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Abstract

In this paper, treatment and spillover effects are estimated when the SUTVA assumption is violated, using
non-parametric and regression methods. We calculate standard errors robust to network interference as
in Leung (2019). Their results are then extended to obtain quantile treatment effects.
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1 Introduction

Network models differ from most models in causal inference, as it is usually assumed that individuals are

independent, in the sense that treatment only affects the treated unit. However in practice, it is common

that individuals interact among each other, forming a network. Network formation could occur in settings

where units in a study are geographically close, or when they interact among each other in social settings

such in schools or at workplaces. Such interactions lead to what is referred to as spillover effects and network

interference, where the outcome of a single individual could indirectly intervene on outcomes of multiple

observations in the same network, regardless of whether they have received treatment.

In this paper, we study treatment and spillover effects, under the assumption that spillovers are mediated by

a network which is partially observable, where treatment is assigned randomly. In such cases, the assumption

Rubin (1990) refers to as the Stable-Unit Treatment Value assumption (SUTVA), which is almost system-

atically required for most causal inference methods, does not hold. The SUTVA states that an individual’s

treatment response should only depend on the treatment received,i.e. should be invariant of the treatment

allocation to other units. Yet, there are many scenarios in which this assumption will fail to hold, as discussed

in Leung (2019). For example, in vaccine studies the outcome of an individual would not only depend on an

individual’s treatment, but also on whether units around this individual received vaccination (Halloran and

Struchiner, 1995). In most studies about causal effect under network interference, researchers collect data on

plausibly independent networks, or partition networks into presumably independent sub-networks according

to some specified rules in order to calculate clustered standard errors for their estimates. Such methods

rely on the assumption of ”partial interference” (Sobel, 2006), allowing interference within clusters, but not

across clusters. However, such methods ignore possible links across networks, thus could lead to wrong results.

As stated above, most studies in causal inference rely on the assumption that observations are independent

(Rosenbaum and Rubin (1983), Rubin (2006), Van der Laan et al. (2003)). According to van der Laan (2014),

there is lack of methodological framework when the SUTVA does not hold, and for this reason many practical

studies assume interference away. However, ignoring interference could lead to biased estimates and wrong

conclusions: when interference is present, the difference in means of the treated and control groups does

not measure the average treatment effect, but the difference in means of two sub-populations (Sobel, 2006).

Studying causal inference under general interference is particularly relevant, as implementing models with

a single network rather than partitioning the network into plausibly independent sub-networks will severely

reduce costs for researchers. This eliminates the need to get geographically isolated samples, and removes

concerns of links between clusters under the partial interference assumption.

Manski (2013) studied the identification of treatment effect estimates in the presence of interference, making

the response to treatment a function of the vector containing treatment assignments for the entire sample.
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He began with identification of treatment response under the SUTVA, then extended his results to cases

where social networks were present. Athey et al. (2018) propose a number of new methods for testing hy-

pothesizes in single-network interference settings. These include testing the significance of treatment effects

under network interference, testing the presence of high-order spillovers effects, and testing for peer effect

heterogeneity. Liu and Hudgens (2014) study causal inference under the partial interference assumption,

and derive asymptotic properties of the estimators for large samples. Aronow et al. (2017) also study the

estimation of causal effects under general interference for a single network. In contrast to Leung (2019), who

imposes restrictions on the structure of the network to induce weak-dependence between units, Aronow et al.

(2017) impose conditions on the potential outcomes.

In a first part of this paper, we shall replicate the research done by Leung (2019), who proposes a super-

population model, where a single large network is considered, thus bypassing the downfalls of clustered

standard errors. The paper provides estimators for treatment and spillover effects under network interfer-

ence. The latter are consistent and asymptotically normal under a set of conditions discussed in Leung

(2019). Furthermore, an estimator for the variance robust to heteroskedasticity and network dependence is

introduced. We shall first generate the network and outcomes for individuals in MATLAB, following the pro-

cedure in Leung (2019). Then, the treatment and spillover effects will be estimated through linear regressions

and non-parametrically. Finally, we shall compare the heteroskedasticity-consistent standard errors with the

new standard errors proposed in Leung (2019) as a performance check.

Next, we propose some extensions to Leung (2019). We extend the average structural function by imple-

menting its quantile analogue, to obtain quantile treatment and spillover effect. The linear regression is also

extended to a quantile-based linear regression, where observations above specified quantiles are assumed to

be unobserved when estimating the model. Quantile methods can often be more informative than sample

mean measures: Melly and Wüthrich (2016) argue that a policy which increases the lower tail of some income

distribution would be perceived as better than one shifting the median income, while the average treatment

effects for both policies would be the same.

2 Model

2.1 Network Formation

The network is represented by a n× n matrix A, where Aij = 1 if i and j are connected in the network, and

Aij = 0 otherwise. To obtain A, we initially randomly generate geographical locations ρi ∈ [0, 1]2,i = (1, .., n),

where n is the sample size, and calculate the distance between each pair i and j as r−1||ρi−ρj ||. The distance

function d(i, j) takes value 0 if the distance r−1||ρi − ρj || is less or equal than 1, and infinity otherwise. The
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scaling factor r, which equals (κ/n)1/d, κ > 0, ensures the sparsity of the formed network, as real-world

networks are significantly smaller than the total population. Next for each i, we generate αi ∈ {0, 1} an

individual-specific characteristic, such as being above a certain age or not. The network links are generated

as:

Aij = 1{θ1 + θ2(αi + αj) + θ3d(ρi, ρj) + θ4Sij + ζij > 0}, (1)

where Sij represents a strategic interaction between units i and j, and ζij ∼ N(0, 1) is a random-utility shock.

We include the strategic interaction Sij = maxk BikBkj , where B is the initial network of geographical neigh-

bours, computed as 1{r−1||ρi − ρj || ≤ 1}. Then, Sij takes value 1 if i and j share a common neighbour k,

0 otherwise. Next, we impose that there are no self-links, implying Aii = 0 for all individuals, and make A

symmetric, as Leung (2019) assume that A is an undirected network.

We assign treatment Di = 1 if unit i is treated, 0 otherwise. We then define γi =
∑n
j=1Aij , the number

of neighbours for observation i, and Ti =
∑n
j=1DiAij , the number of treated neighbours for the same

observation, to define Wi = (Yi, Di, Ti, γi), the data observable for individual i. We further assume that the

1-neighbourhood the i’s is observable, i.e. the set of neighbors j directly to i in A, as it is crucial for the

construction of standard errors. We generate the outcomes Yi ∈ R according to the model used to describe

the treatment and spillover effects, as shall be shown in 2.2.

2.2 Outcome Generation

For the non-parametric estimate, we generate the outcomes Yi according to the random-coefficient outcomes

model:

Yi = θi1 + θi2Di + θi3Ti + θi4T
2
i + θi5Tiγi, (2)

where the parameters are independent, identically distributed and θi1 captures the unobservable peer effects.

whereas for the linear regression model, we shall generate the Yi’s as:

Yi = β1 + β2Ti + β3Ti/γi + εi, (3)

where εi = γ−1i
∑
j Aijνj for νi ∼ N(0, 1) captures the unobserved heterogeneous peer effects.

2.3 The Models

As it is common in practice, we shall use the linear-in-means with no endogenous effect regression model:

Yi = β1 + β2Di + β3Ti/γi + εi, (4)
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The treatment effect is given by β2 and the spillover effect by β3. However, even robust and clustered standard

errors are invalid, as the data will not be identically and independently distributed across the population

sample: the number of treated neighbours Ti will be correlated across the sample and εi’s could also be

correlated. Thus, we prefer to use a more general non-parametric model given by

Yi = r(Di, Ti, γi, εi),

where r(·) is a real-valued function which does not assume particular distributions of its parameters.

3 Estimation and Inference

3.1 Non-Parametric Estimation

We define the conditional Average Structural Function (ASF) as follows:

µ(d, t, γ) = r(d, t, γ, ε1(γ)). (5)

The ASF gives the mean outcome value for a group with a given number of treated neighbours t and

treatment assignment d. Through the conditional ASF, one can capture the average treatment and spillover

effect, defined as

µ(d, t, γ)− µ(d′, t′, γ),

where d, d′ ∈ B, t, t′ ∈ N, and t, t′ ≤ γ.

Note that the estimates implicitly depends on the number of units for which γ = γ1. The degree of sam-

pled units is fixed at γ = γ1 in order to identify the average treatment and spillover effects. Within this

subpopulation, we compare outcomes of units with treatment assignment d and treated neighbours t versus

those with treatment assignment d′ and treated neighbours t′, with d, d′ ∈ {0, 1}, and t, t′ ∈ N and t, t′ ≤ γ.

For a fixed t, variation in d, d′ identifies the treatment effect, and for a fixed d, variation in t, t′ captures the

spillover effect. In this paper, we will use the sample analog to the conditional ASF:

µ̂(d, t, γ) =

∑ñ
i=1 Yi1i(d, t, γ)∑ñ
i=1 1i(d, t, γ)

, (6)

where 1i(d, t, γ) = 1{Di = d, Ti = t, γi = γ}.
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Then, the average treatment/spillover effect is given by the difference

µ̂(d, t, γ)− µ̂(d′, t′, γ). (7)

To define the variance estimator, we first need to introduce the terms:

ai =
1i(d, t, γ)

ρ̂(d, t, γ)
− 1i(d′, t′, γ)

ρ̂(d′, t′, γ)
,

bi = µ̂(d, t, γ)
1i(d, t, γ)

ρ̂(d, t, γ)
− µ̂(d′, t′, γ)

1i(d′, t′, γ)

ρ̂(d′, t′, γ)
,

ρ̂(d, t, γ) =
1

ñ

ñ∑
i=1

1(d, t, γ).

Furthermore, for each pair (i, j), we create a link in the dependence matrix G, where Gij = 1 if observations

i and j are connected, share a common neighbor k, or if they are the same unit:

Gij = 1{Aij + max
k

AikAkj + 1{i = j} > 0}, (8)

where we impose symmetry on G.

Then, we obtain standard errors for the treatment and spillover effects using the variance estimator σ̂2
TS

defined as:

σ̂2
TS =

1

ñ

ñ∑
i=1

ñ∑
i=1

Gij((Yiai − bi)(Yjaj − bj)). (9)

3.2 Linear Regression

For the linear regression, we estimate β = (β1, β2, β3) and define the error terms for the regression as

εi = γ−1i
∑
j Aijνj and νj ∼ N(1, 1). The variance-covariance matrix is defined as:

Σ̂ = (X ′X)−1M ′GM(X ′X)−1, (10)

where Xi = (1, Di, Ti/γi), and M = (X1ε̂1, .., Xnε̂ñ), and G is defined as in (8). By letting G equal the

identity matrix, we obtain standard Eicker-Huber-White standard errors (HC), corresponding to the case of

independent observations when the SUTVA holds. Using these variance estimator, we shall calculate standard

errors as SE = σ√
ñ

, and shall compare the new standard errors estimators robust to network dependence to

the HC standard errors. Intuitively, one would except the standard errors obtained using (10) to be larger

than conventional heteroskedasticity-consistent (HC) standard errors, as we would expect G−I to be positive

definite.
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4 Quantile-Based Estimation

4.1 Non-Parametric Estimation

In this section, we extend the results of Leung (2019) by replacing the conditional ASF by its quantile ana-

logue, the conditional quantile structural function (QSF). First, we generate the network and the outcomes as

in (1) and (3) respectively. For τ ∈ (0, 1), we set the τth QSF equal to the largest µ(d, t, γ) in the τth quantile.

In this paper, we use sample analogues for µ(d, t, γ) as defined in (6). Thus, to obtain quantile estimates, it

suffices to order the Yi’s, and solely analyze units i whose outcomes Yi is lower than the τth quantile, while

keeping unobserved heterogeneity εi unchanged for the whole sample. With the cumulative distribution

function FY (y) = P (Y ≤ y), we can define the τth quantile of Y as QY (τ) = inf{y : FY (y) ≥ τ}. Next, let

us define the set ωτ = {i : Yi < QY (τ)}, containing the units below the τth quantile. The conditional QSF

can then be defined as:

µ̂(d, t, γ, τ) =

∑
i∈ωτ

Yi1i(d, t, γ)∑
i∈ωτ

1i(d, t, γ)
, (11)

and the quantile treatment/spillover effects are defined as:

µ̂(d, t, γ, τ)− µ̂(d′, t′, γ, τ). (12)

Next, we define the new dependence graph Gτ as:

Gτij = 1{Aij + max
k

AikAkj + 1{i = j} > 0}, (i, j) ∈ ω2
τ (13)

Then, we can obtain the variance estimator for quantile treatment and spillover effects as in (9), using Gτ ,

and the variables ai, bi, and ρ̂(d, t, γ) defined as above, for units satisfying i ∈ ωτ .

4.2 Quantile-Based Truncated Regression

Lastly, as more of an exploratory exercise, we extend the linear regression to a quantile-based truncated

regression. In this exercise, we generate A as in (1), and for each unit we obtain Wi = (Yi, Di, Ti, γi),

obtained Yi’s as in (3). Next, for a chosen quantile τ , we run the regression

Yi = Xiβ + εi, i ∈ ωτ (14)

where Xi = (1, Di, Ti/γi), to provide us with βτ = (βτ1, βτ2, βτ3). That is, we exclude all observations for

which Yi > QY (τ) in the estimation of βτ . We calculate the corresponding network variance estimator as in

(10), with Gτ defined as in (13), using M = (X1ε̂1, .., Xτ ε̂τ ) for i ∈ ωτ . Once again, we shall compare the

network standard errors to their robust counterpart obtained by letting G equal the identity matrix.
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5 Monte Carlo

As the data used in this paper is randomly generated, we replication the simulation 2000 times, and summarize

the results as the mean output of the aggregated runs.

5.1 Network and Outcome Generation

We form the network A according to (1), using parameters (θ1, θ2, θ3, θ4) = (−0.25, 0.5,−1, 0.25), αi ∼

Ber(0.5) and κ = 3.28 as this choice of parameters ensure that the weak-dependence requirement for the

network is met as in (Leung, 2019). We assign treatment to units randomly, with a probability of being

treated of 0.3. The outcomes for the random-coefficient model as generated as in (2), with θi2, θi3 ∼ N(0, 1),

θi4, θi5 ∼ N(1, 1), and θi1 = γ−1i
∑
j Aijνj where νj ∼ N(1, 1). For the linear regression, we generate the Yi’s

using the linear-in-means model (3), once with β0 = (−0.25, 0.5, 0.25) then for β0 = (1,−0.5, 0.75).

5.2 Treatment and Spillover Effects

5.2.1 Non-Parametric Estimation

As mentioned in 3.1, estimates implicitly depend on the number of neighbours units have. Thus, throughout

the paper, we fix the degree of sampled units at γ = 3 in order to identify the average treatment and spillover

effects. For fixed t, variation in d identifies the treatment effect, and likewise for the spillover effect for a

fixed d and variation in t. Thus, the average treatment effect (ATE) is estimated as:

µ̂(1, 1, 3)− µ̂(0, 1, 3),

and the average spillover effect (ASE) as:

µ̂(0, 1, 3)− µ̂(0, 0, 3).

Results for the non-parametric estimation of the average treatment and spillover effects can be found in

Table 1. Rows ‘ATE estimate’ and ‘ASE estimate’ display the estimates, and their corresponding stan-

dard errors calculated using (9) are displayed below in rows ‘SE’. The rows ‘Effective n(d,t,γ)’ calculated

as
∑n
i=1 1i(di, ti, γi), give the average effective sample sizes for the aggregated simulations, rounded to the

nearest integer. The estimates for the average spillover effect are consistently close to the true value of -3

(by construction in this design), and this result holds across population sizes.
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Table 1: Non-Parametric Estimation

n 1000 2000 n 1000 2000
Effective n(1,1,3) 9 18 Effective n (0,1,3) 22 41
Effective n(0,1,3) 22 41 Effective n (0,0,3) 17 32
ATE estimate 0.96 1.01 ASE estimate -2.98 -2.99
SE 1.31 0.97 SE 1.44 1.05

5.2.2 Linear Regression

Tables 2 and 3 contain results of the linear regression, where the outcomes Yi are generated according to

3. The outcomes are regressed on Xi = (1, Di, Ti/γi). Thus we estimate β = (β1, β2, β3), where β1 is the

intercept, β2 estimates the treatment effect, and β3 captures the spillover effect. The estimates are close to

their target values β0 for both sample sizes, and across choices of the β0 parameters. The network standard

errors perform well, but are systematically bigger than the heteroskedasticity-consistent (HC) standard errors

as expected. We can then conclude that their in a trade-off between efficiency and robustness to network

interference.

Table 2: Linear regression for β0=(-0.25,0.50,0.25)

β1 β2 β3

n =500
Estimate -0.249 0.506 0.251
Network SE 0.00332 0.00191 0.00780
HC SE 0.00193 0.00194 0.00534

n=1000
Estimate -0.245 0.0500 0.245
Network SE 0.00167 0.00095 0.00394
HC SE 0.000952 0.000954 0.00266

Table 3: Linear regression for β0=(1,-0.50,0.75)

β1 β2 β3

n=500
Estimate 0.999 -0.497 0.753
Network SE 0.00322 0.00191 0.00782
HC SE 0.00193 0.00194 0.00535

n=1000
Estimate 0.995 -0.500 0.761
Network SE 0.00167 0.000950 0.00393
HC SE .000950 0.000955 0.00266

5.3 Quantile-Based Treatment and Spillover Effects

5.3.1 Non-parametric estimation

Tables 4 and 5 display results from the quantile treatment and spillover effects, calculated using the con-

ditional QSF (11). In this section, we consider a population consisting of n = 1500 units, and estimate

treatment and spillover effects for quantiles τ = {0.25, 0.5, 0.75, 1}. As the quantiles increase to gradually

include the whole sample, the average treatment and spillovers effects also converge to their respective val-

ues of 1 and -3, as in Table 1. The associated standard errors also increase with the quantiles, due to the
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increasing range of the outcomes Yi and observations ñ.

Table 4: Quantile Treatment Effects

τ 0.25 0.5 0.75 1
Effective n(1,1,3) 3 8 10 14
Effective n(0,1,3) 9 23 26 32
ATE estimate 0.508 0.391 0.481 1.036
SE 0.783 0.896 0.928 1.100

Table 5: Quantile Spillover Effects

τ 0.25 0.5 0.75 1
Effective n(0,1,3) 9 23 26 32
Effective n(0,0,3) 0 2 18 25
ASE estimate -5.971 -3.560 -3.696 -3.020
SE 1.023 1.005 1.042 1.205

5.3.2 Quantile-Based Truncated Regression

A second extension to Leung (2019) is the quantile-based truncated regression. In this exercise, we estimate

βτ = (βτ1, βτ2, βτ3) for τ = {0.02, 0.04.., 1}, with a sample size of n = 750. We generate the outcomes as in

(3) with β0 = (−0.25, 0.5, 0.25). As seen in Figure 1, the estimates converge to their true values.

Figure 1: Treatment and spillover effects, per fraction of the population

From the graph, we observe that for units belonging to the 40th percentile, the spillover effect captured by

β2 is stronger than the treatment effect. This effect is also seen in Tables 4 and 5, where we notice that the
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average spillover effect is much larger (in absolute terms) than the average treatment effect, with respective

values of -5.97 and 0.508 for the quantile τ = 0.25.

Figure 2 shows the corresponding standard errors for the βτ estimates are also plotted. The network standard

errors proposed in Leung (2019) are plotted with lines, whereas the heteroskedasticity robust ones are plotted

dots. Most dots fall on the plotted line, thus from the graph we can not conclude that the HC standard

errors outperform the network standard errors.

Figure 2: Network standard errors versus HC standard errors, per fraction of the population

6 Conclusion

In this paper, treatment and spillover effects mediated by network interference were estimated using non-

parametric and linear regression methods. Following in the steps of Leung (2019), we used a super-population

model with a single large network on which was imposed a number of restrictions to induce weak-dependence

in the outcomes of the sampled units. We also construct standard errors robust to network interference.

For the linear regression we compare these to conventional HC standard errors. The latter systematically

perform better than the network standard errors in terms of efficiency, thus we conclude there is a small

trade-off between efficiency and robustness to network interference. Under assumptions presented in Leung

(2019), the estimates are identified and asymptotically normal. We extend the results of Leung (2019) by in-

troducing quantile-based effects under network interference, to learn more about the outcomes’ distribution.

However, one must remain cautious in empirical applications, as estimates proposed in Leung (2019) using

the super-population model are only valid under a number of restrictive assumptions on the network.
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7 Appendix

Three programs were used to obtain all of the results in this paper. These were coded by myself, using

MATLAB.

Thesis Script(method,n,numberReplications,quantile)

Inputs: ‘method’ can take values (1) for the non-parametric estimation, (2) for the linear regression or (3)

for the quantile non-parametric estimation. ‘n’ is the sample size, and ‘numberReplication’ the number of

simulation runs. ‘τ ’ is the quantile for quantile non-parametric estimation, only relevant for method (3).

This is my main script, which generates the network and data, then calculates the estimates and returns the

output via a print function.

[Betas,Network,HC]=QuantileReg(n,numberReplications)

Inputs: ‘n’ is the sample size, and ‘numberReplication’ the number of simulation runs.

This script is contains the quantile-based truncated linear regression. It saves three 50 × 3 matrices ‘Be-

tas’,‘Network’ and ‘HC’ containing estimates for βτ and corresponding network and HC standard errors, for

each second quantile τ . These are then plotted with the program ‘Plot’.

Plot

Plots the outputs of the program ‘QuantileReg’, giving Figures 1 and 2.
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