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Abstract

An important step in approaching optimal solutions for the Capacitated Vehicle Routing

Problem (CVRP) is finding a strong lower bound. The tabu search method provided by Augerat

et al. (1998) was presented to be powerful heuristic when applied to solve the capacity separation

problem in the cutting plane algorithm which iteratively solves a relaxed sub problem of the

complete formulation of the CVRP. Our research verifies their computational findings can be

replicated to a strong degree and confirms the methods presented in their paper. Furthermore,

we propose another meta heuristics to tackle the capacity separation problem based on the Non-

dominated Sorting Genetic Algorithm (NSGA). Although the algorithm does not turn out to

outperform previous heuristics, we do find that when combined with the constructive heuristic,

it matches the performance of the tabu heuristics requiring a smaller number of cuts. Finally,

we change the cutting plane algorithm from an iterative solver to a dynamic variant in which the

cut graphs of candidate solutions are passed to the separation phase through callback functions.

This alternative approach leads improved lower bounds at a lower computation cost.

Keywords: Vehicle Routing Problem · Capacity Separation Problem · Tabu search ·Non-dominated

Sorting Genetic Algorithm · Cutting Plane Algorithm ·Callback · Linear Programming
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1 Introduction

With around 750’000 results on a quick search of the Vehicle Routing Problem (VRP) on Google

Scholar, this class of combinatorial optimization puzzles is likely one of the most researched topics

in operations research. At its core, the objective is to find the optimal edges to be traversed by a

fleet of vehicles to serve a given set of customer nodes at a certain distance from the central depot

station from which every vehicle departs and returns. Countless extensions to this problem have

been investigated by modifying the existing assumptions of the model or adding further constraints

to account for. The real-life application only seems to have increased in relevance over the past

years with the introduction of new vehicle types and rising demand for optimization in business

operations. This thesis will focus on the VRP taking into consideration capacity constraints of

vehicles with respect to the aggregate demand of the customers they serve. The aim of this research

will be to take a step back and investigate one of the earlier works around this topic by Augerat et

al. (1998), who introduced the first meta-heuristic to solve the identification problem that is at the

heart of the Capacitated Vehicle Routing Problem (CVRP). First, by replication of the methods

described in their paper, our numerical results will be contrasted to their findings. It will be of

interest to observe how the much stronger processors of regular office computers today perform in

comparison to the ones twenty years ago on the same problem instances and how their methods

have aged in comparison to alternative solution methods. One such alternative will be investigated

in our extension of their work. With increased interest in the possibility of artificial intelligence and

its sub-fields, one of the meta heuristics that has seen leaps in development is the genetic algorithm

which is part of the larger class of evolutionary algorithms. Its application is especially powerful

in multi objective problem optimization, an area that has lon g caused experts headaches. Our

research will attempt to tackle the capacity separation problem which is at the core of searching

lower bounds for optimal objective values in the CVRP by applying this technique. We find that

although the tabu heuristics introduced by Augerat et al. (1998) are very difficult to beat, the

genetic algorithm is able to find deeper cuts into the solution space and achieves good lower bounds

to the CVRP with a smaller number of constraints when combined with the constructive heuristic.

Another development in technology which can be taken advantage of by our research is the

functionality of callbacks in the Cplex solver. This leads to our development of a second extension

which modifies the traditional cutting plane algorithm. By not requiring the solver to find the

optimal solution at each iteration for the given cuts, but searching for violated constraints in the

cut graph of candidate solutions, we find that the solving times can be drastically decreased while

finding even better lower bounds with all heuristics on most problem instances. The callback

function proves that by not requiring to solve each sub problem to optimality at every iteration, we

can save time in the Cplex solver whilst finding even more useful cuts in the solution space.

The thesis proposal will be structured as follows. After this introduction, the theoretical frame-

work will be laid out to describe the landscape of vehicle routing problems since the writings of

Augerat et al. (1998) and create context for the extension that we propose. Then, a discussion on

the social relevance of the CVRP and our suggested extensions will be held in the social relevance
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section. Afterwards, the data and Java Libraries section will describe the source of the data and

present relevant tools to apply for this research. In the methodology section, the methods suggested

by Augerat et al. (1998) are presented in addition to a detailed description of how our extensions

are implemented. In the results sections, we first present our findings of the replication effort and

afterwards the computational results of our extensions. To conclude, we summarize our findings

and give recommendations to future research.

2 Theoretical Framework

The theoretical framework will start out by providing a more general overview of the state of research

around the VRP to create context for our own findings. Then, existing extensions related to the

VRP and the class of evolutionary algorithms we propose are described. Finally, we take a deeper

dive into the theory surrounding the capacity separation problem.

2.1 The vehicle routing problem

The central focus of this thesis will be on the research by Augerat et al. (1998). However, to

understand the theoretical framework and context of their paper, earlier work that they built on

must be considered before continuing to examine how further research has built upon their findings.

What is referred to today as the vehicle routing problem was first introduced to academic literature

under the name ‘The Truck Dispatching Problem’ by Dantzig & Ramser (1959) with a fleet of

gasoline delivery trucks dispatched from a bulk terminal needed to supply a large number of service

stations at minimal cost. The goal is to design a set of routes for the fleet such that all customer

demand is covered and sum of all customer demand on a route does not exceed the vehicle capacity

at the smallest possible transportation cost. The problem can be sketched as an undirected graph

with vertices representing the customer and depot nodes and edges connecting pairs of vertices.

Each edge carries a cost when activated for a vehicle route which is usually determined to be a

function of Euclidean distance between vertex coordinates.

In Laporte et al. (1985) , the authors define the variables in the CVRP as follows. For a set of

edges E, each edge e ∈ E can be activated through decision variable xe at a cost ce. An activated

edge means that a vehicle passes between the vertices at the endpoints of this edge. For the set of

vertices S ∈ V , the δ(S) defines the cut set between nodes v in S where S is a subset of V , meaning

the set of edges with one endpoint in S and the other in V \ S. (δ(S) = {e = (i, j) ∈ E : i ∈ S,∈
V \S}).

Furthermore, we also define γ(S) as the set of edges with both endpoints in S . Also, k and C

denote the number of vehicles and their capacity respectively, d(S) equals the sum of the demand

of vertices in S and for any subset F of E, x(F ) gives the sum of xe for all e in F . Finally, we

define vertex 0 to be the depot node and V0 to be the set V \ {0}. These definitions give a sufficient

framework to formulate the CVRP in the following mathematical notation.
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minimize
∑
e∈E

cexe (1)

Subject to

x(δ({0}) = 2k, (2)

x(δ({i}) = 2 for all i ∈ V0 (3)

x(δ(S) ≥ 2dd(S)

C
e for all S ⊆ V0, S 6= ∅ (4)

0 ≤ xe ≤ 1 for all e ∈ γ(V0) (5)

0 ≤ xe ≤ 2 for all e ∈ δ({0}) (6)

xeinteger for all e ∈ E (7)

Note that dαe is equal to the nearest integer greater or equal to α. The objective (1) minimizes

the cost of transportation by summing the costs of activated edges. Constraint (2) sets the degree

of the depot node equal to twice the number of vehicles in the system, given that each vehicle must

leave and enter the depot. Similarly, the set of constraints (3) requires each customer node to have

degree 2, since it must only be visited and left by a vehicle once. All constraints (4) have the double

role of both ensuring a sufficient number of vehicles are present to serve a subset of customer nodes

and the elimination of sub tours not including the depot. These constraints will also be referred to

as the capacity constraints. Finally, constraints (5) to (7) define the range of our decision variables,

since each edge logically should be integer and can only be traversed once with the exception of

corner case (6) where a single customer is visited by a vehicle after which it returns to the depot

through the same edge.

The culprit of the complexity of our model is the set of constraints (4), since it must hold for

all possible subsets S of V0. An exact formulation of the problem would require 2|V0| − 1 distinct

constraints to be accounted for, a task quickly exceeding the capacity of any computer and giving

our problem’s non-deterministic polynomial-time hardness (NP-Hard). Note that the VRP is a

generalization of the well-known Traveling Salesman Problem (TSP) since the TSP is a specific

instance of the VRP in which k is set to 1 and C ≥ d(V ).

2.2 Extensions to the VRP

Uncountable extensions to the model have been developed and researched since the emergence of the

Truck Dispatching Problem. Some of its more popular versions and solving methods are presented in

Kumar & Panneerselvam (2012) where multiple flavors are described. There is the Vehicle Routing

Problem with Back hauls (VRPB) in which customers can return some goods. The vehicles must

take into account that after delivery, a pre-determined amount of inventory must be picked up from

customer nodes. Then, the VRP can be modified to take into account time windows (VRPTW)
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associated with each customer node which define an interval of time in which the node must be

served. Furthermore, there is the case of multiple depots as investigated by Cordeau et al. (1998)

in which vehicles can depart and return from the same depot but with multiple depots to assign

vehicles and customers to. All of these extensions can be mixed to create further complications

and attempt to solve real life problems to optimality. One such example is the vehicle routing

with back hauls and time windows problem (VRPBTW) researched by Thangiah et al. (1996). In

terms of solution techniques, a large pallet of possibilities has already been explored. There are a

few classes of solution techniques to be considered. The first are the exact approaches, in which

the full solution space is explored through methods such as branch and bound, in which a state

space search systematically enumerates candidate solutions. These types of methods are considered

impractical since the computation time becomes excessive for larger problem instances and their

performance can be beat by simple heuristics in terms of computational speed for solutions of

sufficient quality. This conclusion was already made in the early days of VRP research by authors

such as Christofides & Eilon (1969) The alternative solution method described in their work is

categorized as a heuristic solving technique, which explores a relatively small solution space but

generally delivers strong results with much less effort. The savings Algorithm presented by Clarke

& Wright (1964) is an example of a Constructive method, which builds up a solution gradually

from a starting point. Then, Beasley (1983) explores a clustering and routing approach in which

the problem is decomposed into a component of node clustering and one of route construction, also

known as a two-phase algorithm. Finally, in recent years we have seen a large increase in the use

of clever meta heuristics. Whereas Augerat et al. (1998) build on earlier tabu search methods for

route modifications as presented in Gendreau et al. (1994), other methods which appear to obtain

their inspiration from nature have emerged. One example of such solution techniques is present by

Bullnheimer et al. (1999) who investigate Ant Colony Optimization which is a subclass of Swarm

intelligence to analyse the collective behavior of decentralized systems. In the CVRP, this meta

heuristic constructs solutions by combining an adaptive memory with a local heuristic function

by having multiple artificial ants perform local searches by moving in many possible directions

in the solution space. Another branch of nature that has been taken advantage of is biological

evolution. Genetic algorithms such as the Non-dominated Sorting Genetic Algorithm (NSGA) are

applied to solve multi-objective VRP problems in which additional objectives to the minimization

of route length are explored. The NSGA is designed to find a strong set of solutions by evolving

a population of candidate solutions. In an iterative process, candidates along the Pareto Front are

crosses and manipulated into next generations while poor performers are eliminated. One example

of an application of NSGA can be found in the research by Jozefowiez et al. (2005) who also attempt

to quantified and optimize a balance between routes. The algorithm of interest for this research is

the third version of the NSGA framework as presented in Kalyanmoy & Jain (2014). The framework

introduces a reference-point-based many-objective evolutionary algorithm which builds on previous

NSGA algorithms and focuses on population members that are non-dominated, yet close to a set

of supplied reference points.
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2.3 The capacity separation problem

The point of the capacity separation problem is to identify sets S for which the capacity constraint

is violated in order to add cuts to the model which reduce the solution space and the lower bound

given by the relaxed problem as much as possible. Since we do not have extensive knowledge of

what the solution space, also called the polytope, looks like, our best guess to make large cuts is

to find those sets that cause the largest violation in the current optimal solution to the relaxed

sub problem. However, selecting sets for which the capacity constraint is violated is not an easy

task. In our research, we will attempt to explore further alternatives to the meta heuristics Augerat

et al. (1998) have presented to find relevant capacity constraints to improve the lower bound of

the optimal object value. Since the publication of their paper, Denis Naddef & Rinaldi (2002)

have proven that the separation problem is NP-Hard. This means that it is virtually impossible

to guarantee a polynomial-time algorithm which identifies a constraint with certainty if it exists.

At best, we can use heuristics which have proven to produce strong lower bounds with minimal

gaps within reasonable computation time. The separation problem is at the core of the research

by Augerat et al. (1998). In some way, the capacity separation problem is an instance of the Bin

Packaging Problem (BPP), in which packages with weight equal to the demand of customers in

a number of sets equal to the number of vehicles must be assigned to bins equal to the size of

the vehicle capacity. By relaxing the vehicle capacity constraint to hold infinite capacity with a

single vehicle, we generalize to the TSP while relaxing edge costs to zero returns the (BPP) decision

problem. With these two traditionally challenging models at heart, it is no surprise the CVRP

is difficult to solve. Toth & Vigo (2015) provide data sets for the VRP proven to be solved to

optimality with the number of nodes just approaching a thousand while meta-heuristics by Arnold

(2019) finds good solutions for real-life data sets with up to 30,000 customers. In comparison,

Applegate et al. (2009) find an optimal tour for the TSP containing close to one hundred thousand

cities.

As pointed out by Ralphs (2003), the BPP and TSP are often at odds because the cost structure

depends on routing choices and cannot simultaneously take the packaging structure into consider-

ation. They tackle this interplay by an approach to separate the TSP from the BPP in order to

benefit from the highly optimized techniques to search the TSP solution space. This paper will

attempt to approach the separation problem from a different angle by extending existing literature

with the use of an evolutionary algorithm. Genetic algorithms have been successful in solving the

decision problem for the BPP. (Junkermeier (2015))

To our knowledge no evolutionary algorithms have been applied to the capacity separation

problem. There are multiple reasons why applying evolutionary heuristics would be an interesting

addition to literature. As pointed out by Augerat et al. (1998), the tabu technique they introduced

is prone to identify a large set of similar constraints which may reduce the cut of a newly identified

constraint on the solution space and increase the load on the solver which has to consider more

constraints in each iteration. The genetic algorithm proposed in this thesis belongs to a class of

heuristics which can identify creative solutions. By creative, we mean a set of solutions which are as
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dissimilar as possible to avoid the problem of an oversupply of similar constraints. In the capacity

separation problem, we expect the genetic algorithm to identify sets that the heuristics provided by

Augerat et al. (1998) fail to identify. By providing our findings, we will provide future efforts to solve

the capacity separation problem with a reference on the performance of this class of algorithms.

In addition to extending the literature with a new meta heuristic for the capacity separation

problem, we also want to present an alternative method for the cutting plane algorithm. Instead

of iteratively solving the relaxed problem with the identified type 4 constraints, we propose making

use of callback functions which allow us to generate constraints on the fly without requiring the

solver to return an optimal solution at each step. In the methodology section, we explain why this

will result in more efficient and equally valid outcomes.

3 Social Relevance

From its early emergence as a Truck Dispatching Problem to the more recent applications of Drone

Routing and about everything in between, it is easy to recognize the economical relevance of the

VRP. The optimization of this class of combinatorial problems is beneficial for business, society and

even the environment. By finding the shortest and least costly routes to perform a certain group

of tasks, a company can save on transportation costs in its supply chain, serve customers more

efficiently, avoid unnecessary loss of time and maximize resource utilization. According to Hasle et

al. (2007), given that an estimated 10% of manufacturers operational costs arise from transportation,

we can even estimate the transportation cost savings arising from computer optimization of VRP

instances to be around 5% of the all operations. Given that already only in Europe about 10% of

GDP is made up by the transportation sector, it is clear that route optimization programs in this

almost two trillion euro industry have massive impacts on every day life.

From a social perspective, the average person also benefits from route optimization. Think about

the sharing economy in which the flow of resources can be optimally utilized through ride sharing

platforms (Aiko et al. (2017)) and bike sharing systems (Schuijbroek et al. (2017)). Furthermore,

the VRP can be extended to provide frameworks for vehicle routing in home health care applications

(Lia et al. (2013)), medical emergency situations (Creput et al. (2011)) or even disaster response

operations (Gharib et al. (2018)).

Finally, one should consider the environmental advantages of route optimization. Not only do

companies save on their transportation costs, also less fuel is required to support their operations,

which would help to reduce the company’s CO2 footprint. Some models even aim at minimizing

criteria based on quantified environmental factors, as seen in the paper by Ubeda et al. (2011). A

recent paper by Soysal et al. (2015) explores how multi-echelon distribution strategies addresses

energy usage, congestion, traffic-related air pollution, accidents and noise by using intermediate

depots in urban logistics. Also, with rising interest in alternative fuel-powered vehicles, research in

Green Vehicle Routing Problems (G-VRP) aids to overcome the constraints that are raised by their

typically limited travel range (Erdogan & Miller-Hooks (2012)).
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In conclusion, the VRP carries aside from its mathematical challenge an important contribution

to society through its usability in a broad range of applications. The aim of this thesis will be to

contribute to the field by replicating numerical results from one of the earlier contributors in this

field Augerat et al. (1998) and build upon the masses of research written since then by contributing

our extensions. Replicating results may not bring new ideas to the table but is an essential part of

academic literature aiming to ensure high quality research in the field. By continuing to peer review

and verifying proposed methods and results, past research becomes more valuable and trustworthy.

Then, the extension provides an interesting addition to the meta heuristics applied by Augerat et

al. (1998) by implementing an approach to the VRP from a very different angle. To our knowledge,

no evolutionary algorithms have been applied to the capacity separation problem to this point and

their implementation could increase the efficiency of such algorithms and provide a framework for

searching lower bounds in larger problem instances. Furthermore, our extension to the cutting plane

algorithm solving technique may lead existing heuristics to be applied more efficiently and turn out

to have further applications in similar fields.

4 Data & Java Libraries

In their paper, Augerat et al. (1998) make use of three sets of problem instances. All data is

conveniently stored online on a website which was created by Ivan Xavier and by the authors of

Uchoa et al. (2016) and is still maintained by Daniel Oliveira. From their database, we retrieve the

LITLIB library which contains all the problem instances from literature referred to by Augerat et al.

(1998) in addition to the customized A and B libraries created for their research. For all instances,

the node coordinates and demands are given in a standardized TSPLib format and optimal solutions

are available. The availability of these optimal solutions provides an interesting new insight since the

publication of Augerat et al. (1998), because they have only been proven in a publication by Baldacci

et al. (2004). This knowledge will add to the discussion and interpretation of the numerical results

since it provides us with a more precise estimation of the distance to optimality of our solutions.

Furthermore, open source frameworks by Anderson (2012) on Object Oriented Cplex implemen-

tations for TSP routing optimization using User Cut Callbacks and Lazy Constraint Callbacks will

be consulted. For the undirected graph architecture, we made use of the open source Java Universal

Network/Graph Framework (n.d.). The flow network classes used for identifying minimum cuts in

the constructive heuristic is based on the open source code published by Wayne & Sedgewick (2011)

released under the GNU General Public License, version 3 (GPLv3). For the implementation of

NSGA, this paper will make use of the open source Java Framework for Multi-objective program-

ming. (Java Framework for Multiobjective Optimization (2012)) The problem instances will be

loaded and solved on a Mac book Air running a 1,7 GHz Intel Core i7 processor with 8 GB 1600

MHz DDR3 memory using Java in an Eclipse IDE.
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5 Methodology

In our methodology section, we first touch upon the methods proposed by Augerat et al. (1998) and

how these techniques are incorporated into our own research. Then, we elaborate on the workings

of the genetic algorithm proposed for our extension. Finally, we describe the details and relevance

of the callback functionality for the cutting plane algorithm.

5.1 Methods by Augerat et Al.

The first methods applied in this research will be based on the separation of capacity constraints

in the VRP as demonstrated in Augerat et al. (1998). Although all techniques will be addressed in

this paper, detailed explanations of the parameter configurations to apply for an exact replication

of their research can be found in their paper. We attempt to find the relevant sets for which the

corresponding capacity constraints can be added to the relaxed model formulation. In what is known

as a cutting plane algorithm, the LP containing the objective and constraints (2) and (3) of the

full formulation of the CVRP is iteratively solved and fed with identified sets of valid inequalities.

Although the optimal outcome of this algorithm would be a feasible integer solution in which all

capacity constraints are satisfied, it is more likely to end when no more valid inequalities can be

found. Based on the format of constraints (4), we can formulate f(S) = x(δ(S)− 2dd(S)
C e which for

any f(S) < 0 gives a set S corresponding to the capacity constraint which is violated.

At each iteration of the cutting plane algorithm, an undirected support graph can be constructed

with the nodes of the problem instance and edges drawn for all edges with corresponding decision

variable xe > 0. A cut set d(S) is now defined as the edge cut set in this support graph.

A few simple heuristics are given to be applied for any of the set identification techniques used

by Augerat et al. (1998) to easily find further relevant sets. The first is for any set S to check the

complement set V0 minus S for which f(S) can easily be calculated. The second is to check for sets

including neighboring nodes for sets which contain demand close to the maximum capacity of the

minimum number of vehicles that could service such demand. Furthermore, by means of a shrinking

procedure, routes that exceed the maximum capacity for a vehicle can be identified. Finally, they

consider the nodes in connected routes that do not contain the depot node.

Augerat et al. (1998) benchmark their tabu search meta heuristic with the constructive and the

greedy heuristic. The constructive heuristic adds a sink node to the support graph and finds the

minimum cut between the source (depot) node and that sink after setting custom weights to the

edges which ensure that the set of nodes on the sink side of the cut give the maximum violation of

the capacity constraints. The greedy randomized algorithm starts out with an initial set of nodes

in V0 and iteratively check for a violated constraint and adds a node for which the weight of the

cut set between the candidate nodes and the current set is maximum. Multiple strategies for the

initial set of nodes to consider are investigated.

The central technique that Augerat et al. (1998) want to present in their work is the tabu search

algorithm. It consists of an expansion and an interchange phase which is executed with multiple
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starting points and parameters. For each number of vehicles p ≤ k, the expansion phase iteratively

constructs a set of nodes for which to check the capacity constraints. It does this similarly to

the neighbor node search heuristic by selecting a node adjacent to the current set. It desires the

expansion to just exceed the capacity capability of p vehicles. In the interchange phase, nodes

neighboring the node set in the support graph, or those nodes in the node set neighboring the

complement set are respectively added or removed from the node set, maximizing the weight of the

cut set between these nodes and the node set and complement respectively. At each of iteration of

the interchange phase, the last modified node is added to the tabu list and remains unchanged for

a given number of iterations. Augerat et al. (1998) have considered a range of parameter inputs to

tune the algorithm. Since some of the identification techniques produce a large number of similar

violated constraints, some more filtering steps are undertaken to limit the burden on the solver.

Only constraints violated by more than 0.01 (f(S) < -0.01 ) and a number of valid inequalities equal

to the minimum of 125 and twice the number of nodes are added at each iteration. If the number

of identified sets exceeds that limit, only the constraints with the largest violations are included.

When implementing the heuristics presented by Augerat et al. (1998), there are multiple ways

to structure the methodology to identify valid constraints. We classify the five basic functions

proposed to be applied for every meta heuristic as simple heuristics. These are the methods that

identify node sets not connected to the depot, shrink edges and examine the super node capacities,

explore the neighbors and complement of a possible solution and check the components of the cut

graph for violations. Our algorithm first checks the components and shrinks the graph after which

one of the three meta heuristics is applied. Also, each time a valid constraint is identified, the

simple heuristics also examine the neighbors and complements for making valid constraints. Also,

we take into account that a set may be dominated by a set including its neighbor in case the larger

set requires an extra vehicle to cover its demand, thus only requiring to consider the constraint

related to the larger set. As such, the simple heuristics are considered in every iteration and for

every identified constraint.

5.2 A genetic meta heuristic for the separation problem

The first extension we propose is an alternative to the meta-heuristics proposed by Augerat et al.

(1998) to the separation problem. The tabu search method proposed by them gains its edge from

constructing promising sets by expanding the set and interchanging nodes from multiple starting

points and with multiple numbers of vehicles as the capacity limit. While effective, this approach

is only able to find particular types of sets, namely those clustered together in the current optimal

LP solution.

The algorithm used by our extension is a popular version of the genetic algorithm, namely

the NSGA This algorithm starts off with an initial population of candidate solutions after which it

iteratively kills of some of the members that are dominated by alternatives and evolve members that

are close to the Pareto frontier. The frontier represents a population for which none of the objective

can be improved without diminishing any other. In the figure below, this process is laid out in the
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Figure 1: Visualization of the NSGA algorithm Kalyanmoy (2001)

following steps. For a given population Pt, create a total population Rt by creating offspring Qt

from Pt through selection, genetic crossover, and genetic mutation. The total population is sorted

on an ascending level of non-domination. A candidate solution is dominated by another if it scores

worse on all of its objectives. The ranked population is grouped into front rankings after which the

top half will be considered in the next iteration whereas the bottom half will be rejected. Front

ranking that are partially rejected will select the nodes to evolve by crowding distance sorting,

meaning that solutions which are similar to others are rejected.

In our implementation, the decision variable will be which nodes to include in a set to check the

corresponding capacity constraints for.

Although it may seem intuitive to only give the genetic algorithm the objective of finding

the largest valid inequality, our proposed heuristic also attempts to consider more objectives. In

particular, aside from maximizing the violation, the demand is minimized and cut edge value is

maximized. These different objectives all relate to the capacity constraint and appear to create

a beneficial interplay in the population development. Single objective settings appear to lead to

population convergence in which similar cuts are found. By posing counter acting objectives, the

population turns out to remain more diverse and evolves on more complex patterns. Both the

algorithm with only a violation objective and one with multiple goals are implemented.

Furthermore, we aid the population development by applying a simple heuristic to each pop-

ulation member. In this simple heuristic, all neighbors of the population member node set in the

current cut graph are checked and if the union results in a larger violation of the capacity constraint,

it is added to the node set. Since the genetic algorithm by itself is blind to what the cut graph

actually looks like, this heuristic provides a simple way to slightly improve the population at each

step while still maintaining diversity.

A few parameters are of interest when implementing this algorithm. First of all, the user sets the

population size which is maintained for each evaluation. Then, the number of objectives to include
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can be tuned between only the violation or all three of them in order they were presented. Further-

more, a parameter is given for the maximum number of evaluation in case the terminating condition

is not triggered. In practise, our algorithm is given a large number of maximum evaluations, but is

halted when a given number of strongly violated constraints were identified. Finally, our framework

offers two versions of the NSGA, namely NSGAII and NSGAIII. The NSGAIII method adds to its

predecessor the ability to stick to reference points to maintain population member distance. As

such, we will use the NSGAII when only the violation is maximized while for a multi objective

problem we turn to NSGAIII.

Based on some variations of the parameters, we recommend to set the population to half the

number of nodes of the problem instance, with between 250 and 1000 evaluations. When about ten

constraints are identified with a violation larger than half the amount of vehicles in the problem,

the algorithm are halted. Furthermore, if no valid sets could be identified, the algorithm is repeated

with ten times more evaluations.

5.3 Callback enabled cutting plane algorithm

For the second extension, we consider the cutting plane algorithm. In the version proposed by

Augerat et al. (1998), it intends to iteratively solve the linearly relaxed sub problem for the degree

and range constraints and all the identified capacity constraints and search for other violated con-

straints after each full solve. However, since the publication of their paper, the Cplex solver which

they also used for their research has provided functionality for callback classes. A callback class

returns potential candidate nodes to the user while solving the problem. This provides us with

the opportunity to generate constraints on the fly based on partial solutions. In particular, our

algorithm will make use of the lazy constraint callback class which can be extended to dynamically

generate and add lazy constraints during the branch and cut search. This type of constraint is

called lazy because it is only added to the formulation if the constraint is violated by a candidate

solution. As such, a lazy constraint can restrict the feasible region of a problem and will always be

satisfied in the final solution of the solve call.

This alternative cutting plane algorithm process has multiple consequences.First of all, the time

spent in the Cplex solver is obviously reduced since it does not require to fully solve the problem at

each iteration. Another outcome is that particular candidate solutions may not be optimal for the

given constraints. Obviously, valid constraints can still be identified from the candidate solutions

and may even be especially helpful given that more varied cut graphs are explored by our heuristics.

By more varied, we mean that when only optimal solutions are traversed by our heuristics, it is more

likely that these are similar to previous optimal solutions and thus produce similar cuts. Finally,

some of the candidate solutions passed to the callback may have objective values above the upper

bound of a problem instance. Imagine the case in which such a candidate solution is passed to the

callback and the heuristic would not identify a valid constraint. Instead of halting the branch and

cut at this point, which would lead to wrong lower bound solutions, the standard procedure for our

solver will be to continue searching for more optimal solutions. Since none of the cuts could cut off
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Figure 2: Callback algorithm

the optimal solution, candidates with objective values lower than the previous solution should be

identified and the search continues until a candidate with a solution less than or equal to the lower

bound is found and no lazy constraints are identified. In fact, the algorithm will go as follows. At

each iteration, identify violated constraints and add them as lazy constraints to the model. If at a

given iteration no valid cuts are identified, the solver will first pass some further candidate solutions

with lower objective values to the callback in case they exist. If no better candidate solution is

found, the latest candidate solution with the lowest objective value for which no lazy constraints

were added will be accepted as the final answer. However, it is possible that after this candidate

solution was found, in new candidate solutions constraints were identified that violate the first.

Since at the moment a node is found for which currently no violated constraints can be identified,

Cplex will treat it as a feasible solution regardless of what happens in the future. Although this

scenario does not necessarily occur and may not make our algorithm halt prematurely in most cases,

there could still be merit into circumventing this behavior in future research. This is a matter of

trade-off between time spent in the heuristic and the quality of the final lower bound found. For

our methodology, we introduce an additional step in which we choose to restart the solver with

all constraints found to this point every time it finds a larger lower bound. The entire process is

visualized in figure 2.
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6 Results

The results section will have the following structure. Before presenting the results, a discussion will

be held on why replication of the presented methods can vary from the original and which factors

appear to have the most severe impact on diverging outcomes. Then, because one of the main

efforts of our research is the replication and verification of the research by Augerat et al. (1998),

the success of our replication will be evaluated first. Since our reproduced outcomes are similar

enough to the ones reported by Augerat et al. (1998), further results drawn from the extensions

will be bench marked against the replication. This is because it is impossible that the algorithms

by Augerat et al. (1998) were copied exactly and a comparison between two heuristics based on the

same underlying code base and solver is more informative. After the replication is evaluated, the

extensions are presented. The results from our genetic meta heuristic using the iterative solving

algorithm as proposed by Augerat et al. (1998) are presented first. It will be compared with

the different heuristics for all three libraries LITLIB, ALIB and BLIB. Afterwards, we examine

the performance of the callback method vis-à-vis the original cutting plane algorithm. For each

heuristic, we discuss the effect of the alternative solving method. In the appendix, we also refer to

and briefly describe the source code used to generate the results which is available in a separate zip

file.

6.1 Explaining variance in replicated findings

Before discussing our own results, we would like to clarify why the algorithms in Augerat et al.

(1998) are not deterministic and can lead to varying outcomes. The first factor to consider is that

the lower bound found by a cutting plane algorithm is dependent on which sub problem of the

full formulation is defined. A sub problem is composed of all the cuts identified at the time. As

discussed, the heuristics are not exact methods and rely on intuitive search algorithms on the cut

graph. However, on two slightly similar cut graphs, it is entirely possible that a heuristic identifies

a constraint in one but not the other. On top of this, there is a regular pattern in which a heuristic

has a lot of trouble in multiple consecutive cut graphs to identify valid constraints but afterwards

effortlessly makes a lot of progress in later iterations in which it does identify a lot of deep cuts in

the polytope. This phenomenon will be discussed more extensively in the discussion on the greedy

heuristic, which especially suffers from it. Even though all methods are well documented, slight

changes in the order of applying simple heuristics or settings of parameters can lead to different

solving paths.

The second factor to consider is how the algorithm manages its cuts. In our results, we observe

that not only the identification of cuts is important, but also the process that follows it. First of all,

the algorithm must decide how many of the simple heuristics to apply. If for each cut identified by

a meta heuristic, all neighbors of the corresponding node set are checked for violations in addition

to the node set complement, in each iteration a lot of cuts could be found. As discussed by Augerat

et al. (1998) for their tabu method, one can choose to limit the number of cuts to pass to the solver
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in order to reduce the load. They chose to set this limit at the minimum of 125 and twice the

number of nodes in the graph. However, they do not specify whether this is the number of nodes

in the full graph or in the shrunken cut graph. Finally, when setting these limits, one can choose

in what order to consider the cuts. In case a number of constraints an order of magnitude above

the constraint limit per iteration is found, one can either loop over them in order they were found

or sort them by violation from largest to smallest. However, do consider that when sorting the

cuts by violation, one may only pass those constraints corresponding to large sets of nodes because

they accumulate their violations, while smaller cuts compromised of subsets of this larger constraint

could make deeper cuts in the polytope.

Finally, a third factor is randomness. Especially the greedy and tabu heuristic contain many

random decisions in which a promising node set is grown in different directions based on a set of

potential candidates to add to it. Therefore, it is impossible to exactly reproduce results unless

the original code and random seeds are given. Even the constructive method can return different

solution in multiple implementations. This is because multiple minimum cuts could be possible,

but also because the shrinking algorithm could identify different constraints if its shrinking order

changes or when the simple heuristic examines components before or after the shrinking. One

different cut could lead to a different cut graph in the next iteration and go on to completely change

the chain of events.

All three factors can have large impact on the stopping point of our algorithm, but also on the

number of iterations and cuts that are made. It is quite difficult to set an ideal balance, because

each factor is problem specific. Where incorporating more cuts could be useful for some instances

and lead to a smaller feasible region rapidly, in other instances half the number of cuts would have

virtually the same impact while not slowing down the solver as much. Finally, one should consider

that the reported solving times by a paper published twenty years ago have little meaning when

comparing absolute values. This is because not only have computing speeds gone up drastically,

also the Cplex solver used in both our algorithms has been updated over the years and may show

different performances.

6.2 Replication results

The replication results will be presented as follows. First, the performance of the constructive,

greedy and tabu 1 heuristic on the different LITLIB instances will be compared. Then, the summary

results for the five original heuristics by Augerat et al. (1998) are bench marked against our results

for the three libraries. We present the relative percentage difference with our replication in color

scaled tables. The colors show the largest under performance in red and over performance in green

across all tables for each column respectively. The column names correspond with the tables by

Augerat et al. (1998). They call the lower bound found by each heuristic, the number of cuts

added to the model, the number of performed iterations, the GAP as upper minus lower divided by

upper bound and the times spent in separation and Cplex L.B., GAP, Cuts, Iter, SEP and CPLEX

respectively. In the appendix another column OGAP Diff was added to the absolute to show the
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adjustment in the GAP if we do not take the same upper bounds as Augerat et al. (1998) but

the actual optimal solutions which were found more recently. Since these differences are negligible

and do not bear further relevance for this research, we continue the rest of our results with the

old upper bounds. For the summary results, we apply the same comparison in addition to showing

the absolute difference between how many times a heuristic was the best performer for a problem

instance. While the most important results are discussed in this section, detailed tables for all

heuristics and libraries can be found in the appendix.

The first comparison will be drawn between the performance of our constructive, greedy and

tabu heuristic on finding lower bounds for the problem instances from literature. The findings by

Augerat et al. (1998) are presented in tables 2 to 4 of their paper and we show the relative differences

with our findings in tables 1, 2 and 3. Detailed output for all heuristics can be found in the appendix

in tables 12 to 16. Even though we have held an extensive discussion on the source of diverging

results, we observe relatively consistent outcomes in our replication. For the constructive heuristic,

the difference in lower bound found is off by an average of less than a tenth of a percent with

individual differences at most half a percent off. For the tabu heuristic, there is even less variance

in the relative difference with the largest difference being the large fisher135 problem instance in

which our heuristic finds a lower bound merely 0.34 percent smaller than that by Augerat et al.

(1998). Overall, our tabu1 replication has a relative under performance of a small 0.12 percent.

These differences are almost negligible and give a strong indication that the findings by Augerat et

al. (1998) were generated with the same inputs and a very similar algorithm.

Table 1: Relative differences of replication using CONS

Name L.B. GAP Cuts Iter SEP CPLEX

cmt101 0.03% -11.16% 49% -9% -82% -79%
eil30 - -0.10% 26% 64% -98% -92%
eil33 -0.04% 8.53% 32% 27% -98% -90%
eil51 -0.25% 12.62% 27% 75% -95% -89%
eilA101 0.47% -13.69% 312% 43% -71% -45%
eailA76 0.58% -7.36% 290% 70% -75% -65%
eilC76 0.46% -10.10% 54% -14% -91% -90%
eilD76 -0.07% 1.52% 130% 33% -89% -75%
fisher135 0.05% -5.11% 116% -5% -79% -80%
fisher45 -0.46% 513.87% 55% 19% -96% -79%
fisher72 - -0.07% 29% 120% -90% -82%

Unfortunately, the greedy algorithm did not meet these standards in the replication. This is

likely due to a slightly different implementation which could have larger consequences on the final

findings. The method was only briefly touched upon in the paper and Augerat et al. (1998) give little

insight into their final set up. Although they mention that they mix their strategy for the greedy

initial set S between only one node and a set not including the depot, there is no exact explanation

on how this is done. In practice, it appeared that giving priority to strategy one especially in the
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Table 2: Relative differences of replication using GREEDY

Name L.B. GAP Cuts Iter SEP CPLEX

cmt101 -0.33% 408.51% 62% 35% 11% -50%
eil30 - -0.10% 492% 10% -93% -84%
eil33 -0.47% 262.91% 230% 57% -49% -70%
eil51 -1.64% 130.99% 107% 73% 61% -59%
eilA101 -3.14% 117.81% 6% -3% -32% -78%
eailA76 -2.25% 38.48% -1% -2% -23% -88%
eilC76 -4.24% 118.65% -9% 46% 25% -89%
eilD76 -1.88% 47.33% -15% -49% -77% -94%
fisher135 -5.91% 791.88% -10% 14% -52% -91%
fisher45 -0.01% 10.50% 340% 11% -75% -71%
fisher72 - -0.07% 322% 25% -80% -59%

Table 3: Relative differences of replication using TABU1

Name L.B. GAP Cuts Iter SEP CPLEX

cmt101 0.02% -32.25% 128% 120% -10% -40%
eil30 - -0.10% 240% 56% -80% -86%
eil33 - -0.20% 139% -8% -87% -90%
eil51 -0.07% 5.91% 60% 29% -84% -70%
eilA101 -0.23% 8.79% 14% 47% -89% -74%
eailA76 -0.29% 5.23% -14% 15% -92% -86%
eilC76 -0.22% 6.43% -18% -10% -93% -85%
eilD76 -0.18% 4.61% -22% -28% -95% -86%
fisher135 -0.34% 56.54% 41% 173% -51% -86%
fisher45 - - 196% 10% -86% -85%
fisher72 - -0.07% 129% 23% -70% -84%
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early stage of the algorithm improved performance, after which increasing the number of trials and

limiting the number of iterations by a given maximum number of cuts also helped. In a deeper dive

into the algorithm, it appeared that the greedy algorithm often got stuck in a stage at which it had

effort identifying even only one constraint for multiple iterations, after which it made more rapid

progress in the cutting algorithm later on. This phenomenon is illustrated in figure 3.

For our replication, this means that the lower bound we found was on average almost two percent

lower than the one presented in their paper, with the fisher135 instance under performing by as

much as six percent. Nonetheless, there are a number of instances for which the lower bound found

is very close to the one by Augerat et al. (1998). We have strong reason to believe this is because for

the under performing instances, our methods fail to find the appropriate cuts at certain iterations

causing the solver to prematurely terminate.

The second column of our comparison is the relative difference in GAP. This metric is strongly

correlated to the relative difference in lower bound but does give us some interesting information

on the severity of underperformance. This is because the closer a lower bound gets to optimality,

the more difficult it becomes for our heuristics to identify new cuts due to the more fractional

edge weights of the cut graph representing possible edge activations. If the lower bound found by

Augerat et al. (1998) already contained a large GAP, like for eilA76, a small relative difference

in lower bound would not mean so much since it does not close the relative GAP as much. On

the other hand, for instances already close to optimality, it is difficult to find improvements and

even small underperformance would mean that our heuristic terminated much too early. One such

instance is fisher fisher45, which has GAP less than a tenth of a percent for all heuristics by Augerat

et al. (1998). Looking at differences in GAP for our constructive heuristic, it is worth to mention

that the overperformances in the some of the Eilon problem instances are not that surprising and

unexpected, since the relative change in GAP is still tiny. The only problematic case is fisher45,

Figure 3: Cuts per iteration
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for which not only the relative lower bound is the further off, also the GAP relatively increased

by a factor of five, which is quite large considering all other are less than 15 percent off. For the

greedy algorithm, as expected given the performance in lower bounds, almost all GAP statistics

increased by a large percentage. Fortunately, for the tabu heuristic, this looks much better with all

differences below 10 percent with two relatively small outliers with out and underperformance of

32 and 57 percent in cmt101 and fisher135 respectively. For both the CUTS and ITER statistics,

our findings are not in line with those of Augerat et al. (1998). On average, for the given heuristics,

we find about twice the number of cuts and perform about 40 percent more iterations. Since this

holds for the three heuristics in table 2 to 4 of Augerat et al. (1998), we assume this is not because

of a different implementation of any heuristic but the way we deal with the simple heuristics and

cut managements as discussed in the previous subsection. Looking at the time spent in separating

constraints and in Cplex, we see the expected decrease in CPU time, enabled through the faster

processing units of today’s computers. With a few exceptions, the reduction in time spent in both

separation and Cplex is decreased by about 80 percent for the problem instances from literature.

Again, the replicated greedy heuristic is an outlier with a few extremely slow separation processes.

This is likely related to our previous description about the implementation of the greedy heuristic,

where it must spend a long time to find single cuts in certain cut graphs.

Moving on, we examine the replication findings of the summary results for the three different

problem instance libraries as presented in Augerat et al. (1998) tables 5 to 7 which are again

contrasted in tables 4, 5 and 6. The full aggregated summary results can also be found in the

appendix in tables 20, 21 and 22. For the literature problem instances, there is little news for

the constructive, greedy and tabu 1 heuristic since their results were analyzed in depth in the

previous paragraphs. However, the same conclusions apply to tabu 2 and tabu 3, where the average

GAP is only 2.67 and 7.93 percent different from the original results. Also, the maximum GAP

statistics are very close, with the constructive outperforming slightly by 7.36 percent, the greedy

under performing by 40 percent, tabu 2 virtually identical with only 1 percent difference and the

remaining tabu heuristics off by about 5 percent. Another new piece of information is the count

of instances for which each heuristic performs best. Since the greedy heuristic now performs worse

than originally, its count decreases and passes one win to the constructive and one to the tabu

heuristics. Within the tabu heuristics, tabu 3 gave up five wins to the other tabu heuristics. It is

difficult to say why tabu 3 lags behind a bit now for the literature instances, but looking at the

number of cuts and iterations, it seems to have had less success than in the original results where

it used to have the most, and now the least out of the tabu heuristics.

For the A and B libraries, the results look a bit different yet again. In both libraries, the

constructive method outperforms between 6 and 26 percent with a much smaller maximum GAP. It

is the best heuristic one time more often than it was before, possible taken from the greedy heuristic

which again did not perform very well. Also, the constructive method performed really well on the

time spent in separation, reducing the time spent by 93 to 94.5 percent. Interestingly, each of the

three tabu heuristics have slightly differing results on these two libraries. For the A library, all tabu
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Table 4: Relative differences with original on LITLIB

Name Avg GAP Max GAP Best Cuts Iter SEP CPLEX

CONS -2.31% -7.36% 50% 123% 13% -81% -78%
GREEDY 79.11% 38.48% -50% 25% 14% -38% -87%
TABU1 5.42% 5.23% - 23% 33% -85% -81%
TABU2 2.67% 1.11% 67% 54% 50% -69% -77%
TABU3 7.93% 5.38% -50% 12% 1% -93% -83%

Table 5: Relative differences with original on ALIB

Name Avg GAP Max GAP Best Cuts Iter SEP CPLEX

CONS -6.49% -12.98% - 94% -11% -94% -87%
GREEDY 109.00% 135.91% -100% 40% -6% -50% -91%
TABU1 19.25% 10.95% -54% 43% 21% -91% -84%
TABU2 23.17% 2.40% -67% 55% 28% -82% -84%
TABU3 6.28% -4.03% -38% 43% 6% -96% -84%

Table 6: Relative differences with original on BLIB

Name Avg GAP Max GAP Best Cuts Iter SEP CPLEX

CONS -26.28% -58.00% - 122% -5% -93% -77%
GREEDY 39.77% -27.22% -75% 91% 23% -20% -72%
TABU1 -19.22% -64.06% -29% 76% 41% -82% -70%
TABU2 4.97% 43.28% -57% 76% 26% -67% -79%
TABU3 -29.02% -63.96% -55% 83% 28% -82% -76%
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methods have a slight underperformance between 6 and 23 percent and get the win a bit less often

than before. This is likely because Augerat et al. (1998) found the same lower bound using different

heuristics more often which led to shared wins. In our implementation, these draws appeared to

happen less often with heuristic winning a problem instance with small decimal numbers at times.

Where tabu 3 underperformed in the literature instances, in the B library it has a 30 percent much

lower average GAP, likely due to a large reduction of 64 percent in the maximum GAP. Since it

still did not get more wins over the other heuristics, this is likely due to a much better performance

on one or a few problem instances which terminated prematurely in the algorithms of Augerat et

al. (1998). This is also what appears to have happened for our implementation of tabu 2 in the B

library, which sees a large increase in its maximum GAP, probably deteriorating the average GAP

with it. The story for the number of cuts and iterations made in the two libraries is similar as

before, finding between 50 and 80 percent more cuts with about 30 percent more iterations for the

tabu heuristics, and even a decrease in iterations for the constructive methods which appears to

have found faster routes to strong lower bounds.

Finally, we will contrast the comparative tables in Augerat et al. (1998) tables 8 to 10. For tables

7 and 8, we show not the relative but the absolute differences while for table 9 we show the relative

again. Detailed output is in the appendix in tables 23 to 25. Given that we already concluded a

larger number of cuts were found by our algorithm, it is no surprise that when a heuristic is followed

up by another, the latter finds a larger number of cuts compared to the ones reported by Augerat et

al. (1998). However, we find this number to be even larger than expected, with on average about one

hundred cuts more for every follow up heuristic than originally. Especially the heuristics following

up the greedy method find many cuts, which is to be expected given its poor performance. On the

flip side, the follow up greedy heuristic barely finds any new cuts relative to the others. Aside from

the differences, there are also some similar patterns. The follow up constructive heuristic barely

finds and cuts after the tabu heuristics but does do so after the greedy. Tabu 2 finds relatively few

cuts compared to tabu 1 and 3 and each of the tabu heuristics do really well when following up the

constructive method.

Table 7: Difference in average cuts with original

CONS GREEDY TABU1 TABU2 TABU3

CONS - 84.66 194.53 269.58 244.46
GREEDY 330.18 - 411.98 343.21 501.70
TABU1 27.39 31.66 - 65.49 78.33
TABU2 85.20 36.29 123.05 - 157.05
TABU3 22.93 13.78 36.27 27.50 -

The average maximum slack found by the different follow up heuristics is much closer to the

findings by Augerat et al. (1998). As before, the greedy heuristic underperforms strongly but for

all other heuristics, the results look much steadier aside from consistently being between 0,2 and

0,5 higher. These are quite small difference given that slack can be up to twice the number of
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Table 8: Difference in maximum slack of cuts with original

CONS GREEDY TABU1 TABU2 TABU3

CONS - 0.24 0.20 0.28 0.31
GREEDY 2.18 - 1.69 1.81 1.77
TABU1 0.65 0.44 - 0.43 0.52
TABU2 0.76 0.30 0.39 - 0.42
TABU3 0.40 0.28 0.27 0.32 -

Table 9: Difference in CPU time with original

constructive GREEDY TABU1 TABU2 TABU3

CONS - 143% 15% 315% 24%
GREEDY 585% - 103% 465% 114%
TABU1 -4% -7% - 106% -73%
TABU2 175% 37% 18% - 40%
TABU3 10% -22% -53% 54% -

vehicles of the problem instances. Also, the relative differences between the performances of the

tabu heuristics are again similar to the original findings. Finally, we examine the differences in

CPU times. However, the results here are drastically different from the original findings with no

clear patterns. This is due to the fact that the time spent in separation and Cplex is already

heavily reduced on average, thus causing these values to be largely determined by outliers where

one heuristic terminated prematurely or a follow up needed a lot of time to find a few extra cuts.

The interpretation of these results can thus be given less importance. Overall, we summarize our

findings as strongly reflecting and confirming the results presented by Augerat et al. (1998) with

exception of the greedy heuristic. For all others, the most relevant statistics like the lower bound

and the GAP are especially well replicated thus validating the original methods.

6.3 Genetic meta heuristic findings

For our first extension, we analyze the quality of our genetic algorithms. We present the results in

the same fashion as tables 5 to 7 in Augerat et al. (1998), with summary statistics for each heuristic

over all problem instances of the three libraries. The summary statistics for each library apart can

be found in the appendix in tables 20 to 22. Here, we will examine the results of the aggregate

summary in table 10. In the appendix, detailed results for the extension heuristics on the LITLIB

problem instances can also be found in tables 17 to 19.

The original genetic algorithm which only searches for the set of nodes making up the largest

violation in the cut graph is denoted by the name ‘Genetic’. It is quite clear that in terms of lower

bounds found, this heuristic does not perform as well as one would hope. With an average GAP of

3.7 percent, it doubles the GAP of tabu 3 in addition to having one of the worst maximum GAPs.

It does perform best twice, but this only because on B-n35-k5 and Fisher72 all heuristics found the
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Table 10: Summary of replication of all problem instances

Name Avg GAP Max GAP Best Cuts Iter SEP CPLEX

Constructive 2.50 6.75 6 758.30 57.89 0.84 4.59
Greedy 3.80 11.77 4 1,399.54 40.79 7.01 4.51
Taboo 1 2.06 5.63 21 1,331.39 38.21 3.05 5.18
Taboo 2 2.31 10.30 10 1,278.59 36.67 2.26 4.48
Taboo 3 1.86 5.63 30 1,345.50 40.08 3.31 5.25
Genetic 3.72 9.35 2 236.18 68.47 3.30 2.40
ConGen1 2.16 6.43 11 812.08 50.83 5.69 5.05
ConGen2 2.02 6.36 15 878.70 58.05 6.89 5.78

same lower bounds. A few other details jump to eye. Obviously, since the algorithm terminates

early given the smaller lower bounds found, there are less cuts and less time spent in separation

and Cplex than a well performing heuristic would have. Still, it is not especially fast in separation,

which is to be expected given that the genetic algorithm evolves a population over hundreds of

generations at each iteration. It seems that the algorithm performs a large number of iterations in

addition to only using small number of cuts. In general, we would be happy to have a method that

achieves strong lower bounds with fewer cuts, since a large number of cuts makes the LP solver

slow. We notice that the genetic algorithm still outperforms the greedy algorithm with only a

fraction of the number cuts. This observation led to the idea to use the genetic algorithm to create

an improved heuristic aimed at finding a good lower bound with as few cuts as possible. Another

existing heuristic that shows similar qualities is the constructive heuristic. The combined upgraded

heuristic we came up with is one where the constructive heuristic finds the minimum cuts as it did

originally. The resulting list of valid sets on the sink side are now passed to the genetic heuristic,

which will search for further violated constraints within these sets, in addition to examining the

different components of the original cut graph at each iteration. We implemented two versions

of this heuristic, one in which we optimize only the violation, and another in which also demand

is minimized, and the edge cut weight is maximized. These two heuristics are called ConGen1

and ConGen2 respectively. Given that this new upgraded method builds upon the constructive

heuristic, it must perform at least as well as the latter. This is confirmed in our findings which

show a strong decrease in average GAP from 2.5 percent in the constructive to 2.16 and 2.02 in

the upgraded heuristics ConGen1 and ConGen2. These methods thereby match the performance

of tabu heuristics but retain the property of needing a much smaller number of cuts. The tabu 3

heuristic, which with an average GAP of 1.86 percent still dominates the other methods in absolute

performance on the lower bound found, requires over 50 percent more cuts than ConGen2 which is

now the second-best performer with only 879 cuts on average. The new heuristic methods do come

at a cost of spending about twice as much time as the tabu heuristics in separation. We consider

this shortcoming acceptable given the linear computation complexity of the heuristics, improved

processing speeds and the possibility to run many parallel threads to run the genetic algorithm.

25



6.4 Results from the callback functionality

The second extension alters the cutting plane algorithm and goes into the separation phase for each

candidate solution the solver finds. As such, it will enter many more separation phases because

it does not wait for the solver to find an optimal solution at every iteration. Another aspect of

the callback function is that even when an intermediate solution was found, we can restart the

solver with all the constraints found so far because it will then return different candidate solutions

for which our heuristics may find more cuts which improve our lower bounds. For the callback

algorithm results for all heuristics on the LITLIB problem instances and the relative differences

with our findings with the iterative cutting plane algorithm, please refer to tables 26 to 41. The

results discussed here are based on the same summary statistics used for extension 1. Again, all

individual library summary statistics and differences with the iterative solver are in the appendix in

tables 42 to 48. In this subsection, we will compare the relative percentage change of our callback

algorithm findings compared to our iterative solving results in table 11.

Table 11: Relative differences with iterative on all problem instances

Name Avg GAP Max GAP Best Cuts Iter SEP CPLEX

CONS -7.52% -4.77% -17% 296% 8% 11% -77%
GREEDY -29.25% -35.56% - 586% 22% 86% 347%
TABU1 -13.86% -1.86% 24% 344% 3% -4% -66%
TABU2 -23.64% -46.55% 190% 353% 11% 46% -69%
TABU3 -0.64% 2.10% -67% 539% 15% -20% -67%
GEN -10.67% 21.34% 50% 450% 47% 85% -68%
CONGEN1 -5.73% -2.38% -27% 363% 19% 35% 2%
CONGEN2 -4.32% -4.38% 7% 304% 17% 39% 98%

The first thing to be noticed is that the average GAP has decreased massively across all heuris-

tics. Especially the tabu 2 heuristic sees strongly improved results, with a 20 percent lower average

GAP. This makes sense, because the edge that tabu 1 and 3 had over tabu 2 is varied parameters

to give the heuristic a second chance to find cuts. However, by restarting the solver in the callback

algorithm, the tabu 2 heuristic also receives a second chance and thus has less change of terminat-

ing early. This probably contributed to a large decrease in its maximum GAP. These decreases in

maximum GAP are to be expected with the callback algorithm, since the problem illustrated in

figure 3 is less of a problem here. When the solver terminates too early, it can be restarted and the

next time around will search cut graphs in which it does find new constraints. Also, tabu 1 is a

big winner in this extension, increasing its win count from 21 instances to 26. The greedy genetic

heuristic still underperforms but did see a 30 and 10 percent decrease in average GAP with the

genetic still only needing a very small number of cuts relative to all other methods. Finally, the

ConGen heuristics did see decreases in average GAP but not of the same impact as the others.

Overall, for all heuristics, the number of cuts drastically increased by a factor from 3 to 6, with

a few more iterations as well. Interestingly, it also finds on average much more cuts per iteration.
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Where the iterative solve returned a full average of 20 cuts per iteration, the callback solver finds

close to one hundred. This was expected to some extent because, as discussed in the methodology

section, the separation phase inspects a much more varied set of cut graphs. Finally, the time

spent in separation only increased slightly for most methods. The greedy and genetic algorithms

again jump out with slower solving times, which can be attributed to premature termination in the

iterative solve. The tabu heuristics perform about equally well in time spent but with the tabu

2 heuristic needing slightly more time to facilitate the 20 percent decrease in average GAP. The

ConGen methods are about 40 percent slower in separation. Finally, for the time spent by the

Cplex solver, we observe our alternative solving extension really pays off in efficiency, decreasing

the solving time by about 70 percent for all heuristics with exception of the greedy heuristic. This

can be attributed to not requiring the solver to find the global optimal solution at every iteration

anymore, strongly reducing the computation time. The exception is for the combined constructive

and genetic heuristics, which now require a much larger amount of time in the Cplex solver. Even

though these methods still uses a relatively small number of cuts to find its best lower bound, it is

possible that because the number of cuts has tripled, the effect on the Cplex solving time turned

out to weigh more heavily than expected with the Cplex solving time for ConGen2 doubling. In

summary, the callback functionality proves to be a very promising alternative for the traditional

solve and repeat cutting plane algorithm which provides better lower bounds in a shorter time. All

summary results and the performance on each literature problem instance for the heuristics using

the callback algorithm can be found in the appendix where a column ‘Follow Ups’ indicates how

often the solver was restarted.

7 Conclusion

Our research attempted to replicate and verify the computational results of Augerat et al. (1998)

and to provide two extensions to the capacity separation problem for the CVRP. In this section,

we will summarize our takeaways and conclusions regarding these objectives. To finish off, we give

recommendations for further research.

Although our replicated results showed diverging outcomes especially on statistics like the num-

ber of cuts, iterations or time spent in separation and in the Cplex solver, the essential lower bound

targets could be replicated to a very precise degree. We contribute the aforementioned divergence

to a slightly different implementation of our algorithms which generate more cuts. That conclusion

also holds for the relatively poor performance of our replication of the greedy heuristic which was

the only method of which our lower bounds did not match the research by Augerat et al. (1998).

Furthermore, our faster computational speed allows for a reduction in time spent in separation and

Cplex by about 80

Our second contribution to literature consists of a genetic algorithm in the capacity separation

problem. By evolving a population deciding which nodes to incorporate in a set corresponding

to the capacity constraints, we hoped to present a meta heuristic which tackled the separation
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problem from a different angle to outperform the existing meta heuristics. Unfortunately, our

implementation of the genetic algorithm using the NSGA algorithm showed premature termination

in too many problem instances making it too unreliable to find strong lower bounds. However, our

findings showed that the genetic algorithm did find different types of cuts than the tabu heuristics,

requiring a much smaller number of constraints to achieve certain lower bounds. By combining the

genetic algorithm with the more consistent constructive heuristic, we found a meta heuristic which

matched the average performance of the tabu heuristics across all problem instances with about

40 percent less cuts. Although this did come at a cost of twice the time spent in separation, this

should be acceptable given the polynomial-time complexity of these algorithms and the advantage

of having less cuts slowing down the solver for larger problem instances.

Finally, we replicated the methods by Augerat et al. (1998) and our genetic algorithms using

an alternative cutting plane algorithm. Instead of solving the sub problem with identified capacity

constraints and searching for violated cuts iteratively, we return candidate solutions from the solver

through a callback function. Intuitively, we find decreased time spent in the Cplex solver for the

heuristics by Augerat et al. (1998) since the solver does not need to find the optimal solution at

each iteration. The change in time spent in separation is more ambiguous, mainly due to the more

unexpected over performance in the quality of lower bounds. The strong decrease in average gap

of on average 10 percent is likely to be attributed to the larger variety of cut graphs of candidate

solutions returned by the callback function. More varied cut graphs imply more varied cuts, which

is reflected in the 3 to 6-fold increase in cuts found. Especially the tabu 2 method performs really

strongly using the callback functionality because it benefits the most from restarting the solver after

it terminates.

To conclude, we want to pass some takeaways and recommendations for further research. First of

all, we have verified that the tabu heuristic developed by Augerat et al. (1998) is a powerful method

for finding lower bounds for the CVRP. Although our genetic algorithm has not outperformed the

tabu heuristic consistently, we do see further potential for an NSGA algorithm to do so. Especially

the mutation settings which crosses the non-dominated population over for new generations can

be modified to accommodate smarter evaluations. Also, there is room for further simple heuristics

which improve population members, similar to our neighbor check at each candidate evaluation

of the genetic algorithm. Finally, we strongly recommend incorporating the callback functionality

into the cutting plane algorithm. It has proven to be a faster method which finds more varied cuts

leading to stronger lower bounds. Given the larger number of cuts generated, more research could

be directed at how to manage large number of cuts found instead of simply passing everything to

the solver. All of these recommendations may be valuable for future implementations of the cutting

plane algorithm using any of the methods presented in this paper.
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8 Appendix

8.1 Java Code

The following bullet list describes the different classes in each package of our Java project. The full

source code is available upon request in a separate zip file.

• Front

– Main Iterative

Main class for the iterative solver. All parameters can be modified either in this class or

in the HeuristicParameters csv.

– Main Callback

Main class for the callback solver. Set parameters similar to the iterative solver.

• cvrpHeuristics

– ConGenHeuristic

Extending the CvrpHeuristic with the upgraded constructive plus genetic heuristic.

– ConstructiveHeuristic

Extending the CvrpHeuristic with the constructive heuristic.

– CvrpHeuristic

Abstract class which can be solved to return identified valid sets corresponding to the

capacity constraints. Provides simple heuristic functionality to extensions.

– GeneticHeuristic

Extending the CvrpHeuristic with the genetic heuristic.

– GreedyHeuristic

Extending the CvrpHeuristic with the greedy heuristic.

– TabuHeuristic

Extending the CvrpHeuristic with the tabu heuristics.

• cvrpObjects

– CvrpParameters

Class which is passed around different classes to access parameters. Reads parameters

from the ParameterParser in the parsers package.

– GeneticHelper

Class to pass candidate solutions of the genetic algorithm to in order to improve the

variables by a neighbor check.

– ValidSet

Class storing the properties of a set corresponding to the capacity constraints.
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– ValidSetBuilder

Class used to constructs sets to check the capacity constraints for.

• graph

– Tour

A tour constitutes of nodes connected by integer edges and properties like demand and

distance.

– VrpContractionGraph

A contractionGraph stores an input graph and shrinks its edges. Through this class,

retrieve demands, labels, nodes and edges from both the input and the shrunken graph.

– VrpEdge

An edge in a VRP problem instance.

– VrpNode

A node in a VRP problem instance.

• oocplexExtended

– AbstractVrpFormulation

Abstract class providing functionality for solving a simple VRP problem with a minimal

edge distance objective and degree constraints.

– CvrpCutsGenerator

A class for generating cuts based on the cut graph returned by the iterative solver.

– CvrpDynamicFormulation

Extends the AbstractVrpFormulation by implementing one of the cut generators and

overwriting the solving procedure depending on whether an iterative or callback solver

is chosen.

– LazyVrpCallbackCuts

A class for generating cuts based on the cut graphs returned by the callback functionality.

– VrpDegreeConstraints

Create and store the degree constraints for the VRP.

– VrpEdgeVariables

Create an immutable bi map between the edge objects and decision variables in the VRP.

– VrpMinDistanceObjective

Create and store the minimum distance objective of the activated edges in the VRP.

• parsers

– CvrpLibInstance

Full instance of a CVRP problem providing all necessary properties.
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– CvrpParser

Parse a problem instance in TSPLib format into a CvrpLibInstance.

– OutputWriter

Use a CSVPrinter to write output to a csv file.

– ParameterParser

Use a CSVParser to read parameters from a csv file.

– ProblemInstanceParser

Use a CSVParser to read which problem instances to load from a csv file.

• princetonMinCut

– FlowNetwork

Convert an undirected graph into a flow network to solve the minimum cut.

– FordFulkerson

Apply the Ford Fulkerson algorithm to find the minimum cut between two nodes.

• transformers

– VrpDemandTransformer

Map a VRPNode object to its corresponding demand.

– VrpEdgeTransformer

Map a VRPEdge object to its corresponding distance cost.

– VrpNodeLabels

Map a VRPNode object to its corresponding label.

• util

– CplexVrpUtil

Static class to provide a number of methods to create or handle cplex variables.

– GraphUtil

Static class to provide methods to be applied to cut graph objects.

– MapUtil

Static class to facilitate some general methods on map objects.

– Timer

Custom timer class in which times between events are stored through keys.

– VisualizeGraph

Debugging class which can generate a panel for visualizing intermediate cut graphs,

display or highlight nodes and edges and log messages.

– VrpLoopExtractor

Static class used for extracting loops or connected components from a cut graph.
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8.2 More computational results

Table 12: Constructive heuristic on LITLIB

Name L.B. GAP Cuts Iter SEP CPLEX OGAP Diff

cmt101 818.40 0.20 805 77 2.36 9.94 -
eil30 508.50 4.78 86 18 0.02 0.04 (0.18)
eil33 831.38 0.43 226 33 0.05 0.15 -
eil51 509.50 2.21 127 28 0.07 0.15 -
eilA101 793.52 2.87 1,733 80 3.28 14.55 (0.24)
eilA76 777.68 6.75 1,495 85 2.06 7.83 (0.45)
eilC76 706.26 3.91 995 66 1.26 3.35 -
eilD76 658.19 4.19 1,062 76 1.27 4.57 (0.70)
fisher135 1,153.28 1.01 3,348 243 13.68 89.02 (0.26)
fisher45 720.00 0.55 200 32 0.07 0.38 -
fisher72 232.50 1.90 135 22 0.09 0.31 -

Table 13: Greedy heuristic on LITLIB

Name Max of LB GAP Cuts Iter SEP CPLEX OGAP Diff

cmt101 816.66 0.41 2,388 54 22.56 23.39 -
eil30 508.50 4.78 509 23 0.05 0.13 (0.18)
eil33 829.55 0.65 1,027 33 0.72 0.43 -
eil51 506.08 2.86 843 38 5.99 1.17 -
eilA101 770.91 5.64 1,468 37 18.73 6.78 (0.23)
eilA76 770.13 7.66 1,510 46 22.14 5.83 (0.45)
eilC76 679.56 7.54 1,141 38 13.64 2.81 -
eilD76 648.23 5.64 811 21 4.50 1.03 (0.69)
fisher135 1,088.11 6.60 3,869 116 54.97 44.72 (0.24)
fisher45 723.60 0.06 800 30 0.40 0.59 -
fisher72 232.50 1.90 773 25 0.70 1.08 -
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Table 14: Tabu1 heuristic on LITLIB

Name L.B. GAP Cuts Iter SEP CPLEX OGAP Diff

cmt101 819.50 0.06 2,312 55 13.23 20.53 -
eil30 508.50 4.78 238 25 0.03 0.08 (0.18)
eil33 833.50 0.18 650 22 0.18 0.21 -
eil51 514.16 1.31 868 27 0.92 0.93 -
eilA101 794.42 2.76 1,827 44 9.48 12.99 (0.24)
eilA76 787.05 5.63 2,104 54 10.37 12.40 (0.45)
eilC76 709.58 3.46 1,689 43 6.71 6.85 -
eilD76 660.12 3.91 1,224 34 3.27 3.67 (0.70)
fisher135 1,154.06 0.94 3,521 90 29.50 33.46 (0.26)
fisher45 724.00 - 461 22 0.11 0.24 -
fisher72 232.50 1.90 392 16 0.14 0.37 -

Table 15: Tabu2 heuristic on LITLIB

Name L.B. GAP Cuts Iter SEP CPLEX OGAP Diff

cmt101 819.45 0.07 2,222 54 10.60 24.69 -
eil30 508.00 4.87 206 22 0.03 0.07 (0.18)
eil33 832.54 0.30 676 23 0.16 0.22 -
eil51 514.50 1.25 770 26 0.55 0.83 -
eilA101 792.97 2.94 1,648 35 6.57 8.42 (0.24)
eilA76 787.12 5.62 3,117 73 9.21 18.72 (0.45)
eilC76 709.75 3.43 2,497 60 6.30 13.78 -
eilD76 660.40 3.87 1,315 36 2.78 3.98 (0.70)
fisher135 1,152.77 1.05 3,100 74 17.55 30.33 (0.26)
fisher45 724.00 - 402 21 0.09 0.22 -
fisher72 232.50 1.90 411 20 0.15 0.47 -

Table 16: Tabu3 heuristic on LITLIB

Name L.B. GAP Cuts Iter SEP CPLEX OGAP Diff

cmt101 819.50 0.06 2,108 53 14.08 28.74 -
eil30 508.50 4.78 246 28 0.03 0.10 (0.18)
eil33 833.50 0.18 821 26 0.27 0.32 -
eil51 514.38 1.27 875 32 1.10 1.29 -
eilA101 793.61 2.86 1,583 35 8.31 8.99 (0.24)
eilA76 787.07 5.63 2,159 62 11.99 16.07 (0.45)
eilC76 709.77 3.43 1,591 39 6.58 5.72 -
eilD76 659.58 3.99 1,151 32 3.36 3.16 (0.70)
fisher135 1,149.78 1.31 2,614 67 20.29 24.01 (0.25)
fisher45 724.00 - 470 22 0.13 0.24 -
fisher72 232.50 1.90 510 21 0.20 0.61 -
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Table 17: Genetic heuristic on LITLIB

Name L.B. GAP Cuts Iter SEP CPLEX OGAP Diff

cmt101 809.05 1.34 444 114 11.78 12.53 -
eil30 507.83 4.90 101 35 0.08 0.10 (0.18)
eil33 831.00 0.48 157 43 0.34 0.18 -
eil51 510.22 2.07 85 35 0.91 0.21 -
eilA101 780.37 4.48 240 31 2.57 1.59 (0.23)
eilA76 771.56 7.49 322 108 10.09 3.15 (0.45)
eilC76 701.30 4.58 209 76 6.93 2.20 -
eilD76 649.71 5.43 163 58 3.89 1.26 (0.69)
fisher135 1,095.71 5.95 707 113 23.65 37.51 (0.24)
fisher45 722.31 0.23 117 41 0.20 0.25 -
fisher72 232.50 1.90 108 28 0.23 0.31 -

Table 18: ConGen1 heuristic on LITLIB

Name L.B. GAP Cuts Iter SEP CPLEX OGAP Diff

cmt101 818.53 0.18 1,050 61 5.54 10.32 -
eil30 508.50 4.78 153 20 0.25 0.06 (0.18)
eil33 831.11 0.47 276 23 0.47 0.10 -
eil51 514.00 1.34 490 35 4.02 0.79 -
eilA101 793.78 2.84 1,875 81 15.05 13.69 (0.24)
eilA76 780.41 6.43 1,451 81 10.79 8.84 (0.45)
eilC76 706.18 3.92 1,211 71 15.54 6.90 -
eilD76 659.45 4.01 1,314 66 10.54 6.47 (0.70)
fisher135 1,156.52 0.73 2,965 234 34.39 116.30 (0.26)
fisher45 724.00 - 228 18 0.52 0.16 -
fisher72 232.50 1.90 163 16 0.46 0.21 -

Table 19: ConGen2 heuristic on LITLIB

Name L.B. GAP Cuts Iter SEP CPLEX OGAP Diff

cmt101 818.94 0.13 837 63 3.88 7.73 -
eil30 508.50 4.78 154 17 0.23 0.04 (0.18)
eil33 833.11 0.23 351 31 1.47 0.20 -
eil51 514.00 1.34 353 33 6.33 0.45 -
eilA101 795.12 2.68 2,016 101 17.34 25.30 (0.24)
eilA76 780.97 6.36 1,664 72 9.04 7.47 (0.45)
eilC76 707.47 3.75 1,904 102 17.19 16.86 -
eilD76 660.00 3.93 1,419 76 10.25 6.86 (0.70)
fisher135 1,156.60 0.72 2,946 248 35.43 102.90 (0.26)
fisher45 724.00 - 307 35 0.96 0.38 -
fisher72 232.50 1.90 181 15 0.43 0.20 -
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Table 20: Summary of LITLIB replication

Name Avg GAP Max GAP Best Cuts Iter SEP CPLEX

Constructive 2.62 6.75 3 928.36 69.09 2.20 11.84
Greedy 3.98 7.66 2 1,376.27 41.91 13.13 8.00
Taboo 1 2.27 5.63 5 1,389.64 39.27 6.72 8.34
Taboo 2 2.30 5.62 5 1,487.64 40.36 4.91 9.25
Taboo 3 2.31 5.63 5 1,284.36 37.91 6.03 8.11
Genetic 3.53 7.49 1 241.18 62.00 5.52 5.39
ConGen1 2.42 6.43 3 1,016.00 64.18 8.87 14.89
ConGen2 2.35 6.36 5 1,102.91 72.09 9.32 15.31

Table 21: Summary of ALIB replication

Name Avg GAP Max GAP Best Cuts Iter SEP CPLEX

Constructive 3.49 5.51 1 785.22 56.48 0.61 2.70
Greedy 5.43 11.77 - 1,268.78 37.74 6.16 2.54
Taboo 1 2.86 5.27 6 1,317.33 35.59 2.30 3.89
Taboo 2 3.08 5.10 2 1,299.78 34.85 1.69 3.49
Taboo 3 2.52 4.54 16 1,357.73 39.62 2.60 4.62
Genetic 4.95 9.35 - 218.88 75.42 3.34 1.61
ConGen1 2.97 5.57 3 784.92 48.92 5.82 2.70
ConGen2 2.83 5.52 3 876.81 58.31 7.75 3.69

Table 22: Summary of BLIB replication

Name Avg GAP Max GAP Best Cuts Iter SEP CPLEX

Constructive 1.28 3.13 2 645.35 54.17 0.47 3.33
Greedy 1.80 5.26 2 1,564.17 43.83 5.07 5.15
Taboo 1 1.03 2.58 10 1,320.04 40.78 2.17 5.19
Taboo 2 1.41 10.30 3 1,153.74 37.04 1.66 3.37
Taboo 3 0.89 2.59 9 1,360.91 41.65 2.82 4.59
Genetic 2.43 8.01 1 253.35 63.70 2.19 1.85
ConGen1 1.11 3.10 5 745.26 46.61 4.01 3.00
ConGen2 0.96 2.65 7 773.61 51.04 4.75 3.59
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Table 23: Average number of cuts in replication

CONS GRDY TBU1 TBU2 TBU3 GEN CG1 CG2

CONS - 96.39 290.69 299.03 340.62 7.15 120.54 144.02
GREEDY 332.00 - 436.07 348.48 525.79 20.13 378.62 396.97
TABU1 27.48 32.57 - 65.49 81.69 3.64 61.33 64.02
TABU2 85.93 40.20 139.69 - 173.69 5.44 124.67 140.23
TABU3 23.20 13.78 36.27 27.50 - 1.20 48.58 46.10
GEN 420.28 288.63 593.65 573.97 587.85 - 460.15 520.27
CONGEN1 - 46.50 200.97 194.85 248.87 2.27 - 43.70
CONGEN2 - 49.63 178.07 166.05 199.30 1.80 6.32 -

Table 24: Average maximum slack of cuts in replication

CONS GRDY TBU1 TBU2 TBU3 GEN CG1 CG2

CONS - 0.85 1.09 1.14 1.20 0.76 1.07 1.21
GREEDY 2.30 - 1.95 1.97 2.09 2.04 2.32 2.26
TABU1 0.65 0.48 - 0.43 0.59 0.36 0.73 0.73
TABU2 0.89 0.57 0.78 - 0.83 0.66 1.03 1.11
TABU3 0.40 0.28 0.27 0.32 - 0.23 0.55 0.56
GEN 1.87 1.58 2.00 1.94 1.95 - 2.03 2.03
CONGEN1 - 0.47 0.73 0.73 0.87 0.32 - 0.54
CONGEN2 - 0.39 0.57 0.55 0.60 0.21 0.21 -

Table 25: Average CPU time in replication

CONS GRDY TBU1 TBU2 TBU3 GEN CG1 CG2

CONS 0.12 0.97 2.65 1.99 2.91 0.44 1.89 2.28
GREEDY 4.59 - 4.00 2.43 4.68 2.53 5.97 7.00
TABU1 0.59 0.52 - 0.80 1.21 0.51 1.46 1.79
TABU2 1.27 0.74 1.89 - 2.49 0.52 2.33 2.59
TABU3 0.69 0.41 0.74 0.57 - 0.36 1.53 1.42
GEN 3.42 1.39 3.45 2.27 2.93 - 4.05 5.05
CONGEN1 0.13 0.67 1.93 1.51 2.67 0.37 - 1.11
CONGEN2 0.15 0.71 2.00 1.58 2.47 0.35 0.42 -
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Table 26: Callback constructive heuristic on LITLIB

Name L.B. GAP Cuts Iter SEP Cplex Min LB Restarts

cmt101 818,05 0,24 1.788 78 2,62 9,23 818,05 1
eil30 508,50 4,78 121 10 0,01 0,03 508,50 1
eil33 832,33 0,32 912 39 0,12 0,35 830,00 2
eil51 511,75 1,78 628 30 0,18 0,37 511,75 1
eilA101 793,85 2,83 4.998 113 3,81 1,66 793,80 1
eilA76 780,36 6,43 12.200 115 4,11 6,61 778,15 3
eilC76 706,59 3,87 4.461 90 1,59 0,93 705,38 2
eilD76 659,87 3,95 7.236 83 2,17 0,89 658,60 3
fisher135 1.155,63 0,80 5.206 192 8,80 15,86 1.155,62 1
fisher45 723,50 0,07 541 26 0,07 0,04 723,00 2
fisher72 231,67 2,25 191 20 0,08 0,03 231,67 1

Table 27: Callback greedy heuristic on LITLIB

Name L.B. GAP Cuts Iter SEP Cplex Min LB Restarts

cmt101 817,93 0,25 20.580 73 34,46 37,92 816,25 4
eil30 508,50 4,78 1.148 13 0,11 0,14 505,17 2
eil33 832,50 0,30 1.636 26 0,87 0,12 832,50 1
eil51 509,70 2,17 4.057 33 3,59 1,55 508,02 2
eilA101 791,00 3,18 18.712 82 48,24 59,70 786,29 5
eilA76 771,13 7,54 13.323 64 36,32 46,21 770,44 3
eilC76 697,22 5,14 6.867 45 21,33 45,87 697,01 2
eilD76 647,87 5,70 12.723 56 21,17 34,48 643,95 5
fisher135 1.122,38 3,66 65.106 133 67,95 385,46 1.110,39 9
fisher45 717,67 0,87 1.590 17 0,27 0,06 717,50 2
fisher72 232,50 1,90 2.160 16 0,66 0,12 232,50 1

Table 28: Callback tabu1 heuristic on LITLIB

Name L.B. GAP Cuts Iter Sep Cplex Min LB Restarts

cmt101 819,25 0,09 6.019 37 8,32 13,73 819,25 1
eil30 508,50 4,78 241 8 0,02 0,06 508,50 1
eil33 833,50 0,18 1.987 24 0,22 0,35 832,20 2
eil51 514,45 1,26 2.209 28 0,94 0,80 514,45 1
eilA101 795,50 2,63 13.617 69 12,79 4,56 793,91 3
eilA76 787,92 5,53 10.641 67 10,79 3,53 787,27 2
eilC76 710,37 3,35 11.486 58 7,67 2,11 710,06 3
eilD76 661,12 3,77 17.038 61 5,06 2,05 660,24 7
fisher135 1.157,89 0,61 19.939 85 21,35 21,56 1.156,07 3
fisher45 722,20 0,25 972 17 0,16 0,07 722,11 2
fisher72 232,50 1,90 1.170 14 0,22 0,08 232,50 1
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Table 29: Callback tabu2 heuristic on LITLIB

Name L.B. GAP Cuts Iter Sep Cplex Min LB Restarts

cmt101 819,50 0,06 14.797 60 9,79 10,14 819,00 3
eil30 508,50 4,78 255 8 0,03 0,10 508,50 1
eil33 833,40 0,19 2.839 27 0,34 0,51 824,87 3
eil51 514,45 1,26 4.363 41 0,76 0,25 514,25 3
eilA101 795,35 2,65 9.423 47 8,66 2,53 795,08 2
eilA76 786,09 5,74 7.058 50 6,69 1,98 786,09 1
eilC76 710,22 3,37 21.283 75 7,21 2,59 709,04 5
eilD76 660,87 3,80 11.623 47 3,53 1,75 660,33 4
fisher135 1.153,70 0,97 34.312 118 24,01 22,40 1.148,51 5
fisher45 724,00 - 1.105 22 0,17 0,05 721,11 2
fisher72 232,50 1,90 1.084 15 0,20 0,08 232,50 1

Table 30: Callback tabu3 heuristic on LITLIB

Name L.B. GAP Cuts Iter Sep Cplex Min LB Restarts

cmt101 819,33 0,08 6.474 58 10,22 5,79 819,25 1
eil30 508,50 4,78 241 8 0,04 0,14 508,50 1
eil33 833,50 0,18 1.251 22 0,26 0,36 833,50 1
eil51 514,44 1,26 2.427 28 0,79 0,14 514,43 1
eilA101 794,25 2,78 5.577 36 8,42 1,87 794,25 1
eilA76 788,08 5,51 21.339 89 14,47 5,06 787,27 5
eilC76 710,55 3,33 8.369 64 10,00 2,12 710,40 2
eilD76 660,89 3,80 8.041 44 4,33 1,30 660,61 3
fisher135 1.156,94 0,69 9.015 68 21,16 13,31 1.156,87 1
fisher45 722,20 0,25 972 17 0,19 0,05 722,11 2
fisher72 232,50 1,90 1.111 15 0,21 0,08 232,50 1

Table 31: Callback genetic heuristic on LITLIB

Name L.B. GAP Cuts Iter Sep Cplex Min LB Restarts

cmt101 804,16 1,93 2.361 162 20,81 7,67 801,52 4
eil30 508,50 4,78 92 11 0,07 0,16 508,50 1
eil33 831,75 0,39 232 36 0,61 1,33 831,75 1
eil51 512,90 1,55 1.297 73 2,37 1,60 510,65 7
eilA101 778,68 4,69 455 74 8,05 0,74 778,66 1
eilA76 769,30 7,76 2.230 146 17,83 1,45 767,79 6
eilC76 701,36 4,58 1.551 121 12,39 0,84 699,22 5
eilD76 654,66 4,71 1.050 78 6,52 0,40 645,68 6
fisher135 1.032,83 11,35 1.393 107 27,42 3,40 1.021,79 2
fisher45 724,00 - 346 46 0,31 0,06 722,00 2
fisher72 232,50 1,90 480 35 0,75 0,95 232,17 3
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Table 32: Callback ConGen1 heuristic on LITLIB

Name L.B. GAP Cuts Iter Sep Cplex Min LB Restarts

cmt101 818,83 0,14 3.756 87 8,07 6,36 818,69 2
eil30 508,50 4,78 141 9 0,17 0,14 508,50 1
eil33 832,20 0,34 918 26 1,53 1,24 832,10 2
eil51 514,00 1,34 1.473 46 5,84 4,04 513,44 3
eilA101 794,53 2,75 5.108 101 23,06 14,61 794,52 1
eilA76 781,68 6,27 10.501 120 28,21 35,71 778,00 3
eilC76 707,96 3,68 6.674 119 22,34 37,65 707,76 2
eilD76 660,28 3,89 2.977 81 13,14 5,75 660,25 1
fisher135 1.155,70 0,80 8.884 202 37,69 69,68 1.154,90 2
fisher45 724,00 - 446 17 0,44 0,12 724,00 1
fisher72 232,50 1,90 388 18 0,48 0,12 232,50 1

Table 33: Callback ConGen2 heuristic on LITLIB

Name L.B. GAP Cuts Iter Sep Cplex Min LB Restarts

cmt101 818,84 0,14 3.023 84 8,08 5,52 818,53 2
eil30 508,50 4,78 169 11 0,36 0,26 508,50 1
eil33 833,50 0,18 698 34 1,78 0,80 833,50 1
eil51 514,39 1,27 1.646 49 10,06 6,02 514,08 2
eilA101 795,16 2,67 7.194 102 17,44 38,83 793,93 2
eilA76 783,29 6,08 13.236 123 20,97 65,16 782,71 3
eilC76 708,09 3,66 6.550 116 22,19 104,04 707,90 2
eilD76 660,42 3,87 3.503 83 10,11 9,72 660,42 1
fisher135 1.155,65 0,80 4.677 201 17,96 30,00 1.155,55 1
fisher45 724,00 - 467 20 0,60 0,19 724,00 1
fisher72 232,50 1,90 325 17 0,44 0,08 232,50 1

Table 34: Relative differences with iterative using CONS

Name L.B. GAP Cuts Iter SEP CPLEX

cmt101 -0.04% 21.53% 122% 1% 11% -7%
eil30 - - 41% -44% -50% -25%
eil33 0.12% -26.44% 304% 18% 140% 133%
eil51 0.44% -19.57% 394% 7% 157% 147%
eilA101 0.04% -1.42% 188% 41% 16% -89%
eailA76 0.35% -4.77% 716% 35% 100% -16%
eilC76 0.05% -1.17% 348% 36% 26% -72%
eilD76 0.25% -5.82% 581% 9% 71% -81%
fisher135 0.20% -20.02% 55% -21% -36% -82%
fisher45 0.49% -87.50% 171% -19% - -89%
fisher72 -0.36% 18.52% 41% -9% -11% -90%
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Table 35: Relative differences with iterative using GREEDY

Name L.B. GAP Cuts Iter SEP CPLEX

cmt101 0.15% -37.81% 762% 35% 53% 62%
eil30 - - 126% -43% 120% 8%
eil33 0.36% -54.17% 59% -21% 21% -72%
eil51 0.72% -24.28% 381% -13% -40% 32%
eilA101 2.61% -43.60% 1175% 122% 158% 781%
eailA76 0.13% -1.56% 782% 39% 64% 693%
eilC76 2.60% -31.86% 502% 18% 56% 1532%
eilD76 -0.06% 0.94% 1469% 167% 370% 3248%
fisher135 3.15% -44.57% 1583% 15% 24% 762%
fisher45 -0.82% 1483.33% 99% -43% -33% -90%
fisher72 - - 179% -36% -6% -89%

Table 36: Relative differences with iterative using TABU1

Name L.B. GAP Cuts Iter SEP CPLEX

cmt101 -0.03% 50.00% 160% -33% -37% -33%
eil30 - - 1% -68% -33% -25%
eil33 - - 206% 9% 22% 67%
eil51 0.06% -4.34% 154% 4% 2% -14%
eilA101 0.13% -4.74% 645% 57% 35% -65%
eailA76 0.11% -1.86% 406% 24% 4% -72%
eilC76 0.11% -3.12% 580% 35% 14% -69%
eilD76 0.15% -3.69% 1292% 79% 55% -44%
fisher135 0.33% -35.01% 466% -6% -28% -36%
fisher45 -0.25% - 111% -23% 45% -71%
fisher72 - - 198% -13% 57% -78%

Table 37: Relative differences with iterative using TABU2

Name L.B. GAP Cuts Iter SEP CPLEX

cmt101 0.01% -8.49% 566% 11% -8% -59%
eil30 0.10% -1.92% 24% -64% - 43%
eil33 0.10% -35.07% 320% 17% 113% 132%
eil51 -0.01% 0.70% 467% 58% 38% -70%
eilA101 0.30% -9.93% 472% 34% 32% -70%
eailA76 -0.13% 2.19% 126% -32% -27% -89%
eilC76 0.07% -1.86% 752% 25% 14% -81%
eilD76 0.07% -1.78% 784% 31% 27% -56%
fisher135 0.08% -7.60% 1007% 59% 37% -26%
fisher45 - - 175% 5% 89% -77%
fisher72 - - 164% -25% 33% -83%
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Table 38: Relative differences with iterative using TABU3

Name L.B. GAP Cuts Iter SEP CPLEX

cmt101 -0.02% 34.57% 207% 9% -27% -80%
eil30 - - -2% -71% 33% 40%
eil33 - - 52% -15% -4% 13%
eil51 0.01% -1.05% 177% -13% -28% -89%
eilA101 0.08% -2.73% 252% 3% 1% -79%
eailA76 0.13% -2.15% 888% 44% 21% -69%
eilC76 0.11% -3.08% 426% 64% 52% -63%
eilD76 0.20% -4.78% 599% 38% 29% -59%
fisher135 0.62% -47.04% 245% 1% 4% -45%
fisher45 -0.25% - 107% -23% 46% -79%
fisher72 - - 118% -29% 5% -87%

Table 39: Relative differences with iterative using GEN

Name L.B. GAP Cuts Iter SEP CPLEX

cmt101 -0.60% 44.70% 432% 42% 77% -39%
eil30 0.13% -2.55% -9% -69% -13% 60%
eil33 0.09% -18.75% 48% -16% 79% 639%
eil51 0.53% -24.85% 1426% 109% 160% 662%
eilA101 -0.22% 4.63% 90% 139% 213% -53%
eailA76 -0.29% 3.61% 593% 35% 77% -54%
eilC76 0.01% -0.19% 642% 59% 79% -62%
eilD76 0.76% -13.26% 544% 34% 68% -68%
fisher135 -5.74% 90.74% 97% -5% 16% -91%
fisher45 0.23% -100.00% 196% 12% 55% -76%
fisher72 - - 344% 25% 226% 206%

Table 40: Relative differences with iterative using CONGEN1

Name L.B. GAP Cuts Iter SEP CPLEX

cmt101 0.04% -20.37% 258% 43% 46% -38%
eil30 - - -8% -55% -32% 130%
eil33 0.13% -28.00% 233% 13% 226% 1136%
eil51 - - 201% 31% 45% 411%
eilA101 0.09% -3.21% 172% 25% 53% 7%
eailA76 0.16% -2.38% 624% 48% 161% 304%
eilC76 0.25% -6.17% 451% 68% 44% 446%
eilD76 0.13% -3.00% 127% 23% 25% -11%
fisher135 -0.07% 9.66% 200% -14% 10% -40%
fisher45 - - 96% -6% -15% -25%
fisher72 - - 138% 13% 4% -45%
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Table 41: Relative differences with iterative using CONGEN2

Name L.B. GAP Cuts Iter SEP CPLEX

cmt101 -0.01% 9.14% 261% 33% 108% -29%
eil30 - - 10% -35% 57% 544%
eil33 0.05% -20.59% 99% 10% 21% 300%
eil51 0.08% -5.56% 366% 48% 59% 1238%
eilA101 0.01% -0.21% 257% 1% 1% 53%
eailA76 0.30% -4.38% 695% 71% 132% 772%
eilC76 0.09% -2.25% 244% 14% 29% 517%
eilD76 0.06% -1.57% 147% 9% -1% 42%
fisher135 -0.08% 11.31% 59% -19% -49% -71%
fisher45 - - 52% -43% -38% -51%
fisher72 - - 80% 13% 2% -58%

Table 42: Summary of callback heuristics on LITLIB

Name Avg GAP Max GAP Best Cuts Iter SEP CPLEX Restarts

CONS 2.72 6.43 2 3,774.10 77.00 2.35 3.60 1.60
GREEDY 3.23 7.54 1 13,361.91 49.45 21.34 55.60 3.27
TABU1 2.21 5.53 5 7,756.27 42.55 6.14 4.45 2.36
TABU2 2.23 5.51 5 5,892.45 40.82 6.37 2.75 1.73
TABU3 2.25 5.74 4 9,831.09 46.36 5.58 3.85 2.73
GEN 3.97 11.35 1 1,044.27 80.82 8.83 1.69 3.45
CONGEN1 2.35 6.27 3 3,751.45 75.09 12.82 15.95 1.73
CONGEN2 2.30 6.08 4 3,771.64 76.36 10.00 23.69 1.55

Table 43: Summary of callback heuristics on ALIB

Name Avg GAP Max GAP Best Cuts Iter SEP CPLEX Restarts

CONS 3.18 5.79 1 3,674.31 63.46 0.80 0.65 2.31
GREEDY 3.77 7.59 - 8,551.12 51.15 13.15 16.04 2.77
TABU1 2.44 4.56 10 5,791.19 40.50 2.55 1.16 2.04
TABU2 2.43 4.58 15 6,252.54 43.12 3.03 1.20 2.08
TABU3 2.52 4.61 3 9,568.04 48.54 2.43 1.61 3.19
GEN 4.16 6.95 - 1,467.81 116.69 6.71 0.59 4.15
CONGEN1 2.82 5.56 - 4,625.00 62.81 8.37 3.63 3.04
CONGEN2 2.74 5.76 4 4,200.46 70.92 10.94 12.88 2.50
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Table 44: Summary of callback heuristics on BLIB

Name Avg GAP Max GAP Best Cuts Iter SEP CPLEX Restarts

CONS 1.15 3.45 2 1,907.00 54.70 0.47 0.39 1.70
GREEDY 1.22 3.90 3 8,993.48 48.43 8.83 7.79 2.39
TABU1 0.82 2.87 11 5,177.13 36.09 1.82 1.18 1.70
TABU2 0.78 2.65 9 5,227.57 38.35 2.13 0.96 1.52
TABU3 0.89 3.39 3 6,924.39 42.78 1.48 0.92 2.52
GEN 2.08 6.88 2 1,230.65 91.96 4.07 0.52 3.04
CONGEN1 1.00 2.70 5 2,783.26 51.04 4.39 1.71 2.04
CONGEN2 0.84 2.61 8 2,697.74 60.22 7.92 3.95 1.96

Table 45: Summary of callback heuristics on all problem instances

Name Avg GAP Max GAP Best Cuts Iter SEP CPLEX Restarts

CONS 2.31 6.43 5 3,002.27 62.34 0.93 1.05 1.95
GREEDY 2.69 7.59 4 9,602.67 49.80 13.00 20.13 2.72
TABU1 1.78 5.53 26 5,916.07 39.18 2.92 1.77 1.97
TABU2 1.76 5.51 29 5,793.62 40.87 3.30 1.39 1.80
TABU3 1.85 5.74 10 8,602.87 45.93 2.64 1.76 2.85
GEN 3.33 11.35 3 1,299.25 100.63 6.09 0.76 3.60
CONGEN1 2.03 6.27 8 3,758.85 60.55 7.66 5.15 2.42
CONGEN2 1.94 6.08 16 3,545.80 67.82 9.61 11.44 2.12

Table 46: Relative differences with iterative on LITLIB

Name Avg GAP Max GAP Best Cuts Iter SEP CPLEX

CONS 4.04% -4.77% -33% 307% 11% 7% -70%
GREEDY -18.87% -1.56% -50% 871% 18% 63% 595%
TABU1 -2.39% -1.86% - 458% 8% -9% -47%
TABU2 -2.94% -2.06% - 296% 1% 30% -70%
TABU3 -2.70% 2.10% -20% 665% 22% -7% -53%
GEN 12.31% 51.53% - 333% 30% 60% -69%
CONGEN1 -2.64% -2.38% - 269% 17% 44% 7%
CONGEN2 -1.77% -4.38% -20% 242% 6% 7% 55%
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Table 47: Relative differences with iterative on ALIB

Name Avg GAP Max GAP Best Cuts Iter SEP CPLEX

CONS -8.92% 5.12% - 368% 12% 31% -76%
GREEDY -30.67% -35.56% - 574% 36% 114% 532%
TABU1 -14.72% -13.55% 67% 340% 14% 10% -70%
TABU2 -21.12% -10.26% 650% 381% 24% 79% -66%
TABU3 0.09% 1.58% -81% 605% 23% -7% -65%
GEN -15.92% -25.65% - 571% 55% 101% -64%
CONGEN1 -5.33% -0.31% -100% 489% 28% 44% 34%
CONGEN2 -3.02% 4.40% 33% 379% 22% 41% 249%

Table 48: Relative differences with iterative on BLIB

Name Avg GAP Max GAP Best Cuts Iter SEP CPLEX

CONS -9.97% 10.11% - 195% 1% 1% -88%
GREEDY -32.61% -25.69% 50% 475% 11% 74% 51%
TABU1 -20.35% 11.21% 10% 292% -12% -16% -77%
TABU2 -44.22% -74.29% 200% 353% 4% 28% -72%
TABU3 -0.40% 30.94% -67% 409% 3% -47% -80%
GEN -14.55% -14.06% 100% 386% 44% 86% -72%
CONGEN1 -10.19% -12.99% - 273% 10% 9% -43%
CONGEN2 -11.64% -1.58% 14% 249% 18% 67% 10%
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