation on function

5 % FUN. STEPS is the number of equidistant positions along FUN at which

6 % the sum of squared residuals (SSR) is measured. Typically this is some

7 % large number to ensure sufficent accuracy. SPARSE is a boolean

8 % variable that selects the most sparse model within one standard

9 % deviation of the best model if true. X is the data matrix used as

10 % input to FUN together with the response Y. Finally, an arbitrary

11 % number of arguments may be supplied to FUN.

12 %

13 % Returns 0 < S_OPT <= 1 that determines the optimal model position,

14 % B_OPT - the optimal parameters, RES_MEAN - the mean SSR curve and

15 % RES_STD - the standard deviations of the SSR curve.

16 %

17 % Original function: @crossvalidate

18 % Original author: Karl Skoglund, IMM, DTU, kas@imm.dtu.dk

19 % Author: Fabian Neefjes

20

21 %% Check varargin with fun

22 fun = fcnchk(fun,length(varargin));

23

24 %% Perform K-fold cross-validation

25 [n, p] = size(X);

26 rp = 1:n;

27 kappa = floor(n/K);

28 step = 1/(steps - 1);

29 b_interpolated = zeros(steps, p);
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30 res = zeros(K, steps);

31 for k = 1:K

32 testidx = rp((k-1)*kappa + 1:k*kappa); % select test data

33 validx = setdiff(rp(1:K*kappa), testidx); % select validation data

34 Xtest = X(testidx,:);

35 ytest = y(testidx);

36 Xval = X(validx, :);

37 yval = y(validx);

38 if isempty(yval)

39 Xval = Xtest;

40 yval = ytest;

41 end

42 b = fun(Xval, yval, varargin{:}); % copmute betas

43 step2 = 1/(size(b,1)-1); % 1 / # possible betas

44 b_interpolated = interp1((0:step2:1)', b, (0:step:1)'); % interpolate beta

45 res(k, :) = sum((ytest*ones(1,steps) - Xtest*b_interpolated').^2); % ...

compute residuals of interpolated y on interpolated beta

46 end

47

48 %% Find optimal index in residual vector

49 % Calculate mean residual curve

50 if size(res,1) > 1

51 res_mean = mean(res);

52 res_std = std(res);

53 else

54 res_mean = res;

55 res_std = zeros(size(res));

56 end

57 % Find optimal index

58 [res_min, idx_opt] = min(res_mean);

59 if sparse

60 limit = res_min + res_std(idx_opt);

61 idx_opt2 = find(res_mean < limit, 1); % find lowest index within one st. ...

dev. of lowest CV error

62 if ~isempty(idx_opt2)

63 idx_opt = idx_opt2;

64 end

65 end

66

67 %% Find optimal coefficient vector

68 s_opt = idx_opt/steps;

69 b = fun(X, y, varargin{:});

70 b_opt = interp1q((0:step2:1)', b, s_opt);

Find Autoregressive Order

1 function [order] = find_ar(y,max_lag)

2 % FIND_AR Finds the autoregressive order of a variable.

3 % [order] = find_ar(y,max_lag) returns the optimal autoregressive order

4 % of a T x 1 vector y based on the BIC, where max_lag is the highest lag
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5 % considered.

6 %

7 % Author: Fabian Neefjes

8

9 if max_lag > 10 % warning if large max_lag

10 warning('Large max_lag results in a loss of information.');

11 end

12

13 [n, ~] = size(y);

14 ss = n-max_lag; % compute sample size

15 bic = zeros(max_lag,1);

16 for p = 0:max_lag

17 lag_y = lagmatrix(y, 1:p); % make lag matrix

18 lag_y = lag_y(1+max_lag:end,:); % select lags

19 exp_var = [ones(ss,1) lag_y]; % add constant term to lags

20 [~,~,resid] = mvregress(exp_var, y(1+max_lag:end,:));

21 bic(p+1) = (ss) * log(resid'*resid/ss) + (p+1) * log(ss); % compute BIC

22 end

23 [~, index] = min(bic); % find lowest BIC

24 order = index - 1; % return lag order

LARS

1 function beta = lars(X, y, method, stop, useGram, Gram, trace)

2 % LARS The LARS algorithm for performing LAR or LASSO.

3 % BETA = LARS(X, Y) performs least angle regression on the variables in

4 % X to approximate the response Y. Variables X are assumed to be

5 % normalized (zero mean, unit length), the response Y is assumed to be

6 % centered.

7 % BETA = LARS(X, Y, METHOD), where METHOD is either 'LARS' or 'LARS'

8 % determines whether least angle regression or lasso regression should

9 % be performed.

10 % BETA = LARS(X, Y, METHOD, STOP) with nonzero STOP will perform least

11 % angle or lasso regression with early stopping. If STOP is negative,

12 % STOP is an integer that determines the desired number of variables. If

13 % STOP is positive, it corresponds to an upper bound on the L1-norm of

14 % the BETA coefficients.

15 % BETA = LARS(X, Y, METHOD, STOP, USEGRAM) specifies whether the Gram

16 % matrix X'X should be calculated (USEGRAM = 1) or not (USEGRAM = 0).

17 % Calculation of the Gram matrix is suitable for low-dimensional

18 % problems. By default, the Gram matrix is calculated.

19 % BETA = LARS(X, Y, METHOD, STOP, USEGRAM, GRAM) makes it possible to

20 % supply a pre-computed Gram matrix. Set USEGRAM to 1 to enable. If no

21 % Gram matrix is available, exclude argument or set GRAM = [].

22 % BETA = LARS(X, Y, METHOD, STOP, USEGRAM, GRAM, TRACE) with nonzero

23 % TRACE will print the adding and subtracting of variables as all

24 % LARS/lasso solutions are found.

25 % Returns BETA where each row contains the predictor coefficients of

26 % one iteration. A suitable row is chosen using e.g. cross-validation,

27 % possibly including interpolation to achieve sub-iteration accuracy.
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28 %

29 % Author: Karl Skoglund, IMM, DTU, kas@imm.dtu.dk

30 % Reference: 'Least Angle Regression' by Bradley Efron et al, 2003.

31

32 %% Input checking

33 % Set default values.

34 if nargin < 7

35 trace = 0;

36 end

37 if nargin < 6

38 Gram = [];

39 end

40 if nargin < 5

41 useGram = 1;

42 end

43 if nargin < 4

44 stop = 0;

45 end

46 if nargin < 3

47 method = 'lars';

48 end

49 if strcmpi(method, 'lasso')

50 lasso = 1;

51 else

52 lasso = 0;

53 end

54

55 %% LARS variable setup

56 [n, p] = size(X);

57 nvars = min(n-1,p);

58 maxk = 8*nvars; % Maximum number of iterations

59

60 if stop == 0

61 beta = zeros(2*nvars, p);

62 elseif stop < 0 % restrict number of variables

63 beta = zeros(2*round(-stop), p);

64 else

65 beta = zeros(100, p); % set upper bound on L1 norm

66 end

67 mu = zeros(n, 1); % current "position" as LARS travels towards lsq solution

68 I = 1:p; % inactive set

69 A = []; % active set

70

71 % Calculate Gram matrix if necessary

72 if isempty(Gram) && useGram

73 Gram = X'*X; % Precomputation of the Gram matrix. Fast but memory consuming.

74 end

75 if ~useGram

76 R = []; % Cholesky factorization R'R = X'X where R is upper triangular

77 end

78
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79 lassocond = 0; % LASSO condition boolean

80 stopcond = 0; % Early stopping condition boolean

81 k = 0; % Iteration count

82 vars = 0; % Current number of variables

83

84 %if trace

85 % disp(sprintf('Step\tAdded\tDropped\t\tActive set size'));

86 %end

87

88 %% LARS main loop

89 while vars < nvars && ~stopcond && k < maxk % check if not all variables are ...

included, stopping condition not satisfied, iteration limit not reached

90 k = k + 1; % increase iteration limit

91 c = X'*(y - mu); % compute correlation

92 [C, j] = max(abs(c(I))); % find regressor with maximum correlation from ...

inactive set

93 j = I(j); % select regressor from inactive set with maximum correlation

94

95 if ~lassocond % if a variable has been dropped, do one iteration with this ...

configuration (don't add new one right away)

96 if ~useGram

97 R = cholinsert(R,X(:,j),X(:,A));

98 end

99 A = [A j]; % add regressor with maximum correlation to active set

100 I(I == j) = []; % remove regressor with maximum correlation from ...

inactive set

101 vars = vars + 1; % increase variable count

102 %if trace

103 % disp(sprintf('%d\t\t%d\t\t\t\t\t%d', k, j, vars));

104 %end

105 end

106

107 s = sign(c(A)); % get the signs of the correlations

108

109 if useGram

110 S = s*ones(1,vars);

111 GA1 = pinv(Gram(A,A).*S'.*S)*ones(vars,1);

112 AA = 1/sqrt(sum(GA1));

113 w = AA*GA1.*s; % weights applied to each active variable to get ...

equiangular direction

114 else

115 GA1 = R\(R'\s);

116 AA = 1/sqrt(sum(GA1.*s));

117 w = AA*GA1;

118 end

119 u = X(:,A)*w; % equiangular direction (unit vector)

120

121 if vars == nvars % if all variables active, go all the way to the lsq solution

122 gamma = C/AA;

123 else

124 a = X'*u; % correlation between each variable and equiangular vector
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125 temp = [(C - c(I))./(AA - a(I)); (C + c(I))./(AA + a(I))];

126 gamma = min([temp(temp > 0); C/AA]); % compute step-length

127 end

128

129 % LASSO modification

130 if lasso

131 lassocond = 0;

132 temp = -beta(k,A)./w';

133 [gamma_tilde] = min([temp(temp > 0) gamma]);

134 j = find(temp == gamma_tilde); % find index of regressor where ...

correlation changes

135 if gamma_tilde < gamma

136 gamma = gamma_tilde; % restrict step-length

137 lassocond = 1;

138 end

139 end

140

141 mu = mu + gamma*u; % update function

142 if size(beta,1) < k+1

143 beta = [beta; zeros(size(beta,1), p)];

144 end

145 beta(k+1,A) = beta(k,A) + gamma*w';

146

147 % Early stopping at specified bound on L1 norm of beta

148 if stop > 0

149 t2 = sum(abs(beta(k+1,:)));

150 if t2 >= stop

151 t1 = sum(abs(beta(k,:)));

152 s = (stop - t1)/(t2 - t1); % interpolation factor 0 < s < 1

153 beta(k+1,:) = beta(k,:) + s*(beta(k+1,:) - beta(k,:));

154 stopcond = 1;

155 end

156 end

157

158 % If LASSO condition satisfied, drop variable from active set

159 if lassocond == 1

160 if ~useGram

161 R = choldelete(R,j);

162 end

163 I = [I A(j)]; % add variable to inactive set

164 A(j) = []; % remove variable from active set

165 vars = vars - 1; % decrease variable count

166 if trace

167 disp(sprintf('%d\t\t\t\t%d\t\t\t%d', k, j, vars));

168 end

169 end

170

171 % Early stopping at specified number of variables

172 if stop < 0

173 stopcond = vars >= -stop;

174 end
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175 end

176

177 % trim beta

178 if size(beta,1) > k+1

179 beta(k+2:end, :) = [];

180 end

181

182 if k == maxk

183 disp('LARS warning: Forced exit. Maximum number of iteration reached.');

184 end

185

186 %% Fast Cholesky insert and remove functions

187 % Updates R in a Cholesky factorization R'R = X'X of a data matrix X. R is

188 % the current R matrix to be updated. x is a column vector representing the

189 % variable to be added and X is the data matrix containing the currently

190 % active variables (not including x).

191 function R = cholinsert(R, x, X)

192 diag_k = x'*x; % diagonal element k in X'X matrix

193 if isempty(R)

194 R = sqrt(diag_k);

195 else

196 col_k = x'*X; % elements of column k in X'X matrix

197 R_k = R'\col_k'; % R'R_k = (X'X)_k, solve for R_k

198 R_kk = sqrt(diag_k - R_k'*R_k); % norm(x'x) = norm(R'*R), find last ...

element by exclusion

199 R = [R R_k; [zeros(1,size(R,2)) R_kk]]; % update R

200 end

201

202 % Deletes a variable from the X'X matrix in a Cholesky factorisation R'R =

203 % X'X. Returns the downdated R. This function is just a stripped version of

204 % Matlab's qrdelete.

205 function R = choldelete(R,j)

206 R(:,j) = []; % remove column j

207 n = size(R,2);

208 for k = j:n

209 p = k:k+1;

210 [G,R(p,k)] = planerot(R(p,k)); % remove extra element in column

211 if k < n

212 R(p,k+1:n) = G*R(p,k+1:n); % adjust rest of row

213 end

214 end

215 R(end,:) = []; % remove zero'ed out row

216

217 %% To do

218 %

219 % There is a modification that turns least angle regression into stagewise

220 % (epsilon) regression. This has not been implemented.
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LARS-EN

1 function beta = larsen(X, y, lambda2, stop, trace)

2 % LARSEN The LARSEN algorithm for elastic net regression.

3 % BETA = LARSEN(X, Y) performs elastic net regression on the variables

4 % in X to approximate the response Y. Variables X are assumed to be

5 % normalized (zero mean, unit length), the response Y is assumed to be

6 % centered. The ridge term coefficient, lambda2, has a default value of

7 % 1e-6. This keeps the ridge influence low while making p > n possible.

8 % BETA = LARSEN(X, Y, LAMBDA2) adds a user-specified LAMBDA2. LAMBDA2 =

9 % 0 produces the lasso solution.

10 % BETA = LARSEN(X, Y, LAMBDA2, STOP) with nonzero STOP will perform

11 % elastic net regression with early stopping. If STOP is negative, its

12 % absolute value corresponds to the desired number of variables. If STOP

13 % is positive, it corresponds to an upper bound on the L1-norm of the

14 % BETA coefficients.

15 % BETA = LARSEN(X, Y, LAMBDA2, STOP, TRACE) with nonzero TRACE will

16 % print the adding and subtracting of variables as all elastic net

17 % solutions are found.

18 % Returns BETA where each row contains the predictor coefficients of

19 % one iteration. A suitable row is chosen using e.g. cross-validation,

20 % possibly including interpolation to achieve sub-iteration accuracy.

21 %

22 % Author: Karl Skoglund, IMM, DTU, kas@imm.dtu.dk

23 % Reference: 'Regularization and Variable Selection via the Elastic Net' by

24 % Hui Zou and Trevor Hastie, 2005.

25

26 %% Input checking

27 if nargin < 5

28 trace = 0;

29 end

30 if nargin < 4

31 stop = 0;

32 end

33 if nargin < 3

34 lambda2 = 1e-6;

35 end

36

37 %% Elastic net variable setups

38 [n, p] = size(X);

39 maxk = 8*(n+p); % Maximum number of iterations

40

41 if lambda2 < eps

42 nvars = min(n-1,p); %Pure LASSO

43 else

44 nvars = p; % Elastic net

45 end

46 if stop > 0

47 stop = stop/sqrt(1 + lambda2);

48 end

49 if stop == 0
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50 beta = zeros(2*nvars, p);

51 elseif stop < 0

52 beta = zeros(2*round(-stop), p); % restrict number of variables

53 else

54 beta = zeros(100, p); % early stopping

55 end

56 mu = zeros(n, 1); % current "position" as LARS-EN travels towards lsq solution

57 I = 1:p; % inactive set

58 A = []; % active set

59

60 R = []; % Cholesky factorization R'R = X'X where R is upper triangular

61

62 lassocond = 0; % Set to 1 if LASSO condition is met

63 stopcond = 0; % Set to 1 if early stopping condition is met

64 k = 0; % Algorithm step count

65 vars = 0; % Current number of variables

66

67 d1 = sqrt(lambda2); % Convenience variables d1 and d2

68 d2 = 1/sqrt(1 + lambda2);

69

70 %if trace

71 % disp(sprintf('Step\tAdded\tDropped\t\tActive set size'));

72 %end

73

74 %% Elastic net main loop

75 while vars < nvars && ~stopcond && k < maxk

76 k = k + 1;

77 c = X'*(y - mu)*d2;

78 [C, j] = max(abs(c(I)));

79 j = I(j);

80

81 if ~lassocond % if a variable has been dropped, do one iteration with this ...

configuration (don't add new one right away)

82 R = cholinsert(R,X(:,j),X(:,A),lambda2);

83 A = [A j];

84 I(I == j) = [];

85 vars = vars + 1;

86 %if trace

87 % disp(sprintf('%d\t\t%d\t\t\t\t\t%d', k, j, vars));

88 %end

89 end

90

91 s = sign(c(A)); % get the signs of the correlations

92

93 GA1 = R\(R'\s);

94 AA = 1/sqrt(sum(GA1.*s));

95 w = AA*GA1;

96 u1 = X(:,A)*w*d2; % equiangular direction (unit vector) part 1

97 u2 = zeros(p, 1); u2(A) = d1*d2*w; % part 2

98 if vars == nvars % if all variables active, go all the way to the lsq solution

99 gamma = C/AA;
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100 else

101 a = (X'*u1 + d1*u2)*d2; % correlation between each variable and ...

equiangular vector

102 temp = [(C - c(I))./(AA - a(I)); (C + c(I))./(AA + a(I))];

103 gamma = min([temp(temp > 0); C/AA]);

104 end

105

106 % LASSO modification

107 lassocond = 0;

108 temp = -beta(k,A)./w';

109 [gamma_tilde] = min([temp(temp > 0) gamma]);

110 j = find(temp == gamma_tilde);

111 if gamma_tilde < gamma

112 gamma = gamma_tilde;

113 lassocond = 1;

114 end

115

116 mu = mu + gamma*u1;

117 if size(beta,1) < k+1

118 beta = [beta; zeros(size(beta,1), p)];

119 end

120 beta(k+1,A) = beta(k,A) + gamma*w';

121

122 % Early stopping at specified bound on L1 norm of beta

123 if stop > 0

124 t2 = sum(abs(beta(k+1,:)));

125 if t2 >= stop

126 t1 = sum(abs(beta(k,:)));

127 s = (stop - t1)/(t2 - t1); % interpolation factor 0 < s < 1

128 beta(k+1,:) = beta(k,:) + s*(beta(k+1,:) - beta(k,:));

129 stopcond = 1;

130 end

131 end

132

133 % If LASSO condition satisfied, drop variable from active set

134 if lassocond == 1

135 R = choldelete(R,j);

136 I = [I A(j)];

137 A(j) = [];

138 vars = vars - 1;

139 if trace

140 disp(sprintf('%d\t\t\t\t%d\t\t\t%d', k, j, vars));

141 end

142 end

143

144 % Early stopping at specified number of variables

145 if stop < 0

146 stopcond = vars >= -stop;

147 end

148 end

149
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150 % trim beta

151 if size(beta,1) > k+1

152 beta(k+2:end, :) = [];

153 end

154

155 % divide by d2 to avoid double shrinkage

156 beta = beta/d2;

157

158 if k == maxk

159 disp('LARS-EN warning: Forced exit. Maximum number of iteration reached.');

160 end

161

162

163 %% Fast Cholesky insert and remove functions

164 % Updates R in a Cholesky factorization R'R = X'X of a data matrix X. R is

165 % the current R matrix to be updated. x is a column vector representing the

166 % variable to be added and X is the data matrix containing the currently

167 % active variables (not including x).

168 function R = cholinsert(R, x, X, lambda)

169 diag_k = (x'*x + lambda)/(1 + lambda); % diagonal element k in X'X matrix

170 if isempty(R)

171 R = sqrt(diag_k);

172 else

173 col_k = x'*X/(1 + lambda); % elements of column k in X'X matrix

174 R_k = R'\col_k'; % R'R_k = (X'X)_k, solve for R_k

175 R_kk = sqrt(diag_k - R_k'*R_k); % norm(x'x) = norm(R'*R), find last ...

element by exclusion

176 R = [R R_k; [zeros(1,size(R,2)) R_kk]]; % update R

177 end

178

179 % Deletes a variable from the X'X matrix in a Cholesky factorisation R'R =

180 % X'X. Returns the downdated R. This function is just a stripped version of

181 % Matlab's qrdelete.

182 function R = choldelete(R,j)

183 R(:,j) = []; % remove column j

184 n = size(R,2);

185 for k = j:n

186 p = k:k+1;

187 [G,R(p,k)] = planerot(R(p,k)); % remove extra element in column

188 if k < n

189 R(p,k+1:n) = G*R(p,k+1:n); % adjust rest of row

190 end

191 end

192 R(end,:) = []; % remove zero'ed out row

MSE

1 function [mse] = mse(y, y_hat)

2 % MSE Computes the mean squared prediction error.

3 % [mse] = mse(y, y_hat) computes the mean squared prediction error using
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4 % observed T x 1 vector y and predicted T x 1 vector y_hat.

5 %

6 % Author: Fabian Neefjes

7

8 sq_error = (y - y_hat).^2;

9 mse = mean(sq_error);

Ridge Regression

1 function b = ridge2(X,y,k,flag)

2 % RIDGE2 Ridge regression.

3 % B1 = RIDGE2(X,y,K) returns the vector B1 of regression coefficients

4 % obtained by performing ridge regression of the response vector Y

5 % on the predictors X using ridge parameter K. The matrix X should

6 % not contain a column of ones. The results are computed after

7 % centering and scaling the X columns so they have mean 0 and

8 % standard deviation 1. If Y has n observations, X is an n-by-p

9 % matrix, and K is a scalar, the result B1 is a row vector with p

10 % elements. If K has m elements, B1 is m-by-p.

11 %

12 % B0 = RIDGE2(X,y,K,0) performs the regression without centering and

13 % scaling. The result B0 has p+1 coefficients, with the first being

14 % the constant term. RIDGE(X,y,K,1) is the same as RIDGE(X,y,K).

15 %

16 % The relationship between B1 and B0 is as follows:

17 %

18 % m = mean(X);

19 % s = std(X,0,1)';

20 % temp = B1./s;

21 % B0 = [mean(Y)-m*temp; temp]

22 %

23 % In general, B1 is more useful for producing ridge traces (see the

24 % following example) where the coefficients are displayed on the same

25 % scale. B0 is more useful for making predictions.

26 %

27 % Note: this function is the same as @Ridge, besides that X and y are

28 % interchanged and beta is returned as a row vector to make it compatible

29 % with @cv.

30 % Copyright 1993-2008 The MathWorks, Inc.

31 % Adjusted by: Fabian Neefjes

32

33

34 if nargin < 3,

35 error(message('stats:ridge:TooFewInputs'));

36 end

37

38 if nargin<4 || isempty(flag) || isequal(flag,1)

39 unscale = false;

40 elseif isequal(flag,0)

41 unscale = true;
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42 else

43 error(message('stats:ridge:BadScalingFlag'));

44 end

45

46 % Check that matrix (X) and left hand side (y) have compatible dimensions

47 [n,p] = size(X);

48

49 [n1,collhs] = size(y);

50 if n~=n1,

51 error(message('stats:ridge:InputSizeMismatch'));

52 end

53

54 if collhs ~= 1,

55 error(message('stats:ridge:InvalidData'));

56 end

57

58 % Remove any missing values

59 wasnan = (isnan(y) | any(isnan(X),2));

60 if (any(wasnan))

61 y(wasnan) = [];

62 X(wasnan,:) = [];

63 n = length(y);

64 end

65

66 % Normalize the columns of X to mean zero, and standard deviation one.

67 mx = mean(X);

68 stdx = std(X,0,1);

69 idx = find(abs(stdx) < sqrt(eps(class(stdx))));

70 if any(idx)

71 stdx(idx) = 1;

72 end

73

74 MX = mx(ones(n,1),:);

75 STDX = stdx(ones(n,1),:);

76 Z = (X - MX) ./ STDX;

77 if any(idx)

78 Z(:,idx) = 1;

79 end

80

81 % Compute the ridge coefficient estimates using the technique of

82 % adding pseudo observations having y=0 and X'X = k*I.

83 pseudo = sqrt(k(1)) * eye(p);

84 Zplus = [Z;pseudo];

85 yplus = [y;zeros(p,1)];

86

87 % Set up an array to hold the results

88 nk = numel(k);

89

90 % Compute the coefficient estimates

91 b = Zplus\yplus;

92
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93 if nk>1

94 % Fill in more entries after first expanding b. We did not pre-

95 % allocate b because we want the backslash above to determine its class.

96 b(end,nk) = 0;

97 for j=2:nk

98 Zplus(end-p+1:end,:) = sqrt(k(j)) * eye(p);

99 b(:,j) = Zplus\yplus;

100 end

101 end

102

103 % Put on original scale if requested

104 if unscale

105 b = b ./ repmat(stdx',1,nk);

106 b = [mean(y)-mx*b; b];

107 end

108 b = b'; % change from column to row vector

Simulation Study

This subsection includes code that is only used in the simulation study.

Main File

1 % This program performs the simulation study and provides the performance

2 % of methods as output. To obtain the same results in the paper, run with

3 % v = 100, N=50, r=20, coeff = [[3, 1.5, 0, 0, 2, zeros(1,N-5)]',

4 % [2*ones(1,10), zeros(1,N-10)]'], iteration_limit = 10, t = [1000, 100,

5 % 50], b = [1,2], alpha = 0.

6 %

7 % Author: Fabian Neefjes

8

9 %% Configuration

10 clear;

11 clc;

12 rng('default') % random number generator

13 v = 100; % size forecast sample

14 N = 50; % number of explanatory variables

15 r = 20; % number of factors used to generate data

16 coeff = [[3, 1.5, 0, 0, 2, zeros(1,N-5)]', [2*ones(1,10), zeros(1,N-10)]']; ...

% coefficient vector factors

17 iteration_limit = 100; % number of simulations

18 %% Initialisation

19 for t = [1000, 100, 50] % estimation sample size

20 for b = [1, 2]

21 beta = coeff(:,b); % set beta

22 k_star = sum(abs(beta)>0); % number of non-zero coefficients

23 k_inc = abs(beta)>0; % position of non-zero coefficients

24 for alpha = [0, 0.5] % first-order autoregresive component y

25 p_mean = zeros(iteration_limit,1); % autoregressive order p

26 k_auto = zeros(iteration_limit,r); % # non-zero coefs AR

27 k_bag = zeros(iteration_limit,r); % # non-zero coefs bagging
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28 k_boost = zeros(iteration_limit,r); % # non-zero coefs boosting

29 k_en = zeros(iteration_limit,r); % # non-zero coefs elastic net

30 k_lars = zeros(iteration_limit,r); % # non-zero coefs LARS

31 k_faar = zeros(iteration_limit,r); % # non-zero coefs FAAR

32 k_ridge = zeros(iteration_limit,r); % # non-zero coefs ridge

33 k_rw = zeros(iteration_limit,r); % # non-zero coefs random walk

34 mse_auto = zeros(iteration_limit,1); % MSE AR

35 mse_bag = zeros(iteration_limit,1); % MSE bagging

36 mse_boost = zeros(iteration_limit,1); % MSE boosting

37 mse_en = zeros(iteration_limit,1); % MSE elastic net

38 mse_faar = zeros(iteration_limit,1); % MSE FAAR

39 mse_lars = zeros(iteration_limit,1); % MSE LARS

40 mse_ridge = zeros(iteration_limit,1); % MSE ridge

41 mse_rw = zeros(iteration_limit,1); % MSE random walk

42 for n=1:iteration_limit

43 tic;

44 disp(n); % print iteration count

45 %% Load data

46 [train_X, forecast_X, train_y, forecast_y] = gen_data(t, v, N, beta, alpha);

47 y = [train_y; forecast_y]; % concatenate training and ...

estimation sample

48 X = [train_X; forecast_X];

49

50 %% Generate factors

51 mX = mean(train_X); % obtain mean of training X

52 sX = std(train_X); % obatin st. dev. of training X

53 train_X_norm = (train_X - mX) ./ sX; % normalize training X

54 X_norm = (X - mX) ./ sX; % normalize all X

55

56 [pca_coeff, ~, pca_ev] = pca(train_X_norm); % compute loadings from ...

training X

57 train_factors = train_X_norm*pca_coeff; % create factors for training X

58 factors = X_norm*pca_coeff; % create factors for X

59 mF = mean(train_factors); % obtain mean of training factors

60 sF = std(train_factors); % obtain st. dev. of training ...

factors

61 train_factors_norm = (train_factors - mF) ./ sF; % standardize training factors

62 factors_norm = (factors - mF) ./ sF; % standardize all factors

63

64 %% Select number of factors

65 r = 20; % fix r = 20

66 train_factors = train_factors(:,1:r); % choose first r factors

67 factors = factors(:,1:r);

68 train_factors_norm = train_factors_norm(:,1:r);

69 factors_norm = factors_norm(:,1:r);

70

71 %% Find autoregressive order and compute AR(p) model

72 p = find_ar(train_y, 5); % find autoregressive lag

73 p = max(1,p); % set minimum p to 1

74 p_mean(n) = p; % store p

75 y_lag = lagmatrix(train_y, 1:p);
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76 X_auto = [ones(t-p,1) y_lag(p+1:end,:) ];

77 [beta_auto,~,auto_resid] = mvregress(X_auto,train_y(p+1:end,:));

78 resid = auto_resid;

79 q = p; % variable for start estimation sample

80

81 y_lag = lagmatrix(y, 1:p);

82 X_forecast_auto = [ones(v,1) y_lag(t+1:t+v,:)];

83 y_hat_auto = X_forecast_auto*beta_auto;

84 mse_auto(n) = mse(forecast_y,y_hat_auto);

85

86 %% Factor Augmented Autoregression

87 X_factor = train_factors(1+q-1:end-1,:);

88 X_faar = [X_auto X_factor];

89 [beta_faar] = mvregress(X_faar, train_y(q+1:end,:));

90 X_factor_forecast = factors(t:end-1,:);

91 X_forecast_faar = [X_forecast_auto X_factor_forecast];

92 y_hat_faar = X_forecast_faar*beta_faar;

93 mse_faar(n) = mse(forecast_y, y_hat_faar);

94 k_faar(n,:) = abs(beta_faar(1+p+1:end))>0;

95

96 %% Ridge regression

97 k = 0:0.01:100; % range of lambda

98 X_factor_norm = train_factors_norm(1+q-1:end-1,:);

99 [~,beta_ridge,~,~] = cv(@ridge2, 10, length(k), 0, X_factor_norm, resid, k);

100 beta_ridge = real(beta_ridge'); % convert to column vector

101 X_factor_norm_forecast = factors_norm(t:end-1,:);

102 y_hat_ridge = y_hat_auto + X_factor_norm_forecast*beta_ridge;

103 mse_ridge(n) = mse(forecast_y,y_hat_ridge);

104 k_ridge(n,:) = abs(beta_ridge)>0;

105

106 %% LARS

107 [~,beta_lars,~,~] = cv(@lars, 10, 1000, 1, X_factor_norm, resid, 'LARS', ...

0,0,[],0);

108 beta_lars = real(beta_lars'); % convert to column vector

109 y_hat_lars = y_hat_auto + X_factor_norm_forecast*beta_lars;

110 mse_lars(n) = mse(forecast_y,y_hat_lars);

111 k_lars(n,:) = abs(beta_lars)>0;

112

113 %% Elastic net

114 lambda2 = [0, 0.01, 0.1, 1, 10, 100]; % range of lamda_2

115 best_resid = inf;

116 for i=1:length(lambda2)

117 [s_en,beta_temp,mean_resid,~] = cv(@larsen, 10, 1000, 1, X_factor_norm, ...

resid, lambda2(i));

118 if mean_resid(s_en*length(mean_resid)+1) < best_resid

119 best_resid = mean_resid(s_en*length(mean_resid)+1); % store residuals

120 beta_en = beta_temp; % store ...

coefficients

121 opt_lambda2 = lambda2(i); % store lambda_2

122 opt_index = i; % store index ...

lambda_2
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123 end

124 end

125 beta_en = real(beta_en'); % convert to column vector

126 y_hat_en = y_hat_auto + X_factor_norm_forecast*beta_en;

127 mse_en(n) = mse(forecast_y,y_hat_en);

128 k_en(n,:) = abs(beta_en)>0;

129

130 %% Bagging

131 c = 1.96; % bagging coefficient

132 [beta_bag] = bagging(train_y(q+1:end,:), X_auto, X_factor, c);

133 y_hat_bag = X_forecast_faar*beta_bag;

134 mse_bag(n) = mse(forecast_y, y_hat_bag);

135 k_bag(n,:) = abs(beta_bag(1+p+1:end))>0;

136

137 %% Boosting

138 M = 100; % max iteration count

139 nu = 0.5; % nu parameter

140 [beta_boost] = boosting(resid, X_factor, nu, M);

141 y_hat_boost = y_hat_auto + X_factor_forecast*beta_boost;

142 mse_boost(n) = mse(forecast_y, y_hat_boost);

143 k_boost(n,:) = abs(beta_boost)>0;

144

145 %% Random Walk

146 y_hat_rw = [train_y(end); forecast_y(1:end-1,:)];

147 mse_rw(n) = mse(forecast_y, y_hat_rw);

148 toc;

149 end

150 %% Export output

151 header = ["Method" "Avg. # vars" "Corr. # vars" "Corr. incl" "MSE Ratio" "MSE"];

152 methods = ["AR(p)" "Random Walk" "FAAR" "Ridge" "LARS" "Elastic Net" ...

"Bagging" "Boosting"];

153 mse_vec = [mean(mse_auto), mean(mse_rw) mean(mse_faar), mean(mse_ridge), ...

mean(mse_lars), mean(mse_en), mean(mse_bag), mean(mse_boost)];

154 mse_ratio = mse_vec./mean(mse_auto);

155 k_sum = [sum(k_auto,2), sum(k_rw,2), sum(k_faar,2), sum(k_ridge,2), ...

sum(k_lars,2), sum(k_en,2), sum(k_bag,2), sum(k_boost,2)];

156 k_mean = mean(k_sum);

157 k_ratio = mean(k_sum == k_star);

158 inc_mat = repmat(k_inc(1:r)', [iteration_limit,1]);

159 k_incl = [sum(k_auto.*inc_mat,2), sum(k_rw.*inc_mat,2), ...

sum(k_faar.*inc_mat,2), sum(k_ridge.*inc_mat,2), sum(k_lars.*inc_mat,2), ...

sum(k_en.*inc_mat,2), sum(k_bag.*inc_mat,2), sum(k_boost.*inc_mat,2)];

160 k_incl = k_incl == k_star;

161 k_incl = mean(k_incl);

162 p_vec = ["Correct/Mean p", mean(p_mean==(alpha>0)), mean(p_mean), "", "", ""];

163 filename = join(["sim_t", string(t), "_N", string(N), "_b", string(b), ...

"_alpha", string(alpha), "_i", string(iteration_limit), ".xls"],"");

164 writematrix([header; methods' k_mean' k_ratio' k_incl' mse_ratio' mse_vec'; ...

["", "", "", "", "", ""]; p_vec;], filename);

165 end

166 end
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167 end

Plots

1 % This program makes plots of one iteration of the simulation study.

2 % To obtain the same results as in the paper, set v=100, N=50, coeff =

3 % [[3, 1.5, 0, 0, 2, zeros(1,N-5)]',[2*ones(1,10), zeros(1,N-10)]'], t=100,

4 % b=1, alpha = 0.

5 %

6 % Author: Fabian Neefjes

7

8 %% Configuration

9 clear;

10 clc;

11 rng('default') % random number generator

12 v = 100; % size forecast sample

13 N = 50; % number of explanatory variables

14 coeff = [[3, 1.5, 0, 0, 2, zeros(1,N-5)]', [2*ones(1,10), zeros(1,N-10)]']; ...

% coefficient vector factors

15 %% Initialisation

16 t = 100; % estimation sample size

17 b = 1; % coefficient vector selected

18 beta = coeff(:,b); % set beta

19 k_star = sum(abs(beta)>0); % number of non-zero coefficients

20 alpha = 0; % first-order autoregresive component y

21 %% Load data

22 [train_X, forecast_X, train_y, forecast_y] = gen_data(t, v, N, beta, alpha); ...

% generate data

23 y = [train_y; forecast_y]; % concatenate training and ...

estimation sample

24 X = [train_X; forecast_X];

25

26 %% Generate factors

27 mX = mean(train_X); % obtain mean of training X

28 sX = std(train_X); % obatin st. dev. of training X

29 train_X_norm = (train_X - mX) ./ sX; % normalize training X

30 X_norm = (X - mX) ./ sX; % normalize all X

31

32 [pca_coeff, ~, pca_ev] = pca(train_X_norm); % compute loadings from ...

training X

33 train_factors = train_X_norm*pca_coeff; % create factors for training X

34 factors = X_norm*pca_coeff; % create factors for X

35 mF = mean(train_factors); % obtain mean of training factors

36 sF = std(train_factors); % obtain st. dev. of training ...

factors

37 train_factors_norm = (train_factors - mF) ./ sF; % standardize training factors

38 factors_norm = (factors - mF) ./ sF; % standardize all factors

39

40 %% Select number of factors

41 r = 20; % fix r = 20
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42 train_factors = train_factors(:,1:r); % choose r factors

43 factors = factors(:,1:r);

44 train_factors_norm = train_factors_norm(:,1:r);

45 factors_norm = factors_norm(:,1:r);

46

47 %% Find autoregressive order and compute AR(p) model

48 p = find_ar(train_y, 5); % find autoregressive lag

49 p = max(1,p); % set minimum p to 1

50 y_lag = lagmatrix(train_y, 1:p);

51 X_auto = [ones(t-p,1) y_lag(p+1:end,:)];

52 [beta_auto,~,auto_resid] = mvregress(X_auto,train_y(p+1:end,:));

53 resid = auto_resid;

54 q = p; % variable for start ...

estimation sample

55

56 %% Factor Augmented Autoregression

57 X_factor = train_factors(1+q-1:end-1,:);

58 X_faar = [X_auto X_factor];

59 [beta_faar] = mvregress(X_faar, train_y(q+1:end,:));

60 % Plot forecasts

61 fig_faar = figure;

62 g = gscatter(ones(1,r), beta_faar(1+p+1:end), 1:r, [],[]);

63 set(g, 'MarkerSize', 25);

64 xticks([])

65 xticklabels({});

66 xlim([0 2]);

67 ylim([-1 4]);

68 legend1 = legend('show');

69 set(legend1,'location','eastoutside', 'NumColumns', 1);

70 title(legend1,'Factor');

71 set(gca,'FontSize',16);

72 saveas(fig_faar, 'fig_faar', 'epsc');

73

74 %% Ridge regression

75 k = 0:0.01:100; % range of lambda

76 X_factor_norm = train_factors_norm(1+q-1:end-1,:);

77 [s_ridge,beta_ridge,rm_ridge,rs_ridge] = cv(@ridge2, 10, length(k), 0, ...

X_factor_norm, resid, k);

78 % Plot CV error of best lambda

79 fig_ridge_cv = cv_plot(s_ridge,rm_ridge,rs_ridge);

80 xlabel('\lambda');

81 xticks(0:0.1:1);

82 xticklabels(0:10:100);

83 set(gca,'FontSize',16);

84 saveas(fig_ridge_cv, 'fig_ridge_cv', 'epsc');

85 % Plot coefficients as a function of lambda

86 beta_ridge = real(beta_ridge'); % convert to column vector

87 fig_ridge = figure;

88 hold on

89 col=hsv(20);

90 ridge_plot = zeros(r,length(k));
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91 for i = 1:length(k)

92 ridge_plot(:,i) = ridge2(X_factor_norm, resid, k(i))';

93 end

94 ridge_plot = ridge_plot./[sF(1:r)'*ones(length(ridge_plot),1)'];

95 for i = 1:r

96 pr(i) = plot(k, ridge_plot(i,:), 'color', col(i,:));

97 end

98 ind_ridge = round(s_ridge*length(k));

99 plot([k(ind_ridge) k(ind_ridge)], [-1 4],'--', 'color', 'k', 'LineWidth', 1);

100 leg = legend(pr(1:20),'1', '2', '3', '4', '5', '6', '7', '8', '9', '10', ...

'11', '12', '13', '14', '15', '16', '17', '18', '19', '20', 'location', ...

'eastoutside');

101 title(leg, 'Factor');

102 xlabel('\lambda');

103 ylim([-1 4]);

104 set(pr, 'LineWidth', 1);

105 set(gca,'FontSize',16)

106 set(gcf,'renderer','Painters')

107 saveas(fig_ridge, 'fig_ridge', 'epsc');

108

109 %% LARS

110 [s_lars,beta_lars,rm_lars,rs_lars] = cv(@lars, 10, 1000, 1, X_factor_norm, ...

resid, 'LARS', 0,0,[],0);

111 beta_lars = real(beta_lars'); % convert to column vector

112 % Plot CV error

113 fig_lars_cv = cv_plot(s_lars,rm_lars,rs_lars);

114 xlabel('Iteration');

115 xticks([((1:r+1)-1)./r]);

116 xticklabels(0:r);

117 set(gca,'FontSize',16);

118 saveas(fig_lars_cv, 'fig_lars_cv', 'epsc');

119 % Plot coefficients as a function of iterations

120 fig_lars = figure;

121 hold on

122 lars_plot = lars(X_factor_norm, resid, 'LARS', 0,0,[],0)';

123 lars_plot = lars_plot./[sF(1:r)'*ones(length(lars_plot),1)'];

124 for i = 1:r

125 pr(i) = plot(1:length(lars_plot), lars_plot(i,:), 'color', col(i,:));

126 end

127 ind_lars = 1+(s_lars*(size(lars_plot,2)-1));

128 plot([ind_lars ind_lars], [-1 4],'--', 'color', 'k', 'LineWidth', 1)

129 leg = legend(pr(1:20),'1', '2', '3', '4', '5', '6', '7', '8', '9', '10', ...

'11', '12', '13', '14', '15', '16', '17', '18', '19', '20', 'location', ...

'eastoutside');

130 title(leg, 'Factor');

131 xlabel('Iteration');

132 ylim([-1 4]);

133 xlim([1 21]);

134 xticks(1:1:21);

135 xticklabels(0:1:20);

136 set(pr, 'LineWidth', 1);
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137 set(gca,'FontSize',16)

138 saveas(fig_lars, 'fig_lars', 'epsc');

139

140 %% Elastic net

141 lambda2 = [0, 0.01, 0.1, 1, 10, 100]; % range of lambda_2

142 best_resid = inf;

143 s_en_opt = 0;

144 en_plot2 = zeros(r, length(lambda2));

145 for i=1:length(lambda2)

146 [s_en,beta_temp,mean_resid,std_resid] = cv(@larsen, 10, 1000, 1, ...

X_factor_norm, resid, lambda2(i));

147 en_plot2(:,i) = beta_temp';

148 if mean_resid(s_en*length(mean_resid)+1) < best_resid

149 best_resid = mean_resid(s_en*length(mean_resid)+1); % store residuals

150 beta_en = beta_temp; % store ...

coefficients

151 opt_lambda2 = lambda2(i); % store lambda_2

152 opt_index = i; % store index ...

lambda_2

153 best_resid = mean_resid(s_en*length(mean_resid)+1); % store residuals

154 rm_en = mean_resid; % store mean SSR

155 rs_en = std_resid; % store std. SSR

156 s_en_opt = s_en; % index out of ...

1,000

157 end

158 end

159 beta_en = real(beta_en'); % convert to column vector

160 % Plot CV error with best lambda_2

161 fig_en_cv = cv_plot(s_en_opt,rm_en,rs_en);

162 xlabel('Iteration');

163 xticks([((1:r+1)-1)./r]);

164 xticklabels(0:r);

165 set(gca,'FontSize',14);

166 saveas(fig_en_cv, 'fig_en_cv', 'epsc');

167 % Plot coefficients as a function of iterations with best lambda_2

168 fig_en = figure;

169 hold on

170 en_plot = larsen(X_factor_norm, resid, opt_lambda2)';

171 en_plot = en_plot./[sF(1:r)'*ones(size(en_plot,2),1)'];

172 en_plot2 = en_plot2./[sF(1:r)'*ones(size(en_plot2,2),1)'];

173 for i = 1:r

174 pr(i) = plot(1:length(en_plot), en_plot(i,:), 'color', col(i,:));

175 end

176 ind_en = 1+(s_en_opt*(size(en_plot,2)-1));

177 plot([ind_en ind_en], [-1 4],'--', 'color', 'k', 'LineWidth', 1)

178 leg = legend(pr(1:20),'1', '2', '3', '4', '5', '6', '7', '8', '9', '10', ...

'11', '12', '13', '14', '15', '16', '17', '18', '19', '20', 'location', ...

'eastoutside');

179 title(leg, 'Factor');

180 ylim([-1 4]);

181 xlim([1 21]);
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182 xticks(1:1:21);

183 xticklabels(0:1:20);

184 xlabel('Iteration');

185 set(gca,'FontSize',16);

186 set(pr, 'LineWidth', 1);

187 saveas(fig_en, 'fig_en_iter', 'epsc');

188 % Plot coefficients as a function of lambda_2

189 fig_en2 = figure;

190 hold on

191 for i = 1:r

192 pr(i) = plot(0:length(lambda2)-1, en_plot2(i,:), 'color', col(i,:));

193 end

194 plot([opt_lambda2 opt_lambda2], [-1 4],'--', 'color', 'k', 'LineWidth', 1)

195 leg = legend(pr(1:20),'1', '2', '3', '4', '5', '6', '7', '8', '9', '10', ...

'11', '12', '13', '14', '15', '16', '17', '18', '19', '20', 'location', ...

'eastoutside');

196 title(leg, 'Factor');

197 xlabel('\lambda_2');

198 xlim([0 length(lambda2)-1]);

199 ylim([-1 4]);

200 xticks(0:length(lambda2)-1);

201 xticklabels(lambda2);

202 set(gca,'FontSize',16);

203 set(pr, 'LineWidth', 1);

204 saveas(fig_en2, 'fig_en_lambda', 'epsc');

205 %% Bagging

206 c = 1.96; % bagging coefficient c

207 [beta_bag] = bagging(train_y(q+1:end,:), X_auto, X_factor, c);

208 % Plot coefficients as a function of c

209 fig_bag = figure;

210 hold on

211 c_range = 0:0.01:2.5;

212 bag_plot = zeros(length(beta_bag),length(c_range));

213 for i = 1:length(c_range)

214 bag_plot(:,i) = bagging(train_y(q+1:end,:), X_auto, X_factor, c_range(i))';

215 end

216 for i = 1:r

217 pr(i) = plot(c_range, bag_plot(1+p+i,:), 'color', col(i,:));

218 end

219 plot([c c], [-1 4],'--', 'color', 'k', 'LineWidth', 1)

220 leg = legend(pr(1:20),'1', '2', '3', '4', '5', '6', '7', '8', '9', '10', ...

'11', '12', '13', '14', '15', '16', '17', '18', '19', '20', 'location', ...

'eastoutside');

221 title(leg, 'Factor');

222 xlabel('c');

223 ylim([-1 4]);

224 set(gca,'FontSize',16);

225 set(pr, 'LineWidth', 1);

226 saveas(fig_bag, 'fig_bag', 'epsc');

227

228 %% Boosting
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229 M = 100; % max iteration count

230 nu = 0.5; % step-length parameter

231 [beta_boost,boost_plot,ind_boost] = boosting(resid, X_factor, nu, M);

232 % Plot coefficients as a function of the iterations with nu = 0.5

233 fig_boost = figure;

234 hold on

235 for i = 1:r

236 pr(i) = plot(1:size(boost_plot,2), boost_plot(i,:), 'color', col(i,:));

237 end

238 plot([ind_boost ind_boost], [-1 4],'--', 'color', 'k', 'LineWidth', 1)

239 leg = legend(pr(1:20),'1', '2', '3', '4', '5', '6', '7', '8', '9', '10', ...

'11', '12', '13', '14', '15', '16', '17', '18', '19', '20', 'location', ...

'eastoutside');

240 title(leg, 'Factor');

241 xlabel('Iteration');

242 ylim([-1 4]);

243 xlim([0 100]);

244 xticks(0:20:100);

245 set(pr, 'LineWidth', 1);

246 set(gca,'FontSize',16);

247 saveas(fig_boost, 'fig_boost', 'epsc');

248 % Plot coefficients as a function of nu

249 fig_boost2 = figure;

250 hold on

251 nu_range = 0:0.01:1;

252 boost_plot2 = zeros(length(beta_boost), length(nu_range));

253 for i=1:length(nu_range)

254 boost_plot2(:,i) = boosting(resid, X_factor, nu_range(i), M);

255 end

256 for i = 1:r

257 pr(i) = plot(nu_range, boost_plot2(i,:), 'color', col(i,:));

258 end

259 plot([nu nu], [-1 4],'--', 'color', 'k', 'LineWidth', 1)

260 leg = legend(pr(1:20),'1', '2', '3', '4', '5', '6', '7', '8', '9', '10', ...

'11', '12', '13', '14', '15', '16', '17', '18', '19', '20', 'location', ...

'eastoutside');

261 title(leg, 'Factor');

262 ylim([-1 4]);

263 xlim([0 1]);

264 xticks(0:0.2:1)

265 xlabel('\nu');

266 set(gca,'FontSize',16);

267 set(pr, 'LineWidth', 1);

268 saveas(fig_boost2, 'fig_boost2', 'epsc');

Cross-Validation Plot

1 function [fig] = cv_plot(s_opt, res_mean, res_std)

2 % CV_PLOT Simple plotting function for cross-validation results.

3 % CV_PLOT(S_OPT, RES_MEAN, RES_STD) plots the mean reconstruction error
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4 % with error bars resulting from the function CV. The optimal model

5 % choice is marked with a dashed black line.

6 %

7 % Original function: @cvplot

8 % Orginal author: Karl Skoglund, IMM, DTU, kas@imm.dtu.dk

9 % Author: Fabian Neefjes

10

11 fig = figure;

12 hold on;

13 s_sub = linspace(0, 1, 17);

14 s_sub = s_sub(2:end-1);

15 t_sub = round(s_sub*length(res_mean));

16 errorbar(s_sub, res_mean(t_sub), res_std(t_sub), 'bx');

17 s = linspace(0,1,length(res_mean));

18 p = plot(s, res_mean);

19 set (p, 'LineWidth',1);

20 ax = axis;

21 line([s_opt s_opt], [ax(3) ax(4)], 'Color', 'k', 'LineStyle', '--', ...

'LineWidth', 1);

22 ylabel('Mean sum of squared residuals');

Forecasting Real GDP Growth in Nigeria

This subsection includes code that is only used to forecast real GDP growth in Nigeria.

Main File

1 % This program forecasts Nigerian GDP growth and has excel output with

2 % forecasting performance, in addition to coefficients and factor

3 % loadings for the last forecast in the sample. Also makes plots of the

4 % forecasts and Nigerian GDP growth.

5 % To obtain the same results as in the paper, run using the following

6 % configurations:

7 % 1. lag = 0, v = 5, data = 1:3

8 % 2. lag = 3, v = 5, data = 1

9 %

10 % Author: Fabian Neefjes

11

12 %% Configuration

13 clear;

14 clc;

15 rng('default') % random number generator

16 lag = 0; % additional lags included (0=F(-1), 1=F(-2), etc.)

17 v = 5; % size forecast sample

18 for data = 1:3 % 1 = Africa, 2 = other, 3 = both

19 %% Initialisation

20 p_hat = zeros(v,1); % estimated number of lags

21 r_hat = zeros(v,1); % estimated number of factoors included

22 k_auto = zeros(v,100); % # non-zero coefs

23 k_bag = zeros(v,100); % # non-zero coefs bagging with factors

24 k_boost = zeros(v,100); % # non-zero coefs boosting with factors

58



25 k_boost2 = zeros(v,500); % # non-zero coefs boosting with varibales

26 k_en = zeros(v,100); % # non-zero coefs elastic net with factors

27 k_en2 = zeros(v,500); % # non-zero coefs elastic net with variables

28 k_lars = zeros(v,100); % # non-zero coefs LARS with factors

29 k_lars2 = zeros(v,500); % # non-zero coefs LARS with variables

30 k_faar = zeros(v,100); % # non-zero coefs FAAR

31 k_ridge = zeros(v,100); % # non-zero coefs ridge with factors

32 k_rw = zeros(v,100); % # non-zero coefs random walk

33 forecast_auto = zeros(v,1); % forecasts AR

34 forecast_bag = zeros(v,1); % forecasts bagging with factors

35 forecast_boost = zeros(v,1); % forecasts boosting with factors

36 forecast_boost2 = zeros(v,1);% forecats boosting with variables

37 forecast_en = zeros(v,1); % forecasts elastic net with factors

38 forecast_en2 = zeros(v,1); % forecasrs elastic net with variables

39 forecast_faar = zeros(v,1); % forecasts FAAR

40 forecast_lars = zeros(v,1); % forecasts LARS with factors

41 forecast_lars2 = zeros(v,1); % forecasts LARS with variables

42 forecast_ridge = zeros(v,1); % foreacsts ridge with factors

43 forecast_rw = zeros(v,1); % forecasts random walk

44 %% Import data

45 dataset = importdata('AfricaGDP.xlsx'); % import African GDP growth data

46 var_africa = dataset.textdata(1,2:end)'; % extract variable names

47 X_africa = dataset.data(3:end-4,2:end); % select 1963-2016

48 y_ind = 38; % index Nigeria Real GDP growth

49 dataset = importdata('Dataset.xlsx'); % import economic indicators

50 var_other = dataset.textdata.RawData(2:end,1); % extract variable names

51 transform = dataset.textdata.RawData(2:end,2); % extract transformations

52 raw_X = dataset.data.RawData(2:end,1:end-2); % select 1981-2016

53 [vars, obs] = size(raw_X);

54 X_other = zeros(obs-1,vars);

55 for i = 1:vars % take difference or growth rate

56 for j = 1:(obs-1)

57 if transform(i) == "GR" % compute growth rate

58 X_other(j,i) = (raw_X(i,j+1) - raw_X(i,j))/ raw_X(i,j)*100;

59 elseif transform(i) == "D" % compute difference

60 X_other(j,i) = raw_X(i,j+1) - raw_X(i,j);

61 else

62 error("Type not found.");

63 end

64 end

65 end

66

67 X_other(6,8) = mean([X_other(5,9), X_other(7,9)]); % remove outlier ...

change in inventories

68 X_other(9,8) = mean([X_other(8,9), X_other(10,9)]); % remove outlier ...

change in inventories

69 X_other(12,11) = mean([X_other(11,11),X_other(13,11)]); % remove outlier ...

govt exp. on edu

70 X_other(12,12) = mean([X_other(11,12),X_other(13,12)]); % remove outlier ...

govt exp. on health

71
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72 if data == 1

73 y = X_africa(:,y_ind); % set y to ...

Nigerian GDP

74 X = [X_africa(:,1:y_ind-1) X_africa(:,y_ind+1:end)]; % set X to African ...

GDP growth without y

75 x_name = var_africa;

76 x_name = [x_name(1:y_ind-1); x_name(y_ind+1:end)]; % remove y from ...

var. names

77 elseif data == 2

78 y = X_africa(20:end,y_ind); % set y to Nigerian GDP from ...

1981-2016

79 X = X_other; % set X to economic indiactors

80 x_name = var_other;

81 else

82 y = X_africa(20:end,y_ind); % set y to Nigerian GDP from ...

1981-2016

83 X_africa = X_africa(20:end,:); % select African GDP growth from ...

1981-2016

84 X = [X_africa(:,1:y_ind-1) X_africa(:,y_ind+1:end) X_other]; % ...

concatenate data sets and remove y

85 x_name = [var_africa; var_other];

86 x_name = [x_name(1:y_ind-1); x_name(y_ind+1:end)]; % remove y ...

from var. names

87 end

88

89 y_name = var_africa(y_ind); % name dependent variable

90 t = size(X,1)-v; % size initial estimation sample

91

92 for n = 1:v

93 disp(n); % print iteration count (1, ..., v)

94 train_X = X(1:end-v+n-1,:); % X estimation sample

95 train_y = y(1:end-v+n-1,:); % y estimation sample

96 forecast_y = y(end-v+n,:); % y to be predicted

97

98 if length(train_y)>44 % check length data set

99 dum = zeros(length(train_y),6);

100 dum(end-44-n,1) = 1; % 1966 dummy

101 dum(end-43-n,2) = 1; % 1967 dummy

102 dum(end-42-n,3) = 1; % 1968 dummy

103 dum(end-41-n,4) = 1; % 1969 dummy

104 dum(end-40-n,5) = 1; % 1970 dummy

105 dum(end-6-n,6) = 1; % 2004 dummy

106 else

107 dum = zeros(length(train_y),1);

108 dum(end-6-n,1) = 1; % 2004 dummy

109 end

110 %% Generate factors

111 mX = mean(train_X); % obtain mean of training X

112 sX = std(train_X); % obatin st. dev. of training X

113 train_X_norm = (train_X - mX) ./ sX; % normalize training X

114 X_norm = (X - mX) ./ sX; % normalize all X
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115 [pca_coeff, ~, pca_ev] = pca(train_X_norm); % compute loadings from ...

training X

116 train_factors = train_X_norm*pca_coeff; % create factors for training X

117 factors = X_norm*pca_coeff; % create factors for X

118 mF = mean(train_factors); % obtain mean of training factors

119 sF = std(train_factors); % obtain st. dev. of training ...

factors

120 train_factors_norm = (train_factors - mF) ./ sF; % standardize training factors

121 factors_norm = (factors - mF) ./ sF; % standardize all factors

122

123 %% Select number of factors

124 r = number_of_factors(train_X, 20); % use adjusted BIC to find number ...

of factors

125 r_hat(n) = r; % store # of factors

126 train_factors = train_factors(:,1:r); % select first r factors

127 factors = factors(:,1:r);

128 train_factors_norm = train_factors_norm(:,1:r);

129 factors_norm = factors_norm(:,1:r);

130

131 train_factors = lagmatrix(train_factors, 0:lag); % add more lags if applicable

132 factors = lagmatrix(factors, 0:lag);

133 train_factors_norm = lagmatrix(train_factors_norm, 0:lag);

134 factors_norm = lagmatrix(factors_norm, 0:lag);

135 train_X = lagmatrix(train_X, 0:lag);

136 X_reg = lagmatrix(X, 0:lag);

137 train_X_norm = lagmatrix(train_X_norm, 0:lag);

138 X_norm = lagmatrix(X_norm, 0:lag);

139

140 %% Find autoregressive order and compute AR(p) model

141 p = find_ar(train_y,5); % find autoregressive lag

142 p = max(p,1); % set minimum p to 1

143 p_hat(n) = p; % store p

144

145 y_lag = lagmatrix(train_y, 1:p);

146 X_auto = [ones(t+n-(p+1),1) y_lag(p+1:end,:)];

147 dum_reg = dum(p+1:end,any(dum(p+1:end,:)));

148 X_auto_dum = [X_auto dum_reg];

149 [beta_auto,~,auto_resid] = mvregress(X_auto_dum,train_y(p+1:end,:));

150 q = max(p,lag+1); % variable for start of ...

estimation sample

151 dum_fc = dum(q+1:end,any(dum(q+1:end,:)));

152 X_auto = [ones(t+n-(q+1),1) y_lag(q+1:end,:) dum_fc];

153 resid = auto_resid(1+q-p:end,:);

154 y_lag = lagmatrix(y, 1:p);

155 X_forecast_auto = [ones(1,1) y_lag(t+n:t+n,:)];

156 forecast_auto(n) = X_forecast_auto*beta_auto(1:end-size(dum_reg,2));

157

158 %% Factor Augmented Autoregression

159 X_factor = train_factors(1+q-1:end-1,:);

160 X_faar = [X_auto(:,any(X_auto)) X_factor];

161 [beta_faar] = mvregress(X_faar, train_y(q+1:end,:));
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162 beta_faar = [beta_faar(1:1+p); beta_faar(2+p+size(dum_fc,2):end)];

163 X_factor_forecast = factors(t+n-1:t+n-1,:);

164 X_forecast_faar = [X_forecast_auto X_factor_forecast];

165 forecast_faar(n) = X_forecast_faar*beta_faar;

166 k_faar(n) = sum(abs(beta_faar(2+p:end))>0); % # non-zero factors

167

168 %% Ridge regression

169 k = 0:0.01:100; % range of lambda

170 X_factor_norm = train_factors_norm(1+q-1:end-1,:);

171 [s_ridge,beta_ridge,~,~] = cv(@ridge2, 10, length(k), 0, X_factor_norm, ...

resid, k);

172 beta_ridge = real(beta_ridge'); % convert to column vector

173 X_factor_norm_forecast = factors_norm(t+n-1:t+n-1,:);

174 forecast_ridge(n) = forecast_auto(n) + X_factor_norm_forecast*beta_ridge;

175 k_ridge(n,1:r*(lag+1)) = abs(beta_ridge)>0; % # non-zero factors

176

177 %% LARS

178 % ---Factors---

179 [~,beta_lars,~,~] = cv(@lars, 10, 1000, 1, X_factor_norm, resid, 'LARS', ...

0,0,[],0);

180 beta_lars = real(beta_lars'); % covert to column vector

181 forecast_lars(n) = forecast_auto(n) + X_factor_norm_forecast*beta_lars;

182 k_lars(n,1:r*(lag+1)) = abs(beta_lars)>0; % # non-zero factors

183

184 % --Variables--

185 [~,beta_lars2,~,~] = cv(@lars, 10, 1000, 1, train_X_norm(1+q-1:end-1,:), ...

resid, 'LARS', 0,0,[],0);

186 beta_lars2 = real(beta_lars2'); % convert to column vector

187 X_norm_forecast = X_norm(t+n-1:t+n-1,:);

188 forecast_lars2(n) = forecast_auto(n) + X_norm_forecast*beta_lars2;

189 k_lars2(n,1:size(X_reg,2)) = abs(beta_lars2)>0; % # non-zero factors

190

191 %% Elastic Net

192 lambda2 = [0, 0.01, 0.1, 1, 10, 100]; % range of lambda_2

193 % ---Factors---

194 best_resid = inf; % initialize to inf

195 for i=1:length(lambda2)

196 [s_en,beta_temp,mean_resid,~] = cv(@larsen, 10, 1000, 1, X_factor_norm, ...

resid, lambda2(i));

197 if mean_resid(s_en*length(mean_resid)+1) < best_resid % check if SSR ...

is lower

198 best_resid = mean_resid(s_en*length(mean_resid)+1); % store residuals

199 beta_en = beta_temp; % store ...

coefficients

200 opt_lambda2 = lambda2(i); % store lambda_2

201 opt_index = i; % store index ...

lambda_2

202 end

203 end

204 beta_en = real(beta_en'); % convert to ...

column vector
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205 forecast_en(n) = forecast_auto(n) + X_factor_norm_forecast*beta_en;

206 k_en(n,1:r*(lag+1)) = abs(beta_en)>0;

207

208 % --Variables--

209 best_resid = inf; % initalize to inf.

210 for i=1:length(lambda2)

211 [s_en,beta_temp,mean_resid,~] = cv(@larsen, 10, 1000, 1, ...

train_X_norm(1+q-1:end-1,:), resid, lambda2(i));

212 if mean_resid(s_en*length(mean_resid)+1) < best_resid % check if SSR ...

is lower

213 best_resid2 = mean_resid(s_en*length(mean_resid)+1); % store residuals

214 beta_en2 = beta_temp; % store ...

coefficients

215 opt_lambda2 = lambda2(i); % store lambda_2

216 opt_index2 = i; % store index ...

lambda_2

217 end

218 end

219 beta_en2 = real(beta_en2'); % convert to ...

column vector

220 forecast_en2(n) = forecast_auto(n) + X_norm_forecast*beta_en2;

221 k_en2(n,1:size(X_reg,2)) = abs(beta_en2)>0;

222 %% Bagging

223 c = 1.96; % bagging parameter

224 [beta_bag] = bagging(train_y(q+1:end,:), X_auto, X_factor, c);

225 beta_bag = [beta_bag(1:1+p); beta_bag(2+p+size(dum_fc,2):end)];

226 forecast_bag(n) = X_forecast_faar*beta_bag;

227 k_bag(n,1:r*(lag+1)) = abs(beta_bag(2+p:end))>0;

228

229 %% Boosting

230 M = 100; % max iteration count

231 nu = 0.5; % step-length parameter

232

233 % ---Factors---

234 [beta_boost] = boosting(resid, X_factor, nu, M);

235 forecast_boost(n) = forecast_auto(n) + X_factor_forecast*beta_boost;

236 k_boost(n,1:r*(lag+1)) = abs(beta_boost)>0;

237

238 % --Variables---

239 [beta_boost2] = boosting(resid, train_X(1+q-1:end-1,:), nu, M);

240 forecast_boost2(n) = forecast_auto(n) + X_reg(t+n-1:t+n-1,:)*beta_boost2;

241 k_boost2(n,1:size(X_reg,2)) = abs(beta_boost2)>0;

242

243 %% Random Walk

244 forecast_rw(n) = train_y(end);

245

246 end

247 %% Compute MSE

248 mse_auto = mse(y(end-v+1:end),forecast_auto);

249 mse_faar = mse(y(end-v+1:end),forecast_faar);

250 mse_ridge = mse(y(end-v+1:end),forecast_ridge);
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251 mse_lars = mse(y(end-v+1:end),forecast_lars);

252 mse_lars2 = mse(y(end-v+1:end),forecast_lars2);

253 mse_en = mse(y(end-v+1:end),forecast_en);

254 mse_en2 = mse(y(end-v+1:end),forecast_en2);

255 mse_bag = mse(y(end-v+1:end),forecast_bag);

256 mse_boost = mse(y(end-v+1:end),forecast_boost);

257 mse_boost2 = mse(y(end-v+1:end),forecast_boost2);

258 mse_rw = mse(y(end-v+1:end),forecast_rw);

259

260 %% Export output

261 header = ["Method" "Average k" "MSE" "MSE Ratio"];

262 methods = ["AR(1)" "Random Walk" "LARS" "Elastic Net" "Boosting" "FAAR (F)" ...

"Ridge (F)" "LARS (F)" "Elastic Net (F)" "Bagging (F)" "Boosting (F)"];

263 mse_vec = [mse_auto, mse_rw, mse_lars2, mse_en2, mse_boost2, mse_faar, ...

mse_ridge, mse_lars, mse_en, mse_bag, mse_boost];

264 mse_ratio = mse_vec./mse_auto;

265 k_sum = [sum(k_auto,2), sum(k_rw,2), sum(k_lars2,2), sum(k_en2,2), ...

sum(k_boost2,2), sum(k_faar,2), sum(k_ridge,2), sum(k_lars,2), ...

sum(k_en,2), sum(k_bag,2), sum(k_boost,2)];

266 k_mean = mean(k_sum);

267 p_vec = ["Mean p", mean(p_hat), "", ""];

268 r_vec = ["Mean r", mean(r_hat), "", ""];

269

270 % output forecast performance

271 filename_model = join(["emp_model" string(data), "L", string(lag+1), ...

".xls"], "");

272 writematrix([header; methods' k_mean' mse_vec' mse_ratio'; ["", "", "", ""]; ...

p_vec; r_vec], filename_model);

273

274 % output factor loadings

275 for i=1:size(pca_coeff,2)

276 factor_str(i) = join(["F", string(i)], "");

277 end

278 filename_factor = join(["emp_factor" string(data), "L", string(lag+1), ...

".xls"], "");

279 writematrix(["Variable", factor_str; x_name string(pca_coeff); "Eigenvalue" ...

pca_ev'], filename_factor);

280

281 % output coefficients of benchmark models and models with variables

282 factor_str2 = factor_str(1:r);

283 x_name_str = x_name;

284 for i=1:lag

285 factor_str2 = [factor_str2 factor_str(1:r) + " L" + string(i+1)];

286 x_name_str = [x_name_str; x_name + " L" + string(i+1)];

287 end

288 for i=1:p

289 ar_str(i) = join(["AR(", string(i), ")"], "");

290 end

291 filename_coeff_X = join(["emp_coeff_X" string(data), "L", string(lag+1), ...

".xls"], "");

292 writematrix([["Coefficient"; "Constant"; ar_str; x_name_str], ...
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[methods(:,1:5); [beta_auto(1:end-size(dum_reg,2)); ...

zeros(size(X_reg,2),1)], [0; 1; zeros(size(X_reg,2),1)], [zeros(p+1,1); ...

beta_lars2], [zeros(p+1,1); beta_en2], [zeros(p+1,1); beta_boost2]]], ...

filename_coeff_X);

293

294 % output coefficients of factor models

295 filename_coeff_F = join(["emp_coeff_F" string(data), "L", string(lag+1), ...

".xls"], "");

296 writematrix([["Coefficient"; "Constant"; ar_str; factor_str2'], ...

[methods(:,6:end); beta_faar, [zeros(p+1,1); beta_ridge], [zeros(p+1,1); ...

beta_lars], [zeros(p+1,1); beta_en], beta_bag, [zeros(p+1,1); ...

beta_boost]]], filename_coeff_F);

297 clear ar_str factor_str factor_str2 x_name_str

298 %% Plot Forecasts

299 col=hsv(20);

300 plotname = join(["forecast" string(data), "L", string(lag+1)], "");

301 fig = figure;

302 hold on

303 x_plot = (2016-v+1:2016)';

304 fplot = plot(x_plot, y(end-v+1:end), '--', x_plot, forecast_auto, x_plot, ...

forecast_rw, x_plot, forecast_lars2, x_plot, forecast_en2, x_plot, ...

forecast_boost2, x_plot, forecast_faar, x_plot, forecast_ridge, x_plot, ...

forecast_lars, x_plot, forecast_en, x_plot, forecast_bag, x_plot, ...

forecast_boost); % plot forecasts

305 lgd = legend(["Actual" methods], 'location', 'eastoutside');

306 set(lgd,'FontSize',20);

307 xticks(2016-v+1:2016);

308 ylabel('GDP Growth %');

309 xlabel('Year');

310 ylim([-2 12]);

311 fplot(1).Color = 'k';

312 fplot(10).Color = col(17,:);

313 fplot(11).Color = col(20,:);

314 fplot(12).Color = col(15,:);

315 set(gca,'FontSize',14);

316 set(fplot, 'LineWidth', 1);

317 set(gcf,'position',[10,10,900,500]);

318 saveas(fig, plotname, 'epsc');

319 %% Plot GDP Growth

320 if data == 1

321 % Without oil price

322 fig2 = figure;

323 hold on

324 yplot = plot(1963:2016, X_africa(:,y_ind), 'Color', 'k'); % plot y

325 xlim([1963 2016]);

326 xticks(1965:5:2015);

327 yticks(-20:5:40);

328 ylabel('GDP Growth %');

329 xlabel('Year');

330 grid on

331 set(gca,'FontSize',16);
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332 set(yplot, 'LineWidth', 1);

333 set(gcf,'position',[10,10,1000,300]);

334 saveas(fig2, 'NigeraGDPgrowth','epsc');

335

336 % With oil price

337 fig3 = figure;

338 set(fig3,'defaultAxesColorOrder',([0, 0, 0; 0.5, 0.5, 0.5]));

339 hold on

340 yyaxis left

341 p1 = plot(1963:2016, X_africa(:,y_ind), 'Color', 'k'); % plot y

342 xlim([1963 2016]);

343 xticks(1965:5:2015);

344 yticks(-20:5:40);

345 ylabel('GDP Growth %');

346 xlabel('Year');

347 grid on

348 yyaxis right

349 p2 = plot(1982:2016, X_other(:,29), '--', 'Color', [.5,.5,.5]); % plot oil

350 ylabel('% change US$/barrel Brent Crude');

351 set(gca,'FontSize',16);

352 set(p1, 'LineWidth', 1);

353 set(p2, 'LineWidth', 1);

354 set(gcf,'position',[10,10,1000,300]);

355 saveas(fig3, 'NigeraGDPgrowth_oil','epsc');

356 end

357 end

Number of Factors

1 function [r] = number_of_factors(X,kmax)

2 % NUMBER_OF_FACTORS Computes the number of factors to be used.

3 % [r] = number_of_factors(X, kmax) computes the number of factors r to be

4 % used when applying PCA to T x N matrix X based on an adjusted BIC.

5 % Paramter kmax denotes the maximum amount of factors to be considered.

6 %

7 % Author: Fabian Neefjes

8 % Reference: 'Determining the Number of Factors in Approximate Factor

9 % Models' by Bai and Ng, 2002

10

11 [t, n] = size(X);

12 mX = mean(X); % mean of X

13 sX = std(X); % st. dev. of X

14 X = (X - mX) ./ sX; % normalize X

15 pca_coeff = pca(X); % apply PCA

16 factors = X*pca_coeff; % obtain factors

17

18 if kmax>size(factors,2)

19 error('The input kmax cannot exceed the number of principal components.');

20 end

21
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22 sigma_hat = 0;

23 for l = 1:n % compute SSR of kmax

24 [~, ~, k_resid] = mvregress(factors(:,1:kmax), X(:,l));

25 sigma_hat = sigma_hat + sum(k_resid.^2);

26 end

27 sigma_hat = sigma_hat/(n*t); % scale SSR of kmax

28 bic = zeros(kmax,1);

29

30 for i=1:kmax

31 ssr = 0;

32 for j = 1:n % compute SSR for each x

33 [~, ~, resid] = mvregress(factors(:,1:i),X(:,j));

34 ssr = ssr + sum(resid.^2);

35 end

36 bic(i) = ssr/(n*t) + i*sigma_hat*((n+t-i)*log(n*t)/(n*t)); % compute BIC

37 end

38 [~,r] = min(bic); % find minimum BIC and return index

Pie Chart Nigeria GDP Sectors

1 % This program creates a pie chart with a sectoral division of Nigeria's

2 % GDP over time.

3

4 %% Import data

5 dataset = importdata('piedata.xlsx'); % GDP data by sector

6 labels = dataset.textdata(2:7,1)'; % extract names

7 X = dataset.data(2:7,1:end); % select 1981-2016

8 X81 = X(:,1); % 1981

9 X99 = X(:,19); % 1999

10 X16 = X(:,36); % 2016

11

12 %% Plot Pie

13 fig = figure;

14 L = ['' '' '' '' '' ''];

15

16 % Plot 1981

17 ax1 = subplot(1,3,1);

18 H1 = pie(ax1,X81);

19 title(ax1,'1981');

20 T1 = H1(strcmpi(get(H1,'Type'),'text'));

21 P1 = cell2mat(get(T1,'Position'));

22 set(T1,{'Position'},num2cell(P1*0.6,2))

23 text(P1(:,1),P1(:,2),L(:))

24 set(gca,'FontSize',16);

25 set(T1, 'FontSize',16);

26

27 % Plot 1999

28 ax2 = subplot(1,3,2);

29 H2 = pie(ax2,X99);
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30 title(ax2,'1999');

31 T2 = H2(strcmpi(get(H2,'Type'),'text'));

32 P2 = cell2mat(get(T2,'Position'));

33 set(T2,{'Position'},num2cell(P2*0.6,2))

34 text(P2(:,1),P2(:,2),L(:))

35 set(gca,'FontSize',16);

36 set(T2, 'FontSize',16);

37

38 % Plot 2016

39 ax3 = subplot(1,3,3);

40 H3 = pie(ax3,X16);

41 title(ax3,'2016')

42 T3 = H3(strcmpi(get(H3,'Type'),'text'));

43 P3 = cell2mat(get(T3,'Position'));

44 set(T3,{'Position'},num2cell(P3*0.6,2))

45 text(P3(:,1),P3(:,2),L(:))

46 set(gca,'FontSize',16);

47 set(T3, 'FontSize',16);

48

49 % Export output

50 colormap('parula');

51 set(gcf,'position',[10,10,1000,300])

52 legend(labels);

53 set(legend,'Position',[0.295750003586213 0.0439999801251623 0.43 0.115],...

54 'NumColumns',5);

55 saveas(fig, 'NigeriaGDPpie','epsc');
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Appendix B

This appendix provides an overview of the African GDP growth data set in Table 6 and the economic
indicator data set in Table 7.

Table 6: Annual real GDP growth rates (%) and correlation with Nigeria of African countries from
1963-2016.

1963-1981 1982-1999 2000-2016 1963-2016

GDP St. Corr. GDP St. Corr. GDP St. Corr. GDP St. Corr.
Growth Dev. Nig. Growth Dev. Nig. Growth Dev. Nig. Growth Dev. Nig.

Algeria [DZA] 7.67 9.82 0.28 2.22 2.73 0.00 3.68 1.45 0.61 4.59 6.43 0.24
Angola [AGO] 1.99 4.23 -0.42 2.24 8.05 0.13 7.09 7.78 -0.04 3.68 7.11 0.02
Benin [BEN] 3.56 3.36 -0.24 3.54 3.59 -0.18 4.24 1.64 -0.11 3.77 2.98 -0.16
Botswana [BWA] 12.33 6.37 0.31 8.19 4.61 0.25 4.27 4.43 0.11 8.41 6.13 0.13
Burkina Faso [BFA] 3.00 2.92 -0.05 4.64 4.06 -0.44 5.56 1.75 0.40 4.35 3.20 -0.05
Burundi [BDI] 4.68 6.54 -0.07 0.86 5.16 -0.27 2.68 2.78 -0.19 2.78 5.29 -0.10
Cabo Verde [CPV] 4.75 4.25 0.01 8.04 4.95 0.06 4.98 4.76 0.01 5.92 4.81 -0.05
Cameroon [CMR] 5.37 7.52 0.12 1.57 5.54 -0.41 4.31 1.25 -0.15 3.77 5.67 -0.01
Central African Republic [CAF] 1.58 2.95 0.30 1.57 5.03 -0.04 0.25 9.95 -0.18 1.16 6.43 -0.04
Chad [TCD] -0.71 6.44 0.16 4.49 8.64 -0.13 7.42 9.20 0.18 3.58 8.67 0.12
Comoros [COM] 4.66 3.35 -0.07 2.00 3.74 -0.17 2.62 2.25 -0.06 3.13 3.35 -0.06
Congo, Dem. Rep. [COD] 1.61 4.35 0.09 -2.29 5.12 -0.01 4.79 4.06 0.01 1.31 5.30 0.17
Congo, Rep. [COG] 5.89 6.27 0.13 2.29 6.44 0.06 4.28 3.13 -0.28 4.19 5.65 0.04
Djibouti [DJI] 2.75 3.41 0.19 0.31 3.28 -0.16 4.26 1.64 -0.24 2.41 3.30 0.15
Egypt, Arab Rep. [EGY] 5.77 4.02 -0.04 4.93 2.02 -0.14 4.23 1.72 -0.11 5.00 2.85 -0.08
Equatorial Guinea [GNQ] 6.34 18.05 0.09 20.44 36.61 0.07 11.54 18.31 0.05 12.68 26.02 0.03
Eritrea [ERI] 3.27 8.36 0.00 8.49 5.27 -0.25 2.31 4.59 -0.35 4.71 6.82 -0.22
Ethiopia [ETH] -0.33 6.28 -0.23 2.52 7.39 0.08 8.96 4.02 -0.77 3.54 7.13 -0.08
Gabon [GAB] 7.61 13.97 0.01 1.99 6.97 0.24 2.42 3.31 -0.13 4.10 9.59 0.02
Gambia, The [GMB] 4.85 3.63 0.17 3.39 2.76 0.24 3.41 3.56 0.13 3.91 3.35 0.17
Ghana [GHA] 1.31 5.29 0.17 3.64 3.62 0.37 6.09 2.75 -0.06 3.59 4.46 0.22
Guinea [GIN] 2.83 1.28 0.17 3.73 1.35 0.13 3.70 2.03 -0.31 3.40 1.60 -0.01
Guinea-Bissau [GNB] 0.92 7.49 0.34 2.22 8.31 0.21 3.15 2.53 -0.37 2.06 6.63 0.14
Ivory Coast [CIV] 7.15 6.57 0.46 1.63 3.14 -0.05 2.94 4.54 -0.34 3.99 5.46 0.17
Kenya [KEN] 6.89 6.08 -0.16 3.07 2.21 -0.01 4.56 2.37 -0.27 4.89 4.29 -0.10
Lesotho [LSO] 6.09 9.37 -0.05 4.36 2.30 0.19 3.81 1.85 0.07 4.79 5.79 -0.02
Liberia [LBR] 3.28 3.68 0.15 -1.54 33.55 -0.01 4.30 11.03 -0.74 1.99 20.22 -0.05
Libya [LBY] -0.35 13.36 -0.03 -0.98 7.59 0.06 2.45 31.64 0.14 0.32 19.58 0.09
Madagascar [MDG] 1.42 4.39 0.18 1.60 2.54 0.29 2.93 5.03 0.18 1.95 4.08 0.23
Malawi [MWI] 5.11 5.53 -0.39 3.52 5.90 0.12 4.28 3.36 0.16 4.32 5.04 -0.06
Mali [MLI] 3.77 5.33 0.19 3.76 6.13 -0.19 4.84 3.71 0.22 4.10 5.11 0.11
Mauritania [MRT] 4.76 8.12 0.01 2.34 3.98 0.00 4.42 4.62 0.11 3.85 5.92 0.08
Mauritius [MUS] 7.33 5.87 0.34 5.51 2.15 -0.21 4.33 2.04 -0.13 5.78 4.00 0.14
Morocco [MAR] 6.28 3.62 0.24 4.37 5.27 -0.27 4.26 1.76 0.22 5.01 3.90 0.04
Mozambique [MOZ] 5.45 3.42 0.24 4.12 9.62 0.33 7.22 2.32 -0.05 5.56 6.07 0.23
Namibia [NAM] 5.34 1.36 0.25 2.48 2.73 0.03 4.73 2.85 -0.18 4.20 2.65 0.11
Niger [NER] 1.64 6.91 -0.26 1.15 6.11 -0.37 4.75 3.56 0.03 2.45 5.88 -0.15
Nigeria [NGA] 4.35 10.60 0.35 1.16 5.83 0.11 7.00 7.36 0.05 4.12 8.43 0.30
Rwanda [RWA] 4.41 7.36 0.05 1.98 16.05 0.07 7.91 2.44 -0.50 4.70 10.42 0.07
Sao Tome and Principe [STP] 7.92 8.88 -0.17 0.63 3.66 -0.10 4.70 2.32 0.23 4.48 6.48 0.02
Senegal [SEN] 2.13 4.92 0.08 2.73 3.16 0.09 4.20 1.75 0.20 2.98 3.62 0.13
Seychelles [SYC] 6.12 8.27 0.19 4.58 4.44 0.28 3.24 4.87 -0.42 4.70 6.17 0.05
Sierra Leone [SLE] 3.29 2.77 0.25 -1.26 6.14 0.00 6.24 10.04 0.34 2.70 7.39 0.27
Somalia [SOM] 3.07 10.57 0.02 3.47 10.97 -0.02 0.54 5.21 -0.07 2.41 9.30 -0.03
South Africa [ZAF] 4.55 2.15 -0.11 1.35 2.22 0.62 2.96 1.86 0.05 2.98 2.45 0.16
Sudan [SDN] 2.93 6.62 0.02 3.84 5.50 0.29 5.27 3.32 0.28 3.97 5.37 0.14
Tanzania [TZA] 3.82 1.25 0.12 3.57 1.90 -0.03 6.64 1.18 0.04 4.62 2.00 0.22
Togo [TGO] 5.72 5.97 -0.26 2.29 7.28 0.19 3.00 2.35 0.09 3.72 5.75 -0.02
Tunisia [TUN] 6.48 4.27 0.15 4.08 2.83 0.20 3.35 2.09 0.19 4.69 3.46 0.13
Uganda [UGA] 4.70 5.35 0.33 5.46 3.64 0.36 6.39 2.19 0.14 5.49 3.99 0.32
Zambia [ZMB] 3.19 5.82 -0.05 1.02 3.84 0.20 6.35 2.10 0.20 3.46 4.72 0.16
Zimbabwe [ZWE] 5.39 7.01 0.14 3.03 4.58 -0.10 0.04 9.94 -0.49 2.92 7.62 -0.19

Average 4.31 6.07 0.05 3.16 6.16 0.01 4.50 4.59 -0.06 3.98 6.31 0.04
Minimum -0.71 1.25 -0.42 -2.29 1.35 -0.44 0.04 1.18 -0.77 0.32 1.60 -0.22
Maximum 12.33 18.05 0.46 20.44 36.61 0.62 11.54 31.64 0.61 12.68 26.02 0.32

The correlation is the one year lagged correlation of economic growth of the African country with Nigeria. Nigeria is excluded from the average correlation.
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Table 7: Overview of economic indicators from 1982-2016.

Series Trans. Type Mean St. Dev. Notes Source

Monthly average official ex-
change rate (₦/$US)

GR Exchange Rate 25.98 59.59 2018 SB, CBN

Real effective exchange rate GR Exchange Rate 1.81 28.59 Base year 2010 WDI, World Bank
Commercial banks’ loans
and advances (₦ billion)

GR Interest Rate 26.90 28.88 2018 SB, CBN

Deposit rate 3 months (%) D Interest Rate 0.06 3.28 Period weighted average 2018 SB, CBN
Deposit rate over 12 months
(%)

D Interest Rate -0.03 3.93 Period weighted average 2018 SB, CBN

Interest rate spread (%) D Interest Rate 0.18 1.83 Lending rate minus deposit rate WDI, World Bank
Lending interest rate (%) D Interest Rate 0.23 3.18 WDI, World Bank
Changes in inventories (₦) GR Investment 23.61 81.79 At constant local currency, outliers in

1986 and 1989 set to average growth
rate of the preceding and proceeding
year

WDI, World Bank

Gross fixed capital forma-
tion (₦)

GR Investment -0.35 13.94 At constant local currency WDI, World Bank

Total savings (₦ billion) GR Investment 25.14 17.08 2018 SB, CBN
Government expenditure on
education (₦ billion)

GR Labour, Hu-
man Capital

30.71 104.26 Outlier for 1993 set to average growth
rate of the preceding and proceeding
year

2018 SB, CBN

Government expenditure on
health (₦ billion)

GR Labour, Hu-
man Capital

42.37 163.74 Outlier in 1993 set to average growth
rate of the preceding and proceeding
year

2018 SB, CBN

Gross enrolment ratio, pri-
mary, both sexes (%)

D Labour, Hu-
man Capital

-0.52 4.97 Missing data for 1996, 1997, and 2015
set to the average level of the preceding
and proceeding year

Edstats Query,
World Bank

Labor force, total GR Labour, Hu-
man Capital

2.60 0.21 Missing data for 1981 until 1989 labour
force computed assuming same growth
rate as population from 15-64∗

WDI, World Bank

Money supply (M1) (₦ bil-
lion)

GR Money Supply 23.48 17.85 2018 SB, CBN

Total monetary liabilities
(M2) (₦ billion)

GR Money Supply 23.99 15.02 2018 SB, CBN

All Shares Index GR Other 22.04 34.45 December observations, missing data
for 1984 set to January 1985, for 1981
until 1983 set to base level 100

2018 SB, CBN

Inflation, consumer prices
(%)

D Other -0.15 15.82 WDI, World Bank

Government expenditure (₦
billion)

GR Output 22.29 27.43 2018 SB, CBN

Households and NPISHs fi-
nal consumption expendi-
ture (₦)

GR Output 4.67 16.17 At constant local currency WDI, World Bank

Real GDP - agriculture (₦
billion)

GR Output 6.06 9.41 At 2010 constant prices 2018 SB, CBN

Real GDP - construction (₦
billion)

GR Output 3.74 10.53 At 2010 constant prices 2018 SB, CBN

Real GDP - crude petroleum
& natural gas (₦ billion)

GR Output 0.75 9.03 At 2010 constant prices 2018 SB, CBN

Real GDP - manufacturing
(₦ billion)

GR Output 4.78 11.94 At 2010 constant prices 2018 SB, CBN

Real GDP - services (₦ bil-
lion)

GR Output 5.73 4.39 At 2010 constant prices 2018 SB, CBN

Real GDP - trade (₦ billion) GR Output 5.76 7.34 At 2010 constant prices 2018 SB, CBN
Current account (₦ billion) GR Trade 24.51 164.11 Includes estimates of informal cross-

border trade
2018 SB, CBN

Direct Investment (₦ mil-
lion)

GR Trade 54.67 132.14 2018 SB, CBN

Global price of Brent crude
oil (US$/barrel)

GR Trade 3.91 25.97 Yearly average based on monthly price FRED Economic
Database, Federal
Reserve Bank of
St. Louis

Imports (₦ billion) GR Trade 31.09 71.05 Includes estimates of informal cross-
border trade

2018 SB, CBN

India GDP (US$) GR Trade 6.11 1.99 At 2010 constant US$ WDI, World Bank
Non-oil exports (₦ billion) GR Trade 40.06 85.96 Includes estimates of informal cross-

border trade
2018 SB, CBN

Oil exports (₦ billion) GR Trade 33.97 76.89 Includes estimates of informal cross-
border trade

2018 SB, CBN

United States GDP (US$) GR Trade 2.71 1.92 At 2010 constant US$ WDI, World Bank
World GDP (US$) GR Trade 2.92 1.29 At 2010 constant US$ WDI, World Bank
∗Population from 15-64 used to impute the labour force is retrieved from the WDI database from the World Bank.
Summary statistics are of transformed variables, where GR indicates the annual percentage growth rate is used and D indicates the difference is used.
The source 2018 SB, CBN refers to the 2018 Statistical Bulletin of the Central bank of Nigeria and WDI refers to the World Development Indicators
database of the World Bank.
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Appendix C

This appendix includes coefficient estimates and factor loadings of the models used to forecast real
Nigerian GDP growth. Tables 8, 9, and 10 correspond to Section 5.3.1, Tables 11 and 12 correspond to
Section 5.3.2, and Tables 13 and 14 correspond to results of Section 5.3.3.

Table 8: Coefficient estimates used to forecast real GDP growth in Nigeria with African GDP growth
data using one lag.

Benchmark Variable Factor

AR(1) LARS Elastic Net Boosting FAAR Ridge LARS Elastic Net Bagging Boosting

Constant 2.75 3.43 3.43
AR(1) 0.13 0.01 0.01
Benin [BEN] -0.31
Burkina Faso [BFA] -0.14
Eritrea [ERI] -0.14
Guinea-Bissau [GNB] 0.18
Kenya [KEN] -0.14
Mali [MLI] 0.03
Morocco [MAR] -0.05
Mozambique [MOZ] 0.11
Niger [NER] -0.17
Senegal [SEN] 0.06
Seychelles [SYC] 0.23
Sierra Leone [SLE] 0.15
Somalia [SOM] 0.03
Uganda [UGA] 0.00 0.20 0.16
Zimbabwe [ZWE] -0.04
Factor 1 -0.70 -0.39 0.00 0.00 -0.23
Factor 2 0.11 0.03
Factor 3 -0.03 -0.01
Factor 4 0.17 0.09
Factor 5 -0.38 -0.14
Factor 6 0.36 0.23

Coefficients are estimated with data from 1963 until 2015 to forecast 2016. Variables and factors are normalised for ridge regression, LARS and elastic
net. Variables not selected by any model are not shown. The random walk model is omitted, as no coefficients are estimated.
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Table 9: Coefficient estimates used to forecast real GDP growth in Nigeria with African GDP growth
data using four lags.

Benchmark Variable Factor

AR(1) LARS Elastic Net Boosting FAAR Ridge LARS Elastic Net Bagging Boosting

Constant 2.75 4.02 4.02
AR(1) 0.13 -0.10 -0.10
Benin [BEN] L1 -0.22
Chad [TCD] L1 -0.02
Guinea-Bissau [GNB] L1 0.16
Ivory Coast [CIV] L1 0.03
Kenya [KEN] L1 -0.03
Mozambique [MOZ] L1 0.01
Niger [NER] L1 -0.15
Rwanda [RWA] L1 0.01
Seychelles [SYC] L1 0.09
Sierra Leone [SLE] L1 0.06
Sudan [SDN] L1 0.04
Togo [TGO] L1 -0.03
Angola [AGO] L2 0.02
Benin [BEN] L2 -0.06
Burundi [BDI] L2 -0.04
Chad [TCD] L2 0.07
Ethiopia [ETH] L2 0.16
Guinea-Bissau [GNB] L2 -0.07
Liberia [LBR] L2 0.01
Malawi [MWI] L2 -0.02
Mali [MLI] L2 -0.03
Niger [NER] L2 0.10
Senegal [SEN] L2 -0.26
Seychelles [SYC] L2 -0.05
Somalia [SOM] L2 -0.02
Uganda [UGA] L2 0.02 3.52
Algeria [DZA] L3 -0.16
Chad [TCD] L3 -0.02
Congo, Rep. [COG] L3 -0.02
Eritrea [ERI] L3 -0.09
Ethiopia [ETH] L3 0.01
Gabon [GAB] L3 -0.01
Liberia [LBR] L3 0.01
Madagascar [MDG] L3 0.15
Mauritius [MUS] L3 0.16
Mozambique [MOZ] L3 0.14
Senegal [SEN] L3 0.02
Sudan [SDN] L3 0.10
Togo [TGO] L3 -0.09
Zimbabwe [ZWE] L3 0.01
Angola [AGO] L4 -0.02
Central African Republic [CAF] L4 0.12
Egypt, Arab Rep. [EGY] L4 -0.07
Equatorial Guinea [GNQ] L4 0.00
Eritrea [ERI] L4 -0.02
Ethiopia [ETH] L4 -0.04
Lesotho [LSO] L4 -0.05
Mali [MLI] L4 0.11
Niger [NER] L4 -0.17
Senegal [SEN] L4 0.15
Somalia [SOM] L4 0.02
Sudan [SDN] L4 -0.06
Zambia [ZMB] L4 0.08
Zimbabwe [ZWE] L4 0.03
Factor 1 L1 0.58 -0.10
Factor 2 L1 1.90 0.10
Factor 3 L1 -0.04 0.02
Factor 4 L1 0.92 0.13
Factor 5 L1 -1.49 -0.15
Factor 6 L1 0.09 0.20
Factor 1 L2 -2.25 -0.47 -1.64 -0.25
Factor 2 L2 -0.81 -0.24
Factor 3 L2 0.83 -0.05
Factor 4 L2 0.01 -0.15
Factor 5 L2 0.37 0.02
Factor 6 L2 -0.81 -0.25
Factor 1 L3 0.57 -0.42 -0.01 -0.10 -0.39
Factor 2 L3 -1.31 -0.25
Factor 3 L3 -0.41 -0.09
Factor 4 L3 0.52 0.09
Factor 5 L3 -0.55 -0.28
Factor 6 L3 1.30 0.22
Factor 1 L4 0.09 -0.31
Factor 2 L4 -0.63 -0.16
Factor 3 L4 -0.21 0.04
Factor 4 L4 0.65 0.12
Factor 5 L4 -1.33 -0.26
Factor 6 L4 0.09 0.03

Coefficients are estimated with data from 1963 until 2015 to forecast 2016. Variables and factors are normalised for ridge regression, LARS and elastic net. Variables
not selected by any model are not shown. The random walk model is omitted, as no coefficients are estimated. The lag order indicated with L.
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Table 10: Factor loadings of the first twenty factors generated using African GDP growth data.

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20

Algeria [DZA] -0.08 0.20 -0.12 0.14 -0.01 -0.09 -0.01 -0.11 -0.02 0.28 0.22 -0.03 0.09 -0.22 0.05 0.12 0.09 0.24 -0.01 -0.20
Angola [AGO] -0.25 -0.08 -0.01 0.02 0.23 -0.18 -0.02 0.06 -0.07 -0.09 -0.01 -0.11 0.08 0.03 0.20 0.02 0.11 -0.10 -0.18 -0.02
Benin [BEN] -0.05 -0.03 0.04 -0.14 0.10 0.10 0.12 -0.10 -0.02 0.46 0.16 -0.05 -0.04 -0.17 -0.07 0.09 -0.02 -0.14 0.04 0.33
Botswana [BWA] 0.01 0.32 -0.04 -0.04 0.01 0.15 -0.04 0.01 -0.12 -0.17 -0.06 0.05 -0.13 0.04 0.13 0.02 0.25 0.06 -0.29 -0.08
Burkina Faso [BFA] -0.12 -0.25 -0.04 0.17 -0.08 0.18 -0.12 0.11 -0.18 0.13 -0.04 -0.21 0.05 0.17 -0.10 -0.09 0.09 -0.19 -0.04 -0.13
Burundi [BDI] -0.07 0.07 0.05 0.02 -0.17 -0.16 0.02 0.30 -0.11 0.12 -0.19 0.29 -0.20 -0.24 -0.10 -0.11 -0.01 0.09 -0.13 0.05
Cabo Verde [CPV] 0.03 -0.20 -0.18 -0.17 0.11 -0.14 0.30 -0.07 -0.13 -0.07 -0.10 0.04 -0.03 -0.05 0.07 -0.18 0.11 0.00 -0.17 0.09
Cameroon [CMR] 0.02 0.08 -0.01 0.07 0.32 -0.06 -0.15 0.13 -0.28 0.11 0.18 0.21 0.18 0.08 0.02 -0.22 -0.12 -0.04 0.02 0.00
Central African Republic [CAF] -0.02 -0.03 -0.16 0.01 -0.02 0.00 0.02 -0.01 -0.27 -0.03 -0.16 -0.29 0.23 -0.09 0.04 -0.16 0.04 0.29 0.35 0.33
Chad [TCD] -0.06 -0.17 -0.01 0.10 -0.01 -0.23 -0.25 0.08 -0.18 -0.12 0.16 -0.20 -0.08 -0.07 -0.01 -0.04 -0.02 0.17 -0.32 -0.04
Comoros [COM] 0.10 0.16 0.11 0.13 0.21 0.16 0.25 0.21 0.05 0.12 -0.18 -0.01 -0.08 -0.09 0.03 0.03 0.10 0.01 0.13 -0.10
Congo, Dem. Rep. [COD] -0.23 0.12 0.23 -0.06 0.14 -0.11 -0.25 0.12 -0.08 -0.08 -0.03 0.01 0.09 -0.02 0.05 0.01 0.08 0.06 0.13 0.08
Congo, Rep. [COG] 0.05 0.14 0.32 0.15 0.07 0.09 0.02 -0.16 -0.25 0.09 -0.05 -0.10 0.01 0.10 -0.01 -0.19 0.02 0.00 -0.01 -0.13
Djibouti [DJI] -0.17 0.15 0.29 0.03 0.08 -0.16 -0.17 -0.01 0.03 -0.03 -0.13 -0.16 -0.06 -0.25 0.03 -0.05 -0.05 0.11 0.04 -0.08
Egypt, Arab Rep. [EGY] 0.07 0.05 -0.13 0.22 0.10 -0.19 0.22 0.11 -0.09 0.16 -0.14 0.02 0.03 0.19 0.27 0.22 0.15 0.20 -0.13 0.09
Equatorial Guinea [GNQ] 0.01 -0.18 -0.19 -0.03 0.36 0.12 -0.01 -0.17 -0.06 -0.05 -0.02 -0.11 -0.17 -0.13 -0.17 -0.04 0.07 -0.08 0.00 -0.18
Eritrea [ERI] 0.29 -0.05 0.02 -0.05 -0.02 0.11 -0.26 -0.01 -0.16 0.00 -0.12 -0.03 -0.11 0.12 0.20 -0.05 0.07 -0.10 -0.04 0.11
Ethiopia [ETH] -0.16 -0.20 0.20 -0.04 0.08 0.07 0.01 -0.15 0.22 0.01 -0.14 0.08 0.12 0.12 0.22 0.08 0.07 0.12 0.06 -0.09
Gabon [GAB] -0.06 0.12 -0.01 0.23 -0.27 0.05 -0.04 -0.14 -0.13 -0.12 -0.10 -0.15 -0.14 0.03 0.14 0.16 -0.05 -0.12 0.13 0.23
Gambia, The [GMB] 0.03 0.05 -0.02 0.22 0.00 -0.24 0.12 0.00 -0.03 -0.24 0.20 0.10 -0.25 0.10 0.08 0.17 -0.34 -0.07 0.22 -0.18
Ghana [GHA] -0.18 -0.13 0.02 -0.32 -0.07 0.11 -0.04 0.16 -0.01 0.06 0.09 -0.04 -0.12 -0.13 0.16 -0.03 -0.04 0.04 0.09 -0.12
Guinea [GIN] -0.11 -0.14 -0.23 -0.17 -0.07 0.13 -0.02 0.05 -0.05 0.03 0.09 0.03 -0.23 0.06 0.25 0.18 0.02 0.29 -0.06 0.20
Guinea-Bissau [GNB] 0.05 -0.04 0.00 0.03 -0.04 0.19 -0.16 -0.09 -0.20 0.02 0.17 0.14 0.32 -0.17 0.39 0.11 -0.08 -0.28 -0.07 -0.17
Ivory Coast [CIV] -0.14 0.18 -0.25 0.10 0.02 0.04 -0.03 0.05 0.02 -0.01 0.01 0.28 0.10 0.08 0.03 -0.22 -0.28 0.06 0.13 -0.04
Kenya [KEN] -0.11 0.28 -0.04 -0.10 0.17 0.15 -0.19 0.01 0.18 -0.13 -0.06 -0.08 0.15 0.12 -0.08 -0.01 0.11 -0.03 -0.12 0.12
Lesotho [LSO] -0.01 0.11 -0.19 -0.25 -0.12 0.01 0.12 0.31 -0.20 0.03 0.13 -0.03 0.05 0.00 0.08 0.01 0.10 -0.17 0.20 -0.18
Liberia [LBR] -0.13 -0.06 -0.11 0.09 0.31 0.12 0.01 -0.03 -0.27 0.01 -0.17 0.06 -0.22 -0.08 -0.12 0.03 -0.05 0.05 0.08 -0.15
Libya [LBY] -0.02 0.06 -0.08 0.09 0.01 0.02 -0.11 -0.04 0.05 0.02 0.37 -0.26 -0.28 0.26 0.07 -0.14 0.12 0.10 0.31 -0.01
Madagascar [MDG] -0.14 -0.06 -0.05 0.05 0.17 -0.06 0.11 0.06 0.33 -0.11 -0.18 -0.20 -0.07 -0.12 0.24 -0.12 0.02 -0.10 0.17 -0.16
Malawi [MWI] -0.13 0.06 0.04 0.03 0.04 0.28 0.10 0.14 0.02 -0.20 -0.02 -0.09 0.25 0.25 -0.18 0.30 -0.12 0.03 -0.08 0.11
Mali [MLI] -0.06 -0.12 -0.21 0.23 -0.11 -0.01 -0.22 0.13 0.12 0.14 -0.19 -0.05 -0.02 -0.19 -0.14 0.15 -0.03 -0.12 -0.17 -0.03
Mauritania [MRT] -0.23 -0.04 0.07 0.07 -0.14 -0.01 0.29 -0.04 0.03 0.11 -0.06 0.01 0.02 0.16 0.12 -0.27 -0.18 -0.09 -0.19 0.05
Mauritius [MUS] -0.07 0.16 -0.19 0.10 -0.21 0.17 0.01 0.04 -0.08 -0.13 0.01 0.03 0.13 -0.28 -0.09 0.04 0.21 0.03 0.11 -0.08
Morocco [MAR] -0.12 0.10 -0.17 0.06 -0.17 -0.25 -0.13 0.02 0.01 0.13 -0.24 -0.11 0.06 0.15 -0.02 0.05 0.22 -0.19 0.10 -0.16
Mozambique [MOZ] -0.24 -0.12 -0.13 -0.07 -0.02 0.14 -0.12 -0.27 0.03 -0.05 -0.05 0.17 -0.13 0.02 -0.16 0.02 0.09 -0.13 0.10 -0.03
Namibia [NAM] -0.22 0.13 -0.02 0.01 0.03 0.02 0.03 0.08 -0.01 -0.21 0.15 0.06 -0.15 -0.13 -0.17 -0.19 0.01 -0.19 -0.05 0.30
Niger [NER] -0.15 -0.13 -0.12 0.05 0.02 0.09 -0.12 0.22 0.10 0.26 -0.02 0.04 -0.02 0.32 -0.06 -0.17 -0.02 0.13 -0.04 -0.11
Rwanda [RWA] -0.09 -0.06 0.13 0.19 0.16 0.30 0.15 0.23 -0.16 -0.05 -0.01 -0.07 -0.05 -0.08 -0.09 0.16 -0.12 0.15 0.01 0.02
Sao Tome and Principe [STP] -0.26 0.17 -0.14 -0.02 -0.07 -0.13 0.13 -0.05 0.05 0.04 0.04 -0.07 0.14 0.09 -0.19 0.00 -0.09 0.04 -0.06 -0.03
Senegal [SEN] -0.08 -0.13 0.01 0.37 -0.02 0.09 -0.08 -0.11 0.12 0.10 0.03 0.10 0.11 -0.13 0.15 -0.29 -0.02 0.03 0.04 0.25
Seychelles [SYC] -0.05 0.16 -0.18 -0.01 0.02 0.29 0.00 0.16 0.15 -0.04 -0.07 0.04 -0.12 0.01 0.29 -0.13 -0.10 -0.04 -0.09 -0.02
Sierra Leone [SLE] -0.14 0.05 0.23 -0.04 -0.02 0.00 -0.05 0.00 -0.04 0.13 0.13 0.31 -0.15 0.23 -0.11 0.05 0.38 0.05 0.06 0.02
Somalia [SOM] 0.11 -0.06 -0.23 0.04 0.22 -0.07 -0.16 -0.16 0.07 0.01 -0.14 0.32 0.14 0.01 -0.06 0.16 0.01 0.17 0.17 0.03
South Africa [ZAF] -0.24 0.13 0.02 -0.06 0.05 -0.06 0.17 -0.21 -0.15 0.09 -0.14 0.08 -0.03 -0.02 0.14 0.00 0.17 -0.23 0.12 0.04
Sudan [SDN] -0.02 -0.22 -0.01 0.30 -0.10 0.00 0.11 -0.03 -0.15 -0.28 0.01 0.21 -0.08 0.08 -0.02 -0.01 0.23 -0.07 0.03 0.06
Tanzania [TZA] -0.23 -0.14 0.12 0.00 0.06 -0.06 -0.17 0.20 0.11 -0.09 0.08 0.15 -0.01 -0.11 0.17 0.19 0.04 -0.03 0.10 0.17
Togo [TGO] -0.17 0.09 -0.14 -0.17 0.18 -0.19 -0.05 -0.13 -0.20 0.01 -0.05 -0.08 -0.03 0.14 0.01 0.20 -0.25 -0.14 -0.10 0.12
Tunisia [TUN] -0.02 0.22 -0.13 0.19 0.13 0.08 0.01 -0.23 0.18 0.05 0.23 -0.06 -0.13 -0.10 0.07 -0.01 0.11 0.04 -0.27 0.05
Uganda [UGA] -0.18 -0.07 0.01 -0.15 -0.16 0.07 0.09 -0.23 -0.10 -0.24 0.01 0.06 0.16 -0.04 0.00 -0.17 0.01 0.36 -0.08 -0.22
Zambia [ZMB] -0.27 -0.10 0.12 0.10 -0.12 0.10 0.13 -0.12 -0.08 0.17 0.11 -0.03 0.00 -0.03 0.00 0.23 -0.07 0.03 -0.04 -0.13
Zimbabwe [ZWE] -0.01 0.15 0.05 -0.10 -0.15 0.13 -0.21 -0.19 -0.11 0.13 -0.33 0.04 -0.26 0.07 0.07 0.00 -0.29 0.13 0.00 -0.03

Factor loadings are estimated with data from 1963 until 2015 to make the 2016 forecast.
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Table 11: Coefficient estimates used to forecast real GDP growth in Nigeria with economic indicator
data.

Benchmark Variable Factor

AR(1) LARS Elastic Net Boosting FAAR Ridge LARS Elastic Net Bagging Boosting

Constant 2.91 2.17 2.17
AR(1) 0.12 0.24 0.24
Monthly average off. exchange rate -0.01
Real effective exchange rate 0.02
Deposit rate 3 months 0.60
Interest rate spread 0.53
Lending interest rate -0.33
Changes in inventories 0.01
Gross fixed capital formation 0.02
Government exp. on education 0.00
Labor force, total -0.20
Money supply (M1) -0.01
Total monetary liabilities (M2) -0.02
All Shares Index -0.01
Government expenditure -0.04
Househ. and NPISHs final cons. exp. 0.03
Real GDP - construction 0.02 0.50 0.19
Real GDP - manufacturing -0.02
Real GDP - trade -0.01
Current account -0.01
Direct Investment 0.01
Global price of Brent crude oil 0.06
Non-oil exports 0.00
Oil exports 0.01
World GDP -0.03
Factor 1 0.91 0.84 0.00 0.02 0.84 0.71
Factor 2 0.29 0.36 0.22
Factor 3 0.76 0.46 0.29
Factor 4 0.19 0.19
Factor 5 0.15 0.28
Factor 6 0.07 0.13
Factor 7 -0.94 -0.39 -0.33
Factor 8 -0.24 -0.08
Factor 9 0.27 0.25
Factor 10 0.25 0.24
Factor 11 -0.68 -0.30 -0.32
Factor 12 0.34 0.02
Factor 13 1.14 0.44 0.55
Factor 14 -2.27 -0.69 -1.98 -1.35
Factor 15 2.36 0.79 2.20 1.69
Factor 16 -0.16 0.02
Factor 17 1.47 0.34 0.55
Factor 18 0.25 0.03
Factor 19 -1.35 -0.36 -0.67
Factor 20 -1.62 -0.55 -1.64

Coefficients are estimated with data from 1982 until 2015 to forecast 2016. Variables and factors are normalised for ridge regression, LARS and elastic net. Variables not
selected by any model are not shown. The random walk model is omitted, as no coefficients are estimated.
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Table 12: Factor loadings of the first twenty factors generated using economic indicator data.

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20

Monthly average off. exchange rate 0.03 -0.09 0.29 0.15 -0.13 0.13 -0.06 -0.17 0.00 -0.23 0.42 0.08 0.06 0.12 -0.26 0.20 0.11 0.16 -0.22 -0.21
Real effective exchange rate 0.14 0.14 -0.12 -0.10 -0.26 -0.05 -0.16 -0.03 0.35 0.13 -0.01 0.21 0.07 0.26 0.30 -0.16 0.29 -0.21 0.12 -0.03
Comm. banks’ loans and advances 0.17 0.19 -0.14 -0.14 -0.14 -0.09 0.02 -0.10 -0.04 -0.35 -0.06 0.37 0.00 0.02 0.11 -0.11 -0.31 0.20 -0.12 -0.04
Deposit rate 3 months 0.06 -0.17 0.43 -0.14 0.01 0.02 0.12 -0.04 -0.01 0.12 -0.17 -0.10 0.04 0.02 0.17 0.06 0.11 0.13 -0.05 -0.02
Deposit rate over 12 months 0.08 -0.14 0.45 -0.13 0.04 0.03 0.12 -0.08 0.06 0.05 -0.09 -0.05 0.01 0.04 0.19 -0.10 -0.08 0.01 0.03 0.12
Interest rate spread 0.08 0.09 -0.01 0.21 -0.02 0.17 -0.21 0.14 0.26 -0.06 -0.32 0.45 -0.11 -0.22 -0.32 -0.03 0.06 0.05 0.03 0.07
Lending interest rate 0.14 -0.05 0.41 -0.02 -0.05 0.07 0.11 0.19 0.18 0.02 -0.21 0.05 -0.06 -0.08 -0.11 -0.13 -0.01 0.16 0.02 0.34
Changes in inventories 0.12 0.16 0.02 0.01 -0.14 -0.36 0.19 0.29 0.20 0.12 0.06 -0.06 0.25 -0.10 0.24 -0.12 -0.20 0.06 0.08 -0.25
Gross fixed capital formation 0.08 0.18 0.03 0.08 0.13 0.40 -0.18 0.08 -0.20 0.17 -0.06 -0.02 0.11 0.35 0.03 -0.10 -0.21 0.36 0.15 -0.14
Total savings 0.09 0.32 0.09 -0.14 -0.21 0.01 0.09 -0.23 -0.02 -0.17 -0.09 -0.01 -0.07 -0.05 -0.12 -0.14 0.34 0.27 0.08 -0.10
Government exp. on education 0.05 0.09 0.15 0.44 0.09 -0.20 0.01 -0.06 -0.07 0.16 0.03 0.16 -0.12 0.06 0.10 -0.18 -0.01 -0.03 -0.28 0.02
Government exp. on health 0.03 0.13 0.13 0.42 0.06 -0.29 0.00 0.04 -0.10 0.12 0.03 0.05 -0.17 0.02 0.01 -0.18 -0.06 0.00 -0.23 0.04
Gross enrol. ratio, prim., both sexes -0.06 0.10 0.04 -0.04 -0.20 0.14 -0.04 0.12 0.21 0.55 0.22 0.20 0.15 -0.12 -0.05 0.33 -0.14 0.15 0.01 0.10
Labor force, total 0.19 0.10 0.09 0.14 0.08 0.24 -0.22 0.27 -0.28 -0.06 0.12 -0.05 0.01 -0.23 0.15 -0.01 0.23 -0.26 0.24 0.21
Money supply (M1) 0.24 0.26 -0.03 0.02 -0.25 0.03 0.12 -0.03 -0.27 0.13 -0.11 -0.07 -0.13 0.02 -0.09 0.17 -0.04 -0.32 0.02 0.07
Total monetary liabilities (M2) 0.22 0.30 0.05 -0.09 -0.24 0.00 0.14 -0.13 -0.26 0.07 -0.05 -0.15 -0.02 0.12 -0.10 0.03 0.00 -0.05 -0.04 0.15
All Shares Index 0.29 -0.11 -0.20 0.00 0.01 -0.06 0.05 0.16 -0.02 -0.08 -0.02 0.05 0.05 0.40 0.12 0.40 0.02 0.14 -0.24 0.40
Inflation, consumer prices 0.09 0.06 0.10 0.14 -0.11 -0.39 -0.26 -0.04 0.04 0.08 -0.22 -0.20 -0.16 -0.05 -0.13 0.45 0.07 0.11 0.23 -0.24
Government expenditure 0.25 -0.01 0.25 0.04 -0.09 0.04 0.09 0.06 0.12 -0.26 0.31 0.09 -0.01 0.19 -0.11 -0.05 -0.30 -0.26 0.31 -0.09
Househ. and NPISHs final cons. exp. 0.07 0.11 -0.01 -0.09 0.18 -0.17 0.32 0.43 0.02 -0.27 0.02 0.04 0.10 -0.11 -0.06 0.18 0.30 0.11 -0.10 -0.03
Real GDP - agriculture -0.04 0.06 0.12 -0.04 0.30 -0.09 0.08 -0.08 -0.26 0.16 -0.17 0.41 0.39 0.23 -0.14 0.13 0.14 -0.14 0.03 -0.22
Real GDP - construction 0.16 0.29 0.04 0.02 0.13 0.15 -0.27 0.08 -0.05 -0.11 -0.03 -0.24 0.14 -0.22 0.27 0.04 -0.09 0.23 -0.19 -0.20
Real GDP - crude petr. & nat. gas 0.16 -0.08 -0.12 0.10 0.02 0.23 0.40 0.27 -0.02 0.12 -0.10 -0.10 -0.09 -0.04 -0.24 -0.06 -0.13 -0.15 -0.08 -0.36
Real GDP - manufacturing -0.01 0.16 0.01 -0.02 0.36 -0.10 0.16 0.02 -0.06 0.05 0.35 0.20 -0.37 0.02 0.16 0.08 0.11 0.19 0.45 0.02
Real GDP - services 0.01 0.31 0.07 -0.14 0.34 0.05 0.01 -0.08 0.19 -0.09 -0.08 -0.02 0.24 -0.15 -0.06 0.12 -0.11 -0.24 -0.09 0.09
Real GDP - trade 0.01 0.23 0.01 -0.03 0.31 -0.03 0.07 -0.31 0.33 0.01 -0.04 -0.17 -0.14 0.06 -0.18 0.14 -0.27 -0.07 0.05 0.11
Current account 0.26 -0.13 -0.22 -0.14 0.19 0.03 0.07 0.04 0.08 0.18 -0.18 -0.06 -0.29 0.18 -0.09 -0.17 0.07 0.19 0.03 -0.12
Direct Investment 0.24 -0.22 0.11 0.00 0.10 0.14 -0.12 -0.07 0.09 -0.11 -0.19 0.16 -0.25 -0.01 0.36 0.28 -0.03 -0.24 -0.11 -0.32
Global price of Brent crude oil 0.23 0.08 -0.09 0.02 0.05 0.21 0.23 -0.32 0.13 0.24 0.23 0.04 0.01 -0.25 0.10 -0.01 0.26 0.00 -0.22 -0.09
Imports 0.35 -0.16 -0.08 -0.07 0.06 -0.17 -0.26 0.02 -0.03 0.02 0.16 -0.06 0.08 -0.15 -0.16 -0.04 -0.14 0.06 0.02 0.06
India GDP 0.03 0.11 -0.01 0.32 0.13 0.05 -0.06 0.04 0.34 -0.10 -0.01 -0.31 0.21 0.36 -0.05 -0.11 0.25 -0.07 0.03 0.02
Non-oil exports 0.26 -0.16 0.00 -0.14 0.18 -0.25 -0.15 -0.19 -0.17 0.11 -0.05 0.07 0.26 -0.11 -0.15 -0.20 0.03 -0.05 0.11 0.03
Oil exports 0.38 -0.22 -0.07 -0.01 0.05 -0.04 -0.08 -0.04 0.09 0.07 0.19 -0.08 0.07 -0.05 -0.16 -0.08 0.09 0.07 -0.05 0.00
United States GDP 0.04 -0.19 -0.09 0.34 -0.18 0.07 0.21 -0.16 -0.01 -0.09 -0.17 0.00 0.30 -0.08 0.04 0.09 0.01 0.13 0.35 -0.06
World GDP 0.11 -0.08 -0.17 0.35 0.07 0.05 0.25 -0.27 0.00 -0.09 -0.09 0.02 0.12 -0.19 0.21 0.09 -0.12 0.13 0.15 0.22

Factor loadings are estimated with data from 1982 until 2015 to make the 2016 forecast.
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Table 13: Coefficient estimates used to forecast real GDP growth in Nigeria with African GDP growth
and economic indicator data.

Benchmark Variable Factor

AR(1) LARS Elastic Net Boosting FAAR Ridge LARS Elastic Net Bagging Boosting

Constant 2.91 0.00 3.63 3.63
AR(1) 0.12 0.00 -0.05 -0.05
Angola [AGO] 0.02
Burkina Faso [BFA] -0.04
Cameroon [CMR] -0.03
Central African Republic [CAF] -0.01
Comoros [COM] -0.04
Congo, Rep. [COG] 0.07
Eritrea [ERI] -0.08
Ethiopia [ETH] -0.03
Liberia [LBR] 0.01
Libya [LBY] 0.03
Madagascar [MDG] -0.10
Mauritius [MUS] -0.29
Mozambique [MOZ] 0.02
Namibia [NAM] -0.08
Niger [NER] -0.38
Sao Tome and Principe [STP] 0.07
Seychelles [SYC] 0.01
Sierra Leone [SLE] 0.10
South Africa [ZAF] 0.43
Togo [TGO] 0.12
Tunisia [TUN] 0.05
Comm. banks’ loans and advances 0.00
Deposit rate 3 months 0.16
Interest rate spread 0.04
Changes in inventories 0.01
Government exp. on education 0.00
All Shares Index -0.02
Inflation, consumer prices 0.03
Real GDP - construction 0.00 0.04 0.22
Real GDP - trade -0.02
Direct Investment 0.01
Global price of Brent crude oil 0.01
Factor 1 0.57 0.30 0.19
Factor 2 0.68 0.46 0.01 0.01 0.53 0.51
Factor 3 0.36 0.22
Factor 4 -0.07 -0.10
Factor 5 0.04 0.08
Factor 6 0.47 0.15
Factor 7 0.65 0.33 0.33
Factor 8 -0.05 -0.12
Factor 9 0.14 0.04
Factor 10 0.37 0.11

Coefficients are estimated with data from 1982 until 2015 to forecast 2016. Variables and factors are normalised for ridge regression, LARS and elastic net. Variables
not selected by any model are not shown. The random walk model is omitted, as no coefficients are estimated.
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Table 14: Factor loadings of the first twenty factors generated using African GDP growth and economic
indicator data.

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20

Algeria [DZA] 0.07 -0.14 0.14 0.19 0.10 0.04 0.01 0.01 0.17 0.06 -0.08 -0.04 -0.02 0.25 0.02 0.04 0.08 -0.09 -0.11 -0.10
Angola [AGO] 0.20 -0.01 -0.04 0.21 0.09 0.05 0.03 0.01 -0.06 -0.06 0.00 -0.02 0.08 -0.13 -0.04 0.06 -0.07 -0.11 -0.04 0.02
Benin [BEN] 0.05 0.06 -0.05 0.03 -0.11 0.01 -0.26 0.10 0.20 0.17 0.04 -0.03 -0.04 -0.01 -0.19 0.11 -0.08 0.14 0.07 0.16
Botswana [BWA] -0.01 0.02 -0.09 -0.04 0.22 0.14 0.08 -0.04 0.09 -0.22 0.13 -0.01 0.13 -0.03 0.13 0.09 -0.06 0.03 0.11 0.01
Burkina Faso [BFA] 0.16 -0.04 -0.04 0.00 -0.11 -0.14 -0.06 -0.08 0.15 -0.17 -0.12 -0.12 0.17 -0.01 0.05 0.05 0.12 0.16 0.03 0.11
Burundi [BDI] 0.10 -0.14 0.06 -0.12 0.02 0.19 -0.16 0.14 -0.07 -0.13 0.06 0.15 0.04 -0.10 0.07 -0.04 -0.14 0.01 0.00 0.02
Cabo Verde [CPV] -0.06 0.14 -0.11 0.24 0.00 -0.01 -0.04 -0.06 -0.04 -0.19 0.02 0.02 -0.04 0.15 0.02 0.07 -0.11 0.01 -0.03 0.06
Cameroon [CMR] 0.10 -0.22 0.05 0.24 0.06 -0.09 -0.05 -0.07 0.04 0.02 0.05 -0.01 -0.04 0.01 -0.09 0.04 -0.04 0.01 -0.01 0.03
Central African Republic [CAF] -0.01 -0.01 -0.05 0.08 -0.02 0.01 -0.05 -0.07 0.14 -0.13 -0.01 -0.12 -0.04 -0.08 -0.12 -0.07 0.13 -0.08 -0.28 -0.06
Chad [TCD] 0.10 -0.15 -0.05 0.13 0.00 0.10 0.02 0.10 0.03 -0.11 -0.18 0.22 -0.08 0.08 0.24 -0.11 -0.03 0.07 -0.01 -0.04
Comoros [COM] -0.07 0.03 0.15 0.11 0.02 0.19 -0.04 -0.01 0.16 0.17 0.05 0.12 0.13 0.02 -0.15 -0.05 -0.09 0.10 0.29 -0.06
Congo, Dem. Rep. [COD] 0.23 -0.15 0.05 0.03 0.12 0.03 0.11 0.01 -0.02 0.03 0.05 -0.03 -0.10 -0.07 -0.11 0.06 -0.08 -0.06 -0.01 -0.07
Congo, Rep. [COG] 0.00 -0.11 0.17 0.07 -0.05 0.04 0.19 0.05 0.26 0.03 0.00 -0.09 0.21 0.01 0.00 -0.06 0.00 0.00 0.01 -0.15
Djibouti [DJI] 0.15 -0.19 0.09 0.03 0.04 0.19 0.00 -0.01 -0.07 0.06 0.04 0.02 -0.06 -0.05 -0.09 -0.08 -0.20 -0.16 -0.09 -0.07
Egypt, Arab Rep. [EGY] -0.05 -0.03 0.03 0.21 0.01 0.19 0.03 -0.09 0.15 -0.06 -0.02 -0.17 0.20 -0.10 0.08 -0.03 -0.18 -0.24 -0.05 0.13
Equatorial Guinea [GNQ] 0.00 0.09 -0.09 0.22 -0.12 -0.11 -0.14 -0.14 0.07 0.03 0.07 0.19 0.08 -0.03 0.13 -0.01 0.17 0.00 -0.02 -0.05
Eritrea [ERI] -0.18 -0.12 -0.17 -0.03 0.02 -0.12 0.08 -0.04 0.04 0.02 0.09 -0.04 -0.11 -0.08 0.17 0.06 -0.11 0.15 0.00 -0.08
Ethiopia [ETH] 0.14 0.08 0.08 0.02 -0.03 -0.04 0.22 -0.14 -0.12 0.13 0.15 -0.10 -0.12 -0.17 0.02 0.12 -0.06 0.06 0.09 0.01
Gabon [GAB] 0.02 -0.04 -0.21 -0.08 -0.01 0.06 0.16 0.05 0.14 0.15 -0.08 0.15 0.05 0.08 -0.03 0.28 0.07 -0.01 -0.21 -0.01
Gambia, The [GMB] -0.03 0.00 0.05 0.08 0.02 0.13 0.05 -0.12 -0.21 0.14 -0.23 0.14 0.06 -0.08 0.10 0.13 0.08 -0.11 0.07 0.04
Ghana [GHA] 0.16 0.07 -0.08 -0.13 0.02 0.04 -0.09 0.08 -0.06 0.10 0.10 0.01 -0.11 0.00 -0.19 -0.01 0.09 0.14 -0.19 -0.07
Guinea [GIN] 0.08 0.14 -0.17 -0.11 0.02 0.00 -0.12 -0.05 0.13 -0.10 0.14 0.06 -0.01 0.05 0.00 0.17 -0.21 0.06 -0.05 -0.13
Guinea-Bissau [GNB] 0.01 0.08 -0.10 0.03 0.04 0.00 0.13 0.11 0.12 0.14 0.16 -0.09 -0.01 -0.25 0.14 -0.20 0.00 -0.01 -0.09 0.09
Ivory Coast [CIV] 0.14 -0.03 -0.04 -0.05 0.03 -0.21 -0.07 -0.16 -0.02 0.11 -0.13 0.00 0.15 0.03 -0.03 0.12 -0.24 -0.07 0.06 -0.07
Kenya [KEN] 0.21 -0.03 -0.09 -0.11 0.18 0.02 0.08 -0.03 -0.07 0.08 -0.02 -0.08 -0.02 -0.12 0.05 -0.02 -0.07 0.07 0.08 -0.02
Lesotho [LSO] -0.02 0.05 -0.21 -0.08 -0.04 0.12 0.10 0.20 0.05 -0.02 -0.06 -0.08 0.19 -0.13 -0.09 0.07 0.07 -0.02 -0.14 -0.14
Liberia [LBR] 0.09 -0.03 -0.04 0.17 -0.06 -0.06 -0.08 -0.25 0.05 0.00 0.21 0.22 0.19 -0.04 -0.08 -0.01 0.08 0.01 0.01 -0.01
Libya [LBY] 0.03 0.00 -0.01 0.01 -0.07 0.02 -0.05 0.03 -0.03 0.00 -0.13 0.01 0.15 0.14 0.16 0.24 -0.12 -0.06 0.06 -0.21
Madagascar [MDG] 0.09 0.10 -0.05 0.17 0.05 0.16 -0.06 -0.08 -0.12 0.11 -0.22 -0.16 0.05 -0.07 -0.08 0.05 -0.05 0.04 0.01 -0.13
Malawi [MWI] 0.10 0.08 0.10 -0.03 0.09 -0.06 0.07 0.01 0.18 0.07 -0.05 -0.01 0.11 -0.07 -0.07 0.19 0.02 0.04 -0.14 0.40
Mali [MLI] 0.11 -0.04 -0.13 -0.05 -0.07 -0.05 -0.19 -0.03 0.02 -0.07 -0.22 0.08 -0.12 -0.03 0.13 -0.07 0.06 -0.03 -0.13 0.16
Mauritania [MRT] 0.16 0.09 0.07 -0.03 0.10 0.01 0.07 -0.07 -0.07 -0.07 -0.13 -0.12 0.04 0.16 0.05 0.09 -0.06 0.24 0.01 0.13
Mauritius [MUS] -0.02 0.09 -0.05 -0.01 0.10 0.05 -0.18 0.10 -0.09 -0.07 0.09 -0.13 0.24 -0.21 -0.08 -0.05 0.08 0.02 0.29 -0.02
Morocco [MAR] 0.06 -0.17 -0.18 -0.04 -0.10 0.06 0.01 0.06 0.00 -0.11 -0.04 -0.26 -0.01 -0.10 0.07 0.10 0.21 -0.06 0.15 -0.02
Mozambique [MOZ] 0.17 0.14 -0.08 -0.05 -0.10 -0.15 -0.08 -0.10 -0.02 0.03 0.04 -0.10 -0.06 0.03 0.15 0.00 0.18 -0.03 0.04 -0.09
Namibia [NAM] 0.17 0.03 0.03 0.03 0.02 -0.04 -0.03 0.12 -0.18 -0.04 0.03 0.14 0.07 0.05 -0.06 -0.05 0.11 0.27 -0.05 -0.01
Niger [NER] 0.20 -0.01 -0.06 -0.11 -0.12 -0.12 -0.05 -0.05 -0.02 -0.14 -0.13 -0.02 0.10 0.06 -0.03 0.06 -0.13 -0.06 0.16 -0.09
Rwanda [RWA] 0.13 0.06 0.18 0.03 0.12 -0.02 -0.04 -0.09 0.22 0.04 -0.08 0.20 0.16 -0.05 -0.10 0.08 0.10 0.00 -0.01 0.09
Sao Tome and Principe [STP] 0.21 0.01 0.00 0.01 -0.14 0.00 0.00 0.04 0.08 -0.08 -0.13 -0.08 0.07 0.16 0.05 -0.20 -0.21 0.01 -0.12 -0.01
Senegal [SEN] 0.13 0.00 0.11 0.09 0.06 -0.13 -0.11 -0.08 0.04 0.01 -0.12 -0.18 0.05 -0.04 -0.09 -0.19 0.07 0.14 -0.04 -0.26
Seychelles [SYC] 0.04 0.07 -0.11 -0.11 0.07 0.07 -0.16 -0.05 0.02 0.08 0.18 0.05 0.27 0.08 0.13 0.02 -0.17 0.07 -0.25 -0.09
Sierra Leone [SLE] 0.11 -0.04 0.13 -0.04 -0.03 -0.02 0.03 0.15 0.01 -0.01 0.28 -0.06 -0.06 0.16 0.10 0.22 0.04 0.00 0.16 -0.01
Somalia [SOM] -0.04 0.04 -0.10 0.10 -0.04 -0.15 -0.08 -0.22 0.07 0.09 0.06 -0.14 -0.19 0.05 0.01 -0.11 -0.15 -0.20 0.23 -0.09
South Africa [ZAF] 0.17 0.12 -0.09 0.14 0.03 0.09 0.08 -0.01 0.06 -0.01 0.18 -0.10 -0.15 0.06 -0.03 0.11 0.12 0.02 -0.02 -0.17
Sudan [SDN] 0.06 0.15 0.13 0.09 -0.03 -0.14 0.07 -0.08 -0.15 -0.17 0.02 0.07 0.14 -0.08 0.11 0.00 0.17 -0.06 0.01 -0.21
Tanzania [TZA] 0.24 -0.01 0.05 -0.03 0.05 0.06 -0.03 0.05 -0.05 0.14 0.09 0.03 -0.18 -0.05 -0.04 -0.02 0.06 -0.06 0.03 0.04
Togo [TGO] 0.12 -0.04 -0.25 0.11 0.08 -0.11 0.01 -0.01 -0.01 0.04 0.08 0.03 0.01 0.01 -0.09 -0.15 -0.02 -0.21 -0.02 0.01
Tunisia [TUN] -0.02 0.11 0.03 0.19 0.01 0.07 -0.21 0.08 -0.14 0.12 -0.05 0.03 0.02 0.04 0.20 0.06 -0.09 -0.03 -0.04 0.13
Uganda [UGA] 0.07 0.17 0.05 -0.01 -0.11 -0.03 0.28 -0.07 0.11 -0.12 0.00 -0.12 -0.01 0.10 -0.02 0.06 0.08 -0.06 -0.08 0.11
Zambia [ZMB] 0.23 0.10 0.10 -0.04 -0.09 0.08 0.03 -0.07 0.07 0.12 -0.01 0.05 -0.01 -0.08 0.05 0.05 0.08 0.06 0.02 0.07
Zimbabwe [ZWE] -0.01 -0.09 -0.18 -0.19 0.03 -0.10 0.08 -0.07 0.04 0.17 0.08 -0.02 0.10 -0.04 0.10 -0.03 -0.13 0.09 0.02 0.03
Monthly average off. exchange rate -0.06 0.05 0.06 -0.06 0.09 0.05 -0.13 -0.27 -0.14 -0.08 0.01 -0.11 -0.07 0.01 0.02 -0.22 0.06 0.09 0.03 0.14
Real effective exchange rate -0.09 0.14 -0.01 0.10 -0.12 -0.06 0.29 -0.02 0.04 0.07 0.07 -0.03 -0.14 0.04 0.14 0.01 -0.20 0.12 -0.03 -0.01
Comm. banks’ loans and advances -0.01 0.18 -0.04 0.19 -0.15 -0.07 -0.03 -0.02 0.02 -0.02 0.10 0.15 0.06 -0.20 0.01 0.06 -0.07 -0.07 -0.02 -0.03
Deposit rate 3 months -0.06 0.02 0.26 -0.14 0.10 0.07 -0.15 -0.07 0.04 -0.04 0.04 -0.09 -0.06 0.03 0.04 0.12 0.00 -0.09 -0.06 -0.20
Deposit rate over 12 months -0.03 0.05 0.26 -0.17 0.10 0.06 -0.13 -0.11 0.08 -0.03 0.05 -0.12 -0.05 -0.03 0.09 0.16 0.01 -0.02 -0.11 -0.05
Interest rate spread -0.04 0.08 -0.07 -0.06 0.02 0.07 0.17 -0.11 -0.01 0.16 0.11 0.25 0.17 -0.02 0.20 -0.20 0.13 -0.04 0.04 0.02
Lending interest rate -0.08 0.10 0.20 -0.17 0.07 0.14 -0.09 -0.15 0.10 0.16 -0.01 0.01 0.04 -0.09 0.12 0.03 0.00 -0.04 0.07 -0.08
Changes in inventories -0.02 0.10 -0.01 0.07 -0.13 0.06 0.03 -0.07 0.27 0.09 -0.14 0.00 -0.21 -0.07 -0.02 0.03 0.02 0.11 0.11 -0.25
Gross fixed capital formation 0.08 0.11 0.00 -0.13 -0.09 -0.01 0.03 0.00 -0.13 0.05 0.02 -0.07 0.20 0.30 -0.05 -0.08 0.10 -0.16 0.19 0.12
Total savings -0.02 0.14 0.07 0.07 -0.24 0.13 -0.04 -0.02 -0.11 -0.06 0.09 -0.01 -0.03 -0.12 0.09 0.05 -0.14 0.00 -0.09 0.03
Government exp. on education 0.06 0.04 -0.14 -0.11 0.06 0.24 0.06 -0.18 0.19 -0.17 0.04 0.03 -0.03 0.03 -0.01 -0.07 0.08 -0.07 0.14 0.02
Government exp. on health 0.05 0.03 -0.16 -0.13 0.01 0.24 0.06 -0.15 0.20 -0.16 -0.06 0.08 -0.04 -0.05 -0.05 -0.04 0.09 -0.03 0.14 0.02
Gross enrol. ratio, prim., both sexes -0.10 -0.02 0.09 0.03 -0.13 0.06 0.06 -0.02 0.09 0.09 0.08 0.03 0.11 0.33 -0.05 -0.22 0.00 0.25 0.02 -0.09
Labor force, total 0.03 0.15 -0.09 -0.23 0.00 -0.02 -0.02 -0.03 -0.04 0.15 -0.01 0.03 0.05 0.14 -0.17 -0.14 -0.17 -0.26 -0.09 -0.03
Money supply (M1) -0.08 0.23 -0.07 0.02 -0.17 0.18 -0.02 0.11 -0.03 -0.07 -0.06 -0.04 0.00 0.03 -0.12 -0.01 -0.02 -0.08 -0.04 -0.03
Total monetary liabilities (M2) -0.06 0.23 0.03 0.03 -0.21 0.17 -0.06 0.09 -0.05 -0.10 -0.02 -0.08 -0.02 -0.02 -0.12 0.07 -0.10 -0.05 0.01 0.07
All Shares Index -0.02 0.17 -0.07 0.03 0.14 -0.10 0.03 0.20 0.05 0.02 -0.14 0.03 -0.01 0.08 0.07 0.18 -0.04 0.10 0.16 0.00
Inflation, consumer prices -0.04 0.04 0.02 -0.08 0.00 0.14 0.13 -0.06 -0.03 -0.20 -0.22 0.27 -0.13 -0.07 -0.14 -0.04 -0.09 0.14 0.03 -0.21
Government expenditure -0.03 0.22 0.03 -0.10 0.03 -0.01 -0.13 -0.18 0.08 0.02 -0.12 -0.13 -0.08 -0.05 0.14 -0.06 0.01 0.13 -0.11 0.11
Househ. and NPISHs final cons. exp. 0.06 0.03 -0.02 -0.03 -0.08 -0.02 -0.17 0.13 0.16 0.20 -0.13 0.14 -0.17 -0.13 0.19 0.01 0.03 -0.05 0.04 -0.08
Real GDP - agriculture 0.08 -0.04 0.06 -0.09 -0.07 -0.02 -0.11 0.06 0.16 -0.19 0.16 0.15 -0.15 0.23 0.10 0.01 0.08 -0.21 0.07 0.07
Real GDP - construction 0.15 0.17 0.01 -0.13 -0.13 -0.01 0.13 -0.04 -0.17 0.08 0.02 0.09 -0.01 0.03 -0.15 0.02 0.08 -0.06 0.01 -0.14
Real GDP - crude petr. & nat. gas -0.03 0.08 -0.08 0.04 0.10 0.11 -0.12 0.20 0.07 0.25 -0.12 -0.09 -0.04 0.09 0.04 -0.09 0.25 -0.17 0.01 0.00
Real GDP - manufacturing 0.18 -0.02 -0.04 -0.11 -0.08 0.00 -0.13 0.12 0.16 -0.04 0.03 -0.06 0.04 -0.08 0.12 -0.24 -0.17 0.12 0.07 -0.05
Real GDP - services 0.19 0.04 0.13 -0.02 -0.18 0.05 0.04 0.04 -0.03 0.04 0.06 0.09 -0.06 -0.02 0.12 -0.04 -0.04 -0.11 -0.04 0.02
Real GDP - trade 0.20 0.03 0.10 0.04 -0.07 0.12 0.07 0.07 -0.09 -0.09 -0.01 0.02 -0.03 -0.09 0.16 -0.11 0.02 0.13 -0.01 0.04
Current account 0.03 0.13 0.02 0.06 0.14 -0.12 0.06 0.28 0.04 0.01 -0.09 -0.01 0.08 -0.02 0.18 -0.03 0.01 -0.08 0.20 -0.09
Direct Investment -0.01 0.13 0.05 -0.08 0.24 -0.07 0.04 0.00 -0.04 -0.08 0.00 -0.04 0.06 0.03 0.21 -0.04 0.05 -0.15 -0.26 -0.23
Global price of Brent crude oil 0.08 0.17 0.05 0.14 0.06 0.14 0.03 0.14 0.02 0.01 0.17 -0.14 0.00 0.14 0.08 -0.15 -0.02 0.07 -0.05 0.03
Imports 0.00 0.20 0.05 0.00 0.19 -0.19 0.07 0.08 0.09 -0.08 -0.10 0.14 -0.02 -0.07 -0.16 -0.12 -0.07 0.00 -0.02 0.02
India GDP 0.13 0.02 -0.07 0.02 0.07 0.13 0.16 -0.19 -0.04 0.10 -0.20 -0.02 -0.10 0.15 0.09 -0.06 -0.10 -0.06 0.08 0.15
Non-oil exports 0.03 0.13 0.10 -0.01 0.16 -0.16 -0.01 0.10 0.10 -0.21 0.09 0.17 -0.15 -0.05 -0.08 0.01 -0.11 -0.15 0.09 0.07
Oil exports -0.01 0.21 0.06 0.05 0.27 -0.11 0.04 0.09 0.07 -0.01 -0.08 0.01 -0.07 0.00 -0.05 -0.15 -0.07 -0.01 0.04 0.04
United States GDP -0.05 0.03 -0.16 0.13 0.22 0.13 -0.13 -0.12 -0.09 0.03 0.06 0.06 -0.11 0.19 0.00 0.09 0.05 0.10 0.00 -0.02
World GDP 0.10 0.08 -0.18 0.12 0.23 0.17 -0.07 0.00 -0.04 -0.02 0.12 0.01 -0.02 0.07 0.01 0.05 0.03 0.11 0.03 -0.05

Factor loadings are estimated with data from 1982 until 2015 to make the 2016 forecast.
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