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Abstract

Momentum is a well-known phenomenon that pervades in all major stock markets. Strate-

gies that exploit this phenomenon have been documented to generate abnormal returns

persistently over time. In this paper, we study these portfolio designs and explore possible

improvements, employing machine-learning and deep-learning models in the return predic-

tion. To forecast the returns of the best- and worst-performing stocks, we use support vector

regression and the latest deep-learning techniques such as stacked (denoising) autoencoders

and state-of-the-art generative adversarial networks. Our analysis focuses on the comparison

of financial performance measures, such as average return, Sharpe ratio and maximum draw-

down, between the simple momentum strategies and the advanced deep-learning models.

The results confirm our expectations, namely that the complex models can improve momen-

tum portfolios, mainly by avoiding large losses in times of crises. For generative models, the

reduction of 50% in the maximum drawdown is achieved, compared to a basic momentum

strategy. Furthermore, our results indicate a slight fading of the negative momentum, such

that the stocks losing value in the past cannot be easily exploited by complex models to

generate abnormal returns.
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1 Introduction

In the world of investment and finance, as well as in the academic circles, momentum is a widely

known and well-documented phenomenon. Fama and French (1996) have shown that publicly

traded stocks that have recently generated positive returns are more likely to produce a positive

return again in the near future. Similarly, there is a higher chance that the stocks that have been

losing their value are going to continue following the same trend. The research done by Fama

and French (1996) also lays out the basics of the momentum investment strategy. They have

shown that following their strategy, an investor can generate returns that are in excess of the

market return, without proportionally increasing their risk. Surprisingly, recent research into

momentum portfolios by Kim (2019) shows that, even though the momentum phenomenon has

become well-known among investors, the strategy is still able to persistently generate extraordi-

nary returns. Even though it seems to contradict the efficient market hypothesis, Subrahmanyam

(2018) believes that it can be explained either by behavioral over- and under-reaction theories

or that the excess return is simply a compensation for taking greater risk. The latter expla-

nation is valid if we assume that a stock’s volatility increases with its market price. For this

assumption to be generally accepted, however, more research has to be done, so in our paper we

assume that stock’s momentum is exploitable and is able to generate returns disproportional to

the associated risk. In this paper we employ machine- and deep-learning models, with a focus

on generative neural networks, that take advantage of this phenomenon.

There are many different momentum strategies, but they share a main idea which is straight-

forward and fairly easy to implement; buy the stocks that have performed extraordinarily well

in the past year and sell the ones that have performed rather poorly. Jegadeesh and Titman

(1993) buy stocks in the top decile of the US stock market, sorted by their past performance,

while selling the bottom decile stocks. An alternative version, also proposed by Jegadeesh and

Titman (2001), builds the portfolio by only buying the top decile of best performing stocks. In

the rest of this paper, we will refer to these strategies as WML (winner-minus-loser) and WO

(winner-only), respectively. There are advantages and disadvantages to both approaches. First

of all, during times of expansion, WO strategy does not perform so well compared to WML,

since it does not exploit a part of the momentum phenomenon, i.e. that past losers usually

generate negative return in the near future. However, whereas WML performs better than WO

in general, Moskowitz, Ooi, and Pedersen (2012) shows that its return during the periods where

markets rebound after a crash are extremely bad. The two worst WML returns were in 1932 with

a two-month return of −91.59% and in 2009 with a three-month return of −73.42%, showing
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that WML suffers harsher reversals than WO strategy. To avoid these large negative losses of

the momentum portfolio, Barroso and Santa-Clara (2015) devised a method that can be applied

on top of the WO and WML trading strategies. It is achieved by scaling the portfolio weights

(for both the top and bottom decile) based on the inverse of their past six months’ realized

volatility. This has proved to largely eliminate the extreme declines in value corresponding to

the market rebounds (e.g. in August 1932 and in April/May 2009). Hence, in this paper we will

use volatility-scaled returns together with the non-scaled returns to analyze our models.

A more sophisticated strategy was recently proposed by Kim (2019), which is a combination

of the WO and WML strategies. The so-called selective winner-minus-loser strategy (SWML)

places an additional constraint on the top and bottom decile portfolios, namely that the predicted

return of the top decile must be positive, whereas the predicted return of the bottom decile must

be negative, otherwise no trade is done. This way, the momentum portfolio return cannot be

negative if the sign of the predicted decile return is correct. It can also be shown that both WML

and WO strategies are special cases of the SWML strategy, hence they must never produce a

higher return, in case our forecasts are correct. Consequently, to decide whether to buy the

top decile and/or sell the bottom decile, a prediction of the return in the next period has to

be made. The classical momentum strategy (as in Fama and French (1996) and Jegadeesh and

Titman (1993)) uses the so-called look-back period. This method takes the cumulative return

of the recent past and uses it as a forecast for the next periods return. However, in this paper

we try to replace this simple prediction step with various complex models.

Purely econometric models have always been used in time-series forecasting, but nowadays

investors and scientists put more focus on the application of various machine-learning and deep-

learning models in predicting the future financial variables. Recent research by Kim (2019)

introduces some state-of-the art deep learning models for momentum portfolio return prediction

and also utilizes some simpler machine learning models, such as support vector regression. The

latter has been commonly used and shown to be particularly good at predicting stock returns,

volatility and prices, among many others by Law and Shawe-Taylor (2017) and I. Sapankevych

and Sankar (2009). The field of deep learning is currently very dynamic and there are many

recent studies showing the significant forecasting improvements, for example in option pricing,

Berner, Grohs, and Jentzen (2018) and high-frequency trading, Dixon, Polson, and Sokolov

(2018). Moreover, Bao, Yue, and Rao (2017) show that a certain type of deep neural networks,

namely stacked autoencoders generate great results in financial time series forecasting. There-

fore, it is of our interest to investigate the possible improvement in forecasting introduced by

these models. Specifically, we will use the support vector regression and two types of stacked
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autoencoders. To make our research novel we decided to also apply another deep-learning model,

which will be described in more detail below.

In general, there are two main types of machine-learning models; discriminative and genera-

tive. The former one learns the conditional probability P (y|x) of the target variable y from data

x, whereas the latter learns the joint distribution P (x, y) of the input and target data. Empir-

ically, the discriminative models perform better for classification and regression purposes (the

most famous application being written digits classification by LeCun et al. (1998)), however the

generative models can be advantageous in smaller datasets (they are less prone to over-fitting)

also being able to learn richer representation of the joint data, with a tradeoff that they are

computationally heavier to train. However, with the recent technological developments in com-

puting power, more studies have been done on generative models and their applications. One of

the widely used generative models is the Generative Adversarial Network (GAN). The model has

been invented by Goodfellow et al. (2014) and multiple improvements have been made, among

others by Mirza and Osindero (2014) in terms of conditional GANs. Although GAN has its main

purpose in fields other than time-series forecasting (e.g. in text generation, Dai et al. (2017)

and in image-to-image mapping, Isola et al. (2017)), recent study done by Esteban, Hyland, and

Rätsch (2017) has shown that they can be used to forecast medical time series variables. In this

paper, we aim to investigate the possible forecasting improvements by GAN when applied in

portfolio-building strategies. Hence, our main research question is:

Does the application of generative adversarial networks in time-series prediction

enhance the performance of momentum portfolios?

To answer our main research question, we build various types of GAN, evaluate their perfor-

mance and compare them to the performance of the classical look-back period, support vector

regression and the two types of stacked autoencoders similar to those used in Kim (2019). Apart

from the main research question, it is of our interest to find an economic interpretation of GAN,

so that we can motivate its application in the context of portfolio construction.

The layout of this paper is as follows: In section 2 the process of obtaining our data is shown,

section 3 explains all the models that we use in greater detail, with a subsection 3.5 dedicated

specifically to generative adversarial networks and their economic interpretation. Section 4 shows

how each of the models performs economically and statistically, and in section 5, we answer the

research question based on performance of our models and suggest areas for further research.
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2 Data

Since our paper builds on the results of Kim (2019), we make use of the same dataset. The

data is taken from Kenneth French’s Data Library (French (2019)), starting in January 1927

until March 2019. In this dataset, the daily and monthly returns of all deciles of the momentum

portfolios are provided. These decile portfolios were constructed in a following way; first, all

stocks traded on NYSE, AMEX and NASDAQ are ordered based on the performance over

the past 12 months (excluding the last month). Then, the stock returns are grouped based

on NYSE prior breakpoints (also taken from French (2019)) calculated as the deciles of the

cumulative returns from the previous 12 months, excluding the last month. Based on this split

the momentum portfolio returns are calculated. In this paper we only work with the top and

the bottom decile, although we note that including other deciles (namely the second and ninth)

might be worth exploring.

To obtain the volatility-scaled returns as suggested in Barroso and Santa-Clara (2015), we

use the same procedure as Kim (2019), where the variance of the portfolio is calculated from the

daily returns of the past 6 months. The portfolio weights, and hence returns, are then inversely

related to these variances in a following manner:

r′t =
σtarget
σ̂t

∗ rt, (1)

where r′t denotes the volatility-scaled return, rt is the original return, σ̂t is the variance (estimated

from the daily variance of the past six months) and σtarget a constant target volatility, set to the

value corresponding to annualized volatility of 12%. Scaling the returns in this way means that

in periods of large volatility in the markets, the portfolio exposure becomes smaller, whereas if

the markets are stable the exposure is increased.

Moreover, to compare all portfolio performances we choose the excess market return to be

the benchmark. The monthly returns for this portfolio are also acquired from Kenneth French’s

Data Library (French (2019)). After obtaining these returns the data is ready to be used in our

machine- and deep-learning models. Tables with descriptive statistics of our data can be found

in the appendix.
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3 Methodology

In the selective WML strategy, after forecasting the return of the current month t, a long position

is entered for the top decile portfolio if rt ≥ 0, otherwise no trade is done. Similarly, for the

bottom decile portfolio, if rt ≤ 0 a short position is entered, otherwise nothing is traded. Hence,

in the rest of this section we give a detailed account of all the methods used to forecast the

returns for both the top and the bottom decile portfolio. We start by describing the support

vector regression, then moving on to basic, and denoising stacked autoencoders, and finally the

multi-layer perceptron and recurrent GAN. The economic interpretation of GAN in the context

of return prediction concludes this section. Lastly, the metrics that are used to compare the

performance of different models will be introduced in section 4.

3.1 Look-back Period

As has been discussed in the introduction, one of the basic strategies used when forecasting the

momentum portfolio return is look-back period. The past twelve monthly returns are taken to

calculate the cumulative return of the past year

Rt =
t−1∏

i=t−12
1 + ri, (2)

where Rt is the cumulative return and ri are regular monthly returns. This very simple prediction

method has been shown to perform reasonably well (Barroso and Santa-Clara (2015)) and so

we use it as a benchmark for comparison of the performances of other models.

3.2 Support Vector Regression

Support vector regression (SVR) is a type of regression method based on a machine-learning

algorithm called support vector machine. The support vector machine classifies an input into

discrete categories, whereas SVR extends the algorithm to return real-valued outputs. The

goal of SVR is to minimize the normal vector w to the regression hyperplane, subject to con-

straint that all the data points considered have to lie within the error margin of our hyperplane.

Mathematically this can be summarized into the following optimization:

Minimize
1

2
||w||2 + C

N∑
i=1

ζi (3)

6



such that wxi + b− yi ≤ ε+ ζi∗ (4)

wxi + b− yi ≤ ε+ ζi∗ (5)

ζi ≥ 0 (6)

where xi are the data points with their targets yi, a constant term b, the error margin ε,

regularization constant C and the slack variables ζ and ζ∗. To transform this into non-linear

SVR, we use the radial basis kernel function.

In our case, the input vector is formed from the monthly portfolio returns over the past year

(12 observations) and the target is the next month’s return. The training period consists of the

past 300 vectors, hence using the returns of the last 312 months. Furthermore, to arrive at a

good model specification, we optimize the hyperparameters C, ε and the kernel parameter γ by

grid-searching through all the possible combinations, using the most recent 10% of training data

to evaluate performances. The possible values for the hyperparameters are γ ∈ {10i, 5∗10i;−5 ≤

i ≤ −1}, ε ∈ {10i, 5 ∗ 10i;−5 ≤ i ≤ −1} and C ∈ {10i, 5 ∗ 10i;−2 ≤ i ≤ 3}.

3.3 Stacked Autoencoder

Before we describe the stacked autoencoder network, it is important to briefly discuss what

artificial neural networks (ANN) are. ANNs were made in approximation to a human brain’s

neurons, hence their setup and function is similar: these networks consists of multiple layers of

the so-called neurons, where all neurons in one layer of the network are densely connected to all

neurons in the next layer, meaning that the output of the neurons of layer x is used as an input

in each neuron in layer x + 1. To determine how the information is processed in each neuron,

an activation function is used:

z(W,X, b) = W TX + b (7)

This function combines the inputs X, weighs them based on the connection-specific weights W ,

and adds a ’bias’ term b. The output is usually binary, taking the value 1 if z(W,X, b) is above

certain threshold, zero otherwise. The original data is fed into the first layer, and the processed

information passes gradually through all the layers up to the last one. The final layer’s output

is then compared to the desired output and, based on the difference between the two (i.e. a loss

function) the network’s weights and biases are updated via back-propagation of the loss. The

ultimate goal of the network is to learn the desired output for any possible input given to it.
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(a) Autoencoder, with Encoder and Decoder (b) Stacked Autoencoder model

Figure 1: Stacked autoencoder structure

Autoencoder is a type of artificial neural network used mainly as a dimension reduction

technique. By means of unsupervised learning it finds a latent representation of the input,

exploiting the user-defined, bottleneck structure of the neural network. In particular, both the

input and the output layer have the same number of neurons, which is equal to the shape of

the input. In our case this is 12 neurons, since we use the past 12 month’s returns to predict

next month’s return. The intermediate layer of the network has fewer neurons than both the

input and output layer, hence creating the bottleneck-type architecture. Figure 1(a) visualizes

this network.

The autoencoder can be formally defined as transitions φ and ψ that minimize the mean

squared error between the original input and the reconstructed input:

φ : X → Y

ψ : Y → Z

φ, ψ = arg min
φ,ψ

‖X − (ψ ◦ φ)X‖2

where (ψ ◦ φ)X is the reconstructed input X. The encoder transforms the input X ∈ Rn to

Y ∈ Rm :

y = f(Wx + b) (8)

with encoded input y, activation function f(), the weight matrix W, and a bias vector b.
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The decoder transforms the latent representation Y ∈ Rm to Z ∈ Rn :

z = f ′
(
W′y + b′

)
(9)

where W′ is the weight matrix of the decoder together with its bias term b′, and f ′() denotes

decoder’s activation function.

For the autoencoder to learn non-linear, deep features of the data, we need to specify a

nonlinear activation function f(x), otherwise it would perform the same dimension reduction

as regular Principal Component Analysis. For this reason we specified the activation function

to be the sigmoid function: f(x) = 1
1+e−x , since this is one of the most popular choices (e.g.

in Bao, Yue, and Rao (2017)). Another characteristic that is to be specified is the optimizer.

The role of an optimizer in neural networks is crucial, because it iteratively updates the network

weights based on the model loss, which could be interpreted as giving ’feedback’ to the neurons.

The well-known classical algorithm to do this is stochastic gradient descent (SGD), however, in

many cases there are better, more advanced algorithms that can be used instead, possibly the

network’s training speed. One of them is the so-called ’Adam’ , invented by Kingma and Ba

(2015). It employs two extensions of SGD, namely adaptive gradient algorithm and root-mean-

square propagation. In our study we decided to use the same optimizer settings as Kim (2019),

using the Adam optimizer with a preset learning rate ρa = 0.005.

So far we have only described a simple autoencoder network. However, since previous studies

suggest that the so-called stacked autoencoder shows excellent performance in stock return

forecasting, we use this type of network too. The idea behind stacked autoencoders is rather

straightforward: view the latent representation of one autoencoder as the input to the second

autoencoder. The second autoencoder reduces the dimensions of the data’s latent representation,

hence extracting even ’deeper’ features of the original data. In our case, three autoencoders are

stacked onto each other in this manner, with the encoded input of the last autoencoder fully

connected to one neuron in the last layer of the network. This layer enables us to use the stacked

autoencoder as a return prediction model, using supervised learning. We train the last layer to

return the prediction of the next month’s return, based on the extracted deep features of the

past 12 months. Figure 1(b) shows the structure of our stacked autoencoder network. At this

point, we deviate from the study done by Kim (2019), where 12-6-6-6-1 stacked autoencoder

structure was argued to perform best, because we believe that the network might not give

consistent results. This is due to the second and the third autoencoder, since they both have a

6-6-6 structure. Hence, the ’bottleneck’ architecture is missing, resulting in just a reshuffling of
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the latent data. Therefore, we use a 12-6-5-4-1 structure, even though it has been shown that

it may not provide the best results.

The way we train the model and predict the next month’s return is as follows: our input is

a vector of the past 12 monthly returns, and we train our first autoencoder model by feeding

the previous 300 vectors to it (effectively using past 312 months’ returns). To have the data

reasonably scaled (on the interval [0, 1] in our case), before feeding it to the autoencoder it is

normalized (per vector of past returns x) as follows:

x→ x− xmin
xmax − xmin

(10)

After the model is trained, all the training data is passed through the encoder to get the latent

representation. This constitutes the training set for the second autoencoder. The procedure is

then repeated for the other autoencoders, with the output of the last one fed into the regression

layer. This layer’s target is the next month’s return, so that the mean squared prediction error

is minimized:

MSPE =
N∑
i=1

(yi − ŷi) (11)

After training all the models, the vector of this month’s past returns is passed through all the

encoders and the return for month t+ 1 is predicted. The entire procedure is then repeated for

every month, starting from January 1953 until March 2019.

3.4 Stacked Denoising Autoencoder

Stacked denoising autoencoders are extremely similar to the regular stacked autoencoders, so

in this section we will only explain the differences between the two. The idea of denoising was

first introduced by Vincent et al. (2010), who argues that if the initial input is noise-corrupted,

the autoencoder doesn’t train well to extract the latent factors, because the reconstructed data

is not very meaningful. Since the inputs to our model are time series of portfolio returns, we

suspect that they might contain noise and hence applying a denoising procedure is preferable.

The particular way in which the models are forced to ’denoise’ the data is two-fold. Firstly,

the original input is corrupted in some way, resulting in the encoder learning the following

representation:

X ′ ∈ Rn to Y ∈ Rm : y = f(Wx′ + b) (12)
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which is very similar to the procedure described by equation 8, except that the original input x

is substituted with the noise-corrupted one x′. Then, the decoder reconstructs the original data

the same way as is done in regular decoders, just as in equation 9.

There are multiple ways of introducing noise to the input; two most popular ones are masking

noise and Gaussian noise. Masking noise takes the input and randomly replaces certain fraction

of it by zeros. This is often done in autoencoders trained for image classification purposes,

and Vincent et al. (2010) has shown that, in general, these denoising autoencoders perform

significantly better than the basic ones. The other denoising process, namely additive isotropic

Gaussian noise works in a different manner; it adds values generated by normal distribution with

zero mean and pre-specified standard deviation to each element of the input. Contrary to Kim

(2019), we only replace the first autoencoder by a denoising one, because we believe that after

denoising of the original data, the latent representation should not be noise-corrupted anymore.

In our study, we perform hyper-parameter search on both the optimal fraction of masked

input in case of masking noise, and optimal standard deviation of the noise in case of additive

isotropic Gaussian process. The grid for masking noise is chosen to be {0, 0.1, 0.25, 0.4} whereas

for the Gaussian noise it is {0.05, 0.1, 0.15, 0.2}. Moreover, the last 10% of the training data

is always used to decide which value of the hyperparameter gives the best outcome, similarly as

in support vector regression.

3.5 Generative Adversarial Network

Generative adversarial network (GAN) is a deep-learning algorithm in which two artificial neural

networks compete with each other. Firstly, there is a generative model that, based on some

latent input, generates data such that it resembles real data as closely as possible. Secondly,

a discriminative model is trained to distinguish between actual data and artificial data created

by the generator. This way, the generator is forced to learn the joint probability distribution

P (x, y) such that it confuses the discriminator into labeling the generated data as real. Hence,

the more the generator is trained, the smaller the differences between real and artificial data,

which in turn forces the discriminator to constantly improve. Figure 2 gives a basic layout of

the network.

Our generator model is build from multiple layers of neurons, which are either regular (so-

called perceptron) or ”recurrent” units, which take into account the past values of the input

1Figure obtained from https://towardsdatascience.com/aifortrading-2edd6fac689d
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Figure 2: GAN layout1

in a special way. Both types of neurons are discussed in 3.5.1 and 3.5.2. In our case the data

generated by the model is the return for the next h months, based on a latent input in the

form of past 12 monthly returns. The output is then mixed with real data and is fed to the

discriminator, which then tries to classify whether the data is artificial or real. The discriminator

is usually built up as a convolutional or a recurrent neural network. The whole system is then

optimized in two steps, firstly minimizing the loss of the discriminator with generator model

fixed, and then minimizing the generator loss, keeping the weights of the discriminator fixed.

The training is repeated for a certain number of epochs, or until the model converges, i.e. until

the generator creates data that is so similar to real data that the discriminator cannot distinguish

it. Moreover, the forecast is simply made by feeding the generator with the last 12 monthly

returns such that it predicts the returns for the next h months. Formally, algorithm 1 shows

the training and forecasting method.

Algorithm 1:

for every hth month in dataset do
compile D and G models
set learning rates ρG and ρD, batch size b
initialize weights WG and WD

while not converged do
randomly choose b observations from the training set
generate artificial data x′ of length h
append x′ to real data, creating [12x1] vector
Train D model on the batch of real and generated data
Fix discriminator’s weights
Train full network (G) on randomly chosen data

end
Predict the returns of the next h months.

Now that the general model layout and training procedure have been described, the technical

setup of the network will be explained. Firstly, the activation functions for both discriminator
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(D) and generator (G) are set to the so-called ’Leaky Rectified Linear Unit’ function:

y = max(αx, x) (13)

with α = 0.2 in our case. This activation function has been shown to eliminate the problems

of vanishing gradient that is very common for GAN, while improving on the basic Rectified

Linear Unit function which often suffers of ’dying’ neurons (neurons that never get activated).

Moreover, to prevent the exploding gradient problem, the gradients are clipped at the value of

0.5 and their norm is forced not to exceed 1.

In terms of the loss functions used, there are two issues to consider: the potential instability

of the model, and its non-convergence. The problem of non-convergence and potential instability

is due to the nature of the GAN, when viewed in a game-theoretic framework. This happens

because some loss functions do not converge to their minima when using gradient descent in a

minimax game (as is the setup here). A possible prevention is to use an augmented loss function

for the generator model. In this paper, it is a combination of the forecast error and the so-called

fool rate, that is, the fraction of time that the discriminator classifies artificial data as real.

Moreover, since we specifically care about the correctness of the sign of generated return, the

’sign loss’ is accounted for. The loss function of the generator, similarly to Zhou et al. (2018),

looks as follows:

LG(X,Y ) = λ1 ∗ LBC(D(Ŷ ), 1) + λ2 ∗ LMSE(Ŷ , Y ) + λ3 ∗ LSL(Ŷ , Y ) (14)

with LBC(D(Ŷ ), 1) being the correct classification loss (computed as binary cross-entropy),

LMSE being the mean squared prediction loss, LSL the sign loss (0 if the sign is correct, 1 other-

wise), and loss weights λ1, λ2, λ3. The values of lambdas are set to {λ1, λ2, λ3} = {0.7, 0.21, 0.09},

hence putting emphasis on the original loss of not fooling the discriminator. The loss of the

discriminator model is a simple binary cross-entropy loss. Moreover, to avoid overfitting of both

D and G models, we introduce dropout rates of 0.4 and 0.3, respectively. This leaves out certain

fraction of connections in the network during training. The following subsections describe two

alternative GAN specifications, and the specific network setup.

3.5.1 Multi-layer Perceptron GAN

A perceptron is a basic type of neuron that takes a vector-valued input and, based on the

weights and bias, returns a real-valued output. Since this is the most widely used kind of
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Figure 3: LSTM unit2

neuron, it is used in our basic generator model. Specifically, there are 4 layers of neurons,

structured as 12-8-4-1 neurons per layer. The generator returns one value, hence the prediction

window in this case is set to h = 1. The forecast is then appended to the past 11 months’

returns and is passed to the discriminator, which has the same setup: 4 layers structured as

12-8-4-1 neurons per layer. The discriminator outputs a single binary value, classifying the

input as either real (1) or fake (0). The best pair of learning rates for the generator and

discriminator is found by grid-searching through the sets ρG = {0.01, 0.005, 0.001, 0.0005, 0.0001}

and ρD = {0.05, 0.01, 0.005, 0.001, 0.0005}, using the first 315 months to train the models. The

search resulted in the best pair of learning rates (ρG, ρD) = (0.001, 0.01).

3.5.2 Recurrent GAN

Recurrent neural networks rely on recurrent neurons to capture time-dependencies. These neu-

rons are designed to consider the past values of the input when calculating the output. In our

recurrent GAN, we make use of the ’Long Short-term Memory’ (LSTM), first introduced by

Hochreiter and Schmidhuber (1997). A single LSTM unit consists of a cell, which holds the

memory, and 3 regulators, commonly known as gates. The input gate controls the flow of a

new value into the LSTM cell, the output gate decides to what extent is the current cell value

going to affect the output and the forget gate controls which elements are retained in the cell.

A simplified visualization of the LSTM unit is shown in Figure 3. For a detailed mathematical

representation of this model, refer to Hochreiter and Schmidhuber (1997).

2Figure obtained from https://www.researchgate.net/figure/Schematic-of-LSTM-unit_fig3_306093553
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The generator in our case consists of 4 layers, with structure 8-4-1-h, where the first three

layers are LSTM cells that return sequences and the last h cells outputs the forecast returns

for the next h months. The discriminator network only consists of 2 layers of LSTM neurons

followed by 2 basic perceptron layers, structured as 6-4-2-1. Due to a large computational

burden, we did not perform any form of optimization of the structures.

Since the full model is large and it’s computationally heavy to train, we decided on the best

hyperparameter set in advance, using the same options for learning rates as above, and with

forecast length h ∈ {1, 2, 3}. Based on the performance over 4 random periods, the learning rates

for the top decile portfolio are set to ρG = 0.001 and ρD = 0.005, with forecast length h = 3.

For the bottom decile portfolio, the grid search suggests using (ρG, ρD, h) = (0.001, 0.005, 1).

Moreover, to reduce the computationally-heavy training procedure, model is trained once every

year and then four 1-step-ahead forecasts (of length h) are made. This corresponds to updating

the portfolio weights h months, with the model being updated annually. However, it is worth

noting that the outcomes for the different combinations vary when the hyperparameter search

is repeated, suggesting a slight instability of the model.

3.5.3 Economic Interpretation

In the portfolio building environment, the investors often base their decisions on the past per-

formance of a certain asset, whether it is a stock or a portfolio consisting of multiple stocks. In

the setting of momentum portfolios, the investors typically look at the performance of top and

bottom decile throughout the past year. Hence, the generator model can be interpreted as an

artificial investor who, based on historical returns, predicts the future return of the portfolio and

then decides whether it is worth investing in it or not. Doing this, the investor tries to minimize

the difference between the future return based on their prediction and the true future return,

also paying special attention to the correct sign of the return.

Once the prediction is made and acted upon and the prediction period passes, the investor

looks back and compares the predicted return with the actual return of the period. He judges

the correct probability of his/her own prediction, which serves as a feedback for the model that

was used. This judgment corresponds to the discriminator model. All in all, GAN can be sum-

marized in a game-theoretic framework as a game between the generator and the discriminator,

with one of the possible equilibria being that the generator manages to learn the joint data

distribution and the discriminator is forced to make a random guess when determining how the

data originated.
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Table 1: Regular returns (03/1953 - 03/2019)

Mkt WO WML Lookback SVR SAE SDAE-I SDAE-II RGAN

Avg. return (%) 0.59 1.69 0.97 1.20 1.56 1.44 1.23 1.47 1.53
Max. return (%) 16.10 31.22 19.16 31.46 31.22 23.03 31.22 31.22 31.46
Min. return (%) -23.24 -32.80 -60.40 -64.75 -26.21 -32.80 -60.40 -60.40 -32.32
Ann. return (%) 6.24 19.45 9.62 10.35 17.71 16.22 12.59 16.04 17.71
Ann. vol. (%) 14.82 21.78 20.31 28.19 21.10 20.57 22.24 22.02 19.72
Sharpe ratio 0.42 0.89 0.47 0.36 0.84 0.79 0.57 0.73 0.90
Info. ratio NA 0.30 0.05 0.07 0.18 0.20 0.11 0.16 0.15
Kurtosis 1.91 2.90 21.01 9.53 3.21 2.85 14.99 13.73 4.95
Skewness -0.54 -0.52 -2.79 -1.74 -0.53 -0.54 -1.87 -1.64 -0.96
MDD (%) 55.68 59.77 83.26 77.77 69.93 59.44 83.82 66.88 45.84

Explanations of the abbreviations can be found in the appendix 5.

4 Results

The models’ performances are evaluated for both for the full sample (01/1953 - 03/2019) and

a sub-sample (01/2008 - 03/2019) starting right before the financial crisis. All the models are

evaluated statistically and after the portfolios are built their financial performance is measured.

Moreover, the convergence of our GAN model with perceptron neurons was unfortunately not

achieved, hence we do not report its results, as they differed significantly over multiple runs.

4.1 Regular Portfolios

Table 1 shows that, based on the average return, pure WO strategy performs best, not very

closely matched by any other strategy. Contrary to Kim (2019), we find that SVR produces the

highest returns among the SWML strategies, which is surprising, since it is one of the simpler

models we used. However, the recurrent GAN model almost matches the average return of SVR,

trailing by 0.03%. In general, the differences in average returns between the models are not large,

with almost all of them being inside the interval [1.2% , 1.7%]. Considering the maximum and

minimum return, all the portfolios except WML and SAE-SWML generate the highest return

of around 31%, with the former two achieving around 20%, hence not much higher than the

maximum of a simple market return (16.1%). Similarly, the minimum returns cluster around

2 values; -30% for WO, SVR, SAE and RGAN, and -60% for WML, Lookback, SDAE-I and

SDAE-II. This shows that employing more advanced models in return prediction does not always

reduce the risk of a large negative return. We note, however, that RGAN and SAE do reduce

this risk. This can also be seen from the maximum drawdown, which shows the worst possible

(negative) return over any period of time, which is very informative about the downside risk of a
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(a) Full sample: 03/1953 - 03/2019 (b) Subsample: 01/2008 - 03/2019

Figure 4: Regular cumulative log-returns

given portfolio. We observe that RGAN reduces this kind of risk most, yielding the worst return

of -46%, whereas the stacked denoising autoencoders do not improve in this sense over a pure

WML portfolio. Moreover, RGAN is the only portfolio that outperforms the market portfolio

in this measure.

Many investors consider another performance indicator, that is the Sharpe ratio. It describes

the return of a portfolio taking into account its corresponding volatility, in our case calculated

as the ratio between annualized return and annualized volatility. The highest Sharpe ratio is

achieved by RGAN and pure WO strategy (0.9), with SVR closely matching them. The superior

performance of RGAN and SVR comes mostly from their annualized returns, since the volatility

is similar across all the strategies (at around 20%), except the Lookback period (with 28%).

Interestingly, pure WML strategy has a low Sharpe ratio, at 0.47, that comes mainly from a low

annualized return. Information ratio is an adjustment of the Sharpe ratio, and is calculated as

the difference between the portfolio return and the annualized return of a benchmark portfolio,

divided by the volatility of this difference. Using excess market return as the benchmark, we

see that WO strategy yields the largest improvement, with more sophisticated strategies having

similar information ratios (of around 0.18). On the other hand, WML and Lookback give very

small improvements over the excess market portfolio. All in all, we see that WO performs best

in most indicators, with SVR and RGAN being close behind, while RGAN performing very well

in reducing the downside risk of the momentum strategy.

The left panel of figure 4 confirms that, for the full sample period, WO portfolio has the

highest 66-year cumulative return, with SVR and RGAN trailing closely behind. Moreover, the

excess market portfolio performs clearly the worst over the full period, with WML being a big

improvement, nevertheless insufficient compared to the more complex models. The cumulative

returns all increase exponentially over time, with one large drop around the year 2009, which
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Table 2: Volatility-scaled returns (03/1953 - 03/2019)

Mkt WO WML Lookback SVR SAE SDAE-I SDAE-II RGAN

Avg. return (%) 0.59 1.53 1.23 1.35 1.62 1.35 1.31 1.44 1.39
Max. return (%) 16.10 21.64 15.39 18.60 21.64 21.64 18.60 21.64 21.64
Min. return (%) -23.24 -39.10 -25.33 -39.10 -28.65 -39.09 -39.10 -39.10 -39.09
Ann. return (%) 6.24 17.86 14.70 15.22 19.46 15.64 15.03 16.76 16.26
Ann. vol. (%) 14.82 18.83 13.70 19.56 17.48 17.51 17.45 18.22 17.29
Sharpe ratio 0.42 0.95 1.07 0.78 1.14 0.89 0.86 0.92 0.94
Info. ratio NA 0.28 0.10 0.11 0.22 0.19 0.15 0.18 0.14
Kurtosis 1.91 5.65 5.77 5.56 2.87 6.23 7.58 7.38 8.97
Skewness -0.54 -0.86 -1.04 -1.16 -0.33 -0.81 -1.07 -1.04 -1.37
MDD (%) 55.68 40.64 31.28 50.01 34.87 45.76 46.16 39.63 54.20

corresponds to the financial crisis and the rebounds of the markets afterwards. It is of our interest

to inspect this subsample and see which portfolio minimizes the losses and hence may perform

best in the future crises. The right panel of figure 4 shows that, starting in January 2008, WML

and SDAE-I end up losing money until the end of the period (March 2019), whereas the other

portfolios were profitable. Surprisingly, even though SVR performed well over the full sample, in

the sub-period it breaks even only in the beginning of 2019. There is also a significant difference

in cumulative returns of SDAE-II (being the most profitable) and SDAE-I underperforming even

the pure WML portfolio. It is also worth noting that RGAN performed best in the most part

of the subsample, being consistently above the excess market return. For detailed performance

measures of the subsample, refer to Table 6 in the appendix.

4.2 Volatility-scaled Portfolios

According to Barroso and Santa-Clara (2015), volatility scaled portfolios should be able to

avoid large drawdowns in value. Table 2 shows that for almost all portfolios, the maximum

drawdown has decreased significantly, apart from RGAN. This supports our earlier claims that

RGAN avoids large losses reasonably well. We also observe that for WO, SAE and SDAE-II,

the average return has increased, however, the other portfolios experience a slight drop in the

returns. We expect the reason to be that in times of large-positive and negative fluctuations,

the top and bottom decile portfolios are assigned lower weights, reducing both possible large

gains and losses. This is also visible in the maximum return of the volatility-scaled strategies

( 20%), which are all lower than the ones without the volatility scale ( 30%). Overall, the

annualized volatility decreased to around 17%, which is below the target set to 20%. This, in

effect, increased the Sharpe ratios to values around 0.9.

18



(a) Full sample: 03/1953 - 03/2019 (b) Subsample: 01/2008 - 03/2019

Figure 5: Volatility-scaled cumulative log-returns

In terms of specific portfolios, SVR now performs better than WO in terms of average return,

with the other strategies all being similar and somewhat lower. The Sharpe ratio is the highest

for SVR (1.14), confirming that this method is very effective when making return forecasts.

Looking at the information ratio, WO performs best compared to the excess market portfolio,

with SVR being marginally worse. Moreover, based on the values of skewness and kurtosis,

we see that normality might be a reasonable assumption for the SVR returns, but not for the

other ones, with negative skewness values and large kurtosis. In general, we conclude that

volatility-scaling does not improve the results of advanced deep-learning models as compared to

the simpler ones.

Comparing the cumulative returns of the volatility-scaled portfolios in the left panel of Figure

5 with the regular portfolios, we see that the gap between the best and the worst performance is

much tighter, with SVR now dominating the other strategies, and SDAE-I performing only as

good as the excess market portfolio. Moreover, the dip during the crisis has almost disappeared,

so it is of our interest to investigate which model benefits most from the volatility-scaling. For

detailed performance measures of the subsample, refer to Table 7 in the appendix.

The right panel of Figure 5 shows that the cumulative return of SDAE-II largely deviates from the

rest, breaking even at the end of year 2011. Again, we observe big difference in the performance

of the two stacked denoising autoencoders. Moreover, the value of RGAN portfolio never falls

below the initial value, even though it is not performing as well as without the volatility scale.

Since the performance of RGAN is of our special interest, we evaluate its statistical performance

below, comparing it to the other predictive models.
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Table 3: Statistical evaluation of the forecasts

Lookback SVR SAE SDAE-I SDAE-II RGAN

Top decile
MSPE (∗10−3) 144.07 4.00 4.07 4.42 4.29 4.02
hit rate (%) 60.73 63.76 65.03 61.49 61.24 64.90

Bottom decile
MSPE (∗10−3) 161.95 7.21 7.29 7.78 7.40 9.88
hit rate (%) 53.79 53.41 51.89 51.64 53.41 53.03

4.3 Statistical Evaluation

We base or statistical evaluation of the forecasts on two measures; mean squared prediction error

(MSPE), computed as in equation 11, and the so-called hit rate, which is the fraction of correct

sign predictions. Inspecting Table 3, we notice that the lookback-period has large MSPE for

both top and bottom decile portfolios, compared to the other models. Since its hit rates do not

differ much from the rest, we conclude that the lookback largely overestimates the magnitudes

of the returns. The other models have similar MSPE for both the top decile (around 4 ∗ 10−3)

and the bottom decile (7.5 ∗ 10−3 with RGAN being slightly larger). In general, the models

perform much better for the top decile than for the bottom decile portfolio. In terms of hit rate,

the largest one is found for SAE and RGAN for the top decile, and Lookback for the bottom

decile, although the hit rates do not differ much from each other. For the bottom decile, all

the models perform very poorly, with hit rates close to 50%, showing that they are not much

better than guessing the sign of the next return. Moreover, when inspecting the graphs (6) of

RGAN return forecasts in relation to the actual values, we clearly see that the model largely

underestimates the magnitude of the returns in both directions and for both top and bottom

decile portfolios. However, since we focus mostly on the correct sign prediction, it still produces

one of the best portfolios (as shown earlier). For the graphs of SDAE-I and SDAE-II models, as

well as statistical performance in the subsample, please refer to the table 8 and figures 7 and 8

in the appendix.

5 Conclusion

In this paper we investigated possible improvements in momentum strategies by employing

simpler well-known models as more complex machine- and deep-learning models. Evaluating

the performance and comparing it to the excess market portfolio and simple WO and WML

strategies, we found that the deep learning models provide an extra profit, and mostly help

with reducing the downside risk of the investments. Using stacked autoencoder networks similar
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(a) Top decile portfolio (b) Bottom decile portfolio

Figure 6: RGAN forecasts and actual returns

to Kim (2019), we observed somewhat different results, likely due to the different imposed

structure. Moreover, we found that recurrent generative adversarial neural networks, although

not improving the average return by a large margin, are of big importance when limiting the

downside risk of a momentum portfolio. The maximum drawdown for portfolios based on these

models have shown almost a 50% decrease compared to a winner-minus-loser portfolio, and a

15% reduction compared to winner-only portfolio.

We also observed a significant decrease in exploitability of the bottom decile stocks, which

can be seen from the large differences of simple WO and WML strategies. Since our models are

all used together with the so-called selective WML, we find them to be slightly disappointing

compared to simple WO strategies. However, the stacked denoising autoencoders with Gaussian

noise and recurrent GAN bring big improvements over the crisis periods, successfully avoiding

large losses.

With this new knowledge, it would be in our interest to further investigate the possible

improvements, this time combining the selective, prediction-based models with the winner-only

approach. We believe this so-called selective winner-only would bring larger average returns

with reduced downside risk to the momentum portfolios. Another further research includes

training different generative models, such as variational autoencoders, since we have shown that

generative models improve the portfolios over some discriminative models. We are also concerned

whether the recurrent GANs and stacked autoencoders had the optimal hyperparameter set, as

our search for the best set of values was quite restricted, sometimes even pre-set. This was

done due to the time- and computational burden, so it is crucial to expand this search in the

future studies. All in all, based on our research, as well as the economic and game-theoretic

interpretation, we can now answer the earlier stated research question; yes, the application of

generative adversarial networks enhances the performance of momentum portfolios.
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Appendix

Table 4: Descriptive statistics of the raw data

mean (%) std. dev. min 25% 50% 75% max

Top decile 1.75 6.29 -32.32 -1.61 2.21 5.48 31.46
Bottom decile 0.74 8.44 -28.54 -3.70 0.42 4.48 64.75

Table 5: Financial performance measures of the raw data

Ann. return (%) Ann. vol. (%) Sharpe Skewness Kurtosis MDD (%)

Top decile 20.28 21.77 0.93 -0.48 2.82 59.38
Bottom decile 4.96 29.23 0.17 1.21 7.19 85.10

Model abbreviations

• Mkt: excess market return

• Lookback: SWML with look-back period

• SVR: SWML with support vector regression

• SAE: SWML with basic stacked autoencoder

• SDAE-I: SWML with denoising stacked autoencoder, masking noise

• SDAE-II: SWML with denoising stacked autoencoder, Gaussian noise

• RGAN: SWML with generative adversarial network, recurrent neurons

Table 6: Regular returns (01/2008 - 03/2019)

Mkt WO WML Lookback SVR SAE SDAE-I SDAE-II RGAN

Avg. return (%) 0.75 0.61 -0.13 0.03 0.24 0.58 -0.25 0.87 0.76
Max. return (%) 11.35 15.77 14.38 24.82 14.38 15.77 15.77 15.77 14.60
Min. return (%) -17.23 -21.32 -40.97 -45.85 -25.05 -21.32 -40.97 -25.68 -15.87
Ann. return (%) 8.09 5.05 -4.84 -5.06 0.37 4.88 -6.10 8.21 7.77
Ann. vol. (%) 15.53 21.67 24.41 31.38 22.15 20.48 24.07 21.65 17.85
Sharpe ratio 0.52 0.23 -0.20 -0.16 0.02 0.24 -0.25 0.38 0.43
Info. ratio NA -0.05 -0.10 -0.07 -0.09 -0.04 -0.14 0.02 0.001
Kurtosis 1.47 0.96 9.51 5.41 3.07 1.51 9.25 4.18 0.83
Skewness -0.75 -0.74 -2.44 -1.36 -1.30 -0.74 -2.03 -1.43 -0.57
MDD (%) 46.34 56.03 81.03 75.32 68.25 55.67 82.00 65.56 24.84
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Table 7: Volatility-scaled returns (01/2008 - 03/2019)

WO WML Lookback SVR SAE SDAE-I SDAE-II RGAN

Avg. return (%) 0.46 0.45 0.03 0.37 0.53 0.38 0.92 0.48
Max. return (%) 9.76 10.51 10.51 10.51 9.76 9.76 9.76 10.51
Min. return (%) 9.79 -10.01 -15.79 -9.79 -8.96 -8.74 -8.96 -10.01
Ann. return (%) 4.90 4.96 3.20 3.78 5.93 4.03 10.91 5.28
Ann. vol. (%) 12.03 10.35 13.90 11.61 11.29 11.01 10.82 11.14
Sharpe ratio 0.41 0.48 0.23 0.33 0.53 0.37 1.01 0.47
Info. ratio -0.11 -0.05 -0.06 -0.10 -0.06 -0.08 0.04 -0.05
Kurtosis 0.57 1.53 1.40 1.34 0.55 0.86 1.05 1.59
Skewness -0.51 -0.27 -0.46 -0.35 -0.37 0.07 -0.17 -0.23
MDD (%) 26.11 24.39 22.82 28.06 25.80 31.67 23.74 17.07

Table 8: Statistical evaluation of the forecasts (01/2008 - 03/2019)

Lookback SVR SAE SDAE-I SDAE-II RGAN

Top decile
MSPE (*10ˆ-3) 71.48 4.14 3.95 4.01 4.54 4.02
hit rate (%) 51.11 60.00 60.74 54.07 59.26 60.00

Bottom decile
MSPE (*10ˆ-3) 333.62 9.50 9.59 10.65 10.00 22.47
hit rate (%) 51.11 53.33 54.07 50.37 55.55 51.85

(a) Top decile portfolio (b) Bottom decile portfolio

Figure 7: SDAE-I forecasts and actual returns
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(a) Top decile portfolio (b) Bottom decile portfolio

Figure 8: SDAE-II forecasts and actual returns

Python code The following code files are provided with this report:

• cleanData.ipynb : cleans the data and transforms it into an easy-to-read data-type,

• Main.ipynb : code for basic strategies (WO, WML, SWML-lookback) and support vector

regression,

• AE alt.ipynb : code for stacked (denoising) autoencoders,

• r-r-gan.ipynb : code for the (recurrent) GAN,

• evaluate.ipynb : builds the portfolios, evaluates financial and statistical performances.
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