
ERASMUS UNIVERSITY ROTTERDAM

Erasmus School of Economics

The Netherlands

July 7, 2019

Thesis

Lin - Kernighan algorithm for the Travelling Salesman Problem

and an application to the Travelling Thief Problem

Wout Konings
433246

A thesis presented for the bachelor degrees of

Econometrics and Operations Research

&

Economics and Business Economics

Supervised by:

T. Breugem MSc

Second reader:

R. Hoogervorst MSc

The views stated in this thesis are those of the author and not necessarily those of Erasmus School of Economics or Erasmus University Rotterdam.

Abstract

The Lin-Kernighan algorithm is one of the best performing heuristics for the Travelling Salesman

Problem (TSP). In this thesis the literature on the TSP is discussed and a thorough explanation of

the Lin-Kernighan algorithm and all state-of-the-art extensions are given. We implement the original

algorithm by Lin and Kernighan (1973) and perform an experimental analysis on various TSPlib

instances to test the algorithm’s performace. We find runtimes to grow with rate approximately equal

to n2.6 and the performance worse than reported in the literature.

Additionally, we look at a relatively new benchmark problem: the Travelling Thief Problem (TTP).

The TTP tries to capture the interdependency between subproblems present in many real-life prob-

lems in a benchmark problem by combining the TSP with the Knapsack Problem. An overview of

the current solvers is given and a new construction algorithm, the Lin-Kernighan Modified Distance

(LKMD) algorithm, is proposed. While most current state-of-the-art construction algorithms first pick

a tour and then try to find a packing plan, the LKMD does the opposite: it first constructs a packing

plan, which is afterwards used to find a good tour. The algorithm is tested on the 30 eil51 TTP in-

stances. While overall solution quality of the algorithm is good, the running times are 60 times larger

than the other construction algorithms. Still, the algorithm may serve as inspiration for further attempts

to find heuristics that exploit the interdependency between the two subproblems.

1

Contents

1 Introduction 4

2 Literature review 6

2.1 Travelling Salesman Problem . 6

2.2 Exact Solution Methods . 8

2.3 Heuristic Solution Methods . 9

2.3.1 Construction Heuristics . 9

2.3.2 Improvement Heuristics . 10

2.4 Other Heuristics and Genetic Algorithms . 11

3 Lin-Kernighan Algorithm 13

3.1 Further Literature on the Lin-Kernighan Algorithm . 17

4 The Travelling Thief Problem 19

4.1 Problem Description . 19

4.2 Benchmark Set . 21

4.3 Solution Methods . 22

4.3.1 SH and DH Solvers . 22

4.3.2 The PACKITERATIVE algorithm . 23

4.3.3 Other Solution Methods . 24

4.4 Lin-Kernighan Modified Distance Algorithm . 24

5 Results 27

5.1 Results for the Lin-Kernighan Algorithm . 27

5.2 Results for the LKMD Algorithm for the Travelling Thief Problem . 30

6 Conclusion 35

7 Bibliography 36

8 Appendices 42

8.1 Tables . 42

8.2 List of Supplementary Java Code Files . 43

2

List of Tables

1 Milestones before the TSPlib. 7

2 Concorde progress on large TSP instances. 7

3 Performance Lin-Kernighan algorithm (1) . 28

4 Performance Lin-Kernighan algorithm (2) . 29

5 Results after considering more nearest neighbours . 30

6 LKMD results for the eil51 instances . 32

7 LKMD compared to DH and SH . 33

8 LKMD compared to PACKITERATIVE . 34

9 Comments and origins of TSP test instances. Source: Reinelt (1991). 42

10 Java Code list . 43

List of Figures

1 The LKH 2003 world tour. 8

2 Sequential 4-opt swap . 13

3 Uniquely determining xi . 14

4 Non-Sequential 4-opt swap . 15

5 The Lin-Kernighan heuristic . 16

6 A TTP instance example . 20

7 The Lin-Kernighan Modified Distance algorithm . 26

8 Growth of computation times of the Lin-Kernighan algorithm . 27

3

1 Introduction

The Travelling Salesman Problem (TSP) is the problem of finding the shortest tour among n cities, where every

city is visited exactly once. The TSP is an extensively studied problem within the fields of combinatorics and

operations research. After appearing in the 18th century it was firstly formalised by Karl Menger in 1932 as

the Botenproblem (Messenger Problem) and has seen a considerable amount of academic attention since. It has

probably been the most extensively studied combinatorial problem (Applegate et al., 2006). In a world where

optimisation and the reduction of operating costs is ever more important, the TSP remains a relevant problem to

be studied.

Its applications are wide, from vehicle routing and various scheduling problems to computer wiring and the

drilling of computer boards (Helsgaun, 2000), x-ray crystallography (Bland and Shallcross, 1989), 3D printing

and job sequencing. The TSP is also prevalent in warehouse order picking (Ratliff and Rosenthal, 1983). The

TSP has become important yet again with upcoming air transportation in the field of parcel delivery and natural

disaster emergency handling, which both require fast and good solutions (Wu et al., 2019).

The TSP belongs to the class of NP-complete problems (provided P 6= NP; Karp, 1972; Laporte, 1992). This

means that finding an exact solution cannot be done in polynomial time and all NP problems can be reduced to

the TSP. This has a consequence that larger problem instances cannot be solved in reasonable computation times.

For a problem with n cities there are (n−1)!
2 possible tours. Thus, for a 10-city problem, there are more than 105

possible tours, and for a 100-city problem more than 10150, whereas the number of particles in the universe is

estimated to be approximately equal to 1080 (Heile, 2017) 1. Therefore one often has to recourse to heuristic

methods.

One of these heuristics is the Lin-Kernighan (LK) heuristic proposed by Lin and Kernighan (1973), which is

still regarded as one of the most sophisticated heuristics for solving the TSP (Chauhan et al., 2012). The heuristic

is based on a local search, where many randomly generated tours are sought to be improved to arrive at local

optima. The idea is that when a sufficient amount of random starting solutions are investigated together along

with a good improvement method, the global optimum will at some point be found amongst the set of found local

optima.

A popular local search method is the k-opt search, where k edges are removed from the tour and replaced

by k edges previously not included in the tour, resulting in a better solution. The higher k is, the higher the

chance that the newly constructed tour will be optimal. With 2-opt and 3-opt algorithms 2 or 3 edges are swapped

iteratively until no further improvement can be made. However, it is difficult to know in advance what the best

amount of edges to switch is, and computation times rise considerably with an increase in k. Lin and Kernighan

(1973) generalised and revolutionised this approach, by iteratively looking for a k, the number of edges to swap,

resulting in a variable k-opt algorithm. Lin and Kernighan report a running time of O(n2.2) and the Johnson (1990)

implementation ordinarily generates solutions less than 2% from the optimal value.

1retrieved from www.huffpost.com

4

Since its original publication, the LK heuristic has been optimised and has been used to solve very large TSP

instances. Additionally, it has been altered and implemented into various variations of the TSP. In this research

we implement the LK heuristic and test its performance on well known problems in the TSPlib, first constructed

by Reinelt (1991) and expanded since. Of all these problems the optimal solutions are known.

Some researchers have critiqued modern day operation research for is still focused on ’old’ benchmark problems

(such as the TSP), many of which do not capture characteristics of real life problems. By not investigating these

characteristics, modern day heuristics may not be good enough for dealing with real life problems.

Therefore, Bonyadi et al. (2013) have tried to capture one of those characteristics, that is interdependence

between subproblems, by introducing a new problem: the Travelling Thief Problem (TTP). The Travelling Thief

Problem is a combination of the Travelling Salesman Problem and the Knapsack Problem. A thief has to travel

along all cities and in those cities, items with a certain value and a certain weight are located. The thief pays a

certain amount of rent per time unit for the use of the knapsack and aims to maximise the profit of his trip. Picking

up more items does however make his knapsack heavier, leading to a slower travel speed and thus a longer trip

duration and a higher rent. We can see that the two problems are interrelated, as changing the items to pick could

change the best route to choose and vice versa. Additionally, the problems are indecomposable, which means the

optimal TSP route need not be the optimal route in the TTP problem and vice versa the optimal picking strategy

in the seperate knapsack problem also need not be the optimal picking strategy in the TTP problem. This will be

explained in greater detail in section ??.

The Lin-Kernighan heuristic may be suitable for a construction algorithm for the Travelling Thief Problem,

especially when it takes into account the interdependecy of the two problems (Mei et al., 2016). In this research,

we propose a new construction algorithm for the TTP: the Lin-Kernighan Modified Distance (LKMD) algorithm.

We test the algorithms performance against the current state-of-the-art construction algorithms on the 30 eil51

TTP instances.

In section 2 we discuss the relevant literature on the TSP so far. The LK algorithm is concisely explained in

section 3 along with the relevant literature on the LK algorithm in section 3.1. In section 4 we give a thorough

explanation of the TTP, review the solution methods currently available, and explain the LKMD algorithm. Finally

in section 5 the experimental results are discussed and the thesis is concluded in section 6.

5

2 Literature review

2.1 Travelling Salesman Problem

The Travelling Salesman Problem is the problem of finding the route with the lowest cost, such that every city is

visited once. The problem can be modelled by having a complete undirected graph G = {V,E}, with V the set of

nodes representing the cities and E the set of edges where edge ei j represents the shortest route from city i to city

j. Each edge has a corresponding cost |ei j|= ci j. In the case of Euclidean distances, the following hold:

• ci j = c ji, the problem is symmetric.

• cik ≤ ci j + c jk, the triangular inequality holds. This means that the cost of edge ei j is the shortest and one

cannot have a smaller cost by travelling via another edge.

The Travelling Salesman Problem can be modelled as an Integer Program. We have decision variable xi j = 1, if

edge ei j is selected, 0 otherwise. The formulation then is as follows:

min ∑
ei j∈E

xi jci j (1)

subject to:

∑
j∈V

xi j = 2, for every i ∈V (2)

∑
i, j∈V,i 6= j

xi j ≤ |S|−1, for every S⊂V,S 6= /0 (3)

xi j ∈ {0,1}, for every i, j (4)

Constraint 2 ensures that every node is visited once and constraint 3 ensures that there are no subtours present.

The Travelling Salesman Problem is a subproblem of many other combinatorial problems, for example in the

Vehicle Routing Problem (VRP), where a fleet of vehicles has to service a set of customers from a depot.

Additionally, the TSP has been extended into numerous variations, such as the clustered Travelling Salesman

Problem, where every cluster of cities has to be visited once (Lokin, 1979). The Multiple Travelling Salesman

Problem, where one can use multiple travelling salesmen to visit all the cities (Berenguer, 1979). One can add

time windows, where every city must be visited within a certain time (Lenstra et al., 1988). Of course there is the

Asymetric Travelling Salesman Problem, where the distances between cities depend on the direction in which the

connection is traversed (Laporte et al., 1987). Its most logical implementation is in the field of logistics, where the

Travelling Salesman Problem is the core of every vehicle routing problem. But it has also been used in the fields

of DNA Genome sequencing and in drilling and lasering problems (Applegate et al., 2006), and even in creative

problems such as a one-line drawing (Kato and Yasuhara, 2000).

Furthermore, the Travelling Salesman Problem has led to a lot of improvements in the field of Mixed Integer

Programs (MIP), which are linear programming problems, with the additional constraints that some of the decision

6

Table 1: Milestones before the TSPlib.

1954 Dantzig et al. 49 Cities
1971 Held and Karp 57 Cities
1971 Held and Karp 64 Cities
1975 Camerini et al. 67 Cities
1976 Miliotis 80 Cities
1977 Grötschel 120 cities
1980 Crowder and Padberg 318 cities
1987 Padberg and Rinaldi 532 cities
1987 Grötschel and Holland 666 cities
1991 Padberg and Rinaldi 1002 cities
1991 Padberg and Rinaldi 2392 cities

Source: Applegate et al. (2006)

Table 2: Concorde progress on large TSP instances.

1992 Concorde 3083 cities
1993 Concorde 4461 Cities
1994 Concorde 7397 Cities
1998 Concorde 13509 Cities
2001 Concorde 15112 Cities
2004 Concorde 24978 cities
2004 Concorde 33810 cities
2006 Concorde 85900 cities

Source: Applegate et al. (2006)

variables can only be integers. Many of the MIP solvers today were first applied and studied on the TSP (Applegate

et al., 2006). Particularly the branch and bound method has its origin with the Travelling Salesman Problem. The

idea of repeatedly splitting the problem into smaller sets came from the TSP. When one, for example, has to

find the shortest tour between all cities in the United Kingdom, and we do not know whether the link between

Edinburgh and Livingston should be part of the optimal tour, one could then separate the solution space into

all tours that use this edge and all tours that do not. Before then splitting the problem further, a bound is first

computed, such as the sum of the cost of all edges that we said are part of this branch. Using these bounds, certain

branches can be excluded and a solution can be found more quickly.

The Travelling Salesman Problem is also important as it is part of the group of NP-complete problems (pro-

vided P 6= NP). Many important and difficult problems belong to this same set and often solution approaches for

these problems share resemblances. Also, all problems in NP are reducible to the TSP. Developing good solution

approaches to the Travelling Salesman Problem may in time offer inspiration for solution approaches for other

difficult problems; a thing that has often happened in the past.

Most of the earlier instances were inspired by real-life geometric examples, such as Ulysses’s trip or travelling

by all the capitals of the United States. Chess knight tours were also popular for generating TSP instances. Later

randomly generated instances in a euclidean plane also gained popularity and other variations, such as the use of

pseudo-distances instead of geometric distances.

One of the earlier larger problems was an instance of 49 cities in the United States by Dantzig et al. (1954).

From that point until the 1990s larger and larger problems were investigated. In this time research into the TSP

flourished and larger instances were solved. Some of these milestones can be seen in table 1. All of the benchmark

instances have since been gathered by Reinelt (1991) and are now part of the TSPlib. When it was published at

first, it consisted of only 24 problems. Nowadays it consists of 110 Symmetric TSP instances. In this paper we

will look at several (smaller) instances part of this library. A description of these problems can be found in table

9 the appendix.

7

After the introduction of the CONCORDE TSP solver by Applegate et al. (1998), many large instances have

been solved. Some of those can be found in table 2.

Currently, the world TSP tour, consisting of 1,904,711 cities is being solved. This problem was constructed

by the University of Waterloo in 2001. An initial solution was found by Karl Helsgaun, which turned out to be

0.076% larger than a lower bound established by the CONCORDE solver in 2007. Currently, the record is held by

Keld Helsgaun with a tour length of 7,515,772,107, found on March 13, 2018.2 This solution is 0.0474% above

the best found lower bound. The problem still remains unsolved to this date.

One might wonder why this need to solve these larger problems still remains, as no one will ever actually need

the shortest tour around all cities in the world. However, instances of this size are present in the wiring of Printed

Circuit Boards in Very Large Scale Integration (VLSI), where the amount of points that need to be connected can

grow to sizes this large.

In the next subsections we will discuss several exact and heuristic approaches to solve the Travelling Salesman

Problem.

2.2 Exact Solution Methods

Figure 1: The LKH 2003 world tour.
Exact solution methods are methods which

are certain to find the optimal solution

within a bounded number of steps. For ex-

ample for the TSP we know the amount

of steps is bounded by simply checking all

the possible tours, but as we have seen al-

ready, enumerating everything takes a long

time. Many exact algorithms deal with re-

laxing some of the constraints to find lower

bounds on the solution and then trying to

make the solution feasible again.

The first MIP formulation was con-

structed by Dantzig et al. (1954) (DFJ),

which is the same as the formulation used

in section 2.1. This formulation was later

strengthened by Miller et al. (1960), by im-

proving the subtour elimination constraints

by using additional variables. Later, it was

improved even more by Desrochers and

2http://www.math.uwaterloo.ca/tsp/world/

8

Laporte (1991).

Dantzig et al. (1954) solved their 49 city problem by using the LP formulation, where the decision variable xi

doesn’t need to be binary, but 1≥ xi ≥ 0. This leads to a lower bound of the optimal value. Later they developed

an initial cutting plane or branch and cut method, which became the dominant solver for the Travelling Salesman

Problem and other (M)IP problems. The two decades following DFJ however, branch and bound methods got

more popular. Why the branch and cut method was not investigated more at that time, is unknown (Applegate

et al., 2006).

The most notable branch and bound method was developed by Held and Karp (1970). Held and Karp use a

1-tree to construct a good lower bound on the Travelling Salesman Problem. A 1-tree is a minimal spanning tree

with an additional node that connects to the tree with two edges. The authors observe that a TSP tour is actually a

one tree with the extra property that every node has a degree of two. This means that the cost of a 1-tree provides

a lower bound on the objective value of the TSP. Additionally, they observe that adding a constant to all intercity

distances does not change the TSP solution, but may change the 1-tree solution. This provides a large set of lower

bounds and, as 1-trees are not costly to produce, a good lower bound can easily be found.

Earlier Held and Karp (1962) used a dynamic programming approach to solve the Travelling Salesman Prob-

lem. Using the recursive property that, given a certain part of the optimal tour, the remaining edges must also be

chosen optimally. Using this Held and Karp showed it is possible to solve any TSP instance with a worst case

running time of n22n. This is still slow, but it is already performing better than the n! running time that follows

from enumerating all solutions.

The cutting plane method by Dantzig et al. (1954) was first revisited by Hong (1973) and later by Crowder

and Padberg (1980) and Grötschel and Holland (1987). The main idea of the cutting plane method is to start with

a linear programming relaxation and then ’cut’ the polytope defining the feasible region to make the relaxation

stronger. Later Padberg and Rinaldi finalised the branch and cut method in their 1991 paper. The branch and cut

method is also the main method in the CONCORDE solver.

2.3 Heuristic Solution Methods

Heuristic approaches aim to find a good solution within reasonable time, instead of finding the optimal solution

with certainty, but in a longer time. The Lin-Kernighan algorithm is such an algorithm. The LK algorithm belongs

to the class of tour improvement algorithms, where an initial tour is taken and one tries to improve this tour to get

a good one. Besides this there are tour construction algorithms, which try to construct a tour from the bottom up,

and composite algorithms, which combine both of these features.

2.3.1 Construction Heuristics

One of the earliest and intuitively most simple algorithms is the nearest neighbour algortihm. Here, one starts at a

certain city and travels from city to city consecutively, taking the shortest edge to a city not visited before. When

9

all cities have been visited the tour is closed up to the starting city again. This heuristic has a large drawback that

in the beginning the edges chosen will be short, but not towards the end. One tends to paint oneself into a corner

where in the end only long edges will remain (Applegate et al., 2006). This algorithm generally doesn’t perform

well.

A heuristic similar to the nearest neighbour algorithm is the greedy algorithm. Instead of searching globally,

we simply start with no edges selected (and thus sort of with n paths of length zero) and keep looking for the

shortest edge that links two paths together. Tours are not allowed to be formed before the final step.

Another form of construction heuristics are insertion heuristics. Here the idea is to start with a starting subtour

of length k < n and then inserting the remaining nodes into the tour to arrive a good tour. There are many different

rules for choosing the next node to be inserted and the difference in performance between these problems is very

dependent on the problem it is applied to (Reinelt, 1994).

Another famous construction algorithm is the Christofides algorithm by Christofides (1976). It consists of

finding a minimum spanning tree in the graph. Then it finds a perfect matching between the nodes with an odd

degree in this minimum spanning tree. When these edges are combined, a Eulerian cycle can be formed (a cycle

in which every edge is visited only once, but node may be visited multiple times). And then from this Eulerian

cycle an Hamiltonian cycle (and thus a valid TSP tour) can be created by not visiting the repeated nodes twice.

The Christofides algorithm runs in O(n3). Additionally, as the perfect matching is at most half of the length of

the optimal tour and the mininal spanning tree is smaller than the optimal tour one can show that the length of the

Christofides tour is at most 50% above the length of the optimal tour.

The final construction heuristic is the savings heuristic by Clarke and Wright (1964). It was originally devel-

oped for a vehicle routing problem, but it can also be used for the Travelling Salesman Problem. It mainly con-

sists of choosing a base node and constructing the n−1 paths to all the other nodes using one edge. Afterwards

paths are merged until there is one large tour. The decision on the next tours to be merged is based on which one

gives the largest savings.

Reinelt (1994) performed a relative performance analysis on these construction algorithms and finds the sav-

ings algorithm to deliver the best relative performance. No other algorithm was able to get results closer than 2%

to the saving heuristic’s result. In absolute terms, Reinelt found the savings heuristic to be around 11 - 12% above

the optimal values.

2.3.2 Improvement Heuristics

Improvement heuristic take a starting tour and try to improve the tour. Simple heuristics are the node and edge

insertion algorithms. Here a node (edge) is removed from the tour and all possible location to insert the node

(edge) back into the tour are investigated and the one with the highest savings is chosen. Checking all options

takes O(n2), but the running time of the complete algorithms may be a lot longer. In the worst case one would

only find consecutive small improvements and the running time would then depend on the length of the tour and

10

not on the problem size, making it impossible to bind the worst case running time (Reinelt, 1994).

Other improvement algorithms are the 2-opt (Croes, 1958), 3-opt (Lin, 1965), ..., k-opt exchange improvement

algorithms. Where k edges are deleted from the tour and new edges are searched for in order to link up the tour

again and find a smaller tour length.

Lin and Kernighan (1973) generalised and revolutionised this approach, by iteratively looking for a k, the

number of edges to swap, resulting in a variable k-opt algorithm. The complete algorithm and further literature

on the algorithm will be discussed in section 3.

A way of improving the tour before starting an improvement method is by crossing elimination. As when two

edges cross in a tour in a euclidian case, there is always an improvement to be gained. Normally checking all

improvement options would take O(n2), but Ottmann and Widmayer (1990) found a way to do this in O(n log n).

2.4 Other Heuristics and Genetic Algorithms

The problem with heuristic approaches is that the heuristic may find the optimal solution, but the chance that they

instead end up in a local optimum is rather large.

A way to prevent this is to include randomness in the algorithm, such that local optima may be escaped. This is

for example done in the iterated Lin-Kernighan algorithm, where a random 4-opt move is performed when a local

optimum is found. This makes it more likely that it the end the global optimum is found. Often these algorithms

are meta-heuristics that are also applicable to other problems. These algorithms may also draw inspiration from

nature, such as genetic algorithms.

An example of such an algorithm for the Travelling Salesman Problem is the Simulated Annealing algorithm,

which draws its inspiration from physics. In physics annealing is the process of slowly reducing the temperature

until from first being able to reach all states, the material reaches a steady state. It was developed by Kirkpatrick

et al. (1983) and follows a similar idea to real life annealing. The algorithm has a temperature parameter that

slowly cools down with time. The algorithm starts with a solution x and tries to find solution in the neighbourhood

of x. If y, the found solution, is better than x, x becomes y. However, if y is worse, x can still become y, but the

probability that this happens depends on the temperature. When the temperature is still high, these suboptimal

moves will be frequent, but as the temperature falls, these moves will be less frequent. Simulated Annealing

has been tried on the Travelling Salesman Problem by a couple of researchers, among which Bonomi and Lutton

(1984) and Golden and Skiscim (1986), but performances have been inconsistent and successes not clear (Reinelt,

1994).

Glover’s (1989, 1990) Tabu Search is quite similar to Simulated Annealing, as the objective function is some-

times allowed to increase as well. Additionally, a Tabu list is kept with previously found solution such that these

are not being visited again. Its successes for the Travelling Salesman Problem depend on a careful and specific

setting of the Tabu parameters, but it can be a very well-performing algorithm (Reinelt, 1994).

Another popular group of algorithms are genetic algorithms developed by Holland (1992) and Goldberg and

11

Holland (1988). Genetic algorithms are meta-heuristics that take inspiration from natural selection. The algorithm

starts with a population of solutions, each with an own fitness score, which in most cases is the objective value.

Then for a fixed number of times or when a certain threshold is met, new populations are made. Solutions have

the possibility to ’procreate’ or ’crossover’, where two solutions are combined into new solutions, or to ’mutate’,

where one solution is perturbed on itself. Mostly, solutions with a better fit score are more likely to procreate

than others. The crossover part of the algorithm attempts to improve solutions while the mutation part is meant to

escape local optima. The main challenge for designing genetic algorithms for the Travelling Salesman Problem is

the way to combine tours together and how to mutate tours. For more information on this, see Potvin (1996) and

Larranaga et al. (1999).

Dorigo and Gambardella (1997) took inspiration from nature as well, particularly ants, in inventing their Ant

Colony optimisation algorithm. In real life, ants release pheromones when they find a food source, which leads to

other ants following the same trail to the food. The more pheromones there are on a trail, the more ants will come

release pheromones again, reinforcing the effect. In the algorithm, a colony of ants starts at different cities and

goes on to make a tour in a nearest neighbour fashion. However, instead of always choosing the shortest edge, the

choice for an edge depends on the length of the edge and the amount of pheromones on the edge. Every time an

ant travels an edge, it releases pheromones, and after the colony has completed the tours, the ant with the smallest

total tour length releases additional pheromones on the tour’s edges. This method has since been improved by

Escario et al. (2015), and Mahi et al. (2015) by using the particle swarm optimisation by Wang et al. (2003) and

3-opt moves.

Other more recent applications of genetic algorithms on the Travelling Salesman Problems are a FireFly algo-

rithm implementation by Jati et al. (2011), a Cuckoo Search by Ouaarab et al. (2014), a bat-inspired algorithm by

Saji and Riffi (2016) and an American Buffalo optimisation implementation by Odili and Mohmad Kahar (2016).

12

3 Lin-Kernighan Algorithm

Lin and Kernighan (1973) generalised and revolutionised the k-opt approach, by dynamically looking for a k, the

number of edges to swap. Thus, the main principle behind the LK algorithm is that instead of always making

a fixed amount of changes, it sequentially tries to find the edges to swap by starting with the edges that are

most out of place and continue until the proposed swap is longer profitable. Let S be the set of all n(n−1)
2 edges

between the n cities, and T an arbitrary tour that satisfies the tour condition. The aim is to find two sets of edges

X = {x1,x2, ...,xk},xi ∈ T and Y = {y1,y2, ...,yk},yi ∈ S/T , so that removing the edges in X and adding the edges

in Y results in a tour T ′ with a lower total cost. (F(T ′)< F(T)). Such a swap for k = 4 is given in figures 2.

Figure 2: Sequential 4-opt swap

e

f

g
h

i

j

k

l

a

b

c

d

x1

x2

x3

x4
y1

y2

y3

y4

: The tour before the sequential 4-opt
move: a-b-c-d-e-f-g-h-i-j-k-l-a

e

f

g
h

i

j

k

l

a

b

c

d

x1

x2

x3

x4
y1

y2

y3

y4

: The tour after the sequential 4-opt
move: a-j-i-h-d-c-b-e-f-g-k-l-a

Define the gain by swapping xi with yi as gi = |xi|− |yi|, where |xi| and |yi| are the lengths of xi with yi. Then the

total gain of making a k-opt swap is Gk = ∑
k
1 gi = F(T)−F(T ′) > 0. Even though some individual swaps may

be negative (gi < 0), the total sum can be positive. This means we can continue searching as long as the sum of

gains is positive and prevents the algorithm from stopping too early and missing any fruitful swaps and ending up

in a local minimum too soon.

In order to make the algorithm work, Lin and Kernighan observe several things that need to be satisfied:

• If we are at a certain k in the algorithm and want to stop searching, we need to know that the exchange

results in a feasible tour. In order to do this easily and reduce programming bookkeeping, we require that

every newly added swap can link back up to the starting node to form a feasible tour.

13

• the sets X and Y are disjoint, which means that any edges that were previously assigned to be removed

cannot be assigned to be added and vice versa.

• The gain function Gi = ∑
i
1 gi represents the gain of the swap up until the point i. We require a positive total

gain for each new swap yi. When at some point Gi is negative we have reached the stopping rule and we

can stop searching.

The first bullet point is an important feature of the Lin-Kernighan algorithm, i.e. all swaps must sequential. This

means that for every yi, the next xi is uniquely determined, as there can be only one xi after which the tour can be

closed up again. This can be seen in figure 3. Starting in node b, edge x1 = (b, a) is deleted, after which edge y1

= (a,h) is added. Now we see that there can be only one choice for x2. When we would choose x′2, the resulting

y′∗ results in two subtours. Therefore, the only choice for x2 is x′′2 , because then the tour can be closed up again

by having y2 = y′′∗ = (i, b). This feature means that a non-sequential swap as seen in figure 4 can never take place.

This means that some good swaps might be ruled out. However, Lin and Kernighan found non-sequential swaps

to be very infrequent in problems they analysed.

Figure 3: Uniquely determining xi

e

f

g
h

i

j

k

l

a

b

c

d

x1

x′2x′′2

y1

y′∗

y′′∗

The complete Lin-Kernighan algorithm can be seen in figure 5.

In step 9, the candidate yi’s are restricted to the five nearest neighbours of t2i, as, according to Lin and Kernighan,

one could expect these links to be most likely part of the optimal tour. This saves investigating all the possible

yi’s, saving computation time. On the other hand it goes at the cost of possibly not finding optimal links.

Lin and Kernighan usually find a small number of local optima, ranging from 2 to 5. This suggests that the

edges that are a part of all those solutions are likely to be part of the optimal solution. Therefore, in step 8, the

14

Figure 4: Non-Sequential 4-opt swap

e

f

g
h

i

j

k

l

a

b

c

d

x1

x3

x2

x4

y1

y2

y3

y4

: The tour before the non-sequential 4-
opt move: a-b-c-d-e-f-g-h-i-j-k-l-a

e

f

g
h

i

j

k

l

a

b

c

d

x1

x3

x2

x4

y1

y2

y3

y4

: The tour after the non- sequential 4-
opt move: a-h-i-j-e-f-g-b-c-d-k-l-a

deletion of edges is restricted to edges that are not part of those previously found best tours. In order to prevent

too much bias towards these solutions, this rule is only applied when i is larger than 4.

In step 12, the search is stopped when the tour is similar to a previously found local optimal tour T . This is

to prevent time wasted on continuing to try to improve this tour, which has already been done before: this is the

so-called checkout time. Lin and Kernighan state that computation times are reduced with so much as 30 to 50

percent due to this rule.

In step 9, we see that not only the smallest yi is chosen, but the algorithm also investigates the length of xi+1,

the node to be deleted after. This prevents the case where small yi is added, but thereafter removing an edge xi+1

that was actually a good edge in the tour. Additionally, Lin and Kernighan state that the algorithm becomes more

global of nature, as merely looking at the length of yi implies a nearest neighbour approach, while also looking at

the next xi+1 entails information about the current tour as well.

Of course for i = 1,2 the situation of multiple possible xi’s (only for i = 1) and yi’s arises more frequently. A

backtracking procedure is applied in step 10. Backtracking is a trade-off between computation time and solution

quality, as complete backtracking would find the optimal solution. Lin and Kernighan experimentally found

backtracking up to a depth of 2 to be optimal. Additionally, only five candidates are considered for y1 and y2, as

this halved computation time and barely affected performance.

In the original implementation also a 4-opt non-sequential move is investigated as a ’cheap insurance’ in the

case such an optimal swap would be present. In our implementation, this step is skipped. In this paper however,

we will only implement the algorithm as described in this section.

15

Figure 5: The Lin-Kernighan heuristic

1. Create an initial random starting solution T.

2. Set G∗ = 0, the best improvement found so far.

3. Set i = 1
4. Choose t1, the starting node in the tour.

5. Choose edge x1 = {t1, t2}, where it is the largest of the two possible edges.

6. Choose edge y1 = {t2, t3}, such that G1 > 0. If this is not possible, go to step 13.

7. Set i = i+1
8. Choose xi = {t2i−1, t2i}, the next edge to be removed, such that the following conditions are

satisfied:

(a) The tour can be closed by choosing y∗i = {t2i, t1}, such that the tour closes up again.

(b) the edge that is removed is not an edge that has previously been added.

(c) If i > 4, xi cannot be part of the intersection of the sets of edges of the previously
found best solutions.

Check whether the gain by closing up the tour is larger than the best gain found so far
(G∗), if so, set G∗ = Gi−1 + |xi|− |y∗i |.

9. Choose yi = {t2i, t2i+1}, the edge to be added, such that the following condition are
satisfied:

(a) Gi = ∑gi > 0, the total gain by adding the new edge is larger than zero.

(b) the edge that is added is not an edge that previously has been removed.

(c) xi+1 exists; there is a next edge which can be removed.

(d) t2i+1 is part of the set of five nearest neighbours of t2i.

For the feasible y′is, choose the five yi’s for which |yi| is smallest.

For these five yi’s, choose the yi for which |xi+1|− |yi| is maximum.

If a yi has been found, go back to step 7.

10. If G∗ = 0 (No gain has yet been found) do:

(a) If there is an untried edge y2 and fewer than 5 options for y2 have been
investigated, set i = 2 and go to step 9.

(b) If there is an untried edge x2, set i = 2 and go to step 8.

(c) If there is an untried edge y1 and fewer than 5 options for y1 have been
investigated, set i = 1 and go to step 6.

(d) If there is an untried edge x1, set i = 1 and go to step 5.

11. If Gi < G∗ or no more feasible xi and yi can be found. Make the swap corresponding to G∗
resulting in tour T ′.

12. If tour T ′ is the same as a previously found best tour, the search is stopped.

13. Continuing with tour T ′, if there are still untried alternatives for t1, go to step 2.

14. Store the final tour T ′ and corresponding objective value F(T ′) and either stop or go to
step 1 and investigate more tours.

16

3.1 Further Literature on the Lin-Kernighan Algorithm

In this section we will discuss all the revisions and improvements the Lin-Kernighan algorithm has seen so far.

Since its initial publication in 1973, the Lin-Kernighan algorithm has been implemented and altered by many re-

searchers. Many implementations have sought to simplify the implementation of the LK heuristic, as the imple-

mentation of the original algorithm can be rather tedious. Mak and Morton (1993) seek to improve the algorithm

by allowing temporary infeasibility in the sequencing and with that allowing for more breadth in the search. In

1990, Johnson successfully implemented the algorithm, with the alteration of allowing the addition of previously

deleted xi’s in step 9 of the algorithm.

Applegate et al. (1990) and Reinelt (1994) have tried to limit the depth of the search of the heuristic to 50 and

15 steps respectively. However, as this depth was already rarely reached in the original implementation, effects

were inconsequential.

In 1992, Martin et al. attempted an improvement to the LK heuristic in a genetic fashion. The population

consist of only one ’creature’ and therefore only mutations are possible. In the attempt to escape local minima,

there is small chance or permutating the tour by performing a non-sequential 4-opt move such as seen in figure

4. The authors try to tackle the problem that the amount of local optima grows fast with the problem size and

thus the computation time necessary for being certain of having found a global optimum grows as well. This is

attempted by temporarily allowing an increase in tour length in order to increase the search space in the popular

Simulated Annealing way. Applegate et al. (2003) improved this method even further, resulting in the popular

Chained Lin-Kernighan (CLK) algorithm.

Additionally, Applegate et al. (2003) looked into the level of backtracking. Whereas the original algorithm

considers 5 options for the first swap and 5 options of the second swap, Applegate et al. consider several variations

of depth and number of options for backtracking. They find Lin and Kernighan’s rule to work rather well.

For a more extensive review of the alterations of the Lin-Kernighan heuristic done before 1997, see Johnson

and McGeoch (1995).

The most widely used implementation of the Lin-Kernighan heuristic is the Lin-Kernighan-Helsgaun (LKH)

implementation by Helsgaun in 2000, which is also different in design from the original algorithm. Helsgaun

finds some defects in Lin and Kernighan (1973)’s refinement heuristic rules to direct the search:

• For finding a new yi, Lin and Kernighan restrict the options to the five nearest neighbours. Even though

this intuitively might seem like a good rule, as these shorter edges are more likely to be part of the optimal

tour, Helsgaun finds that often optimal tours consist of a nearest neighbour link of a higher order. This

would advocate an increase of the candidate set of edges, but this would also mean a considerable increase

in running time. Helsgaun proposes a dynamic measure of ’nearness’ (called α-nearness) as an estimate of

the edge’s probability of being in the optimal solution.

17

• Additionally, Helsgaun already put the restriction of not being part of a found local optimum on x1, in

addition to for a depth larger than 4.

• The basic move in the algorithm now is a 5-opt move and the search of a move is directly stopped when the

close up of the tour results in improvement. Experiments showed that this made backtracking unnecessary

(except for x1). Applegate et al. (2006) cites this as the most detrimental improvement with regards to the

original algorithm.

• To allow for non-sequential 4-opt moves during the move construction, temporary infeasibility is allowed,

contrary to only looking for a non-sequential 4-opt move after a local optimum has been found.

• As opposed to constructing random starting tours, Helsgaun constructs candidate tours from the previously

found local optima.

After that Helsgaun has improved the LKH for many variations of the Traveling Salesman Problem. In 2009,

Helsgaun introduced several improvements to the LKH by

• generalising the idea of using 5-opt moves to allow for non-sequential exchanges to a generalised k-opt

submoves,

• partitioning large problems into several smaller subproblems,

• attempting to construct the optimal tour by merging some of the found local optima.

These improvements resulted in the LKH-2 variation.

In 2011, Helsgaun extended the LKH-2 to the Bottleneck TSP, where the largest edge in the tour is minimised,

in 2014 to the Equality Generalized Travelling Salesman Problem, where the cities are divided up in clusters

and every cluster must by visited at least once. Hains et al. (2012) improved the LKH-2 on heavily clustered

instances of the TSP, where the LKH-2 was performing badly. Currently, Helsgaun (2000) has improved the

LKH to the LKH-3, which solves a huge variety of Travelling Saleman Problems, such as the Sequential Ordering

Problem (SOP), the Traveling Repairman Problem (TRP), variations of the Multiple Traveling Salesman Problem

(mTSP), and variations of Vehicle Routing Problems (VRPs). Helsgaun bases the LKH-3 on the simple idea of

transforming these problems to the standard TSP and imposing a penalty function on the additional constraints.

Most recently, Taillard and Helsgaun (2018; 2019) introduced a method to generate candidate solutions for very

large problem instances faster.

18

4 The Travelling Thief Problem

Some academics deem modern day operation research problems not to capture common characteristics of real

life problems well enough. By not investigating these characteristics, modern day heuristics will not be well

applicable to real life problems.

Therefore, Bonyadi et al. (2013) tried to capture one of those characteristics, the interdependence of subprob-

lems, by introducing a new problem: The Travelling Thief Problem (TTP), which is a combination of the Trav-

elling Salesman Problem and the Knapsack Problem. A thief visits a set of cities (all must be visited, as in the

TSP), and at every city certain items are located. The thief carries a knapsack, in which he can take the items. All

items have a certain profit value and a certain weight. The thief pays rent for the knapsack per time unit. The aim

is to maximise the profit of the thief. Picking up more items increases his profit, but in turn also slows him down

and increases his renting cost. As such, there is an interdependecy between the two problems, and an optimal so-

lution for either of the subproblems does not gaurantee an optimum for the problem as a whole.

The kind of interdependecy of the Travelling Thief Problem is also present in real life problems. Earlier we

talked about the wiring of VLSI computer boards. Sometimes there are certain sensitive parts the wire cannot

cross. Clearly there is an interdependency here, as the optimal route might need certain parts to move, possibly

making the route suboptimal again.

Bonyadi et al. (2013) initially presented two possible ideas for the Travelling Thief Problem, the TTP1 and

the TTP2. The TTP2 consists of two objective functions; minimise total travel time and maximise total knapsack

value, where the values of the items drop over time. The TTP2 received little attention in the literature. The most

used and studied formulation of the TTP is the one by Polyakovskiy et al. (2014), which is very similar to the

TTP1 formulation. The problem is defined and explained in the next section.

4.1 Problem Description

Given a set of n cities N = {1, ...,n} with distances di j. Every city i except for city 1 contains a set of items

Mi = {1, ...,mi}, and each item k present in city i has a certain value pik and weight wik. The thief has to travel

each city and has the option to pick up items and add these to his knapsack. The knapsack has a total capacity of

W and the thief pays a renting rate R per time unit. The maximum speed with which the thief can travel (when the

knapsack is empty) is denoted by vmax and the minimum speed (when the knapsack is full) by vmin. The objective

of the problem is to find the tour and item picking plan with the highest profit. Decision variables xi j = 1 if edge

(i, j) is selected in the tour and 0 otherwise and yik = 1 if item i is picked up in city k and 0 otherwise, resulting

in a tour T = {c1, ...,cn}, c ∈ N and packing plan P = {y21, ...,ynmi}. Additionally, we set the variable Wi as the

weight of the knapsack when the thief departs city i. The objective function is then given as

Z(T,P) =
n

∑
i=i

mi

∑
l=1

pikyik−R
(dxnx1

vmax− vWxn

+
n−1

∑
i=1

dxixi+1

vmax− vWxi

)
(5)

19

The left part of the objective function entails the profit that is gained from picking up the items. The right part

of the expression is the renting rate R times the distance travelled adjusted for the speed the thief is travelling at.

Here, v = vmax−vmin
W . This ensures that when the knapsack is empty the thief travels at speed vmax and when it is full

he travels at speed vmin.

Figure 6: A TTP instance example

1 2

34

5

56

4

6

11

start

I21(20,2)

I22(30,3)

I31(100,3)
I32(40,1)
I33(40,1)

I41(20,2)

We explain the problem with a small example, seen in figure 6.

We assume the capacity of the knapsack W to be 3, the renting rate R to be 1, the maximum speed vmax to be

1 and the minimum speed vmin to be 0.1. All nodes except the start city 1 have items. For example, city 2 has two

items, item I21 with profit p21 = 20 and weight w21 of 2 and item I22 with profit p22 = 30 and weight w22 = 3.

Clearly, we can see that solving the two problems separately does not at give us the best solution, as we would

choose tour T ′ = (1,2,3,4) and P = (0,0,1,0,0,0). This would mean: travelling from city 1 to city 2 with cost

= 5, from city 2 to city 3 with cost = 5, from city 3 to city 4 with cost = 4
0.1 = 40, and from city 4 back to city 1

with cost = 6
0.1 = 60, resulting a loss of Z(T,P) = 100− 5− 5− 40− 60 = −10. It is important to note that the

objective value is not as easily interpreted as in the TSP or the knapsack, as it is artificially made according to the

renting rate. Objective values can therefore also turn negative.

The optimal value for this instance is Z(T,P) = 45, with T = (1,2,4,3) and P = (0,0,0,1,1,0). The thief

travels from city 1 to city 3 via city 2 and 4. In cities 2 and 4 no items are picked up and the thief therefore travels

with speed 1 and the cost of this part of the tour 5 + 11 + 4 = 20 (the renting rate is 1). At city 3 the items I32

and I33 are picked up, resulting in a total profit of 80. The distance from 3 back to the start city 1 is 6, however,

as we picked up items, the weight of the thief’s knapsack is now 2, slowing the thief down. The thief travels with

speed (1− 2
3 · (1−0.1)) = 0.4, thus making the renting cost of the last edge 6

0.4=15 . This results in a total profit of

80 - 20 - 15 = 45. However, there is another optimal solution, with T = (1,2,3,4) and P = (0,0,0,1,1,0), also

resulting in an objective value of 45.

20

4.2 Benchmark Set

Polyakovskiy et al. (2014) use Reinelt’s TSPlib to create new benchmark problems. For constructing the items and

their properties they use three principles: uncorrelated, uncorrelated with similar weights and bounded strongly

correlated types.

For the uncorrelated case, the weights and items are uncorrelated and wik and pik are both uniformly distributed

integers on the interval [1, 103]. For the uncorrelated with similar weights case, the weights for all the items are

very near to each other, making the knapsack problem more difficult to solve. Here wik and pik integer values

uniformly distributed within [103 , 103 + 10] and [1, 103] respectively. This means that the weights are always

larger than the profits. In the bounded strongly correlated case, the weight is uniformly distributed on [1, 103]

and the profit is given by pi = wi + 100. This is turn means that the profits are always larger than the weights.

For the Travelling Thief Problem we are more interested in the interdependency of the two problems, than in

the difficulty of the knapsack problem. However, a more difficult knapsack problem might also mean a stronger

and more difficult interdependency. For every type of instance, there are 10 instances with a varying knapsack

capacity depending on the total weight of all items. For instance i the capacity = i
11 · totalWeight. The value

for the renting ratio is set as optimal value KP
optimal value TSP , such that both subproblems have an around equal contribution to the

problem’s objective value.

Polyakovskiy et al. (2014) also differ in the amount of items per city. (Wuijts, 2018) adds the note that most

research nowadays considers the cases limited to one item per city. Additionally, when all cities have more items,

the frequency of items with good profit-weight ratios become more frequent and the order of the cities will be of

less importance. After several competitions, mainly organised by the university of Adelaide, a comprehensive prob-

lem set can be found on the website of the University of Adelaide.3 The total benchmark set consist of 9720 TTP

instances, constructed out of 81 Travelling Salesman instances, 3 Knapsack Problem Types, 4 different item-per-

city factors, and 10 different knapsack capacities (and renting ratio’s). In this paper we will focus on the 30 eil51

instances with 1 item per city. The optimal values of these problem are not known yet, but we will use the best

values found yet by Wuijts (2018) for comparison.

With regards to the difficulty of the problem, Bonyadi et al. (2013) found with the origination of the problem that

the optimum for one of the subproblems does not guarantee overall optimality. We have also seen this in the small

example we gave in figure 6. Mei et al. (2016) state that the non-linear dependence of the TSP and the Knapsack

problems may make it impossible to decompose the problem into subproblems, and must be solved as a whole.

The interdependency makes the TSP not symmetric anymore. This is because now the travel time depends on the

weight of the knapsack, which is different depending on the direction in which the tour is travelled. This has as a

consequence that checking a swap in the Lin-Kernighan now costs O(n) time instead O(1). However, as Wuijts

(2018) ponders over the complexity of the TTP and wonders whether it is truly the interdependency that makes

3https://cs.adelaide.edu.au/ optlog/CEC2014COMP_InstancesNew/

21

this problem difficult:

In my opinion the right way to effectively solve these problems is not to conclude that the problem is

indecomposable. The right way would be to search for a decomposition that takes into account the

interdependence of subproblems to exploit their independence.

Another thing that makes developing solution methods difficult is the fact that by making a small change in a

solution by adding an item, or making a 2-opt swaps affects the travel time immensely and the effect cannot be

traced back in a constant time (El Yafrani and Ahiod, 2017). It is therefore impossible to do an "incremental

fitness analysis for the most trivial operators" (Wuijts, 2018). In the next section we will discuss the solution

methods that have been developed to this date.

4.3 Solution Methods

Wu et al. (2017) have set out some exact solution methods in order to find global optima for the TTP benchmark

instances. These are needed to compare the quality of the growing set of heuristic approaches to the TTP. They

managed to find some optimal values for small (n < 20) instances. A good exact solver is still not available

(Wagner et al., 2018), however, several heuristic methods for solving the TTP have been developed and these are

discussed below.

4.3.1 SH and DH Solvers

Together with the publication of the benchmark set, Polyakovskiy et al. (2014) also proposed a simple construction

algorithm for the TTP: the Simple Heuristic (SH). The SH first creates an optimal tour according to the normal

intercity distances and then scores all items with

sxik = pxik−Rtxik,

where txik is a speed adjusted measure from the city the item can be picked up until the end of the tour, given by

txik =
dxi

vmax− vWxik
.

It does not take into account a decrease in speed due to items that are picked up afterwards. Additionally a fitness

value

uxik = Rt ′+(Pxik−Rtxik),

where t ′ is the length of the tour and t ′xik is the length from city xi to the end of the tour with the speed adjusted

for only picking item Ixik. If this value is negative, then it better to not pick any items than to pick this item

only. These items are excluded for the item selection based on si. The RLS and (1+1)-EA attempt to iteratively

improve the packing plan given a tour.

22

Bonyadi et al. (2014) propose an algorithm very similar to the SH heuristic. The DH solver, is the same as the

SH heuristic, but then without the fitness evaluation of uxik.

If we apply the DH algorithm to the example given in figure 6, we find the shortest tour T = (1,2,3,4) (or

(1,4,3,2), but here we will focus on one for examplary purpose).

For item I21, the profit is 20, and the remaining distance until the end of the tour dxi = 15. However, due to

picking up the item, the weight of the knapsack is increased by 2, and the speed travelled is

vmax− vWxik = 1− 0.9
3
·2 = 0.4. (6)

And therefore

t21 =
15
0.4

= 37.5. (7)

So the score of item I21 = 20 - 37.5 = -17.5. Note that the renting rate was set to 1 in the example, so the R is

omitted from the formula. If we calculate the scores of all items, we find the following ranking of items:

s32 = 40− 10
0.7 = 25.7

s33 = 40− 10
0.7 = 25.7

s41 = 20− 6
0.4 = 5

s31 = 100− 10
0.1 = 0

s21 = 20− 15
0.4 =−17.5

s22 = 30− 15
0.1 =−120

After this, the knapsack is filled according to the scores. This means items I32 and I33 are picked up. Resulting in

an objective value of Z = 40+40−5−5− 4
0.4 −

6
0.4 = 45, which is the optimal value of the problem.

For the SH algorithm, the u-scores would also be calculated, and the renting ratio times the length of the tour

would be added to the scores. In this case this would be 20. If for any of these items this score is negative, it is

not considered in the packing routine. In this example this would only be the case for item I22, with u22 = -100.

4.3.2 The PACKITERATIVE algorithm

Faulkner et al. (2015) also investigated the method of first picking a tour and then optimising through a packing

heuristic with their PACKINGITERATIVE algorithm. It is similar to the DH solver in the way that the items are

rated on the profit-weight ratio as well as their distance, but in a different way:

score(Ixik,α) =
pα

xik

wα
xik ·dxi

, where di is the total remaining length of the tour.

For every item that is added, the authors compute the objective value and add items to the packing plan until no

more gain is achieved. The α is used to control the balance between the profit-weight ratio and the distance, as

for different problem instances the one might be more important than the other. The optimal α is sought in the

PACKITERATIVE algorithm in an iterative way. After constructing an initial tour and packing plan, they use two

23

operators to improve a given solution with a local search routine: BITFLIP, a greedy procedure, where for every

item changing the binary picking variable an improvement on the objective value is checked. And INSERTION,

where it is attempted to insert a city that contains a good items that is being picked at the end of the tour. Here

there is a trade off between increasing the tour length and reducing the travel time due to the decrease in weight

of the knapsack over a certain part of the tour.

We will showcase how the algorithm works according to the example in figure 6. Choosing α = 3, the score for

item I21 is given by:

score(I21,3) =
203

23 ·15
= 66.6.

We will not give the score for all items. The items with the highest scores are items I32 and I33 and it thus finds

the same solution as the DH and SH solvers in this case.

4.3.3 Other Solution Methods

Aside from the construction algorithms described above, there exist several other solution methods. Together with

the publication of the Simple Heuristic (SH), Polyakovskiy et al. (2014) proposed a Random Local Search (RLS)

and a (1+1) Evolutionary Algorithm ((1+1)-EA) to solve the TTP.

Bonyadi et al. (2014) propose a second algoirthm along with the DH heuristic: the COSOLVER. The COSOLVER

is a socially inspired algorithm, which attempts to solve the two problems independently and then iteratively one-

at-a-time using communication between the two programs. The authors show that the COSOLVER in most cases

outperforms the DH algorithm. This might also be due to the fact that they analyse small instances and the CO-

SOLVER uses an exact approach to the subproblems while the DH solver does not.

Mei et al. (2016) made several extensions to Bonyadi et al. (2014)’s COSOLVER algorithm. Wagner et al.

(2018) attempted to solve the TTP with the swarm intelligence Ant Colony approach. El Yafrani and Ahiod

(2018) applied a memetic hill climbing algorithm and a simulated annealing algorithm to the TTP.

In order to compare our own algorithm, which is explained in the next subsection, with other construction

algorithms, we implement the DH, SH and Faulkner et al. (2015)’s PACKITERATIVE algorithms.

4.4 Lin-Kernighan Modified Distance Algorithm

In this paper we propose a new construction algorithm for the Travelling Thief Problem that tries to use the

interdependency of the two problems. It is similar to the other constructors available, in the sense that we optimise

one subproblem, and then take properties of the first subproblem into account when solving the other subproblem.

The constructors present now, the SH heuristic, the DH heuristic, and PACKITERATIVE all have in common

that first a tour is constructed, and then a packing plan is constructed taking the tour into account.

However, instead of first optimising the tour, and afterwards trying to find a good packing solution, we do the

opposite: We first decide which items are being picked, and take this into account when constructing the tour. Our

24

algorithm, the Lin-Kernighan Modified Distance Algorithm (LKMD) is based on a couple of principles:

• Items with a high profit-weight ratio give the highest profit per unit of weight. In turn a higher weight results

in a longer travel time, so these items also give the highest profit per time unit, depending on the position

of the city in a tour.

• In the case that all intercity distances would be the same, we would prefer the cities containing the items in

the packing plan to be visited at the end of the tour.

Of course the second point is not true in TSP or TTP instances. We do see that there is a trade off between

the two extremes of: on the hand the naïve approach of picking the best items and the shortest tour distance-wise,

and on the other hand picking the best items and visiting these cities last necessarily. In the algorithm we try to

find the optimal trade-off between these two situations. We do this by modifying the distance matrix that is used

as input to find the TSP tour.

Picking the items first divides our set of cities N up in three subsets, Nh, the set containing the home city 1,

N1, the set of cities that have their items picked up, and N0, the set of cities whose items aren’t picked. In order to

have the cities in N1 at the end of the tour, we want to decrease the distances between those cities, as well as the

distance to the starting (and thus ending) node, as well as decrease the distance from cities in N1 to cities in N0.

These distances are then used as input for the LK algorithm. A description of the algorithm is seen in figure 7.

Firstly, all items are ranked in non-decreasing order based on the profit-weight ration. Then the knapsack

is filled with the items with the highest scores. For a certain percentage value C, the distances between cities

that have items that are being picked are being reduced. Also, the distances from the home city to these cities

are reduced. The distances between cities that have picked items and cities that have no picked items are being

increased by this percentage. Then, a tour is found with the LK algorithm using these pseudo-distances. We

iteratively try to find the value of C that finds the best objective value, similarly to the PACKITERATIVE.

Items I32 and I33 have the highest profit-weight ratio’s, so these two items are selected. If we set C = 75%, the

distances are mutated as follows:

d′12 = d12 = 5

d′14 = d14 = 6

d′24 = d24 = 11

d′13 = (1−C)d13 = 1.5

d′23 = (1+C)d23 = 8.75

d′34 = (1+C)d34 = 7

And the optimal tour found is T = (1,2,4,3), which corresponds to one of the optimal solution described in the

example case.

This showcases that even though the LKMD algorithm works in a different way and finds different solutions, it

might also be able to find good solutions to the TTP.

25

Figure 7: The Lin-Kernighan Modified Distance algorithm

Initialise the algorithm

1. Calculate for every item si =
pi

wi
and rank them based on the score.

2. Pick items starting from the highest rank until the knapsack is full.

3. Set LB = 0%

4. Set UB ∈ {0%, 100%}

5. Set ε

6. Set Z∗ =−in f , the best improvement found so far.

7. counter = 0

while UB−LB > ε:

1. for C ∈ {UB,LB}

Modify the distance matrix: d′i j=

(1 - C) di j if i ∈ Nh and j ∈ N1
(1 - C) di j if i ∈ N1 and j ∈ N1
(1 + C) di j if i ∈ N1 and j ∈ N0
(1 + C) di j if i ∈ N0 and j ∈ N1
di j else

2. Run LK algorithm with modified distances and evaluate the objective
function (OBJ) for LB and UB.

3. if OBJ(UB) > OBJ(LB)

Z∗ = OBJ(UB)

LB+= (UB−LB) ·max(
1
2
,
counter

20
)

4. else

Z∗ = OBJ(LB)

UB−= (UB−LB) ·max(
1
2
,
counter

20
)

5. counter += 1

return Z∗

26

5 Results

5.1 Results for the Lin-Kernighan Algorithm

In Table 3, we can see some general information about the problems tested. We note that the amount of cities

ranges from 51 to 439. For problems with a larger number of cities computation times became too large for the

scope of this research. For every problem, 20 random starting tours were tried and every problem instance was

run 10 times.

In an empirical analysis of the average computation times, we can see from figure 8 that it grows in polyno-

mial time somewhere in between n2.4 and n2.8. This is more than Lin and Kernighan’s implementation, but still

a reasonable complexity. This discrepancy may have arisen from minor implementation differences. As, Laporte

(2010) pointed out: "an efficient implementation of this algorithm requires a fair amount of sophistication regard-

ing data structures and programming techniques, which makes it difficult to reproduce." So there might be a lot of

speed to be gained by improving the programming efficiency. The algorithm is run on an MacBook Pro (2012),

with an 2,6 GHz Intel Core i7 processor and an 8 GB RAM 1600 MHz DDR3 memory.

Figure 8: Growth of computation times of the Lin-Kernighan algorithm

In Table 4, we can see some of the performance statistics of the problem. Lin and Kernighan also tested the

kro{ABCDE}100 problems from Krolak et al. (1971) and found the optimum to be reached between 30% and

60% of the times. Our implementation does worse; the optimum is never reached and at best we often arrive at a

solution within 10% of the optimum.

27

Table 3: Performance Lin-Kernighan algorithm (1)

Problem Name n Optimal Value Mean % From Optimum* Mean Computation Time in Sec-

onds*

eil51 51 426 3,3% (0,3%) 3,5 (0,1)

berlin52 52 7542 4,2% (0,4%) 4,3 (0,0)

st70 70 675 6,8% (0,4%) 8,4 (0,1)

eil76 76 538 6,0% (0,3%) 11,0 (0,1)

pr76 76 108159 7,5% (0,2%) 9,6 (0,1)

rat99 99 1211 6,6% (0,4%) 20,6 (0,1)

kroA100 100 21282 8,9% (0,4%) 21,2 (0,1)

kroB100 100 22141 9,3% (0,4%) 22,9 (0,2)

kroC100 100 20749 10,9% (0,5%) 19,8 (0,1)

kroD100 100 21294 11,8% (0,4%) 20,4 (0,1)

kroE100 100 22068 7,3% (0,4%) 21,2 (0,1)

eil101 101 640,52 5,3% (0,2%) 23,8 (0,1)

lin105 105 14379 16,7% (0,8%) 23,0 (0,1)

pr107 107 44303 21,4% (0,8%) 23,7 (0,2)

pr124 124 59030 18,6% (0,8%) 37,2 (0,5)

ch130 130 6110 14,2% (0,6%) 48,3 (0,4)

pr136 136 96772 10,0% (0,3%) 54,1 (1,4)

ch150 150 6528 10,4% (0,4%) 65,8 (0,9)

kroA150 150 26524 14,5% (0,6%) 65,3 (0,3)

kroB150 150 26130 15,0% (0,6%) 62,9 (0,2)

rat195 195 2323 9,1% (0,3%) 146,6 (0,6)

kroA200 200 29368 18,1% (0,5%) 149,9 (1,0)

kroB200 200 29437 16,7% (0,4%) 150,4 (0,7)

tsp225 225 3919 13,4% (0,4%) 212,7 (1,9)

pr264 264 49135 30,1% (0,9%) 326,9 (1,3)

a280 280 2579 14,1% (0,7%) 412,9 (4,1)

pr299 299 48191 22,8% (0,7%) 465,4 (5,0)

lin318 318 42029 34,6% (0,7%) 583,8 (4,7)

pr439 439 107217 37,7% (1,0%) 1381,0 (14,6)

* standard errors in parentheses

28

Table 4: Performance Lin-Kernighan algorithm (2)

Problem

Name

n % times: Optimum within 2% within 5% within 10% within 20% within 30%

eil51 51 0% 20% 95% 100% 100% 100%

berlin52 52 0% 15% 60% 100% 100% 100%

st70 70 0% 0% 15% 100% 100% 100%

eil76 76 0% 0% 20% 100% 100% 100%

pr76 76 0% 0% 0% 100% 100% 100%

rat99 99 0% 0% 15% 95% 100% 100%

kroA100 100 0% 0% 0% 70% 100% 100%

kroB100 100 0% 0% 0% 65% 100% 100%

kroC100 100 0% 0% 0% 75% 200% 200%

kroD100 100 0% 0% 0% 15% 100% 100%

kroE100 100 0% 0% 5% 95% 100% 100%

eil101 101 0% 0% 50% 100% 100% 100%

lin105 105 0% 0% 0% 0% 80% 100%

pr107 107 0% 0% 0% 0% 40% 100%

pr124 124 0% 0% 0% 0% 60% 100%

ch130 130 0% 0% 0% 0% 100% 100%

pr136 136 0% 0% 0% 55% 100% 100%

ch150 150 0% 0% 0% 40% 100% 100%

kroA150 150 0% 0% 0% 10% 100% 100%

kroB150 150 0% 0% 0% 5% 100% 100%

rat195 195 0% 0% 0% 85% 100% 100%

kroA200 200 0% 0% 0% 0% 75% 100%

kroB200 200 0% 0% 0% 0% 95% 100%

tsp225 225 0% 0% 0% 0% 100% 100%

pr264 264 0% 0% 0% 0% 0% 50%

a280 280 0% 0% 0% 10% 100% 100%

pr299 299 0% 0% 0% 0% 20% 100%

lin318 318 0% 0% 0% 0% 0% 10%

pr439 439 0% 0% 0% 0% 0% 5%

From table 3 we note that the average solution distance from the optimum grows with problem size. The larger

the problem becomes, the worse the LK-algorithm performs at arriving at good solutions. As Helsgaun (2000)

29

pointed out, for larger problems Lin and Kernighan’s rule to restrict the search for a new yi to the five nearest

neighbours doesn’t work properly anymore.

Therefore we investigate whether changing this rule in the heuristic would lead to better results. As computa-

tion times rise significantly due to adding more yi’s to be investigated, it is set as a variable number: max(5, n
5).

This means that for a problem with 50 cities, 5 yi’s are considered, but for example for a 150-city problem it will

be 15. We reran the program for the ch130, ch150, the kro{ABCDE}100 and the kro{AB}150 problems.

Table 5: Results after considering more nearest neighbours

Problem Name n Optimal Value Previous % Mean

From Optimum

Mean % From Op-

timum*

Mean Computation

Time in Seconds*

ch130 130 6110 14,2% (0,6%) 10,9% (0,3%) 272,8 (3,3)

ch150 150 6528 10,4% (0,4%) 7,2% (0,3%) 459,2 (4,7)

kroA100 100 21282 8,9% (0,4%) 8,2% (0,3%) 103,9 (0,9)

kroB100 100 20749 9,3% (0,4%) 7,5% (0,3%) 112,2 (1,3)

kroC100 100 20749 10,9% (0,5%) 7,7% (0,3%) 95,3 (0,9)

kroD100 100 21294 11,8% (0,4%) 7,5% (0,2%) 104,0 (0,8)

kroE100 100 22068 7,3% (0,4%) 5,8% (0,3%) 102,1 (1,1)

kroA150 150 26524 14,5% (0,5%) 9,4% (0,2%) 485,9 (4,1)

kroB150 150 26130 15,5% (0,6%) 9,4% (0,4%) 469,7 (3,6)

* standard errors in parentheses

In table 5 we see that indeed by introducing this new rule, the average distance from the optimal value did

decrease for these problem instances, most noticeably for the 150 city problems. However, there is the huge

drawback in computation times. For the 100-city problems, the computation times grew with a factor 5, and for

the 130-city and 150-city instances the computation times got 7 to 8 times larger. As for backtracking, we noticed

very little effect in varying the amount of backtracking options considered at step 1 and 2.

5.2 Results for the LKMD Algorithm for the Travelling Thief Problem

The results for the LKMD algorithm can be found in table 6. There are a few interesting things to note about

the results. Firstly we see that for almost all instances the LKMD outperforms the naive method of optimising

both problems separately. There does not seem to be an apparent link between renting rate and outperformance

or knapsack capacity and outperformance. The outperformance does appear to be strongest for the uncorrelated

similar weights, and weakest for the uncorrelated case.

When comparing the results of the DH and SH algorithms in table 7, we don’t note a large difference between

the DH and SH algorithms. They are of course very similar. The LKMD algorithm outperforms both the DH

30

and SH, but also has a running time that is sixty times larger. In the LKMD algorithm, the combination of a

tour and packing routine are tried several times, whereas for the DH and SH algorithms it is tried only once. Its

outperformance might therefore simply stem from the fact that the LKMD algorithm is repeated more often.

Comparing the results with the results of PACKITERATIVE in table 8 will be more comparable, as the PACKIT-

ERATIVE procedure also repeats the last step in the algorithm (finding a packing plan) several times. The PACK-

ITERATIVE was run with variables c = 5, δ = 4, ε = 0.001 and q = 20. On average, the LKMD outperforms the

PACKITERATIVE. However, by inspecting the results closer, we noticed that for the PACKITERATIVE there are

two cases. Either a packing plan is found, and the algorithm performs well, or no items are picked and the ob-

jective is equal to the tour length times the renting rate. The first conditional average value is found in the col-

umn ’filled’ and the latter in the column ’empty’. When the PACKITERATIVE manages to find a packing plan for

the tour, the algorithm performs better than the LKMD. Especially for problems the LKMD, DH and SH performs

badly, such as eil51_n50_bounded-strongly-corr_07 or eil51_n50_uncorr-similar-weights_10, the PACKITERA-

TIVE finds good starting values.

Addionally, if one would run the PACKITERATIVE a certain number of times, one would become more sure

that a filled solution would be found, which outperforms the LKMD algorithm. For example, for the uncorr_02

instance, in 30% of the times a filled solution is found. If one would run the algorithm 9 times, the probability of

finding a filled solution (and thus outperforming the LKMD algorithm) is 1− (1−0.3)9 = 96%.

31

Ta
bl

e
6:

L
K

M
D

re
su

lts
fo

rt
he

ei
l5

1
in

st
an

ce
s

Fi
le

N
am

e
C

ap
ac

ity
R

Z
∗

Z
∗ L

K
M

D
Z
∗ na

iv
e

M
ea

n
di

s-
ta

nc
e

fr
om

Z
∗

Im
pr

ov
em

en
t

w
.r.

tN
A

M
ea

n
M

ul
tip

lie
r

M
ea

n
ru

n-
tim

e

ei
l5

1_
n5

0_
bo

un
de

d-
st

ro
ng

ly
-c

or
r_

01
40

29
4,

44
42

69
39

32
,5

(2
5,

6)
33

50
,3

(7
0,

3)
7,

9%
17

,4
%

8,
4

(0
,9

)
31

6,
3

(2
,9

)
ei

l5
1_

n5
0_

bo
un

de
d-

st
ro

ng
ly

-c
or

r_
02

80
59

10
,2

7
55

71
35

77
,1

(2
3,

2)
29

73
,1

(1
10

,8
)

35
,8

%
20

,3
%

8,
7

(1
,0

)
31

2,
1

(1
,8

)
ei

l5
1_

n5
0_

bo
un

de
d-

st
ro

ng
ly

-c
or

r_
03

12
08

9
16

,9
5

58
85

26
65

,3
(9

3,
5)

18
55

,8
(1

72
,1

)
54

,7
%

43
,6

%
9,

0
(0

,9
)

30
8,

8
(3

,2
)

ei
l5

1_
n5

0_
bo

un
de

d-
st

ro
ng

ly
-c

or
r_

04
16

11
9

22
,1

1
63

10
24

77
,8

(1
23

,7
)

26
01

,0
(7

9,
0)

60
,7

%
-4

,7
%

9,
7

(1
,4

)
28

1,
1

(2
,9

)
ei

l5
1_

n5
0_

bo
un

de
d-

st
ro

ng
ly

-c
or

r_
05

20
14

9
29

,7
7

49
06

71
9,

2
(1

48
,2

)
61

1,
6

(1
77

,8
)

85
,3

%
17

,6
%

7,
3

(0
,6

)
28

6,
0

(1
,8

)
ei

l5
1_

n5
0_

bo
un

de
d-

st
ro

ng
ly

-c
or

r_
06

24
17

8
31

,7
7

70
83

33
76

,5
(1

79
,7

)
27

26
,0

(3
29

,9
)

52
,3

%
23

,9
%

9,
1

(0
,7

)
28

5,
1

(1
,2

)
ei

l5
1_

n5
0_

bo
un

de
d-

st
ro

ng
ly

-c
or

r_
07

28
20

8
34

,6
8

82
40

42
00

,1
(1

41
,8

)
27

69
,5

(3
33

,2
)

49
,0

%
51

,7
%

9,
8

(0
,8

)
28

7,
1

(1
,4

)
ei

l5
1_

n5
0_

bo
un

de
d-

st
ro

ng
ly

-c
or

r_
08

32
23

8
40

,6
7

70
59

11
11

,1
(2

36
,2

)
24

2,
5

(2
11

,3
)

84
,3

%
35

8,
1%

9,
6

(0
,5

)
25

5,
2

(3
,0

)
ei

l5
1_

n5
0_

bo
un

de
d-

st
ro

ng
ly

-c
or

r_
09

36
26

8
45

,3
7

67
75

30
96

,4
(1

61
,7

)
26

31
,2

(2
71

,9
)

54
,3

%
17

,7
%

10
,1

(0
,9

)
25

7,
9

(1
,3

)
ei

l5
1_

n5
0_

bo
un

de
d-

st
ro

ng
ly

-c
or

r_
10

40
29

8
43

,4
9

11
00

0
84

56
,0

(2
10

,7
)

77
55

,2
(3

41
,6

)
23

,1
%

9,
0%

11
,7

(0
,8

)
26

4,
5

(1
,3

)
ei

l5
1_

n5
0_

un
co

rr
_0

1
22

26
7,

19
28

51
26

79
,1

(2
3,

9)
25

69
,4

(5
8,

9)
6,

0%
4,

3%
8,

1
(0

,7
)

29
5,

3
(3

,6
)

ei
l5

1_
n5

0_
un

co
rr

_0
2

44
52

9,
72

47
91

44
52

,0
(4

6,
5)

40
07

,9
(1

05
,9

)
7,

1%
11

,1
%

12
,2

(0
,7

)
28

7,
7

(1
,6

)
ei

l5
1_

n5
0_

un
co

rr
_0

3
66

79
12

,9
5

54
04

40
34

,5
(5

2,
5)

40
41

,5
(6

7,
3)

25
,3

%
-0

,2
%

9,
7

(0
,8

)
27

3,
5

(3
,7

)
ei

l5
1_

n5
0_

un
co

rr
_0

4
89

05
19

,6
6

30
13

13
40

,0
(8

3,
4)

60
6,

8
(1

55
,1

)
55

,5
%

12
0,

8%
9,

3
(0

,6
)

26
6,

6
(3

,7
)

ei
l5

1_
n5

0_
un

co
rr

_0
5

11
13

2
19

,6
44

08
14

98
,7

(9
3,

5)
12

28
,0

(1
85

,2
)

66
,0

%
22

,1
%

10
,2

(0
,9

)
27

6,
8

(2
,5

)
ei

l5
1_

n5
0_

un
co

rr
_0

6
13

35
8

21
,1

5
44

40
20

55
,8

(9
2,

1)
18

83
,4

(2
75

,2
)

53
,7

%
9,

2%
8,

7
(0

,8
)

27
6,

6
(2

,2
)

ei
l5

1_
n5

0_
un

co
rr

_0
7

15
58

5
23

,0
3

41
42

22
0,

4
(1

06
,8

)
-2

87
,3

(1
61

,7
)

94
,7

%
17

6,
7%

10
,0

(1
,2

)
29

0,
7

(2
,5

)
ei

l5
1_

n5
0_

un
co

rr
_0

8
17

81
1

23
,3

5
47

90
13

01
,2

(7
9,

3)
14

37
,4

(1
36

,4
)

72
,8

%
-9

,5
%

10
,3

(1
,1

)
27

0,
5

(1
,4

)
ei

l5
1_

n5
0_

un
co

rr
_0

9
20

03
8

22
,5

2
61

22
17

40
,5

(1
02

,6
)

16
50

,4
(5

2,
3)

71
,6

%
5,

5%
8,

9
(1

,4
)

26
2,

4
(3

,2
)

ei
l5

1_
n5

0_
un

co
rr

_1
0

22
26

4
22

,3
3

68
21

17
11

,0
(9

9,
2)

18
20

,4
(1

34
,2

)
74

,9
%

-6
,0

%
9,

6
(1

,1
)

25
7,

9
(2

,4
)

ei
l5

1_
n5

0_
un

co
rr

-s
im

ila
r-

w
ei

gh
ts

_0
1

45
67

3,
82

14
48

11
92

,6
(1

1,
9)

94
9,

4
(4

3,
4)

17
,6

%
25

,6
%

8,
3

(1
,1

)
30

1,
4

(1
,4

)
ei

l5
1_

n5
0_

un
co

rr
-s

im
ila

r-
w

ei
gh

ts
_0

2
91

35
5,

83
37

69
27

24
,0

(2
5,

1)
20

71
,3

(9
4,

8)
27

,7
%

31
,5

%
9,

8
(1

,0
)

29
1,

2
(0

,9
)

ei
l5

1_
n5

0_
un

co
rr

-s
im

ila
r-

w
ei

gh
ts

_0
3

13
70

3
9,

09
44

33
38

12
,3

(3
6,

7)
31

51
,2

(9
5,

5)
14

,0
%

21
,0

%
12

,1
(1

,4
)

27
8,

7
(1

,4
)

ei
l5

1_
n5

0_
un

co
rr

-s
im

ila
r-

w
ei

gh
ts

_0
4

18
27

0
14

,4
7

31
60

18
31

,4
(5

2,
2)

11
22

,0
(1

29
,4

)
42

,0
%

63
,2

%
12

,9
(1

,2
)

26
4,

4
(1

,3
)

ei
l5

1_
n5

0_
un

co
rr

-s
im

ila
r-

w
ei

gh
ts

_0
5

22
83

8
19

,3
21

34
74

0,
9

(5
4,

7)
97

,2
(1

27
,5

)
65

,3
%

66
2,

5%
10

,1
(0

,9
)

25
4,

7
(1

,0
)

ei
l5

1_
n5

0_
un

co
rr

-s
im

ila
r-

w
ei

gh
ts

_0
6

27
40

6
21

,2
1

27
43

11
02

,1
(6

2,
0)

78
,2

(1
72

,1
)

59
,8

%
13

10
,1

%
9,

1
(0

,5
)

24
6,

8
(1

,1
)

ei
l5

1_
n5

0_
un

co
rr

-s
im

ila
r-

w
ei

gh
ts

_0
7

31
97

4
23

,2
8

28
57

21
2,

7
(5

8,
6)

29
9,

6
(1

19
,9

)
92

,6
%

-2
9,

0%
9,

8
(1

,0
)

25
8,

4
(3

,2
)

ei
l5

1_
n5

0_
un

co
rr

-s
im

ila
r-

w
ei

gh
ts

_0
8

36
54

1
24

,1
2

34
52

37
,2

(3
7,

2)
-3

98
,8

(7
3,

4)
98

,9
%

10
9,

3%
8,

5
(1

,0
)

26
6,

1
(1

,3
)

ei
l5

1_
n5

0_
un

co
rr

-s
im

ila
r-

w
ei

gh
ts

_0
9

41
10

9
24

,5
6

40
94

11
1,

4
(4

3,
2)

96
,1

(8
4,

2)
97

,3
%

15
,8

%
9,

3
(0

,8
)

25
9,

4
(3

,2
)

ei
l5

1_
n5

0_
un

co
rr

-s
im

ila
r-

w
ei

gh
ts

_1
0

45
67

7
23

,7
8

56
32

6,
0

(6
,0

)
-5

1,
4

(6
4,

5)
99

,9
%

11
1,

6%
8,

4
(1

,2
)

25
6,

6
(1

,8
)

St
an

da
rd

er
ro

rs
of

th
e

m
ea

n
in

pa
re

nt
he

se
s.

32

Ta
bl

e
7:

L
K

M
D

co
m

pa
re

d
to

D
H

an
d

SH

L
K

M
D

D
H

SH
Fi

le
N

am
e

C
ap

ac
ity

R
Z
∗

Z
∗

ru
nt

im
e

Z
∗

ru
nt

im
e

Z
∗

ru
nt

im
e

ei
l5

1_
n5

0_
bo

un
de

d-
st

ro
ng

ly
-c

or
r_

01
.tt

p
40

29
4,

44
42

69
39

32
,5

(2
5,

6)
31

6,
3

(2
,9

)
13

98
,5

(6
46

,1
)

5,
0

(0
,5

)
14

08
,1

(5
65

,6
)

5,
2

(0
,8

)
ei

l5
1_

n5
0_

bo
un

de
d-

st
ro

ng
ly

-c
or

r_
02

.tt
p

80
59

10
,2

7
55

71
35

77
,1

(2
3,

2)
31

2,
1

(1
,8

)
16

68
,2

(9
24

,5
)

4,
7

(0
,2

)
16

00
,2

(5
72

,2
)

4,
6

(0
,1

)
ei

l5
1_

n5
0_

bo
un

de
d-

st
ro

ng
ly

-c
or

r_
03

.tt
p

12
08

9
16

,9
5

58
85

26
65

,3
(9

3,
5)

30
8,

8
(3

,2
)

31
68

,9
(7

29
,5

)
4,

7
(0

,1
)

23
78

,7
(6

41
,8

)
4,

6
(0

,2
)

ei
l5

1_
n5

0_
bo

un
de

d-
st

ro
ng

ly
-c

or
r_

04
.tt

p
16

11
9

22
,1

1
63

10
24

77
,8

(1
23

,7
)

28
1,

1
(2

,9
)

36
87

,8
(9

23
,3

)
4,

7
(0

,2
)

32
47

,5
(1

35
7,

5)
4,

6
(0

,2
)

ei
l5

1_
n5

0_
bo

un
de

d-
st

ro
ng

ly
-c

or
r_

05
.tt

p
20

14
9

29
,7

7
49

06
71

9,
2

(1
48

,2
)

28
6,

0
(1

,8
)

12
10

,3
(1

12
1,

0)
4,

7
(0

,2
)

20
62

,9
(7

95
,9

)
4,

7
(0

,2
)

ei
l5

1_
n5

0_
bo

un
de

d-
st

ro
ng

ly
-c

or
r_

06
.tt

p
24

17
8

31
,7

7
70

83
33

76
,5

(1
79

,7
)

28
5,

1
(1

,2
)

28
23

,8
(3

13
7,

8)
4,

7
(0

,1
)

33
65

,7
(2

04
5,

6)
4,

6
(0

,2
)

ei
l5

1_
n5

0_
bo

un
de

d-
st

ro
ng

ly
-c

or
r_

07
.tt

p
28

20
8

34
,6

8
82

40
42

00
,1

(1
41

,8
)

28
7,

1
(1

,4
)

36
82

,0
(2

85
4,

4)
4,

7
(0

,1
)

48
80

,2
(1

58
3,

2)
4,

7
(0

,1
)

ei
l5

1_
n5

0_
bo

un
de

d-
st

ro
ng

ly
-c

or
r_

08
.tt

p
32

23
8

40
,6

7
70

59
11

11
,1

(2
36

,2
)

25
5,

2
(3

,0
)

81
4,

9
(2

75
2,

6)
4,

7
(0

,2
)

-2
04

,5
(4

03
4,

1)
4,

6
(0

,2
)

ei
l5

1_
n5

0_
bo

un
de

d-
st

ro
ng

ly
-c

or
r_

09
.tt

p
36

26
8

45
,3

7
67

75
30

96
,4

(1
61

,7
)

25
7,

9
(1

,3
)

-2
95

9,
1

(2
17

1,
5)

4,
8

(0
,2

)
-3

51
8,

5
(3

25
6,

8)
4,

6
(0

,1
)

ei
l5

1_
n5

0_
bo

un
de

d-
st

ro
ng

ly
-c

or
r_

10
.tt

p
40

29
8

43
,4

9
11

00
0

84
56

,0
(2

10
,7

)
26

4,
5

(1
,3

)
30

87
,4

(2
31

6,
8)

4,
7

(0
,1

)
23

15
,1

(3
44

6,
5)

4,
7

(0
,2

)
ei

l5
1_

n5
0_

un
co

rr
_0

1.
ttp

22
26

7,
19

28
51

26
79

,1
(2

3,
9)

29
5,

3
(3

,6
)

-3
83

,0
(4

25
,6

)
4,

7
(0

,1
)

-3
85

,6
(4

92
,0

)
4,

8
(0

,3
)

ei
l5

1_
n5

0_
un

co
rr

_0
2.

ttp
44

52
9,

72
47

91
44

52
,0

(4
6,

5)
28

7,
7

(1
,6

)
-2

90
,7

(5
10

,3
)

4,
7

(0
,1

)
-2

87
,3

(4
84

,5
)

4,
9

(0
,2

)
ei

l5
1_

n5
0_

un
co

rr
_0

3.
ttp

66
79

12
,9

5
54

04
40

34
,5

(5
2,

5)
27

3,
5

(3
,7

)
-1

20
2,

1
(9

84
,8

)
4,

7
(0

,1
)

-1
07

6,
6

(8
01

,7
)

5,
3

(0
,8

)
ei

l5
1_

n5
0_

un
co

rr
_0

4.
ttp

89
05

19
,6

6
30

13
13

40
,0

(8
3,

4)
26

6,
6

(3
,7

)
-5

20
9,

0
(1

49
0,

5)
4,

8
(0

,2
)

-4
16

6,
2

(7
15

,0
)

5,
1

(0
,1

)
ei

l5
1_

n5
0_

un
co

rr
_0

5.
ttp

11
13

2
19

,6
44

08
14

98
,7

(9
3,

5)
27

6,
8

(2
,5

)
-2

73
5,

4
(1

38
8,

0)
4,

8
(0

,1
)

-2
79

1,
1

(1
63

4,
8)

5,
0

(0
,1

)
ei

l5
1_

n5
0_

un
co

rr
_0

6.
ttp

13
35

8
21

,1
5

44
40

20
55

,8
(9

2,
1)

27
6,

6
(2

,2
)

-3
44

5,
1

(1
84

1,
1)

4,
7

(0
,2

)
-3

46
3,

7
(1

97
7,

3)
5,

0
(0

,2
)

ei
l5

1_
n5

0_
un

co
rr

_0
7.

ttp
15

58
5

23
,0

3
41

42
22

0,
4

(1
06

,8
)

29
0,

7
(2

,5
)

-3
29

1,
7

(1
06

8,
1)

4,
8

(0
,1

)
-5

00
0,

2
(1

43
6,

2)
4,

9
(0

,2
)

ei
l5

1_
n5

0_
un

co
rr

_0
8.

ttp
17

81
1

23
,3

5
47

90
13

01
,2

(7
9,

3)
27

0,
5

(1
,4

)
-3

88
6,

6
(2

26
0,

4)
4,

8
(0

,1
)

-3
69

4,
1

(1
63

8,
2)

4,
8

(0
,2

)
ei

l5
1_

n5
0_

un
co

rr
_0

9.
ttp

20
03

8
22

,5
2

61
22

17
40

,5
(1

02
,6

)
26

2,
4

(3
,2

)
-1

96
8,

7
(1

81
7,

8)
4,

8
(0

,1
)

-1
49

8,
8

(1
74

0,
1)

4,
8

(0
,2

)
ei

l5
1_

n5
0_

un
co

rr
_1

0.
ttp

22
26

4
22

,3
3

68
21

17
11

,0
(9

9,
2)

25
7,

9
(2

,4
)

-1
42

2,
2

(1
51

6,
4)

4,
9

(0
,1

)
-9

73
,6

(1
44

5,
8)

5,
0

(0
,3

)
ei

l5
1_

n5
0_

un
co

rr
-s

im
ila

r-
w

ei
gh

ts
_0

1.
ttp

45
67

3,
82

14
48

11
92

,6
(1

1,
9)

30
1,

4
(1

,4
)

98
3,

2
(1

58
,2

)
4,

8
(0

,2
)

10
71

,0
(1

19
,2

)
4,

8
(0

,3
)

ei
l5

1_
n5

0_
un

co
rr

-s
im

ila
r-

w
ei

gh
ts

_0
2.

ttp
91

35
5,

83
37

69
27

24
,0

(2
5,

1)
29

1,
2

(0
,9

)
21

91
,9

(5
47

,6
)

4,
8

(0
,1

)
23

43
,9

(5
99

,1
)

4,
6

(0
,2

)
ei

l5
1_

n5
0_

un
co

rr
-s

im
ila

r-
w

ei
gh

ts
_0

3.
ttp

13
70

3
9,

09
44

33
38

12
,3

(3
6,

7)
27

8,
7

(1
,4

)
19

21
,6

(7
57

,4
)

4,
8

(0
,1

)
21

73
,2

(4
83

,2
)

5,
1

(0
,4

)
ei

l5
1_

n5
0_

un
co

rr
-s

im
ila

r-
w

ei
gh

ts
_0

4.
ttp

18
27

0
14

,4
7

31
60

18
31

,4
(5

2,
2)

26
4,

4
(1

,3
)

76
,5

(7
09

,4
)

4,
8

(0
,2

)
-3

84
,8

(1
02

1,
8)

4,
8

(0
,3

)
ei

l5
1_

n5
0_

un
co

rr
-s

im
ila

r-
w

ei
gh

ts
_0

5.
ttp

22
83

8
19

,3
21

34
74

0,
9

(5
4,

7)
25

4,
7

(1
,0

)
-2

54
0,

1
(1

33
7,

6)
4,

7
(0

,2
)

-2
53

9,
6

(8
26

,8
)

4,
6

(0
,2

)
ei

l5
1_

n5
0_

un
co

rr
-s

im
ila

r-
w

ei
gh

ts
_0

6.
ttp

27
40

6
21

,2
1

27
43

11
02

,1
(6

2,
0)

24
6,

8
(1

,1
)

-2
65

5,
1

(1
37

3,
2)

4,
8

(0
,2

)
-3

89
3,

9
(6

94
,2

)
4,

9
(0

,2
)

ei
l5

1_
n5

0_
un

co
rr

-s
im

ila
r-

w
ei

gh
ts

_0
7.

ttp
31

97
4

23
,2

8
28

57
21

2,
7

(5
8,

6)
25

8,
4

(3
,2

)
-3

73
1,

8
(1

13
7,

3)
4,

7
(0

,1
)

-3
50

8,
6

(1
45

6,
4)

4,
9

(0
,2

)
ei

l5
1_

n5
0_

un
co

rr
-s

im
ila

r-
w

ei
gh

ts
_0

8.
ttp

36
54

1
24

,1
2

34
52

37
,2

(3
7,

2)
26

6,
1

(1
,3

)
-5

11
2,

0
(6

34
,7

)
4,

7
(0

,1
)

-4
01

0,
6

(1
17

0,
3)

4,
9

(0
,3

)
ei

l5
1_

n5
0_

un
co

rr
-s

im
ila

r-
w

ei
gh

ts
_0

9.
ttp

41
10

9
24

,5
6

40
94

11
1,

4
(4

3,
2)

25
9,

4
(3

,2
)

-2
72

2,
1

(1
64

1,
7)

5,
0

(0
,3

)
-2

41
8,

8
(9

59
,6

)
5,

0
(0

,2
)

ei
l5

1_
n5

0_
un

co
rr

-s
im

ila
r-

w
ei

gh
ts

_1
0.

ttp
45

67
7

23
,7

8
56

32
6,

0
(6

,0
)

25
6,

6
(1

,8
)

-2
92

9,
0

(7
17

,9
)

4,
7

(0
,2

)
-2

11
8,

8
(1

62
8,

7)
4,

8
(0

,1
)

St
an

da
rd

er
ro

rs
of

th
e

m
ea

n
in

pa
re

nt
he

se
s.

33

Ta
bl

e
8:

L
K

M
D

co
m

pa
re

d
to

PA
C

K
IT

E
R

A
T

IV
E

L
K

M
D

PA
C

K
IT

E
R

A
T

IV
E

Fi
le

N
am

e
C

ap
ac

ity
R

Z
∗

Z
∗

ru
nt

im
e

Z
∗

fil
le

d
em

pt
y

%
ru

nt
im

e

ei
l5

1_
n5

0_
bo

un
de

d-
st

ro
ng

ly
-c

or
r_

01
.tt

p
40

29
4,

44
42

69
39

32
,5

(2
5,

6)
31

6,
3

(2
,9

)
15

41
,9

(3
01

8,
8)

38
79

,4
-1

96
4,

5
0,

6
4,

9
(0

,1
)

ei
l5

1_
n5

0_
bo

un
de

d-
st

ro
ng

ly
-c

or
r_

02
.tt

p
80

59
10

,2
7

55
71

35
77

,1
(2

3,
2)

31
2,

1
(1

,8
)

-5
56

,8
(5

09
1,

7)
53

56
,7

-4
49

9,
1

0,
4

4,
6

(0
,0

)
ei

l5
1_

n5
0_

bo
un

de
d-

st
ro

ng
ly

-c
or

r_
03

.tt
p

12
08

9
16

,9
5

58
85

26
65

,3
(9

3,
5)

30
8,

8
(3

,2
)

-2
51

,4
(6

26
1,

1)
45

75
,3

-7
49

1,
4

0,
6

4,
7

(0
,0

)
ei

l5
1_

n5
0_

bo
un

de
d-

st
ro

ng
ly

-c
or

r_
04

.tt
p

16
11

9
22

,1
1

63
10

24
77

,8
(1

23
,7

)
28

1,
1

(2
,9

)
-5

04
3,

4
(7

47
6,

8)
57

89
,6

-9
68

6,
1

0,
3

5,
0

(0
,1

)
ei

l5
1_

n5
0_

bo
un

de
d-

st
ro

ng
ly

-c
or

r_
05

.tt
p

20
14

9
29

,7
7

49
06

71
9,

2
(1

48
,2

)
28

6,
0

(1
,8

)
-4

74
5,

2
(8

84
3,

2)
36

27
,0

-1
31

17
,4

0,
5

4,
7

(0
,1

)
ei

l5
1_

n5
0_

bo
un

de
d-

st
ro

ng
ly

-c
or

r_
06

.tt
p

24
17

8
31

,7
7

70
83

33
76

,5
(1

79
,7

)
28

5,
1

(1
,2

)
-1

19
7,

1
(9

28
6,

2)
55

08
,7

-1
12

55
,7

0,
6

5,
0

(0
,2

)
ei

l5
1_

n5
0_

bo
un

de
d-

st
ro

ng
ly

-c
or

r_
07

.tt
p

28
20

8
34

,6
8

82
40

42
00

,1
(1

41
,8

)
28

7,
1

(1
,4

)
23

68
,3

(6
40

5,
0)

43
20

,4
-1

52
00

,5
0,

9
4,

8
(0

,1
)

ei
l5

1_
n5

0_
bo

un
de

d-
st

ro
ng

ly
-c

or
r_

08
.tt

p
32

23
8

40
,6

7
70

59
11

11
,1

(2
36

,2
)

25
5,

2
(3

,0
)

50
60

,1
(1

42
2,

6)
50

60
,1

-
1

4,
7

(0
,0

)
ei

l5
1_

n5
0_

bo
un

de
d-

st
ro

ng
ly

-c
or

r_
09

.tt
p

36
26

8
45

,3
7

67
75

30
96

,4
(1

61
,7

)
25

7,
9

(1
,3

)
-9

85
3,

2
(1

31
07

,9
)

53
49

,0
-1

99
87

,9
0,

4
4,

7
(0

,0
)

ei
l5

1_
n5

0_
bo

un
de

d-
st

ro
ng

ly
-c

or
r_

10
.tt

p
40

29
8

43
,4

9
11

00
0

84
56

,0
(2

10
,7

)
26

4,
5

(1
,3

)
-5

66
3,

8
(1

20
83

,4
)

56
70

,7
-1

32
20

,1
0,

4
4,

7
(0

,1
)

ei
l5

1_
n5

0_
un

co
rr

_0
1.

ttp
22

26
7,

19
28

51
26

79
,1

(2
3,

9)
29

5,
3

(3
,6

)
14

68
,7

(1
66

4,
2)

19
85

,6
-3

18
3,

5
0,

9
4,

7
(0

,0
)

ei
l5

1_
n5

0_
un

co
rr

_0
2.

ttp
44

52
9,

72
47

91
44

52
,0

(4
6,

5)
28

7,
7

(1
,6

)
-1

89
4,

2
(3

83
4,

0)
36

59
,4

-4
27

4,
3

0,
3

4,
7

(0
,0

)
ei

l5
1_

n5
0_

un
co

rr
_0

3.
ttp

66
79

12
,9

5
54

04
40

34
,5

(5
2,

5)
27

3,
5

(3
,7

)
33

88
,8

(3
27

,3
)

33
88

,8
-

1
4,

6
(0

,1
)

ei
l5

1_
n5

0_
un

co
rr

_0
4.

ttp
89

05
19

,6
6

30
13

13
40

,0
(8

3,
4)

26
6,

6
(3

,7
)

43
6,

2
(2

05
6,

2)
13

60
,7

-3
26

1,
9

0,
8

4,
7

(0
,0

)
ei

l5
1_

n5
0_

un
co

rr
_0

5.
ttp

11
13

2
19

,6
44

08
14

98
,7

(9
3,

5)
27

6,
8

(2
,5

)
30

1,
1

(4
90

7,
8)

30
64

,1
-6

14
5,

9
0,

7
4,

6
(0

,0
)

ei
l5

1_
n5

0_
un

co
rr

_0
6.

ttp
13

35
8

21
,1

5
44

40
20

55
,8

(9
2,

1)
27

6,
6

(2
,2

)
22

56
,7

(4
09

1,
3)

35
42

,1
-9

31
2,

4
0,

9
4,

8
(0

,1
)

ei
l5

1_
n5

0_
un

co
rr

_0
7.

ttp
15

58
5

23
,0

3
41

42
22

0,
4

(1
06

,8
)

29
0,

7
(2

,5
)

-3
44

,8
(5

58
0,

7)
32

18
,5

-5
68

9,
8

0,
6

4,
7

(0
,0

)
ei

l5
1_

n5
0_

un
co

rr
_0

8.
ttp

17
81

1
23

,3
5

47
90

13
01

,2
(7

9,
3)

27
0,

5
(1

,4
)

18
5,

1
(5

94
4,

1)
36

13
,2

-7
81

3,
9

0,
7

4,
7

(0
,0

)
ei

l5
1_

n5
0_

un
co

rr
_0

9.
ttp

20
03

8
22

,5
2

61
22

17
40

,5
(1

02
,6

)
26

2,
4

(3
,2

)
-4

06
,2

(8
25

6,
1)

59
87

,4
-9

99
6,

7
0,

6
4,

6
(0

,0
)

ei
l5

1_
n5

0_
un

co
rr

_1
0.

ttp
22

26
4

22
,3

3
68

21
17

11
,0

(9
9,

2)
25

7,
9

(2
,4

)
46

55
,4

(5
12

5,
2)

62
74

,8
-9

92
0,

0
0,

9
4,

7
(0

,0
)

ei
l5

1_
n5

0_
un

co
rr

-s
im

ila
r-

w
ei

gh
ts

_0
1.

ttp
45

67
3,

82
14

48
11

92
,6

(1
1,

9)
30

1,
4

(1
,4

)
-7

98
,8

(1
41

8,
5)

12
55

,8
-1

67
9,

3
0,

3
4,

6
(0

,0
)

ei
l5

1_
n5

0_
un

co
rr

-s
im

ila
r-

w
ei

gh
ts

_0
2.

ttp
91

35
5,

83
37

69
27

24
,0

(2
5,

1)
29

1,
2

(0
,9

)
-8

83
,7

(2
70

3,
7)

30
29

,2
-2

56
0,

6
0,

3
4,

6
(0

,0
)

ei
l5

1_
n5

0_
un

co
rr

-s
im

ila
r-

w
ei

gh
ts

_0
3.

ttp
13

70
3

9,
09

44
33

38
12

,3
(3

6,
7)

27
8,

7
(1

,4
)

12
40

,1
(3

61
6,

7)
34

68
,3

-3
95

9,
1

0,
7

4,
7

(0
,0

)
ei

l5
1_

n5
0_

un
co

rr
-s

im
ila

r-
w

ei
gh

ts
_0

4.
ttp

18
27

0
14

,4
7

31
60

18
31

,4
(5

2,
2)

26
4,

4
(1

,3
)

18
15

,2
(1

21
1,

5)
20

32
,6

-1
41

,8
0,

9
4,

7
(0

,1
)

ei
l5

1_
n5

0_
un

co
rr

-s
im

ila
r-

w
ei

gh
ts

_0
5.

ttp
22

83
8

19
,3

21
34

74
0,

9
(5

4,
7)

25
4,

7
(1

,0
)

-2
43

,7
(2

94
7,

9)
80

0,
2

-4
41

9,
5

0,
8

4,
7

(0
,1

)
ei

l5
1_

n5
0_

un
co

rr
-s

im
ila

r-
w

ei
gh

ts
_0

6.
ttp

27
40

6
21

,2
1

27
43

11
02

,1
(6

2,
0)

24
6,

8
(1

,1
)

-1
26

8,
6

(1
34

3,
2)

33
6,

2
-1

95
6,

4
0,

3
4,

6
(0

,0
)

ei
l5

1_
n5

0_
un

co
rr

-s
im

ila
r-

w
ei

gh
ts

_0
7.

ttp
31

97
4

23
,2

8
28

57
21

2,
7

(5
8,

6)
25

8,
4

(3
,2

)
15

15
,6

(9
09

,5
)

15
15

,6
-

1
4,

7
(0

,0
)

ei
l5

1_
n5

0_
un

co
rr

-s
im

ila
r-

w
ei

gh
ts

_0
8.

ttp
36

54
1

24
,1

2
34

52
37

,2
(3

7,
2)

26
6,

1
(1

,3
)

-2
41

0,
9

(5
71

3,
5)

16
60

,2
-6

48
2,

0
0,

5
4,

7
(0

,0
)

ei
l5

1_
n5

0_
un

co
rr

-s
im

ila
r-

w
ei

gh
ts

_0
9.

ttp
41

10
9

24
,5

6
40

94
11

1,
4

(4
3,

2)
25

9,
4

(3
,2

)
-2

26
4,

9
(3

24
7,

0)
14

3,
4

-3
29

7,
1

0,
3

4,
7

(0
,0

)
ei

l5
1_

n5
0_

un
co

rr
-s

im
ila

r-
w

ei
gh

ts
_1

0.
ttp

45
67

7
23

,7
8

56
32

6,
0

(6
,0

)
25

6,
6

(1
,8

)
36

41
,9

(4
99

8,
4)

52
12

,4
-1

04
92

,5
0,

9
4,

7
(0

,1
)

St
an

da
rd

er
ro

rs
of

th
e

m
ea

n
in

pa
re

nt
he

se
s.

34

6 Conclusion

In this thesis we have researched the Lin-Kernighan algorithm for the Travelling Salesman Problem.

In section 2, we have discussed the relevant literature on the Travelling Salesman Problem so far. Even

after nearly hundred years of investigation into different solution methods for the Travelling Salesman Problem,

according to most literature, the Lin-Kernighan algorithm remains one of the best TSP solvers available to date.

In section 3 we gave an explanation of the Lin-Kernighan algorithm as described in the original paper by Lin

and Kernighan (1973), and summarised the subsequent literature on and improvements made to the Lin-Kernighan

algorithm. In this section we also set out our experimental analysis in investigating the Lin-Kernighan algorithm.

For our implementation of the Lin-Kernighan algorithm, we find a larger growth of running times in between

n2.4 and n2.8, contrary to the n2.2 reported by Lin and Kernighan in the original paper and other sources that

implemented the algorithm. This discrepancy may have arisen due to coding inefficiencies in our implementation

of the algorithm.

As for the performance of the algorithm, our implementation also performs worse than it does for Lin and

Kernighan. This might be caused by two things: the omission of the 4-opt non-sequential move check at the end

of the algorithm, or discrepancies in the implementation. Even though the first may have some effect on solution

quality, we expect the difference mostly to be caused by the latter.

In section 4 we have explained a relatively new benchmark problem: the Travelling Thief Problem. Along

with a thorough explanation of the problem and the discussion of the comprehensive benchmark set that has been

developed in the past few year, we also gave a full overview of the solution methods developed so far.

Additionally, we have looked at the TTP construction heuristics commonly used for solving TTP instances:

the DH, SH and PACKITERATIVE algorithms. These algorithms have in common that first an optimal tour is

sought, and afterwards the knapsack is filled. In this thesis, we have proposed a construction algorithm, the LKMD

heuristic, that seeks to do the opposite. First, the knapsack is filled, and with that information a tour is constructed.

In the construction of the tour, the lengths between the cities become pseudo-lengths depending on the picking

plan. In our experimental analysis we compare our results with the DH, SH and PACKITERATIVE algorithms.

The LKMD algorithm outperforms the DH and SH construction algorithm, but also at the cost of a larger

computation times. The LKMD does not perform better than the PACKITERATIVE algorithm.

We have found the order of first choosing the tour and then optimising the knapsack to perform better than the

other way around. Additionally, the construction of a tour is more costly than that of a knapsack and therefore

iteratively looking for a knapsack after the tours is faster than trying many tours for a certain knapsack plan.

However, the idea of first choosing the picking plan and constructing the tour afterwards, along with the use of

a pseudo-distance, based on the picking plan is promising. The LKMD can be refined by implementing measures

to decrease running time. Also, other forms of pseudo-distances, such as one that depends on the score of the

items in the cities, may offer a better performance. It may also inspire other construction algorithms to try to

exploit the interdependency between the two subproblems.

35

7 Bibliography

Applegate, D., Bixby, R., Cook, W., and Chvátal, V. (1998). On the solution of traveling salesman problems.

Applegate, D., Chvatal, V., and Cook, W. (1990). Data structures for the lin-kernighan heuristic. In talk presented

at the CRPC TSP Workshop.

Applegate, D., Cook, W., and Rohe, A. (2003). Chained lin-kernighan for large traveling salesman problems.

INFORMS Journal on Computing, 15(1):82–92.

Applegate, D. L., Bixby, R. E., Chvatal, V., and Cook, W. J. (2006). The traveling salesman problem: a compu-

tational study. Princeton university press.

Berenguer, X. (1979). A characterization of linear admissible transformations for the m-travelling salesmen

problem. European Journal of Operational Research, 3(3):232–238.

Bland, R. G. and Shallcross, D. F. (1989). Large travelling salesman problems arising from experiments in x-ray

crystallography: a preliminary report on computation. Operations Research Letters, 8(3):125–128.

Bonomi, E. and Lutton, J.-L. (1984). The n-city travelling salesman problem: Statistical mechanics and the

metropolis algorithm. SIAM review, 26(4):551–568.

Bonyadi, M. R., Michalewicz, Z., and Barone, L. (2013). The travelling thief problem: The first step in the tran-

sition from theoretical problems to realistic problems. In 2013 IEEE Congress on Evolutionary Computation,

pages 1037–1044. IEEE.

Bonyadi, M. R., Michalewicz, Z., Przybylek, M. R., and Wierzbicki, A. (2014). Socially inspired algorithms

for the travelling thief problem. In Proceedings of the 2014 Annual Conference on Genetic and Evolutionary

Computation, pages 421–428. ACM.

Camerini, P. M., Fratta, L., and Maffioli, F. (1975). On improving relaxation methods by modified gradient

techniques. In Nondifferentiable optimization, pages 26–34. Springer.

Chauhan, C., Gupta, R., and Pathak, K. (2012). Survey of methods of solving tsp along with its implementation

using dynamic programming approach. International Journal of Computer Applications, 52(4).

Christofides, N. (1976). Worst-case analysis of a new heuristic for the travelling salesman problem. Technical

report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group.

Christofides, N. and Eilon, S. (1969). An algorithm for the vehicle-dispatching problem. Journal of the Opera-

tional Research Society, 20(3):309–318.

Clarke, G. and Wright, J. W. (1964). Scheduling of vehicles from a central depot to a number of delivery points.

Operations research, 12(4):568–581.

36

Croes, G. A. (1958). A method for solving traveling-salesman problems. Operations research, 6(6):791–812.

Crowder, H. and Padberg, M. W. (1980). Solving large-scale symmetric travelling salesman problems to optimal-

ity. Management Science, 26(5):495–509.

Dantzig, G., Fulkerson, R., and Johnson, S. (1954). Solution of a large-scale traveling-salesman problem. Journal

of the operations research society of America, 2(4):393–410.

Desrochers, M. and Laporte, G. (1991). Improvements and extensions to the miller-tucker-zemlin subtour elimi-

nation constraints. Operations Research Letters, 10(1):27–36.

Dorigo, M. and Gambardella, L. M. (1997). Ant colonies for the travelling salesman problem. biosystems,

43(2):73–81.

El Yafrani, M. and Ahiod, B. (2017). A local search based approach for solving the travelling thief problem: The

pros and cons. Applied Soft Computing, 52:795–804.

El Yafrani, M. and Ahiod, B. (2018). Efficiently solving the traveling thief problem using hill climbing and

simulated annealing. Information Sciences, 432:231–244.

Escario, J. B., Jimenez, J. F., and Giron-Sierra, J. M. (2015). Ant colony extended: experiments on the travelling

salesman problem. Expert Systems with Applications, 42(1):390–410.

Faulkner, H., Polyakovskiy, S., Schultz, T., and Wagner, M. (2015). Approximate approaches to the traveling

thief problem. In Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation,

pages 385–392. ACM.

Glover, F. (1989). Tabu search—part i. ORSA Journal on computing, 1(3):190–206.

Glover, F. (1990). Tabu search—part ii. ORSA Journal on computing, 2(1):4–32.

Goldberg, D. E. and Holland, J. H. (1988). Genetic algorithms and machine learning. Machine learning, 3(2):95–

99.

Golden, B. L. and Skiscim, C. C. (1986). Using simulated annealing to solve routing and location problems.

Naval Research Logistics Quarterly, 33(2):261–279.

Grötschel, M. (1977). Polyedrische charakterisierungen kombinatorischer optimierungsprobleme.

Grötschel, M. and Holland, O. (1987). A cutting plane algorithm for minimum perfect 2-matchings. Computing,

39(4):327–344.

Hains, D., Whitley, D., and Howe, A. (2012). Improving lin-kernighan-helsgaun with crossover on clustered

instances of the tsp. In International Conference on Parallel Problem Solving from Nature, pages 388–397.

Springer.

37

Heile, F. (2017). Is the total number of particles in the universe stable over long periods of time?

Held, M. and Karp, R. M. (1962). A dynamic programming approach to sequencing problems. Journal of the

Society for Industrial and Applied Mathematics, 10(1):196–210.

Held, M. and Karp, R. M. (1970). The traveling-salesman problem and minimum spanning trees. Operations

Research, 18(6):1138–1162.

Held, M. and Karp, R. M. (1971). The traveling-salesman problem and minimum spanning trees: Part ii. Mathe-

matical programming, 1(1):6–25.

Helsgaun, K. (2000). An effective implementation of the lin–kernighan traveling salesman heuristic. European

Journal of Operational Research, 126(1):106–130.

Helsgaun, K. (2009). General k-opt submoves for the lin–kernighan tsp heuristic. Mathematical Programming

Computation, 1(2-3):119–163.

Helsgaun, K. (2011). Solving the bottleneck traveling salesman problem using the lin-kernighan-helsgaun algo-

rithm. Computer Science Research Report, (143):1–45.

Helsgaun, K. (2014). Solving the equality generalized traveling salesman problem using the lin-kernighan-

helsgaun algorithm. Roskilde University.

Helsgaun, K. (2017). An extension of the lin-kernighan-helsgaun tsp solver for constrained traveling salesman

and vehicle routing problems.

Helsgaun, K. (2018). Using popmusic for candidate set generation in the lin-kernighan-helsgaun tsp solver.

Holland, J. H. (1992). Genetic algorithms. Scientific american, 267(1):66–73.

Hong, S. (1973). A linear programming approach for the travelling salesman problem. PhD thesis, The Johns

Hopkins University, Baltimore, MD. Unpublished.

Jati, G. K. et al. (2011). Evolutionary discrete firefly algorithm for travelling salesman problem. In International

Conference on Adaptive and Intelligent Systems, pages 393–403. Springer.

Johnson, D. S. (1990). Local optimization and the traveling salesman problem. In International Colloquium on

Automata, Languages, and Programming, pages 446–461. Springer.

Johnson, D. S. and McGeoch, L. A. (1995). The traveling salesman problem: A case study in local optimization.

Karp, R. M. (1972). Reducibility among combinatorial problems. In Complexity of computer computations, pages

85–103. Springer.

38

Kato, Y. and Yasuhara, M. (2000). Recovery of drawing order from single-stroke handwriting images. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 22(9):938–949.

Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983). Optimization by simulated annealing. science,

220(4598):671–680.

Krolak, P., Felts, W., and Marble, G. (1971). A man-machine approach toward solving the traveling salesman

problem. Communications of the ACM, 14(5):327–334.

Laporte, G. (1992). The traveling salesman problem: An overview of exact and approximate algorithms. European

Journal of Operational Research, 59(2):231–247.

Laporte, G. (2010). A concise guide to the traveling salesman problem. Journal of the Operational Research

Society, 61(1):35–40.

Laporte, G., Mercure, H., and Nobert, Y. (1987). Generalized travelling salesman problem through n sets of

nodes: the asymmetrical case. Discrete Applied Mathematics, 18(2):185–197.

Larranaga, P., Kuijpers, C. M. H., Murga, R. H., Inza, I., and Dizdarevic, S. (1999). Genetic algorithms for

the travelling salesman problem: A review of representations and operators. Artificial Intelligence Review,

13(2):129–170.

Lenstra, J., Desroches, M., Savelbergh, M., and Soumis, F. (1988). Vehicle routing with time windows: optimiza-

tion and approximation. Vehicle routing: Methods and studies, pages 65–84.

Lin, S. (1965). Computer solutions of the traveling salesman problem. Bell System Technical Journal,

44(10):2245–2269.

Lin, S. and Kernighan, B. W. (1973). An effective heuristic algorithm for the traveling-salesman problem. Oper-

ations research, 21(2):498–516.

Lokin, F. (1979). Procedures for travelling salesman problems with additional constraints. European Journal of

Operational Research, 3(2):135–141.

Mahi, M., Baykan, Ö. K., and Kodaz, H. (2015). A new hybrid method based on particle swarm optimization, ant

colony optimization and 3-opt algorithms for traveling salesman problem. Applied Soft Computing, 30:484–

490.

Mak, K.-T. and Morton, A. J. (1993). A modified lin-kernighan traveling-salesman heuristic. Operations Research

Letters, 13(3):127–132.

Martin, O., Otto, S. W., and Felten, E. W. (1992). Large-step markov chains for the tsp incorporating local search

heuristics. Operations Research Letters, 11(4):219–224.

39

Mei, Y., Li, X., and Yao, X. (2016). On investigation of interdependence between sub-problems of the travelling

thief problem. Soft Computing, 20(1):157–172.

Menger, K. (1932). Das botenproblem. Ergebnisse eines mathematischen kolloquiums, 2:11–12.

Miliotis, P. (1976). Integer programming approaches to the travelling salesman problem. Mathematical Program-

ming, 10(1):367–378.

Miller, C. E., Tucker, A. W., and Zemlin, R. A. (1960). Integer programming formulation of traveling salesman

problems. Journal of the ACM (JACM), 7(4):326–329.

Odili, J. B. and Mohmad Kahar, M. N. (2016). Solving the traveling salesman’s problem using the african buffalo

optimization. Computational intelligence and neuroscience, 2016:3.

Ottmann, W. and Widmayer, P. (1990). Algorithmen und datenstrukturen. bi-wiss.

Ouaarab, A., Ahiod, B., and Yang, X.-S. (2014). Discrete cuckoo search algorithm for the travelling salesman

problem. Neural Computing and Applications, 24(7):1659–1669.

Padberg, M. and Rinaldi, G. (1987). Optimization of a 532-city symmetric traveling salesman problem by branch

and cut. Operations Research Letters, 6(1):1–7.

Padberg, M. and Rinaldi, G. (1991). A branch-and-cut algorithm for the resolution of large-scale symmetric

traveling salesman problems. SIAM review, 33(1):60–100.

Polyakovskiy, S., Bonyadi, M. R., Wagner, M., Michalewicz, Z., and Neumann, F. (2014). A comprehensive

benchmark set and heuristics for the traveling thief problem. In Proceedings of the 2014 Annual Conference on

Genetic and Evolutionary Computation, pages 477–484. ACM.

Potvin, J.-Y. (1996). Genetic algorithms for the traveling salesman problem. Annals of Operations Research,

63(3):337–370.

Ratliff, H. D. and Rosenthal, A. S. (1983). Order-picking in a rectangular warehouse: a solvable case of the

traveling salesman problem. Operations Research, 31(3):507–521.

Reinelt, G. (1991). Tsplib—a traveling salesman problem library. ORSA journal on computing, 3(4):376–384.

Reinelt, G. (1994). The traveling salesman: computational solutions for TSP applications. Springer-Verlag.

Saji, Y. and Riffi, M. E. (2016). A novel discrete bat algorithm for solving the travelling salesman problem. Neural

Computing and Applications, 27(7):1853–1866.

Taillard, É. D. and Helsgaun, K. (2019). Popmusic for the travelling salesman problem. European Journal of

Operational Research, 272(2):420–429.

40

Wagner, M., Lindauer, M., Mısır, M., Nallaperuma, S., and Hutter, F. (2018). A case study of algorithm selection

for the traveling thief problem. Journal of Heuristics, pages 1–26.

Wang, K.-P., Huang, L., Zhou, C.-G., and Pang, W. (2003). Particle swarm optimization for traveling salesman

problem. In Proceedings of the 2003 International Conference on Machine Learning and Cybernetics (IEEE

Cat. No. 03EX693), volume 3, pages 1583–1585. IEEE.

Wu, J., Wagner, M., Polyakovskiy, S., and Neumann, F. (2017). Exact approaches for the travelling thief problem.

In Asia-Pacific Conference on Simulated Evolution and Learning, pages 110–121. Springer.

Wu, J., Zhou, L., Du, Z., Lv, Y., et al. (2019). Mixed steepest descent algorithm for the traveling salesman

problem and application in air logistics. Transportation Research Part E: Logistics and Transportation Review,

126:87–102.

Wuijts, R. H. (2018). Investigation of the traveling thief problem. Master’s thesis, Utrecht University Department

of Information and Computing Sciences.

41

8 Appendices

8.1 Tables

Table 9: Comments and origins of TSP test instances. Source: Reinelt (1991).

Problem Name Description
a280 Drilling problem (Ludwig)
berlin52 52 location in Berlin, published by Grötschel (1977)
ch130 ’130 city problem’ (Churritz)
ch150 ’150 city problem’ (Churritz)
eil101 TSP instances of a vehicle dispatching problem by Christofides and Eilon (1969)
eil51 TSP instances of a vehicle dispatching problem by Christofides and Eilon (1969)
eil76 TSP instances of a vehicle dispatching problem by Christofides and Eilon (1969)
kroA100 Instance from Krolak et al. (1971)
kroA150 Instance from Krolak et al. (1971)
kroA200 Instance from Krolak et al. (1971)
kroB100 Instance from Krolak et al. (1971)
kroB150 Instance from Krolak et al. (1971)
kroB200 Instance from Krolak et al. (1971)
kroC100 Instance from Krolak et al. (1971)
kroD100 Instance from Krolak et al. (1971)
kroE100 Instance from Krolak et al. (1971)
lin105 The subproblem of lin318 as described in Lin and Kernighan (1973)
lin318 The large problem described in Lin and Kernighan (1973)
pr76 Drilling problem obtain from Tektronics, inc. by Padberg and Rinaldi (1991).
pr107 Drilling problem obtain from Tektronics, inc. by Padberg and Rinaldi (1991).
pr124 Drilling problem obtain from Tektronics, inc. by Padberg and Rinaldi (1991).
pr136 Drilling problem obtain from Tektronics, inc. by Padberg and Rinaldi (1991).
pr264 Drilling problem obtain from Tektronics, inc. by Padberg and Rinaldi (1991).
pr299 Drilling problem obtain from Tektronics, inc. by Padberg and Rinaldi (1991).
pr439 Drilling problem obtain from Tektronics, inc. by Padberg and Rinaldi (1991).
rat195 Rattled grid (Pulleyblank)
rat99 Rattled grid (Pulleyblank)
st70 instance from Krolak et al. (1971)
tsp225 TSP instance constructed by Reinelt (1991) for the TSPlib.

42

8.2 List of Supplementary Java Code Files

Table 10: Java Code list

File Name Description

City.java The file containing the City class.
Edge.java The file containing the Edge class.
Item.java The file containing the Item class.
LKalgorithm.java The file containing all algorithms and functions described in the thesis.
Statistics.java The file containing the Statistics class.
Swap.java The file containing the Swap class.
Tour.java The file containing the Tour class.

43

	Introduction
	Literature review
	Travelling Salesman Problem
	Exact Solution Methods
	Heuristic Solution Methods
	Construction Heuristics
	Improvement Heuristics

	Other Heuristics and Genetic Algorithms

	Lin-Kernighan Algorithm
	Further Literature on the Lin-Kernighan Algorithm

	The Travelling Thief Problem
	Problem Description
	Benchmark Set
	Solution Methods
	SH and DH Solvers
	The PackIterative algorithm
	Other Solution Methods

	Lin-Kernighan Modified Distance Algorithm

	Results
	Results for the Lin-Kernighan Algorithm
	Results for the LKMD Algorithm for the Travelling Thief Problem

	Conclusion
	Bibliography
	Appendices
	Tables
	List of Supplementary Java Code Files

