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Abstract

In order to deal with paucity of sample inference and the problem that inference critically

depends on the long-run persistence of the data, Müller and Watson (2018) propose mod-

els that use low-frequency weighted averages to construct asymptotically efficient confi-

dence intervals for long-run covariability parameters. The (A,B, c, d) model constructs

these confidence intervals for a wide range of persistence patterns. The accurateness of

the constructed confidence intervals using the (A,B, c, d) model is demonstrated by the

simulaton section. Furthermore, this paper elaborates on Müller and Watson (2018) by

measuring the performance of their models on data sets with higher frequencies on the

basis of the relationship between the S&P 500 Index and the S&P 500 Futures. Further

knowledge on the performance of the methods proposed by Müller and Watson (2018)

can be of value to econometric and economic researchers and knowledge on the relation-

ship between the S&P 500 Index and the S&P 500 Futures is interesting to worldwide

investing market participants. It is observed that the impact of different data frequen-

cies on the long-run covariability between the S&P 500 Index and the S&P 500 Futures

does not follow a clear pattern. Furthermore, differences between sub-sample are cap-

tured by the (A,B, c, d) model considering, for example, the sharp decrease of long-run

covariability between both variables after the U.S. stock market crisis in December 2018.
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1 Introduction and literature

Research on long-run covariability between economic variables has a long history in finance, eco-

nomics and econometrics. Predictions on the relationships between economic variables are common

in economic theories, but the statistical tools to investigate the validity of these predictions are

limited. Although there are limited statistical tools, long-run relationships are widely used by in-

fluential economists, financial institutions, and policymakers. There are two fundamental problems

that econometrists encounter when investigating long-run economic theories. The first problem

consists of a shortage of long-run sample information on economic variables, as data samples that

are used to investigate long-horizon relationships do not contain enough observations. To deal

with this for example, Valdovinos (2003) uses long-run data components instead of original data

to demonstrate that there is a clear negative relation between inflation and economy growth. The

long-run data components that are used in this investigation are extracted from a filter that isolates

business-cycle fluctuations in macroeconomic time series initiated by Bakter and King (1995). The

second problem is the high dependence of the inference on the long-run persistence of the data that

is used. Probability distributions of data series are uniquely characterized and different from what

is observed in comparable series. The paucity of statistic inference about long-run phenomena and

the high use of economic relations in practice emphasize the importance of research on long-run

covariability. The development of methods that are able to deal with the described problems can

be of value for economic and econometric research in many fields.

Many methods to measure the long-run covariability between specific stochastic processes are

developed in the last 45 years. Inference in cointegration models has grown during these decades,

which is particularly interesting as cointegration is another widely used tool to measure long-run

relationships between variables. Phillips (1991) shows that spectral methods are useful to regressions

for certain nonstationary time series by the use of the block triangular error correction model

representation of cointegrated systems. Stock and Watson (1993) propose in their analysis on

the long-run U.S. money demand efficient GLS estimators of cointegration vectors for systems

with higher orders of integration. As cointegrated variables have unit long-run correlations, many

long run relationships fall outside the standard framework of cointegration. Inference about long-

run covariability for wider ranges of long-run persistence is developed by Hounyo (2014) in his

investigation on distributions of covariance estimators in integrated processes. Müller and Watson

(2008) contribute to inference on general patterns of long-run persistence by constructing methods
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that use low-frequency averages to isolate long-run sample information.

Müller and Watson (2018), the main source for this thesis, focuses on low-frequency data av-

erages in order to develop methods that construct confidence intervals for long-run relationship

parameters. The data transformations applied in this paper are based on specific band-pass filters

that isolate business-cycle variations in macroeconomic time-series (Baxter & King, 1999). Müller

and Watson (2017a) conclude that inference about variability and covariabilty of integrated pro-

cesses in the long-run can be conducted from low-frequency weighted averages, as they follow large

sample normal distributions. This paper elaborates on the properties of the weighted averages

compared to asymptotic implications of certain time series (Müller & Watson, 2008). The parame-

ters that are used to measure the long-run covariability parameters between variables are based on

the low-frequency band spectrum regression from Engle (1974). Müller and Norets (2016) explore

the validness of estimates and confidence intervals for parameters of I(0), I(1), near unit roots,

fractionally integrated models and linear combinations of variables that are characterized by these

persistence forms. The least favorable distribution and the construction of confidence intervals

based on testing problems that are used to construct these confidence intervals are explained by

Elliott, Müller and Watson (2015).

The long-run covariability inference that is developed by Müller and Watson (2018) is applied

on two economic relationships in the first part of the paper. First, the relation between GDP

and consumption is one of the “Great Ratios" of the U.S. economy (Klein & Kosobud, 1961).

Cochrane (1994) uses two-variable autoregressions to conclude that there is cointegration between

consumption and income, which is also concluded by Campbell (1987) in his post war analysis on

relationships between conditional means and conditional variances. The conclusion of these papers

is contradicted by Lettau and Luvigson (2013), using three historical market shocks to analyze the

post-war dynamics of consumer spending, labor earnings, and household wealth.

The second main application of the methods proposed by Müller and Watson (2018) is the long-

run relationship between short-term and long-term interest rates. Earlier analysis of this correlation

concluded cointegration between short-term and long-term interest rates by modeling the interest

rates as I(1) processes (Campbell & Shiller, 1987). Dai and Singleton (2000) use affine term

structure models to explain historical behavior of interest rates and accessory long-run persistence.

The two long-run relations that are explained above are the main applications of the methods

used by Müller and Watson (2018), involving an analysis on the long-run covariability between

variables that are observed quarterly and monthly. In the last section of their paper, Müller and
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Watson (2018) apply their methods to other relationships between quarterly and monthly observed

variables. The absence of applications to data of higher frequencies triggers curiosity for findings on

the application of the low-frequency approach on weekly, daily and intraday data. To investigate

the performance of the methods initiated by Müller and Watson (2018) on high-frequency data, I

consider the relationship between the S&P 500 Index and the S&P 500 Futures in the extension

part of this paper. The S&P 500 Index is a market-capitalization-weighted index, based on the 500

largest publicly traded companies in the U.S. The S&P 500 Futures are derivative contracts that

provide buyers prices based on the S&P 500 Index’s expected future value to with investments.

Both series are important indicators of the worldwide investing market.

There are three sub-analyses that are used to investigate the long-run covariability between the

S&P 500 Index and the S&P 500 Futures. First, the impact of different data frequencies on the

covariability between the S&P 500 Index and the S&P 500 Futures is analyzed. The performance

of the methods proposed by Müller and Watson is measured on the basis of covariability differences

between monthly, weekly and daily S&P 500 series. For the first analysis, the U.S. stock market

cycle of about 42 months is taken into account (Chonga, Li, Chen & Hinich, 2010). Second, the high

volatility of the investing market has encouraged to compare the covariability between the S&P 500

Index and the S&P 500 Futures on different sub-samples. The purpose of the final sub-analysis is

to investigate whether the (A,B, c, d) model, that is initiated by Müller and Watson (2018), can be

used to obtain an estimation of the lead time of the S&P 500 Futures on the S&P 500 Index by the

use of intraday data. The highly volatile relationship between the S&P 500 Index and the S&P 500

Futures is earlier investigated by Kwaller, Koch and Koch (1990). This paper concludes that futures

volatility is higher than index volatility and both volatilities increase as the futures trading volume

increases. Arshanapalli and Doukas (1994) elaborate on these conclusions by showing that the S&P

500 Index and the S&P 500 Futures do not share the same volatility process. The lead time of the

S&P 500 Futures is investigated by Kwaller, Koch and Koch (1987) by a three-stage-least squares

approach. Their analysis suggests that the lead time from futures to cash prices ranges from twenty

to 45 minutes. In the same year, Herbst, McCormack and West (1987) use spectral analysis to

conclude that the S&P 500 spot index reacts to changes in the futures contract in less than one

minute. Knowledge on the covariability between the S&P 500 Index and the S&P 500 Futures and

the lead time of the S&P 500 Futures can be of value to participants in the worldwide investing

market. Besides this, additional knowledge on the performance of the methods that are proposed

by Müller and Watson (2018), contributes to the inference on long-run covariability models.
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The results of the first analysis indicate that the long-run covariability between the S&P 500

Index and the S&P 500 Futures is effected by the frequency of the data that is used, but the param-

eter values do not follow a clear pattern as the data frequency increases or decreases. Covariability

differences between weekly and daily sub-periods are captured by the (A,B, c, d) model in the sec-

ond sub-analysis and the clearly lower covariability in the fourth daily sub-period that contains the

U.S. stock market crash in December 2018 is the most eye catching example for this. The use of the

(A,B, c, d) model in the final sub-analysis does not result into a clear estimation of the lead time

of the S&P 500 Futures on the S&P 500, as multiple relationships with different Futures lead times

and data frequencies are estimated to be approximately equally correlated in the long-run.

The outline of this paper is as follows: section 2 consists of descriptions of the data and methods

that are used to obtain all results in this paper. These results are presented in section 3, that can

be divided into three subsections: section 3.1 contains simulation results, section 3.2 contains the

replications of the findings of Müller and Watson (2018) and section 3.3 is the extension section

that elaborates on Müller and Watson (2018) by application of proposed methods to the relationship

between the S&P 500 Index and the S&P 500 Futures. Finally, section 4 concludes and contains a

discussion of this paper.

2 Data and Methodology

This section contains a full clarification of the data and methodology that are used in order to

obtain the results of this paper. First, the data of the paper is described for both the replication

and the extension part of this thesis. Secondly, subsection 2.2 to 2.5 describe the methods and

computations that are performed to obtain the findings of the replicaon part and the extension

part. Finally, section 2.6 describes the simulation that is used to draw conclusions on the confidence

intervals that are estimated by the methods. A description of the used Matlab code that used to

apply described methods can be found in Appendix J.

2.1 Data

In this paper, two data sets are used. First, the replication part of this paper makes use of the

same data set as Müller and Watson (2018). All variables that are used in the replication part

of this paper are observed at monthly or quarterly frequencies. Second, the extension data set is

used to obtain the results from the extension part of this paper. Growth rates in % of the S&P
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500 Index and S&P 500 Futures prices are obtained from Investing.com and the observed data

frequencies range from monthly to minutely. Appendix A contains a list of definitions, data sources,

frequencies, and observation periods of all used variables.

2.2 Long-run projections

Properties of economic time series are typically analyzed in the time domain, but due to limited

available data, Müller and Watson (2018) analyze the long-run economic relationships between

economic variables in the frequency domain approach, i.e. spectral analysis. In most spectral

analyses, Fourier transforms are used to transform data from the time domain to the frequency

domain. Fourier transforms represent time series as series in cosines and sines and are useful in

dealing with periodic and rhythmic economic phenomena. This makes picking out cyclical behavior

in time series generally the main application of analyzing time series in the frequency domain.

In Müller and Watson (2018), the real data is transformed into projections onto low-frequency

periodic functions. These transformations are constructed such that fluctuations of periods longer

than eleven years can be captured. This minimum captured periods are longer than the U.S.

business cycle of approximately eight years (Baxter & King, 1999). The data is transformed as

follows: let xt, t = 1, ..., T denote a non-transformed data series from the data set. Let Ψj(s) =
√

2cos(jsπ) denote the cosine function for the j-th, j = 1 . . . q, cosine transform, such that Ψ(s) =

[Ψ1(s),Ψ2(s), ...,Ψq(s)]
′ becomes a matrix with dimensions T × q and t-th row given by Ψ((t −

1/2)/T )′. q is chosen such that periodicities longer than 2T
q are captured by the model. For the

data set used in the replication part, this means that periodicities longer than 11.3 years are captured

by q = 12 for GDP and consumption and q = 11 for the interest rates. The projection of the data

xT onto Ψ((t− 1/2)/T , for t = 1,...T, is given by

xt = X ′TΨ((t− 1/2)/T,

XT = T−1
T∑
t=1

Ψ((t− 1/2)/T )xt,
(1)

where XT denotes the q × 2 projection coefficients matrix that represents the cosine-weighted av-

erages of the data. Because of orthoginality of the cosine regressors ΨT , explained by Müller and

Watson (2017b), the variability and covariability in the cosine transforms (XT and YT ) and long-

run projections (xt and yt) are strongly related. The equivalence between the long-run projection
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coefficients and the cosine transforms shown in equation (2), indicates that the sample covariability

in the cosine transforms coincides with the sample covariability in time series projections:

T−1
T∑
t=1

(
xt
yt

)
(xtyt) = T−1

(
X ′T
Y ′T

)
Ψ′TΨT (XTYT ) =

(
X ′TXT X

′
TYT

Y ′TXT Y
′
TYT

)
(2)

The long-run projections show only little differences with the low-pass moving averages (Müller &

Watson, 2018) and due to the orthogonality of the cosine regressors ΨT , tight connections between

the covariability in (x, y) and in (XT , YT ) are observed.

2.3 Long-run covariability measurements

Müller and Watson (2018) find in their research a clear way to measure the long-run covariability

between variables. Let the covariance matrix of projection coefficients XT and YT be denoted by ΣT ,

partitioned as ΣXX,T , ΣXY,T , ΣY X,T , ΣY Y,T . Then, the average covariance matrix of the projections

xt and yt, ΩT , is defined as follows:

ΩT = T−1
T∑
t=1

E

[(
xt
yt

)
(xtyt)

]
=

q∑
j=1

E

[(
XjT
YjT

)(
XjT
YjT

)′ ]
=

(
tr(ΣXX,T ) tr(ΣXY,T )
tr(ΣY X,T ) tr(ΣY Y,T )

)
(3)

The long-run covariability parameters that are used to evaluate the covariability between variables

in this paper are constructed in the following equation:

ρT = Ωxy,T /
√

Ωxx,TΩyy,T

βT = Ωxy,T /Ωxx,T

σ2
y|x,T = Ωyy,T − (Ωxy,T )2/Ωxx,T ,

(4)

where ΩT is constructed as
(

Ωxx,T Ωxy,T
Ωxy,T Ωyy,T

)
. If we regress the long-run projection of one variable

yt on the long-run projection of another variable xt, βT , σy|x,T and ρxy,T are interpreted as the

linear regression coefficient, average variance of the prediction error and population R2 respectively.

Together these three parameters are accurate measurements of the long-run covariability between

two selected variables xt and yt. A more extended derivation of these parameters is provided by

Müller and Watson (2017a).
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2.4 Parameterizing long-run persistence and covariability

The previous subsection of the methodology shas shown that ρ, β and σy|x are functions of Ω, which

is defined as the average covariance matrix of the long-run projections (x and y). This 2×2 matrix is

defined as a function of the covariance matrix of the cosine projection coefficients, Σ. Because cosine

projection coefficients are smooth averages of the long-run projections, central limit theorem effects

suggest that these projection coefficients are Gaussian and therefore
√
T
(
XT
YT

)
⇒
(
X
Y

)
∼ N (0,Σ)

with limiting Σ, if the spectral density converges close to zero for all frequencies. These large-

sample results hold if zt has a Fourier Transform of the autocorrelation function and indicate that,

as TΣT → Σ, also (ρT , βT , σ2
y|x,T ) → (ρ, β, sigma2

y|x and efficient inference in smaller problems

amounts to large-sample efficient inference (Müller & Watson, 2018). The elements of Σ are now

dependent on the shape of the spectral density close to the origin. This function is called the

local-to-zero spectrum, denoted as S∆z for the first-difference of z and as Sz(ω) = ω−2S∆z(ω), with

zt = (xt, yt)
′ and frequency ω for the level of zt (Müller & Watson, 2015).

A process is integrated of order d, I(d), if the d-th difference, ∆dξ, is I(0), which in turn is

a process that is stationary and has finite and positive long-run variance. An I(0) process can

be written as δ + ut, where ut is a zero-mean stationary process with positive long-run variance.

If zt is I(0) with long-run covariance matrix Λ, then Σ = Λ ⊗ Iq and Ω = Λ. This means that

z ∼ iid N (0,Λ) and the covariance matrix of the original data, Λ, is equal to the covariance matrix

of the long-run projections, Ω. If zt is I(1) and differences ∆zt have covariance matrix Λ, let D

be some diagonal matrix with dimensions q × q and elements Dii = 1
(iπ)2

. Then it holds that

z ∼ id N (0,Λ/i2) and Σ = Λ ⊗ D, from which it follows that Ω is proportional to Λ, as Σ is a

matrix multiplication of Λ and Ω is a function of Σ. This points out that there is correspondence

between the covariance matrix of the long-run projections xt and yt and the long-run covariance

matrix of the first differences of zt, ∆zt (Müller & and Watson, 2017b). These two examples indicate

the strong dependence of Ω on the local-to-zero spectrum Sz(ω) and Σ.

In order to be able to model persistence in economic time series with integration order d ∈ [−0.4; 1],

Müller and Watson (2018) allow for all local-to-zero spectra of the form

Sz(ω) ∝ A
(

(ω2 + c2
1)−d1 0

0 (ω2 + c2
2)−d2

)
A′ +BB′ (5)

The (A,B, c, d) model is an extension of the (B, c, d) model that is introduced in Müller and Watson

(2016) in order to compute prediction sets for long-term forecasts of variables. The (A,B, c, d) model
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has more parameters, but appears to be more flexible than the I(0) and I(1) models by allowing

for more spectra and combining standard spectral shapes. For example, A = 0 yields the I(0)

model and when B = 0, c = 0 and d1 = d2 = 1, the (A,B, c, d) model yields the I(1) spectrum.

This flexibility enables the (A,B, c, d) model to allow for various long-run phenomena such as

overdifferencing and slow mean reversion (Baillie, Bollerslev & Mikkelsen, 1996). The estimated

values of ρT , βT and σy|x,T are medians of the Bayesian posterior density using the I(d)-model

with integration order d. In spite of discussed flexibility of the (A,B, c, d) model, there are models

that are not encompassed by (5). For example, if B = 0 and the off-diagonal elements of matrix(
(ω2 + c2

1)−d1 0
0 (ω2 + c2

2)−d2

)
are not equal to zero, this model falls outside the (A,B, c, d) model.

In this calculation, the regression coefficient of regressing Y onto X can be equal to the cointegration

coefficient, which can be expected by no reason (Müller & Watson, 2017b).

2.5 Constructing confidence intervals for ρ, β and σy|x

In order to describe the uncertainty of the long-run covariability parameters, Müller and Watson

(2018) construct confidence intervals. By definition, confidence intervals of level 1−α cover the true

parameter θ with a probability of 1−α, for all permitted values of θ. In this paper, parameter vector

θ consists of the parameters of the (A,B, c, d) model that characterize the probability distribution

of the projection coefficients XT and YT . Let Θ denote the parameter space of A, B, c and d. The

confidence sets are constructed as informative as possible, which means that the intervals can not

be tighter without violation of the coverage constraint that the intervals contain the true parameter

with a probability of 100∗(1− α)%. This is described by the following optimization problem:

min
H

∫
Eθ[vol(H(X,Y )) dW (θ)],

s.t. sup
θ∈Θ

Pθ(γ ∈ H(X,Y )) ≥ 1− α
(6)

In equation (6), γ denotes the parameter vector of interest ρ, β or σy|x, H(X,Y ) denotes the

confidence interval of γ with length vol(H(X,Y )). Equation (6) shows that the expected volume

of the confidence interval H depends on the weighted values of θ, dW (θ). This follows by the

dependence of the probability distribution of the long-run projection coefficients (X,Y ) on θ. The

expected length of the confidence interval can be expressed in terms of the power of hypothesis tests

of H0 : γ = γ0 versus H1 : θ ∼ W . The idea of minimizing the average expected length of some

confidence interval by averaging according to some weighting distribution on permitted values of the
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parameters is described by Pratt (1961). The minimizing approach on the length of confidence sets

that is declared in his paper, is different from the Bayesian approach that is based on a prior observed

distribution. A family of most powerful hypothesis tests leads to the optimal confidence interval.

The algorithm in Appendix B computes the approximate least favorable distribution (ALFD) in

order to determine this family of most powerful tests γ0. This numerical approach is initiated by

Elliott, Müller and Watson (2016) The weighting function dW (θ) follows the Bayesian prior density

in the baseline model. The distribution is, as well as the Bayes prior, based on the bivariate I(d)

model with the following parameter restrictions: Set B = 0, ci = 0, di ∼ iid U [−0.4, 1], i =

1, 2 and A = R(πU1)G(15U0 , 1)R(πU2), where Uj ∼ iid U [0, 1], G a diagonal matrix and R(ψ)

a 2 × 2 rotation matrix of angle ψ. As the number of parameters in the (A,B, c, d) model is

large and as the (A,B, c, d) model does not always guarantee correct coverage probabilities of the

confidence intervals, Müller and Watson (2018) follow Müller and Norets (2016) when constructing

desired confidence intervals. Müller and Norets (2016) propose a method to minimize weighted

average length criteria as in equation (6), subject to the inclusion of a Bayesian credible set. This

method prevents confidence intervals from being empty or unreasonably short, which might cause

situations in which the constructed confidence interval does not contain the true parameter value.

The difference between the confidence intervals and the Bayes credible set vary from 3% to 8%

(Müller and Norets, 2016).

Finally, the parameter space Θ for parameter vector θ = (A,B, c, d) is as follows: A,B ∈ R, B

lower-triangular and (A,B) are only allowed if Ω is non-singular. Parameters c and d are restricted

such that ci ≥ 0 and −0.4 ≤ di ≤ 1, i = 1, 2. This construction of Θ enables the (A,B, c, d)

model to ensure confidence interval coverage for a wide range of persistence patterns if the least

favorable distribution, the weighting distributionW and the Bayes prior distribution are given. The

invariance/equivariance restrictions that are displayed in Appendix B are the second specification

on the constructed confidence intervals. These restrictions require use of maximal invariants are

used instead of the original (X,Y) and a slight modification on the form of the optimal test statisctic

explained by Müller and Norets (2016).

2.6 Simulation

The unknown integration order of the used data series is the main argument for the use of the

(A,B, c, d) model, that has the flexibility to account for fractional integration orders. The sim-

ulation results in section 3.1 investigate the patterns that the confidence intervals follow for dif-
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ferent integration orders and three different models: the I(0) model (Sz ∝ BB′), the I(1) model

(Sz(ω) = ω−2AA′) and the (A,B, c, d) model with Sz(ω) given by (5). For every fractional integra-

tion order d ∈ [−0.5, 1.5] with one or no decimal places, such that d = −0.5,−0.4,−0.3, . . . , 1.4, 1.5,

2000 random fractionally integrated time series are simulated according to the ARFIMA(p, d, k)

model. The general ARFIMA(p, d, k) model, explained by Haldrup and Eduardo Vera Valdes(2017)

and Baillie, Chong & Tieslau (1996), is described by integration order d and orders of the autore-

gressive and moving average part p and k respectively:

Φ(L)(1− L)d(yt − µ) = K(L)εt, εt ∼ iid(0, σ2
ε ), (7)

where L denotes the backward-shift operator, Φ(L) and Θ(L) are given by Φ(L) = 1 − φ1L − . . .-

φpL
p, Θ(L) = 1 + κ1L + . . . + κqL

q and (1 − L)d represents the fractional differencing operating

operator which is in turn given by (1−L)d =
∑∞

s=0
Γ(s+d)Ls

Γ(d)Γ(s+1) . µ and Γ are defined as some constant

and the Gamma Function respectively.

The data series that are used in the simulation, are simulated with the following parameter

values: the moving-average part of the ARFIMA model is neglected, so that k = 0, and the

autoregressive order of the processes is equal to 1, with φ1 = 0.2. As described above, these

ARMA(1, 0) processes are simulated for every order of integration d = −0.5,−0.4,−0.3, . . . , 1.4, 1.5.

After the simulation of the 2000 time series for every integration order d, the estimates of ρ,

β and σy|x and their empirical confidence sets and those that are estimated by the methods used

by Müller and Watson (2018), are calculated following the simulation algorithm in Appendix C.

This algorithm is executed three times. First, the confidence intervals of the simulated data are

obtained using the I(0) model. Second, the I(1) model is used and third, the general (A,B, c, d)

model is used. As the (A,B, c, d) is considered as the main contribution of Müller and Watson

(2018), there will be focused on the results obtained using this model. The results that are obtained

from both the I(0) and the I(1) model have not been worthless at all, as the results from these

models emphasize the importance of the (A,B, c, d) model as a model that accounts for a wide

range of persistence patterns. In addition, these results have contributed to my understanding on

the dependence between the fractional integration order d in data series and the output of the three

models used by Müller and Watson (2018).
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3 Results

The results section contains all findings of this paper and consists of three different parts. Section

3.1 contains the results of the simulation that is explained in section 2.6. Section 3.2 contains

replications of the findings of Müller and Watson (2018) and Section 3.3 proposes the extension

results that are found by application of the replication methods on the relationship between the

S&P 500 Index and S&P 500 Futures.

3.1 Simulation results

The results of the simulation are presented in Appendix D, containing all figures and tables that are

discussed in the this subsection. Tables 3, 4 and 5 contain the average values, empirical confidence

intervals, and average confidence intervals estimated by the methods used by Müller and Watson

(2018) for parameters ρ, β and σy|x and every integration order d between −0.5 and 1.5. Empirical

confidence intervals in these tables differ across the models, as the parameter estimates depend

on the used model, which is also demonstrated in the replication part of this paper. Figures 3, 4

and 5 provide visualizations of the differences between the empirical 90% confidence intervals and

the average 90% confidence intervals that are estimated by the (A,B, c, d) model from Müller and

Watson (2018).

Table 3 presents the simulation results for long-run covariability parameter ρ. The results that

are obtained by use of the I(0) and the I(1) model can be found in columns 2-7. From these

columns, it is noted that the confidence intervals that are estimated by the I(0) and the I(1) model

are closest to the empirical confidence intervals when the integration order of the simulated process

is equal to zero for the I(0) model and equal to one for the I(1) model. Differences between the

empirical confidence intervals and the average estimated confidence intervals become larger when

the order of integration of the simulated processes deviates from zero (when using the I(0) model)

or one (when using the I(1) model). When the (A,B, c, d) model is used, this pattern is not

observed, as the average estimated confidence intervals by the (A,B, c, d) model are close to the

corresponding empirical confidence intervals for almost all orders of integration of the simulated

processes. When the integration order of the simulated processes d exceeds 1.2, the performance of

the (A,B, c, d) becomes worse, as the differences between the empirical and estimated confidence

intervals become larger. This is also observed from figure 3. Furthermore, table 3 shows that the

average confidence intervals that are estimated by the (A,B, c, d) model are wider than the empirical
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confidence interval, which can be a consequence of the restriction on the width of the estimated

confidence intervals to be supersets of the Bayes credible sets.

The simulation results for β in table 4 show that the average confidence intervals that are

estimated by the (A,B, c, d) model differ most from the corresponding empirical confidence intervals

when the integration order of the simulated data series d is between 0.5 and 1. This can also be

observed from figure 4. Overall, the differences between the empirical confidence intervals and the

average estimated confidence intervals of β are smaller and more constant using the (A,B, c, d)

model than when the I(0) model or the I(1) model is used.

Finally, the simulation results of σy|x are presented in table 5 and figure 5. As σy|x is proportional

to the values of the data, it is more difficult to draw conclusions on the relationship between the

integration order of the simulated series d and the confidence intervals. First, we observe that there

are higher estimates of σy|x obtained when the (A,B, c, d) model is used than when the I(0) or

the I(1) model is used. Second, we observe that the differences in terms of percentage between

the empirical confidence intervals and the average confidence interval obtained using the (A,B, c, d)

model, explode when the integration order of the simulated data series d exceeds 0.6. This is

mainly caused by the estimated upper bounds that are higher than the corresponding empirical

upper bounds.

3.2 Replication results

This subsection contains replications of the findings from Müller and Watson (2018). First, the

figures in Müller and Watson (2018) are replicated that present applied data transformations. Sec-

ond, the tables that display all long-run covariability parameter estimates and confidence intervals

are replicated. This is done by application of three models: results of the I(0) and I(1) model are

presented in table 1 and table 2 contains the results of the (A,B, c, d) model.

Data transformations

Figure 1a and 1b below show the average growth rates of GDP and consumption over six sub-

samples between January 1948 and December 2015, each containing 45 observations. The captured

periodicities are equal to or longer than 11.3 years and therefore longer than the U.S. business cycle

of 32 quarters that is introduced by Baxter and King (1999). From the figures below, it is observed

that GPD and consumption in the U.S. show approximately equal patterns, as growth rates of

variables are relatively high in the first decades after World War II and show sharp decreases during
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the third sub-sample from 1970 to 1981. After this decrease, GDP growth increases less than the

consumption growth rate, but during the sixth sub-sample, both growth rates are approximately

equal again.

Figure 1c plots the long-run projections of the data onto the low-frequency cosine terms. The

moving averages in this sub-figure are designed to isolate data variation with periods longer than

eleven years. The long-run projections of GDP and consumption are more closely related in figure

1c than in figure 1a. This is confirmed by comparison of the scatterplot of the long-run projections

and projection coefficients in figure 1d with the scatterplot in figure 1b.

If the number of sub-samples is decreased to four, figure 6b in Appendix E shows that the

relationship between GDP and consumption is less close during the period from 1982 to 1998 than

in the other time periods. Increase in the number of sub-samples to eight shows that the difference

is largest from 1982 to 1990 (figure 7, Appendix E). The early 1980s recession is propably a reason

for the relatively large difference in this sub-period. Figure 8 and figure 9 in Appendix E show plots

of the long-run projections and scatterplots of the long-run projections and projection coefficients

for q = 8 and q = 16 respectively. If q = 16, periodicities longer than 8.5 years are captured,

which is approximately equal to the U.S. business cycle of 32 quarters. The increase of q results in a

relationship that is closer than the relationship for q = 12. If q = 8, the model captures periodicities

that are longer than 17 years and the plot in figure 8 in Appendix E again shows higher differences

between GDP and consumption growth rates from 1982 to 1994.

Figure 2a below plots the short-term interest rates of three months and the long-term interest rates

of ten years and the long-run projections of both interest rates. Due to a shorter data period, q

is set equal to 11 in order to capture periodicities longer than 11.3 years. Figure 2a shows higher

long-run projections of long-term interest rates than short-term interest rates projections, which

might be related to the increase in interest rates before 1981 and the interest decrease after 1981.

Figure 2b displays high correlation between the projection coefficients XjT and YjT of the short-

and long-term interest rates. In order to analyze the sensitivity of the relation between the interest

rates, q is adjusted and figures 10 and 11 in Appendix E show that the relation between the long-run

projection coefficients becomes closer if q increases.

Estimation by the I(0) and I(1) model

Table I and II from Müller and Watson (2018) are replicated below. All replicated values that do

not correspond with the results from Müller and Watson (2018) are coloured in red. Table 1 below
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Figure 1: Panel (a) plots sample averages of consumption and GDP over np sub-periods, np = 6. Panel (c) shows the data

projections onto the low-frequency terms with added sample means, q = 12. Panels (b) and the small dots in (d) are scatterplots

of the variables in (a) en (c), while the large circles in (d) are of the projection coefficients (XjT , YjT ) from (c).

Figure 2: Panel (a) plots the projections of the short- and long-term interest rates onto the low-frequency cosine terms with

q = 11 with added sample means. Panel (b) is a scatterplot of the projection coefficients (XjT , YjT ) from (a).

shows estimates and confidence intervals for long-run covariability parameters ρT , βT and σy|x,T

using the I(0) and I(1) models with q = 12 (panel a) and q = 11 (panel b). All values in table 1

are equal to the corresponding values in the paper of Müller and Watson (2018). The estimate of

the long-run correlation between GDP and consumption is equal to 0.93 in both the I(0) and the

I(1) model and the 90% confidence intervals fall between 0.8 and 1.0 for both models. Regressing

consumption onto GDP results in a higher regression coefficient when the I(1) model is used than

when the I(0) model is used.

Short-term and long-term interest rates are more highly correlated than GDP and consumption

according to the long-run correlation coefficients that follow from the I(0) and I(1) models. The
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lower range of the 90% confidence interval of ρ exceeds 0.9 in both models, indicating a high long-

run correlation between the interest rates. Contrary to table 1a, regression coefficients by use of

the models are approximately equal.

Decreasing q to 8 for GDP and consumption and 7 for the interest rates captures only period-

icities that are longer than 17 years. Table 6 and 7 in Appendix E present the results of the I(0)

and I(1) models after decrease and increase of q. Decrease of q results in higher estimated long-run

covariability between GDP and consumption, while the long-run covriability between the short-term

and long-term interest rates remains equal. Increase of q causes lower rong-run coavriability in both

investigated relationships. The width of the constructed confidence intervals does not follow a clear

dependence on the value of q.

Table 1: Replication of the long-run covariability estimates and confidence in-

tervals using the I(0) and I(1) models: periods longer than 11 years

ρ β σy|x

(a) GDP and consumption
I(0) Estimate 0.93 0.76 0.36

67% CI 0.87, 0.96 0.67, 0,85 0.30, 0.46
90% CI 0.80, 0.97 0.60, 0.92 0.27, 0.55

I(1) Estimate 0.93 0.84 0.35
67% CI 0.88, 0.96 0.74, 0.94 0.29, 0.45
90% CI 0.82, 0.97 0.66, 1.01 0.26, 0.54

(b) Short- and long-term interest rates
I(0) Estimate 0.98 0.96 0.60

67% CI 0.96, 0.98 0.90, 1.03 0.50, 0.79
90% CI 0.93, 0.99 0.84, 1.08 0.44, 0.96

I(1) Estimate 0.97 0.93 0.38
67% CI 0.93, 0.98 0.85, 1.01 0.32, 0.50
90% CI 0.90, 0.98 0.78, 1.07 0.28, 0.61

Periods longer than 11 years correspond to q = 12 for panel (a) and q = 11 for panel (b). The estimates

are the maximum likelihood estimates found by the large-sample distribution of the cosine transforms

for the I(0) and I(1) models. 67% and 90% confidence intervals are displayed below the estimates.

Values that do not correspond with Mueller and Watson (2018), are coloured in red.

(A,B, c, d) model

Table 2 below contains the replication of table II from Müller and Watson (2018). The estimated

67% confidence intervals for ρT in table 2 differ slightly from the estimated 67% confidence intervals

in Müller and Watson (2018), as the lower bound is equal to 0.83 in Müller and Watson (2018). As

only individual comments are added to the code from Müller and Watson (2018) that replicates this

table, this difference is assumed to be a consequence of rounding mistakes in the original paper. All

the other values in table 2 correspond with the values in Müller and Watson (2018).

The values on the long-run covariability between GDP and consumption in table 2 are closer
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to those estimated by the I(0) model than those that are estimated by the I(1) model. Although

the estimate of the long-run correlation differs only slightly from corresponding estimates in table

1, the confidence intervals that are estimated by the (A,B, c, d) model are wider. This observation

of wider confidence intervals, which is also observed for β and σy|x, is in accordance with what is

concluded in the simulation section of this paper. Furthermore, only the 90% confidence interval

and 90% Bayes credible set of the regression coefficient are different.

For the relationship between short-term interest rates and long-term interest rates, again wider

confidence intervals are constructed by the (A,B, c, d) model than in table 1, as expected from the

simulation. The estimate of the correlation, regression coefficient and conditional variance have

only changed slightly to 0.96, 0.95 and 0.63 respectively. The confidence intervals for β and σy|x are

wider than corresponding Bayes credible sets, which indicates that not restricting the confidence

sets to be supersets of the Bayes credible sets would result into tighter confidence interval for ρ.

Table 8 in Appendix E shows the values of the long-run covariability parameters, confidence sets

and Bayes credible sets, using the (A,B, c, d) model q = 8 (table 8a) and q = 7 (table 8b). By the

decrease of q, the (A,B, c, d) model captures only periodicities that are longer than 17 years. The

long-run correlation coefficient increases in both relationships when q decreases, while the regression

coefficient of regressing consumption onto GDP remains approximately equal. When comparing the

width of the confidence intervals and Bayes credible sets, all confidence sets and intervals are wider

if q = 12 for the interest rates, while the confidence intervals for ρ and Bayes credible sets of ρ, β

and σy|x for GDP and consumption are wider if q = 8.

Table 2: Replication of the long-run covariability estimates, confidence intervals

and credible sets using the (A,B, c, d) model: periods longer than 11 years

ρ β σy|x

a) GDP and consumption
(A,B, c, d) Estimate 0.91 0.77 0.41

67% CI 0.84, 0.96 0.66, 0.87 0.33, 0.53
90% CI 0.71, 0.97 0.48, 0.96 0.29, 0.66

67% Bayes CS 0.84, 0.96 0.66, 0.87 0.33, 0.53
90% Bayes CS 0.71, 0.97 0.58, 0.96 0.29, 0.66

b) Short- and long-term interest rates
(A,B, c, d) Estimate 0.96 0.95 0.63

67% CI 0.92, 0.98 0.87, 1.07 0.49, 0.97
90% CI 0.89, 0.99 0.76, 1.16 0.42, 1.27

67% Bayes CS 0.92, 0.98 0.87, 1.03 0.49, 0.82
90% Bayes CS 0.89, 0.99 0.81, 1.09 0.42, 1.02

Periods longer than 11 years correspond to q = 12 for panel (a) and q = 11 for panel (b). The estimates

are the posterior median based on the I(d) model. The 67% and 90% confidence intervals and Bayes

credible sets based on the posterior are displayed below the estimates. Values that do not correspond

with Mueller and Watson (2018), are coloured in red.
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3.3 Extension results

This subsection presents the results of the investigation on the long-run covariability between the

S&P 500 Index and the S&P 500 Futures and the extension is structured in three sub-analyses.

Analysis of the impact of different data frequencies

In the analysis of the impact of different data frequencies, q is set equal to twelve for the monthly-

weekly analysis and equal to ten for the weekly-daily analysis. These values of q ensure that the

(A,B, c, d)-model captures periodicities longer than the S&P 500 cycle, equal to 3.5 years, and

one year respectively. As expected from figures 12, 13, 14d and 15 (Appendix F), tables 9 and 10

(Appendix G) show that the S&P 500 Index and the S&P 500 Futures based on daily, weekly and

monthly observed data are highly correlated. Effects of the use of weekly data between November

1997 and June 2019, instead of monthly data, consist of slight decreases of the conditional prediction

error and regression coefficient of regressing the S&P 500 Futures on the S&P 500 Index. The use

of daily data instead of weekly data between January 2014 and June 2019 causes a decrease of

estimated long-run correlation coefficient ρ and slight increases of the regression coefficient and

conditional prediction error. β and ρ remain higher than or equal to 0.9 with probability of 90%

despite of described changes. As the effects of the use of daily data instead of weekly data are

not in line with the effects of the use of weekly data instead of monthly data, there are no clear

dependencies observed between considered long-run covariability parameters and data frequencies.

Sub-sample analysis

In order to obtain more information on the relationship between the S&P 500 Index and the S&P 500

Futures, the long-run covariability between both investing market indicators based on weekly and

daily data is investigated on different sub-periods. Figures 14 (weekly data) and 16 (daily data) in

Appendix F plot the S&P 500 Index and S&P 500 Futures growth rates and corresponding long-run

projections and projection coefficients over different sub-samples. Tables 11 and 12 in Appendix H

display the parameter values and confidence intervals that are obtained using the (A,B, c, d) model.

In order to visualize the patterns that the estimates of the long-run covariability parameters follow,

the parameter estimates are plotted in figure 23 in Appendix H based on a rolling window with steps

equal to one week and one day. In this figure, most recent sub-sample of 282 weekly observations or

271 daily observation between November 1997 and June 2019 (weekly data) and January 2014 and
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June 2019 (daily data) is displayed left, and least recent sub-samples in named time intervals are

displayed right. For this analysis, q is set equal to ten, which ensures that periodicities longer than

1.09 years are captured in the weekly analysis and periodicities longer than 0.21 years are captured

in the daily analysis.

The estimate of the long-run correlation parameter does not change during the four constructed

sub-periods, but the tighter confidence intervals from 24 August 2008 to 12 January 2014 indicate a

slightly higher correlation during this sub-period. The tight confidence intervals that are constructed

for all three parameters in the third sub-period are explained by figures 23a, 23c and 23e in Appendix

H, considering the relative low volatility of all three parameter estimates between October 1999 and

January 2012.

In order to analyze the covariability patterns during the last weekly sub-sample from January

2014 to June 2019, the daily data during this period is divided into 5 sub-periods. The correlation

coefficient remains approximately constant during the first four sub-periods, but decreases sharply

during the last sub-period. The regression coefficient and conditional prediction error of regressing

consumption onto GDP during the fifth sub-sample. These observations are confirmed by figures

23b, 23d and 23f in Appendix H. The change in parameter values, occurred on Christmas Eve 2018,

is a consequence of what is called “The worst December since the Great Depression for stocks"

(Isidore, 2018). The crash of the American stock market has had higher long-run covariability

parameter volatilities from this moment as a consequence.

Approximation of the lead time of the S&P 500 Futures

To investigate whether the (A,B, c, d) model can be used to estimate the lead time of the S&P 500

Futures on the S&P 500 Index, there is made use of data frequencies that are equal to one hour, five

minutes and one minute. For each investigated data frequency, the long-run covariability parameters

are calculated on the relationship between the growth rates of the S&P 500 Index and the S&P 500

Futures at equal points in time. After this, the S&P 500 Futures growth rates are shifted backward

n steps in the data set, and the long-run covariability parameters on the relationship between the

growth rates of the S&P 500 Index and the S&P 500 Futures of n steps ahead are calculated. Data

plots for this sub-analysis can be found in Appendix F, while the tables that contain all parameter

values, confidence intervals and Bayes credible sets can be found in Appendix I. For this sub-analysis,

q is kept equal to ten, resulting in captured periodicities of minimum length of 8.24 trading days

(hourly data), 269 trading minutes (data per five minutes) and 54 trading minutes (minutely data).
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The long-run parameter values and confidence intervals on the relationship between the hourly

growth rates of the S&P 500 Index and the S&P 500 Futures are shown in table 13. The estimates

of the long-run correlation coefficient and the regression coefficient are equal for the relationship

between the S&P 500 Futures of one hour ahead and the S&P 500 Index and the relationship

between the investing market indicators observed at the same time. The covariability between the

S&P 500 Index and the S&P 500 Futures of two hours ahead shows lower parameter estimates and as

a consequence of that, the constructed confidence intervals are wider. Results of the investigation of

the long-run covariability between the growth rates of the S&P 500 Index and the S&P 500 Futures

per five minutes are shown in table 14. From this table, a clear decreasing pattern of covariability is

observed when the lead of the S&P 500 Futures increases. The estimates and confidence intervals of

long-run correlation parameter ρ and regression coefficient β are highest when the lead time of the

S&P 500 Futures is equal to zero minutes. The conditional prediction error is estimated equal to

zero in every panel of table 14, as the growth rates of the S&P 500 Index and the S&P 500 Futures

have become too small for the 5 minutes and minutely data frequencies.

Lastly, the relationship between the minutely growth rates of the S&P 500 Index and the S&P

500 Futures is investigated. According to the estimated parameter values, the minutely growth rates

of the S&P 500 Index and S&P 500 Futures are more highly correlated than the growth rates per

five minutes. Table 15 shows that correlation parameter estimates of the long-run correlation and

the regression coefficient are highest when the lead time of the S&P 500 Futures is equal to zero

minutes. The confidence intervals of these parameters follow the pattern that is observed before

and become wider as the lead time of the S&P 500 Futures increases.

As there are multiple relationships of different data frequencies and with different lead times

of the S&P 500 Futures with approximately equal long-run covariability parameter estimates and

confidence intervals, no conclusion can be drawn on the lead time of the S&P 500 Futures by the

use of the (A,B, c, d) model.

4 Conclusion and discussion

This paper builds on previous research by Müller and Watson (2018), who propose methods that

make use of small numbers of approximately normally distributed low-frequency weighted averages

to construct asymptotically efficient confidence intervals for long-run covariability parameters. The

approximately normally distributed low-frequency weighted averages solve the problems of a paucity
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of sample inference and of inference that critically depends on the long-run persistence of the

data. As the (A,B, c, d) model is defined as a flexible parametrization of the so-called local-to-

zero spectrum, confidence intervals can be constructed for a wide range of persistent processes. The

simulation section of this paper shows the accurate form of the constructed confidence intervals that

are obtained from the (A,B, c, d) model for parameters ρ and β. Furthermore, in the replication of

figures I and II and tables I and II from Müller and Watson (2018), no important deviations are

found.

The performance of the methods that are proposed by Müller and Watson (2018) on higher

data frequencies is measured on the basis of the relationship between the S&P 500 Index and the

S&P 500 Futures. First, it is demonstrated that monthly, weekly and daily S&P 500 Index and

S&P 500 Futures growth rates lead to different long-run covariability parameter values, but these

values do not follow a clear pattern as the data frequency increases. From the next sub-sample

analysis, it is derived that the U.S. stock market crash in December 2018 has reduced the long-

run covariability between the S&P 500 Index and the S&P 500 Futures. It is concluded that the

differences between sub-periods are captured and covariability crashes can be traced by the long-run

covariability estimates obtained from the (A,B, c, d) model, and the rolling-window figures that are

plotted from these estimates. Finally, the use of the (A,B, c, d) model in the final sub-analysis does

not result into a clear estimation of the lead time of the S&P 500 Futures on the S&P 500 Index,

as multiple relationships with different Futures lead times and data frequencies are estimated to be

approximately equally correlated in the long-run.

In future research, the performance of the methods used by Müller and Watson (2018) on high

frequency data can be further examined by consideration of other relationships that can be observed

at high frequencies. Consideration of relationships that are less highly correlated, such as exchange

rates or cryptocurrencies, might result into different or more observable differences in parameter

estimates and confidence intervals than observed in this extension. Besides that, the approximation

of the lead time of the S&P 500 Futures on the S&P 500 Index might be possible for researchers

that have more time to perform this analysis and have access to larger data sets of intraday data on

the S&P 500 Index and the S&P 500 Futures. When thinking of extensions on the models that are

proposed by Müller and Watson (2018), development of a multivariate extension of the bivariate

(A,B, c, d) would be a particularly interesting and challenging addition to the existing inference.
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Appendix A. Data sources

Replication data

For the replication part of the paper, data sources and definitions are listed per variable below. The

first list contains all variables that are monthly observe and the second list contains all variables

that are observed on a monthly frequency.

Monthly observed variables

• 10-Year Treasury Constant Maturity Rate (GS10): obtained from FRED. Observed from

1953-04-01 to 2016-11-01.

• 3-Month Treasury Bill: Secondary Market Rate (TB3MS): obtained from FRED. Observed

from 1947-01-01 to 2016-11-01.

Quarterly observed variables

• Gross Domestic Product (GDP): obtained from FRED and deflated by the price index for

personal consumer expenditures (PCECTPI, obtained from FRED). Observed from 1947-01-

01 to 2016-07-01.

• Personal Consumption Expenditures: Durable Goods (PCDG): obtained from FRED and

deflated by the price index for personal consumer expenditures (PCECTPI, obtained from

FRED). Observed from 1947-01-01 to 2016-07-01.

• Personal Consumption Expenditures: Chain-type Price Index (PCECTPI): obtained from

FRED. Observed from 1947-01-01 to 2016-07-01.

• Personal Consumption Expenditures: Services (PCESV): obtained from FRED and deflated

by the price index for personal consumer expenditures (PCECTPI, obtained from FRED).

Observed from 1947-01-01 to 2016-07-01.

• Personal Consumption Expenditures: Nondurable Goods (PCND): obtained from FRED and

deflated by the price index for personal consumer expenditures (PCECTPI, obtained from

FRED). Observed from 1947-01-01 to 2016-07-01.



• Private Nonresidential Fixed Investment (PNFI): obtained from FRED and deflated by the

price index for personal consumer expenditures (PCECTPI, obtained from FRED). Observed

from 1947-01-01 to 2016-07-01.

• Private Residential Fixed Investment (PRFI): obtained from FRED and deflated by the price

index for personal consumer expenditures (PCECTPI, obtained from FRED). Observed from

1947-01-01 to 2016-07-01.

Extension data

Data on the &P 500 Index (SPX) and the S&P 500 Futures (SPXF) are obtained from the investing

database of Investing.com (at https://nl.investing.com/indices/us-spx-500 and https://nl.investing.com/

indices/us-spx-500-futures respectively). Data frequencies and time ranges that are observed are

listed below:

• Observed at a monthly frequency from November 1997 to June 2019

• Observed at a weekly frequency from 02/11/1997 to 09/06/2019

• Observed at a daily frequency from 21/01/2014 to 10/06/2019

• Observed at a hourly frequency from 24/04/2019 4 pm to 18/06/2019 4 pm (UCT +2:00)

• Observed at a 5 minutely frequency from 12/06/2019 7:05 pm to 17/06/2019 21:55 pm (UCT

+2:00)

• Observed at a minutely frequency from 17/06/2019 4:30 pm to 17/06/2019 20:59 pm (UTC

+2:00)

All data on the S&P 500 Index and the S&P 500 Futures is only observed on trading days from

3:30 pm to 10 pm (UTC +2:00).



Appendix B. Additional formulas on methodology

Least favorable distribution algorithm

The basics of the algorithm to find the least favorable distribution Λ∗:

1. Let Θc = {θ1, . . . , θm} be candidate set for support of Λ.

2. Compute ALFD weights and cv such that size of test is equal to α− ε on Θc.

3. Check size control on Θ

• If size is controlled, we are done (compare length to bound generated from cv′ that

induces Λ-weighted size that is equal to α.

• If size violated, add violating θ to Θc and go to step 2.

4. The algorithm executes when 500 consecutive Broyden–Fletcher–Goldfarb–Shanno searches

do not violate the size of Θ.

Invariance and equivariance restrictions on the parameter confidence intervals

Let Hρ, Hβ and Hσ denote confidence intervals for ρ, β and σy|x, then the confidence intervals are

restricted as follows (Müller and Watson, 2018):

ρ ∈ Hρ(X,Y )⇔ ρ ∈ Hρ(bxX, byY )forbxby > 0 (8)

β ∈ Hβ(X,Y )⇔ byβ + byx
bx

∈ Hβ(bxX, byY ) for bx, by 6= 0 and all values of byx (9)

σy|x ∈ Hσ(X,Y )⇔ |by|σy|x ∈ Hσ(bxX, byY + byxX) for bx, by 6= 0 and all values of byx. (10)



Appendix C. Simulation algorithm

Simulation algorithm:

• for every d = −0.5 : 0.1 : 1.5 (d = −0.5,−0.4,−0.3, . . . , 1.4, 1.5)

1. Simulate 2000 I(d) time series with 168 observations of the form:

(1− 0.2yt−1)
( ∞∑
s=0

Γ(s+ d)Ls

Γ(d)Γ(s+ 1)

)
(yt − µ) = εt, (11)

with L the backward-shift operator, εt ∼ iid(0, σ2
ε Γ denoting the Gamma function and

µ some constant.

2. Assign 1000 random pairs of time series integrated of order d (x, y)i, i = 1, . . . , 1000

3. For every parameter γ = ρ, γ = β and γ = σy|x

(a) Construct following 5 vectors with 1000 elements: γestimate, γLB,67%, γUB,67%,

γLB,90% and γUB,90%.

(b) For i = 1, . . . , 1000

i. Algorithm returns γi, γLBMW
67%,i

, γUBMW
67%,i

, γLBMW
90%,i

and γUBMW
90%,i

, where γi de-

notes the estimated long-run covariability parameter for data pair i and γLBMW
67%,i

,

γUBMW
67%,i

, γLBMW
90%,i

and γUBMW
90%,i

denote the lower (LB) and upper (UB) bounds

of the confidence intervals for data pair i of the level that is added as subscript,

estimated by the methods of Mueller and Watson (2018).

ii. Save γi, γLBMW
67%,i

, γUBMW
67%,i

, γLBMW
90%,i

and γUBMW
90%,i

as i−th elements of correspond-

ing 1000× 1 vectors γestimate, γLB,67%, γUB,67%, γLB,90% and γUB,90%.

iii. End

(c) Sort γestimate such that γestimate(1) ≤ γestimate(2) ≤ . . . ≤ γestimate(1000)

(d) Compute parameters:

– γ̂ = mean(γestimate):

Estimated average long-run parameter of 1000 simulated pairs of series of inte-

gration order d

– γ̂LBMW
67%

= mean(γLB67%):

Average of 1000 67% lower bounds that are estimated by a model from Mueller

and Watson (2018) between simulated I(d) processes I(d)



– ̂γUBMW
67%

= mean(γUB,67%):

Average of 1000 67% upper bounds that are estimated by a model from Mueller

and Watson (2018) between simulated I(d) processes I(d)

– γ̂LBMW
90%

= mean(γLB,90%):

Average of 1000 90% lower bounds that are estimated by a model from Mueller

and Watson (2018) between simulated I(d) processes I(d)

– ̂γUBMW
90%

= mean(γUB,90%):

Average of 1000 90% upper bounds that are estimated by a model from Mueller

and Watson (2018) between simulated I(d) processes I(d)

– γLBEm
67%

= γestimate(166):

Empirical 67% lower bound of parameter after computation of 1000 parameter

values from 1000 pairs of simulated I(d) processes

– γUBEm
67%

= γestimate(835):

Empirical 67% upper bound of parameter after computation of 1000 parameter

values from 1000 pairs of simulated I(d) processes

– γLBEm
90%

= γestimate(51):

Empirical 90% lower bound of parameter after computation of 1000 parameter

values from 1000 pairs of simulated I(d) processes

– γUBEm
90%

= γestimate(950):

Empirical 90% upper bound of parameter after computation of 1000 parameter

values from 1000 pairs of simulated I(d) processes

– End

(e) End

4. End

• End

This algorithm is executed for the I(0), I(1) and the (A,B, c, d) algorithms that are provided by

Müller and Watson (2018).



Appendix D. Simulation results

Table 3: Simulated estimates and empirical and Mueller & Watson confidence intervals of ρ

Model to
estimate ρ I(0) I(1) (A,B,c,d)
Simulated
process ρ̂ 67% CI 90% CI ρ̂ 67% CI 90% CI ρ̂ 67% CI 90% CI

I(-0.5) 0.01 -0.32, 0.34 -0.55, 0.56 0.01 -0.41, 0.42 -0.65, 0.66 0.00 -0.23 , 0.23 -0.39, 0.43
(-0.25, 0.26) (-0.41, 0.43) (-0.24, 0.25) (-0.39, 0.40) (-0.25, 0.25) (-0.42, 0.42)

I(-0.4) -0.01 -0.33, 0.31 -0.51, 0.50 -0.01 -0.44, 0.40 -0.66, 0.65 0.03 -0.13, 0.26 -0.35, 0.43
(-0.27, 0.25) (-0.43, 0.41) (-0.25, 0.23) (-0.41, 0.39) (-0.23, 0.28) (-0.40, 0.45)

I(-0.3) 0.00 -0.32,0.31 -0.25, 0.26 0.01 -0.41, 0.42 -0.63, 0.63 -0.01 -0.25, 0.16 -0.42, 0.41
(-0.25, 0.26) (-0.49, 0.50) (-0.24, 0.25) (-0.40, 0.41) (-0.26, 0.24) (-0.43, 0.42)

I(-0.2) -0.01 -0.32, 0.30 -0.49, 0.46 -0.01 -0.41, 0.39 -0.63, 0.63 0.03 -0.20, 0.26 -0.38, 0.46
(-0.27, 0.25) (-0.44, 0.42) (-0.25, 0.23) (-0.41, 0.39) (-0.23, 0.28) (0.41, 0.46)

I(-0.1) 0.00 -0.29, 0.30 -0.49, 0.49 0.01 -0.38, 0.37 -0.60, 0.61 0.00 -0.20, 0.20 -0.38, 0.38
(-0.26, 0.26) (-0.42, 0.43) (-0.24, 0.25) (-0.40, 0.41) (-0.25, 0.26) (-0.44, 0.45)

I(0) 0.00 -0.29, 0.27 -0.49, 0.49 -0.01 -0.40, 0.35 -0.61, 0.58 0.01 -0.21, 0.23 -0.44, 0.45
(-0.26, 0.26) (-0.43, 0.43) (-0.26, 0.24) (-0.42, 0.40) (-0.24, 0.28) (-0.44, 0.47)

I(0.1) 0.00 -0.30, 0.30 -0.47, 0.49 -0.01 -0.36, 0.39 -0.59, 0.59 -0.01 -0.21, 0.21 -0.41, 0.41
(-0.26, 0.26) (-0.43, 0.43) (-0.25, 0.24) (-0.41, -0.41) (-0.28, 0.25) (-0.48, 0.46)

I(0.2) -0.02 -0.32, 0.29 -0.28, 0.24 -0.03 -0.38, 0.34 -0.60, 0.54 -0.02 -0.27, 0.20 -0.42, 0.41
(-0.28, 0.24) (-0.51, 0.48) (-0.28, 0.22) (-0.44, 0.39) (-0.28, 0.25) (-0.50, 0.47)

I(0.3) -0.01 -0.32, 0.31 -0.52, 0.47 -0.01 -0.35, 0.34 -0.56, 0.57 -0.02 -0.27, 0.21 -0.44, 0.38
(-0.26, 0.25) (-0.43, 0.42) (-0.26, 0.24) (-0.42, 0.41) (-0.30, 0.26) (-0.52, 0.49)

I(0.4) 0.01 -0.34, 0.34 -0.54, 0.55 0.01 -0.35, 0.34 -0.55, 0.55 0.00 -0.25, 0.23 -0.43, 0.45
(-0.25, 0.26) (-0.41, 0.42) (-0.25, 0.26) (-0.41, 0.42) (-0.29, 0.29) (-0.52, 0.52)

I(0.5) 0.00 -0.35, 0.37 -0.58, 0.58 0.00 -0.34, 0.35 -0.53, 0.53 -0.01 -0.28, 0.23 -0.46, 0.43
(-0.25, 0.25) (-0.41, 0.41) (-0.25, 0.26) (-0.42, 0.42) (-0.31, 0.29) (-0.54, 0.53)

I(0.6) 0.01 -0.40, 0.42 -0.60, 0.60 0.00 -0.34, 0.31 -0.52, 0.51 0.00 -0.23, 0.27 -0.45, 0.44
(-0.24, 0.25) (-0.40, 0.41) (-0.26, 0.25) (-0.42, 0.42) (-0.31, 0.31) (-0.55, 0.55)

I(0.7) -0.01 -0.41, 0.41 -0.62, 0.62 0.02 -0.29, 0.33 -0.48, 0.52 0.01 -0.27, 0.28 -0.46, 0.42
(-0.25, 0.23) (-0.41, 0.39) (-0.24, 0.27) (-0.41, 0.44) (-0.32, 0.33) (-0.56, 0.56)

I(0.8) -0.01 -0.50, 0.47 -0.73, 0.69 -0.01 -0.31, 0.29 -0.50, 0.51 -0.01 -0.28, 0.27 -0.46, 0.46
(-0.24, 0.47) (-0.40, 0.37) (-0.26, 0.25) (-0.43, 0.42) (-0.35, 0.32) (-0.57, 0.55)

I(0.9) -0.02 -0.56, 0.51 -0.77, 0.76 0.00 -0.29, 0.30 -0.48, 0.44 0.00 -0.30, 0.30 -0.48, 0.47
(-0.24, 0.21) (-0.38, 0.36) (-0.26, 0.26) (-0.42, 0.43) (-0.34, 0.34) (-0.55, 0.55)

I(1) -0.03 -0.63, 0.59 -0.82, 0.80 -0.02 -0.31, 0.27 -0.51, 0.48 -0.01 -0.32, 0.32 -0.48, 0.47
(0.24, 0.18) (-0.37, 0.32) (-0.28, 0.24) (-0.44, 0.41) (-0.34, 0.33) (-0.54, 0.53)

I(1.1) 0.03 -0.66, 0.70 -0.86, 0.87 0.01 -0.29, 0.32 0.45, 0.50 0.00 -0.32, 0.32 -0.49, 0.49
(-0.17, 0.22) (-0.30, 0.35) (-0.25, 0.27) (-0.42, 0.44) (-0.33, 0.35) (-0.51, 0.52)

I(1.2) -0.03 -0.74, 0.71 -0.90, 0.88 -0.03 -0.33, 0.29 -0.53, 0.50 0.01 -0.33, 0.34 -0.48, 0.49
(-0.21, 0.16) (-0.33, 0.28) (-0.28, 0.23) (-0.44, 0.40) (-0.33, 0.35) (-0.50, 0.52)

I(1.3) -0.02 -0.77, 0.77 -0.91, 0.92 0.00 -0.34, 0.34 -0.51, 0.55 -0.01 -0.45, 0.39 -0.64, 0.64
(-0.19, 0.16) (-0.31, 0.28) (-0.25, 0.26) (-0.42, 0.42) (-0.35, 0.33) (-0.50, 0.48)

I(1.4) -0.01 -0.82, 0.82 -0.94, 0.94 0.01 -0.40, 0.41 -0.60, 0.59 0.00 -0.47, 0.47 -0.64, 0.64
(-0.16, 0.15) (-0.27, 0.26) (-0.24, 0.25) (-0.40, 0.41) (-0.34, 0.34) (-0.47, 0.47)

I(1.5) 0.02 -0.86, 0.87 -0.95, 0.96 0.00 -0.46, 0.47 -0.65, 0.67 0.01 -0.47, 0.47 -0.66, 0.66
(NaN, NaN) (NaN, NaN) (-0.23, 0.24) (-0.39, 0.40) (-0.32, 0.34) (-0.44, 0.46)

Obtained estimates and confidence intervals for ρ from different simulated (fractionally) integrated processes and different models. The model in

the upper row indicates the model that is used to estimate the values, the left column indicates the integration order of the simulated processes. The

empirical confidence intervals are shown next to the estimates, the average Müller &Watson confidence intervals are given underneath corresponding

empirical CI’s between brackets. Simulated data series contained 168 observations and periods longer than 14 observations correspond to q = 12.



Table 4: Simulated estimates and confidence intervals of β

Model to
estimate β I(0) I(1) (A,B,c,d)
Simulated
process β̂ 67% CI 90% CI β̂ 67% CI 90% CI β̂ 67% CI 90% CI

I(-0.5) 0.00 -0.32, 0.33 -0.59, 0.61 0.00 -0.43, 0.43 -0.74, 0.81 -0.01 -0.31, 0.28 -0.59, 0.51
(-0.30, 0.31) (-0.59, 0.61) (-0.30, 0.31) (-0.54, 0.55) (-0.33, 0.31) (-0.58, 0.57)

I(-0.4) -0.01 -0.32, 0.30 -0.56, 0.57 -0.01 -0.43, 0.41 -0.78, 0.77 0.03 -0.25, 0.30 -0.45, 0.59
(-0.31, 0.30) (-0.54, 0.53) (-0.31, 0.29) (-0.54, 0.52) (-0.30, 0.34) (-0.55, 0.60)

I(-0.3) 0.01 -0.30, 0.33 -0.52, 0.55 0.01 -0.39, 0.43 -0.70, 0.79 -0.01 -0.31, 0.27 -0.55, 0.50
(-0.30, 0.31) (-0.54, 0.55) (-0.29, 0.32) (-0.53, 0.56) (-0.34, 0.31) (-0.60, 0.57)

I(-0.2) -0.02 -0.31, 0.29 -0.59, 0.50 -0.03 -0.42, 0.37 -0.73, 0.67 0.02 -0.27, 0.33 -0.52, 0.51
(-0.33, 0.39) (-0.56, 0.52) (-0.33, 0.28) (-0.56, 0.51) (-0.31, 0.34) (-0.58, 0.62)

I(-0.1) 0.00 -0.28, 0.29 -0.52, 0.51 -0.01 -0.38, 0.39 -0.67, 0.70 0.00 -0.26, 0.27 -0.51, 0.48
(-0.30, 0.31) (-0.53, 0.54) (-0.30, 0.31) (-0.53, 0.55) (-0.33, 0.33) (-0.60, 0.61)

I(0) 0.00 -0.29, 0.26 -0.55, 0.50 -0.01 -0.40, 0.36 -0.68, 0.67 0.02 -0.30, 0.32 -0.52, 0.59
(-0.31, 0.30) (-0.54, 0.53) (-0.32, 0.29) (-0.55, 0.52) (-0.32, 0.37) (-0.63, 0.69)

I(0.1) 0.00 -0.29, 0.29 -0.53, 0.50 -0.01 -0.38. 0.36 -0.69, 0.69 -0.02 -0.32, 0.28 -0.57, 0.49
(-0.31, 0.31) (-0.54, 0.54) (-0.31, 0.29) (-0.55, 0.52) (-0.37, 0.32) (-0.69, 0.64)

I(0.2) -0.02 -0.33, 0.28 -0.53, 0.53 -0.03 -0.39, 0.34 -0.66, 0.61 -0.02 -0.32, 0.27 -0.53, 0.47
(-0.32, 0.29) (-0.56, 0.53) (-0.34, 0.28) (-0.57, 0.52) (-0.37, 0.32) (-0.72. 0.68)

I(0.3) -0.01 -0.32, 0.31 -0.58, 0.53 0.00 -0.36, 0.35 -0.64, 0.65 -0.02 -0.31, 0.26 -0.53, 0.48
(-0.32, 0.30) (-0.56, 0.54) (-0.31, 0.31) (-0.55, 0.54) (-0.38, 0.33) (-0.76, 0.71)

I(0.4) 0.01 -0.33, 0.36 -0.58, 0.59 0.01 -0.33, 0.34 -0.59, 0.61 -0.01 -0.30, 0.32 -0.55, 0.55
(-0.29, 0.31) (-0.52, 0.54) (-0.30, 0.31) (-0.53, 0.54) (-0.39, 0.37) (-0.80, 0.79)

I(0.5) -0.01 -0.37, 0.37 -0.69, 0.61 0.00 -0.32, 0.34 -0.60, 0.58 -0.02 -0.36, 0.30 -0.54, 0.52
(-0.32, 0.30) (-0.56, 0.54) (-0.31, 0.32) (-0.60, 0.58) (-0.41, 0.38) (-0.84, 0.82)

I(0.6) 0.01 -0.41, 0.42 -0.74, 0.75 0.00 -0.33, 0.,32 -0.56, 0.61 0.01 -0.29, 0.32 -0.60, 0.60
(-0.30, 0.33) (-0.54, 0.57) (-0.31, 0.31) (-0.54, 0.54) (-0.39, 0.41) (-0.83, 0.85)

I(0.7) -0.01 -0.42, 0.43 -0.79, 0.77 0.02 -0.29, 0.32 -0.50, 0.58 0.00 -0.31, 0.35 -0.60, 0.53
(-0.32, 0.31) (-0.56, 0.55) (-0.29, 0.33) (-0.53, 0.57) (-0.43, 0.44) (-0.89, 0.90)

I(0.8) -0.01 -0.48, 0.47 -0.90, 0.91 -0.01 -0.31, 0.29 -0.56, 0.52 -0.01 -0.38, 0.31 -0.63, 0.60
(-0.32, 0.29) (-0.55, 0.53) (-0.31, 0.29) (-0.54, 0.52) (-0.48, 0.45) (-0.92, 0.89)

I(0.9) -0.02 -0.52, 0.51 -1.00, 0.99 0.01 -0.29, 0.31 -0.51, 0.51 0.00 -0.37, 0.35 -0.59, 0.67
(-0.32, 0.28) (-0.54, 0.51) (-0.30, 0.32) (-0.53, 0.55) (-0.46, 0.49) (0.89, 0.92)

I(1) -0.06 -0.67, 0.55 -1.21, 1.07 -0.02 -0.32, 0.28 -0.53, 0.48 -0.02 -0.40, 0.36 -0.75, 0.63
(-0.36, 0.25) (-0.59, 0.48) (-0.33, 0.29) (-0.56, 0.52) (-0.50, 0.47) (-0.91, 0.87)

I(1.1) 0.02 -0.71, 0.73 -1.26, 1.30 0.01 -0.28, 0.32 -0.54, 0.51 -0.01 -0.42, 0.39 -0.73, 0.67
(-0.28, 0.32) (-0.51, 0.55) (-0.28, 0.32) (-0.53, 0.55) (-0.50, 0.49) (-0.88, -/87)

I(1.2) -0.03 -0.79, 0.75 -1.51, 1.43 -0.02 -0.33, 0.30 -0.60, 0.54 0.01 -0.39, 0.40 -0.66, 0.75
(-0.34, 0.29) (-0.58, 0.52) (-0.34, 0.29) (-0.57, 0.52) (-0.47, 0.50) (-0.83, 0.85)

I(1.3) -0.05 -0.93, 0.83 -1.79, 1.81 0.00 -0.34, 0.34 -0.16, 0.63 -0.03 -0.46, 0.41 -0.85, 0.78
(-0.38, 0.28) (-0.63, 0.53) (-0.32, 0.31) (-0.56, 0.55) (-0.50, 0.45) (-0.85, 0.79)

I(1.4) -0.01 -0.87, 0.88 -1.91, 1.87 0.01 -0.40, 0.41 -0.70, 0.78 -0.02 -0.53, 0.54 -1.04, 0.82
(-0.31, 0.29) (-0.54, 0.52) (-0.30, 0.31) (-0.53, 0.55) (-0.51, 0.45) (-0.85, 0.79)

I(1.5) 0.07 -0.88, 1.04 -1.78, 1.98 0.01 -0.42, 0.49 -0.78, 0.83 0.01 -0.53, 0.56 -0.98, 1.06
(-0.25, 0.37) (-0.48, 0.60) (-0.29, 0.31) (-0.52, 0.55) (-0.43, 0.46) (-0.76, 0.79)

Obtained estimates and confidence intervals for β from different simulated (fractionally) integrated processes and different models. The model in

the upper row indicates the model that is used to estimate the values, the left column indicates the integration order of the simulated processes.

The empirical confidence intervals are shown next to the estimates, the average Müller & Watson confidence intervals are given underneath

corresponding empirical CI’s between brackets. Simulated data series contained 168 observations and periods longer than 14 observations

correspond to q = 12.



Table 5: Simulated estimates and confidence intervals of σy|x

Model to
estimate σy|x

I(0) I(1) (A,B,c,d)
Simulated
process σ̂y|x 67% CI 90% CI σ̂y|x 67% CI 90% CI σ̂y|x 67% CI 90% CI

I(-0.5) 0.00 0.00, 0.00 0.00, 0.00 0.00 0.00, 0.00 0.00, 0.00 0.12 0.09, 0.15 0.07, 0.17
(0.00, 0.00) (0.00, 0.00) (0.00, 0.00) (0.00, 0.00) (0.10, 0.15) (0.09, 0.19)

I(-0.4) 0.00 0.00, 0.00 0.00, 0.00 0.00 0.00, 0.00 0.00, 0.01 0.15 0.12, 0.18 0.10, 0.21
(0.00, 0.00) (0.00, 0.00) (0.00, 0.00 (0.00, 0.01) (0.12, 0.19) (0.11, 0.23)

I(-0.3) 0.00 0.00, 0.00 0.00, 0.00 0.00 0.00, 0.01 0.00, 0.01 0.18 0.14, 0.23 0.12, 0.25
(0.00, 0.00) (0.00. 0.01) (0.00, 0.01) (0.00, 0.01) (0.15, 0.24) (0.13, 0.29)

I(-0.2) 0.00 0.00. 0.01 0.00. 0.01 0.01 0.00. 0.01 0.00. 0.01 0.22 0.18, 0.27 0.15, 0.30
(0.00. 0.01) (0.00. 0.01) (0.00. 0.01) (0.00. 0.01) (0.18, 0.29) (0.16, 0.36)

I(-0.1) 0.01 0.00. 0.01 0.00. 0.01 0.01 0.00. 0.01 0.00, 0.02 0.28 0.22, 0.34 0.19, 0.38
(0.00. 0.01) (0.00. 0.01) (0.01, 0.01) (0.00, 0.02) (0.23, 0.37) (0.20, 0.46)

I(0) 0.01 0.01, 0.01 0.00, 0.02 0.01 0.01, 0.02 0.00, 0.02 0.36 0.28, 0.43 0.23, 0.48
(0.01, 0.02) (0.00, 0.02) (0.01, 0.02) (0.01, 0.03) (0.29, 0.46) (0.25, 0.59)

I(0.1) 0.01 0.01, 0.02 0.01, 0.03 0.02 0.01, 0.02 0.01, 0.03 0.45 0.35, 0.54 0.30, 0.60
(0.01, 0.02) (0.01, 0.03) (0.01, 0.03) (0.01, 0.04) (0.36, 0.58) (0.31, 0.75)

I(0.2) 0.02 0.01, 0.03 0.01, 0.04 0.02 0.01, 0.03 0.01, 0.05 0.56 0.45, 0.67 0.37, 0.77
(0.02, 0.04) (0.01, 0.05) (0.02, 0.04) (0.01, 0.05) (0.45, 0.74) (0.39, 0.97)

I(0.3) 0.04 0.02, 0.05 0.02, 0.07 0.03 0.02, 0.05 0.01, 0.07 0.70 0.55, 0.85 0.46, 0.97
(0.03, 0.06) (0.02, 0.09) (0.02, 0.06) (0.02, 0.08) (0.56, 0.94) (0.49, 1.26)

I(0.4) 0.06 0.03, 0.09 0.02, 0.12 0.05 0.03, 0.07 0.02, 0.10 0.92 0.71, 1.12 0.59, 1.27
(0.04, 0.10) (0.03, 0.15) (0.03, 0.08) (0.03, 0.12) (0.74, 1.25) (0.64, 1.72)

I(0.5) 0.11 0.06, 0.15 0.04, 0.23 0.07 0.04, 0.10 0.03, 0.13 1.17 0.92, 1.44 0.74, 1.65
(0.08, 0.18) (0.06, 0.26) (0.05, 0.12) (0.04, 0.17) (0.93, 1.63) (0.81, 2.24)

I(0.6) 0.19 0.09, 0.27 0.06, 0.40 0.11 0.06, 0.15 0.04, 0.20 1.49 1.13, 1.87 0.94, 2.10
(0.13, 0.31) (0.10, 0.45) (0.08, 0.018) (0.06, 0.25) (1.18, 2.11) (1.03, 2.91)

I(0.7) 0.35 0.16, 0.52 0.10, 0.84 0.16 0.09, 0.23 0.06, 0.31 2.02 1.55, 2.50 1.18, 2.87
(0.25, 0.59) (0.20, 0.84) (0.12, 0.27) (0.09, 0.39) (1.59, 2.97) (1.39, 4.06)

I(0.8) 0.65 0.26, 0.99 0.17, 1.79 0.24 0.14, 0.35 0.09, 0.46 2.74 2.03, 3.42 1.65, 4.08
(0.46, 1.09) (0.36, 1.56) (0.17, 0.41) (0.14, 0.58) (2.14, 4.14) (1.87, 5.53)

I(0.9) 1.24 0.45, 1.95 0.29, 3.06 0.39 0.23, 0.56 0.16, 0.70 3.68 2.70, 4.57 2.20, 5.35
(0.88, 2.08) (0.69, 2.98) (0.28, 0.66) (0.22, 0.94) (2.84, 5.76) (2.49, 7.43)

I(1) 2.47 0.80, 3.71 0.50, 7.34 0.62 0.37, 0.87 0.25, 1.11 4.79 3.58, 6.12 2.82, 6.86
(1.76, 4.15) (1.38, 5.93) (0.44, 1.04) (0.35, 1.49) (3.67, 7.60) (3.23, 9.58)

I(1.1) 4.96 1.44, 7.73 0.87, 15.04 1.04 0.62, 1.48 0.43, 1.94 6.59 4.69, 8.44 3.82, 9.85
(3.54, 8.34) (2.77, 11.93) (0.75, 1.76) (0.58, 2.51) (4.91, 10.69) (4.35, 15.66)

I(1.2) 10.70 2.52, 18.25 1.32, 36.00 1.81 1.03, 2.56 0.68, 3.32 8.93 6.34, 11.36 4.88, 13.57
(7.64, 17.99) (5.98, 25.72) (1.29, 3.04) (1.01, 4.34) (6.57, 14.72) (5.86, 19.91)

I(1.3) 23.83 4.84, 38.02 2.42, 80.41 3.18 2.69, 4.63 1.19, 6.38 11.99 8.08, 15.99 6.49, 19.42
(17.03, 40.09) (13.33, 57.31) (2.27, 5.35) (1.78, 7.65) (8.69, 19.95) (7.80, 31.42)

I(1.4) 48.17 8.30, 77.03 3.98, 181.53 5.75 2.82, 8.51 1.95, 13.03 16.99 10.95, 23.51 8.34, 28.17
(34.41, 81.02) (26.93, 115.83) (4.11, 9.67) (3.22, 13.83) (11.97, 28.67) (10.91, 40.75)

I(1.5) 103.91 14.16, 157.11 6.50, 401.98 10.64 4.92, 16.21 3.18, 25.15 23.46 15.23, 31.60 11.32, 40.96
(74.23, 274.76) (58.09, 249.84) (7.60, 17.89) (.95, 25.57) (16.03, 42.09) (14.77, 80.08)

Obtained estimates and confidence intervals for σy|x from different simulated (fractionally) integrated processes and different models. The model

in the upper row indicates the model that is used to estimate the values, the left column indicates the integration order of the simulated

processes. The empirical confidence intervals are shown next to the estimates, the average Müller & Watson confidence intervals are

given underneath corresponding empirical CI’s between brackets. Simulated data series contained 168 observations and periods longer than 14

observations correspond to q = 12.



(a) Histograms and bounds of 90% confidence intervals

of ρ for simulated processes of integration order d = −0.5.

(b) Histograms and bounds of 90% confidence intervals

of ρ for simulated processes of integration order d = 0.

(c) Histograms and bounds of 90% confidence intervals

of ρ for simulated processes of integration order d = 0.5.

(d) Histograms and bounds of 90% confidence intervals

of ρ for simulated processes of integration order d = 1.

(e) Histograms and bounds of 90% confidence intervals

of ρ for simulated processes of integration order d = 1.5.

Figure 3: Histogram of ρ for simulated processes of different integration orders d. 90% lower (LB) and upper

(UB) bounds of empirical confidence intervals (em) and average confidence intervals that are estimated by use of the

(A,B, c, d) model from Müller and Watson (2018) (MW), are indicated at the x-axis.



(a) Histograms and bounds of 90% confidence intervals

of β for simulated processes of integration order d = −0.5.

(b) Histograms and bounds of 90% confidence intervals

of β for simulated processes of integration order d = 0.

(c) Histograms and bounds of 90% confidence intervals

of β for simulated processes of integration order d = 0.5.

(d) Histograms and bounds of 90% confidence intervals

of β for simulated processes of integration order d = 1.

(e) Histograms and bounds of 90% confidence intervals

of β for simulated processes of integration order d = 1.5.

Figure 4: Histogram of β for simulated processes of different integration orders d. 90% lower (LB) and upper

(UB) bounds of empirical confidence intervals (em) and average confidence intervals that are estimated by use of the

(A,B, c, d) model from Müller and Watson (2018) (MW), are indicated at the x-axis.



(a) Histograms and bounds of 90% confidence intervals of

σy|x for simulated processes of integration order d = −0.5.

(b) Histograms and bounds of 90% confidence intervals

of σy|x for simulated processes of integration order d = 0.

(c) Histograms and bounds of 90% confidence intervals of

σy|x for simulated processes of integration order d = 0.5.

(d) Histograms and bounds of 90% confidence intervals

of σy|x for simulated processes of integration order d = 1.

(e) Histograms and bounds of 90% confidence intervals of

σy|x for simulated processes of integration order d = 1.5.

Figure 5: Histogram of σy|x for simulated processes of different integration orders d. 90% lower (LB) and upper

(UB) bounds of empirical confidence intervals (em) and average confidence intervals that are estimated by use of the

(A,B, c, d) model from Müller and Watson (2018) (MW), are indicated at the x-axis.



Appendix E. Sensitivity analysis of replication results

Data plots

GDP and consumption

Figure 6: Panel (a) plots sample averages of consumption and GDP over 4 periods. Panel (b) is a scatter plot of the averages

in (a).

Figure 7: Panel (a) plots sample averages of consumption and GDP over 8 periods. Panel (b) is a scatter plot of the averages

in (a).

Figure 8: Panel (a) plots the projections of consumption and GDP onto the low-frequency consine terms with added sample

means, q = 8. Panel (b) is a scatterplot of the data projections (small dots) and the projection coefficients (XjT , YjT ) (large

dots).



Figure 9: Panel (a) plots the projections of consumption and GDP onto the low-frequency consine terms with added sample

means, q = 16. Panel (b) is a scatterplot of the data projections (small dots) and the projection coefficients (XjT , YjT ) (large

dots).

Short-term and long-term interest rates

Figure 10: Panel (a) plots the projections of the short- and long-term interest rates onto the low-frequency cosine terms

with added sample means, q = 7. Panel (b) is a scatterplot of the projection coefficients (XjT , YjT ) from (a).

Figure 11: Panel (a) plots the projections of the short- and long-term interest rates onto the low-frequency cosine terms

with added sample means, q = 15. Panel (b) is a scatterplot of the projection coefficients (XjT , YjT ) from (a).



Long-run covariability estimates

Table 6: Replication of table 1: periods longer than 17 years

ρ β σy|x

(a) GDP and consumption
I(0) Estimate 0.95 0.75 0.28

67% CI 0.89, 0.97 0.65, 0,84 0.23, 0.39
90% CI 0.82, 0.98 0.58, 0.91 0.19, 0.50

I(1) Estimate 0.99 0.81 0.18
67% CI 0.97, 0.99 0.76, 0.86 0.15, 0.26
90% CI 0.95, 0.99 0.72, 0.90 0.13, 0.32

(b) Short- and long-term interest rates
I(0) Estimate 0.98 0.97 0.59

67% CI 0.94, 0.99 0.88, 1.06 0.48, 0.86
90% CI 0.90, 0.99 0.81, 1.13 0.41, 1.13

I(1) Estimate 0.97 0.95 0.40
67% CI 0.93, 0.98 0.85, 1.04 0.32, 0.58
90% CI 0.88, 0.99 0.77, 1.13 0.27, 0.76

Periods longer than 17 years correspond to q = 8 for panel (a) and q = 7 for panel (b). The

estimates are the maximum likelihood estimates found by the large-sample distribution

of the cosine transforms for the I(0) and I(1) models. 67% and 90% confidence intervals

are displayed below the estimates.

Table 7: Replication of table 1: periods longer than 8 years

ρ β σy|x

(a) GDP and consumption
I(0) Estimate 0.94 0.76 0.40

67% CI 0.89, 0.96 0.69, 0,84 0.35, 0.50
90% CI 0.85, 0.97 0.63, 0.89 0.31, 0.58

I(1) Estimate 0.93 0.77 0.43
67% CI 0.89, 0.96 0.70, 0.85 0.37, 0.54
90% CI 0.84, 0.97 0.64, 0.91 0.34, 0.62

(b) Short- and long-term interest rates
I(0) Estimate 0.96 0.91 0.81

67% CI 0.93, 0.97 0.84, 0.99 0.69, 1.01
90% CI 0.90, 0.98 0.78, 1.04 0.62, 1.18

I(1) Estimate 0.84 0.55 0.68
67% CI 0.74, 0.90 0.46, 0.65 0.58, 0.85
90% CI 0.64, 0.92 0.39, 0.72 0.52, 0.99

Periods longer than 8 years correspond to q = 16 for panel (a) and q = 15 for panel (b).

The estimates are the maximum likelihood estimates found by the large-sample distri-

bution of the cosine transforms for the I(0) and I(1) models. 67% and 90% confidence

intervals are displayed below the estimates.



Table 8: Replication of table 2: periods longer than 17 years

ρ β σy|x

a) GDP and consumption
(A,B, c, d) Estimate 0.95 0.76 0.30

67% CI 0.85, 0.97 0.60, 0.85 0.23, 0.47
90% CI 0.75, 0.98 0.48, 1.01 0.20, 0.65

67% Bayes CS 0.89, 0.97 0.67, 0.85 0.23, 0.40
90% Bayes CS 0.83, 0.98 0.59, 0.92 0.20, 0.51

b) Short- and long-term interest rates
(A,B, c, d) Estimate 0.96 0.96 0.60

67% CI 0.92, 0.98 0.84, 1.07 0.45, 1.00
90% CI 0.85, 0.99 0.74, 1.18 0.38, 1.36

67% Bayes CS 0.92, 0.98 0.87, 1.05 0.45, 0.84
90% Bayes CS 0.87, 0.99 0.79, 1.13 0.38, 1.11

Periods longer than 17 years correspond to q = 8 for panel (a) and q = 7 for panel (b).

The estimates are the posterior median based on the I(d) model. The 67% and 90%

confidence intervals and Bayes credible sets based on the posterior are displayed below

the estimates.



Appendix F. Extension data plots

Plots on monthly growth rates

Figure 12: Monthly growth rates (in %) of S&P 500 Index and S&P 500 Futures from November 1997 to June 2019

Plots on weekly growth rates

Figure 13: Weekly growth rates (in %) of S&P 500 Index and S&P 500 Futures from November 1997 to June 2019



(a) Weekly market S&P 500 Index and Futures growth rates (%) from 02/11/1997 to

23/03/2003

(b) Weekly market S&P 500 Index and Futures growth rates (%) from 24/03/2003 to

17/08/2008

(c) Weekly market S&P 500 Index and Futures growth rates (%) from 24/08/2008 to

12/01/2014

(d) Weekly S&P 500 Index and Futures growth rates (%) from 19/01/2014 to 09/06/2019

Figure 14: Weekly growth rates (in %) of S&P 500 Index and S&P 500 Futures observed during four sub-samples



Plots on daily growth rates

Figure 15: Daily growth rates (in %) of S&P 500 Index and S&P 500 Futures from 21/01/2104 to 09/06/2019

(a) Daily market S&P 500 Index and Futures growth rates (%) from 21/01/2014 to

18/02/2015

(b) Daily market S&P 500 Index and Futures growth rates (%) from 19/02/2015 to

18/03/2016

(c) Daily market S&P 500 Index and Futures growth rates (%) from 21/03/2016 to

17/04/2017



(d) Daily S&P 500 Index and Futures growth rates (%) from 18/04/2017 to 15/05/2018

(e) Daily S&P 500 Index and Futures growth rates (%) from 16/05/2018 to 10/06/2019

Figure 16: Daily growth rates (in %) of S&P 500 Index and S&P 500 Futures observed during five sub-samples



Plots on hourly growth rates

Figure 17: Hourly growth rates (in %) of S&P 500 Index and S&P 500 Futures from 24/04/2019 4pm to 18/06/2019

4pm (UTC +2:00)

(a) Hourly growth rates (in %) of S&P 500 Index and one hour ahead S&P 500 Futures

(b) Hourly growth rates (in %) of S&P 500 Index and two hours ahead S&P 500 Futures

Figure 18: Hourly growth rates (in %) of S&P 500 Index and n hours ahead S&P 500 Futures from 24/04/2019

4pm to 18/06/2019 4pm (UTC +2:00), n = 1, 2



Plots on growth rates per five minutes

Figure 19: Growth rates (in %) of S&P 500 Futures and S&P 500 Index per 5 minutes from 12/06/2019 07:05 pm

to 19/06/2019 9:55 pm (UTC +2:00)

(a) Growth rates (in %) of S&P 500 Index and five minutes ahead S&P 500 Futures

(b) Growth rates (in %) of S&P 500 Index and ten minutes ahead S&P 500 Futures

(c) Growth rates (in %) of S&P 500 Index and fifteen minutes ahead S&P 500 Futures



(d) Growth rates (in %) of S&P 500 Index and twenty minutes ahead S&P 500 Futures

(e) Growth rates (in %) of S&P 500 Index and 25 minutes ahead S&P 500 Futures

(f) Growth rates (in %) of S&P 500 Index and 30 minutes ahead S&P 500 Futures

Figure 20: Growth rates (in %) of S&P 500 Index and n ∗ 5 minutes ahead S&P 500 Futures per 5 minutes from

12/06/2019 7:05 pm to 17/06/2019 21:55 pm (UTC +2:00), n = 1, 2, 3, 4, 5, 6

Figure 21: Minutely growth rates (in %) of S&P 500 Futures and S&P 500 Index on 17/06/2019 from 4:30 pm to

20:59 pm (UTC +2:00)



Plots on minutely growth rates

(a) Minutely growth rates (in %) of S&P 500 Index and one minute ahead S&P 500

Futures

(b) Minutely growth rates (in %) of S&P 500 Index and two minutes ahead S&P 500

Futures

(c) Minutely growth rates (in %) of S&P 500 Index and three minutes ahead S&P 500

Futures

(d) Minutely growth rates (in %) of S&P 500 Index and four minutes ahead S&P 500

Futures

Figure 22: Minutely growth rates (in %) of S&P 500 Index and n minutes ahead S&P 500 Futures on 17/06/2019

from 4:30 pm to 21:55 pm (UTC +2:00), n = 1, 2, 3, 4



Appendix G. Analysis of the impact of different data frequencies

Table 9: (A,B, c, d)-model parameters on monthly and weekly data:

periods longer than 3.61 years

ρ β σy|x

a) Monthly data
Estimate 0.99 1.01 0.01
67% CI 0.99, 0.99 1.01, 1.01 0.01, 0.02
90% CI 0.98, 0.99 1.00, 1.02 0.01, 0.02

67% Bayes CS 0.99, 0.99 1.01, 1.01 0.01, 0.02
90% Bayes CS 0.98, 0.99 1.00, 1.02 0.01, 0.02

b) Weekly data
Estimate 0.99 1.00 0.00
67% CI 0.99, 0.99 1.00, 1.00 0.00, 0.00
90% CI 0.98, 0.99 1.00, 1.01 0.00, 0.00

67% Bayes CS 0.99, 0.99 1.00, 1.00 0.00, 0.00
90% Bayes CS 0.98, 0.99 1.00, 1.01 0.00, 0.00

Periods longer than 3.61 years correspond to q = 12. Growth rates are observed from

November 1997 to June 2019. The estimates are the posterior median based on the I(d)

model. The 67% and 90% confidence intervals and Bayes credible sets based on the

posterior are displayed below the estimates.

Table 10: (A,B, c, d)-model parameters on weekly and daily data:

periods longer than 1.09 years

ρ β σy|x

a) Weekly data
Estimate 0.99 1.01 0.01
67% CI 0.99, 0.99 1.00, 1.01 0.00, 0.01
90% CI 0.98, 0.99 0.99, 1.02 0.00, 0.01

67% Bayes CS 0.99, 0.99 1.00, 1.01 0.00, 0.01
90% Bayes CS 0.98, 0.99 0.99, 1.02 0.00, 0.01

b) Daily data
Estimate 0.97 1.16 0.01
67% CI 0.94, 0.98 1.07, 1.25 0.01, 0.01
90% CI 0.90, 0.99 0.90, 1.32 0.01, 0.02

67% Bayes CS 0.94, 0.98 1.07, 1.25 0.01, 0.01
90% Bayes CS 0.91, 0.99 0.99, 1.32 0.01, 0.02

Periods longer than 1.09 years correspond to q = 10. Growth rates are observed from

January 2014 to June 2019.The estimates are the posterior median based on the I(d)

model. The 67% and 90% confidence intervals and Bayes credible sets based on the

posterior are displayed below the estimates.



Appendix H. Sub-sample analysis

Table 11: (A,B, c, d)-model parameters on weekly data: periods

longer than 1.09 years

ρ β σy|x

a) Sub-sample from 02/11/1997 to 23/03/2003
Estimate 0.99 1.00 0.02
67% CI 0.98, 0.99 0.99, 1.01 0.01, 0.02
90% CI 0.98, 0.99 0.98, 1.02 0.01, 0.03

67% Bayes CS 0.98, 0.99 0.99, 1.01 0.01, 0.02
90% Bayes CS 0.98, 0.99 0.98, 1.02 0.01, 0.03

b) Sub-sample from 30/03/2003 to 17/08/2008
Estimate 0.99 1.01 0.01
67% CI 0.98, 0.99 1.00, 1.02 0.00, 0.01
90% CI 0.98, 0.99 1.00, 1.02 0.00, 0.01

67% Bayes CS 0.98, 0.99 1.00, 1.02 0.00, 0.01
90% Bayes CS 0.98, 0.99 1.00, 1.02 0.00, 0.01

c) Sub-sample from 24/08/2008 to 12/01/2014
Estimate 0.99 0.99 0.01
67% CI 0.99, 0.99 0.99, 0.99 0.00, 0.01
90% CI 0.99, 0.99 0.99, 0.99 0.00, 0.01

67% Bayes CS 0.99, 0.99 0.99, 0.99 0.00, 0.01
90% Bayes CS 0.99, 0.99 0.99, 0.99 0.00, 0.01

d) Sub-sample from 19/01/2014 to 09/06/2019
Estimate 0.99 1.01 0.01
67% CI 0.99, 0.99 1.00, 1.01 0.00, 0.01
90% CI 0.98, 0.99 0.99, 1.02 0.00, 0.01

67% Bayes CS 0.99, 0.99 1.00, 1.01 0.00, 0.01
90% Bayes CS 0.98, 0.99 0.99, 1.02 0.00, 0.01

Periods longer than 1.09 years correspond to q = 10. Growth rates are observed for

three disjoint sub-periods between 02/11/1997 and 12/01/2014. The estimates are the

posterior median based on the I(d) model. The 67% and 90% confidence intervals and

Bayes credible sets based on the posterior are displayed below the estimates.



Table 12: (A,B, c, d)-model parameters on daily data: periods longer

than 0.21 years

ρ β σy|x

a) Sub-sample from 20/01/2014 to 18/02/2015
Estimate 0.98 1.07 0.01
67% CI 0.98, 0.99 1.01, 1.14 0.01, 0.02
90% CI 0.97, 0.99 1.00, 1.15 0.01, 0.02

67% Bayes CS 0.98, 0.99 1.03, 1.12 0.01, 0.02
90% Bayes CS 0.98, 0.99 1.00, 1.15 0.01, 0.02

b) Sub-sample from 19/02/2015 to 18/03/2016
Estimate 0.98 1.02 0.02
67% CI 0.97, 0.99 0.98, 1.06 0.02, 0.03
90% CI 0.96, 0.99 0.95, 1.09 0.01, 0.04

67% Bayes CS 0.97, 0.99 0.98, 1.06 0.02, 0.03
90% Bayes CS 0.96, 0.99 0.95, 1.09 0.01, 0.04

c) Sub-sample from 21/03/2016 to 17/04/2017
Estimate 0.98 0.99 0.01
67% CI 0.97, 0.99 0.95, 1.04 0.01, 0.01
90% CI 0.96, 0.99 0.92, 1.07 0.01, 0.02

67% Bayes CS 0.97, 0.99 0.95, 1.04 0.01, 0.01
90% Bayes CS 0.96, 0.99 0.92, 1.07 0.01, 0.02

d) Sub-sample from 18/04/2017 to 15/05/2018
Estimate 0.99 0.95 0.01
67% CI 0.97, 0.99 0.92, 0.99 0.01, 0.01
90% CI 0.96, 0.99 0.89, 1.01 0.01, 0.02

67% Bayes CS 0.97, 0.99 0.92, 0.99 0.01, 0.01
90% Bayes CS 0.96, 0.99 0.89, 1.01 0.01, 0.02

e) Sub-sample from 16/05/2018 to 10/06/2019
Estimate 0.89 1.04 0.07
67% CI 0.80, 0.95 87, 1.20 0.06, 0.10
90% CI 0.68, 0.98 0.75, 1.34 0.05, 0.13

67% Bayes CS 0.80, 0.95 0.87, 1.20 0.06, 0.10
90% Bayes CS 0.68, 0.98 0.75, 1.34 0.05, 0.13

Periods longer than 0.21 years correspond to q = 10. Growth rates are observed for

four disjoint sub-periods between 20/01/2014 and 10/06/2019. The estimates are the

posterior median based on the I(d) model. The 67% and 90% confidence intervals and

Bayes credible sets based on the posterior are displayed below the estimates.



(a) ρT for 282 pairs of weekly observations on a rolling

window with steps equal to one week between November

1997 and June 2019

(b) ρT for 271 pairs of daily observations on a rolling

window with steps equal to one day between January 2014

and June 2019

(c) βT for 282 pairs of weekly observations on a rolling

window with steps equal to one week between November

1997 and June 2019

(d) βT for 271 pairs of daily observations on a rolling

window with steps equal to one day between January 2014

and June 2019

(e) σy|x,T for 282 pairs of weekly observations on a rolling

window with steps equal to one week between November

1997 and June 2019

(f) σy|x,T for 271 pairs of daily observations on a rolling

window with steps equal to one day between January 2014

and June 2019

Figure 23: Long-run covariability parameters on rolling windows between November 2997 and June 2019 (weekly

observations) and January 2014 and June 2019 (daily observations).



Appendix I. Estimation of the S&P 500 Futures lead time

Table 13: (A,B, c, d)-model parameters on hourly S&P 500 Index and

n hours ahead S&P 500 Futures, n = 0, 1, 2: periods longer than 8.25

trading days

ρ β σy|x

a) S&P 500 Index and 0 hours ahead S&P 500 Futures
Estimate 0.99 1.02 0.00
67% CI 0.99, 0.99 1.01, 1.03 0.00, 0.00
90% CI 0.98, 0.99 0.99, 1.05 0.00, 0.01

67% Bayes CS 0.99, 0.99 1.01, 1.03 0.00, 0.00
90% Bayes CS 0.98, 0.99 1.00, 1.04 0.00, 0.01

b) S&P 500 Index and one hour ahead S&P 500 Futures
Estimate 0.99 1.02 0.01
67% CI 0.98, 0.99 0.99, 1.04 0.00, 0.01
90% CI 0.97, 0.99 0.98, 1.06 0.00, 0.01

67% Bayes CS 0.98, 0.99 0.99, 1.04 0.00, 0.01
90% Bayes CS 0.97, 0.99 0.98, 1.06 0.00, 0.01

c) S&P 500 Index and two hours ahead S&P 500 Futures
Estimate 0.94 1.15 0.03
67% CI 0.88, 0.97 1.02, 1.30 0.02, 0.04
90% CI 0.81, 0.98 0.92, 1.41 0.02, 0.06

67% Bayes CS 0.88, 0.97 1.02, 1.30 0.02, 0.04
90% Bayes CS 0.81, 0.98 0.92, 1.41 0.02, 0.06

Periods longer than 8.25 trading days correspond to q = 10. Growth rates are observed

from 24/02/2019 4pm to 18/06/2019 4pm (UTC +2:00).The estimates are the posterior

median based on the I(d) model. The 67% and 90% confidence intervals and Bayes

credible sets based on the posterior are displayed below the estimates.



Table 14: (A,B, c, d)-model parameters on S&P 500 Index and n ∗ 5

minutes ahead S&P 500 Futures per 5 minutes, n = 0, 1, 2, 3, 4, 5, 6:

periods longer than 269 trading minutes

ρ β σy|x

a) S&P 500 Index and 0 minutes ahead S&P 500 Futures
Estimate 0.87 0.93 0.00
67% CI 0.72, 0.93 0.75, 1.10 0.00, 0.00
90% CI 0.57, 0.95 0.62, 1.24 0.00, 0.01

67% Bayes CS 0.72, 0.93 0.75, 1.10 0.00, 0.00
90% Bayes CS 0.57, 0.95 0.62, 1.24 0.00, 0.01

b) S&P 500 Index and 5 minutes ahead S&P 500 Futures
Estimate 0.85 0.92 0.00
67% CI 0.70, 0.93 0.74, 1.08 0.00, 0.00
90% CI 0.57, 0.95 0.60, 1.23 0.00, 0.01

67% Bayes CS 0.70, 0.93 0.74, 1.08 0.00, 0.00
90% Bayes CS 0.57, 0.95 0.60, 1.23 0.00, 0.01

c) S&P 500 Index and 10 minutes ahead S&P 500 Futures
Estimate 0.82 0.85 0.00
67% CI 0.64, 0.90 0.66, 1.03 0.00, 0.01
90% CI 0.48, 0.94 0.52, 1.18 0.00, 0.01

67% Bayes CS 0.64, 0.90 0.66, 1.03 0.00, 0.01
90% Bayes CS 0.48, 0.94 0.52, 1.18 0.00, 0.01

d) S&P 500 Index and 15 minutes ahead S&P 500 Futures
Estimate 0.82 0.84 0.00
67% CI 0.64, 0.90 0.65, 1.02 0.00, 0.01
90% CI 0.47, 0.94 0.51, 1.17 0.00, 0.01

67% Bayes CS 0.64, 0.90 0.65, 1.02 0.00, 0.01
90% Bayes CS 0.47, 0.94 0.51, 1.17 0.00, 0.01

e) S&P 500 Index and 20 minutes ahead S&P 500 Futures
Estimate 0.78 0.84 0.00
67% CI 0.60, 0.89 0.64, 1.04 0.00, 0.01
90% CI 0.41, 0.93 0.48, 1.21 0.00, 0.01

67% Bayes CS 0.60, 0.89 0.64, 1.04 0.00, 0.01
90% Bayes CS 0.41, 0.93 0.48, 1.21 0.00, 0.01

f) S&P 500 Index and 25 minutes ahead S&P 500 Futures
Estimate 0.72 0.76 0.00
67% CI 0.56, 0.85 0.55, 0.95 0.00, 0.01
90% CI 0.36, 0.91 0.39, 1.12 0.00, 0.01

67% Bayes CS 0.56, 0.85 0.55, 0.95 0.00, 0.01
90% Bayes CS 0.36, 0.91 0.39, 1.12 0.00, 0.01

g) S&P 500 Index and 30 minutes ahead S&P 500 Futures
Estimate 0.64 0.66 0.00
67% CI 0.39, 0.79 0.43, 0.89 0.00, 0.01
90% CI 0.16, 0.86 0.24, 1.08 0.00, 0.01

67% Bayes CS 0.39, 0.79 0.43, 0.89 0.00, 0.01
90% Bayes CS 0.16, 0.86 0.24, 1.08 0.00, 0.01

Periods longer than 269 trading minutes correspond to q = 10. Growth rates are observed

from 12/06/2019 7:05pm to 17/06/2019 9:55pm (UTC +2:00).The estimates are the pos-

terior median based on the I(d) model. The 67% and 90% confidence intervals and Bayes

credible sets based on the posterior are displayed below the estimates.



Table 15: (A,B, c, d)-model parameters on minutely S&P 500 Index

and n minutes ahead S&P 500 Futures, n = 0, 1, 2, 3, 4: periods longer

than 54 trading minutes

ρ β σy|x

a) S&P 500 Index and 0 minutes ahead S&P 500 Futures
Estimate 0.99 0.97 0.00
67% CI 0.98, 0.99 0.95, 1.00 0.00, 0.00
90% CI 0.97, 0.99 0.91, 1.03 0.00, 0.00

67% Bayes CS 0.98, 0.99 0.95, 1.00 0.00, 0.00
90% Bayes CS 0.97, 0.99 0.91, 1.02 0.00, 0.00

b) S&P 500 Index and one minute ahead S&P 500 Futures
Estimate 0.98 0.96 0.00
67% CI 0.97, 0.99 0.90, 1.00 0.00, 0.00
90% CI 0.95, 0.99 0.86, 1.04 0.00, 0.00

67% Bayes CS 0.97, 0.99 0.90, 1.00 0.00, 0.00
90% Bayes CS 0.95, 0.99 0.86, 1.04 0.00, 0.00

c) S&P 500 Index and two minutes ahead S&P 500 Futures
Estimate 0.98 0.95 0.00
67% CI 0.97, 0.99 0.90, 1.00 0.00, 0.00
90% CI 0.95, 0.99 0.86, 1.04 0.00, 0.00

67% Bayes CS 0.97, 0.99 0.90, 1.00 0.00, 0.00
90% Bayes CS 0.95, 0.99 0.86, 1.04 0.00, 0.00

d) S&P 500 Index and three minutes ahead S&P 500 Futures
Estimate 0.97 0.93 0.00
67% CI 0.93, 0.98 0.84, 1.00 0.00, 0.00
90% CI 0.88, 0.99 0.78, 1.07 0.00, 0.00

67% Bayes CS 0.93, 0.98 0.84, 1.00 0.00, 0.00
90% Bayes CS 0.88, 0.99 0.78, 1.07 0.00, 0.00

e) S&P 500 Index and four minutes ahead S&P 500 Futures
Estimate 0.95 0.92 0.00
67% CI 0.90, 0.97 0.83, 1.02 0.00, 0.00
90% CI 0.84, 0.98 0.75, 1.10 0.00, 0.00

67% Bayes CS 0.90, 0.97 0.83, 1.02 0.00, 0.00
90% Bayes CS 0.84, 0.98 0.75, 1.10 0.00, 0.00

Periods longer than 54 trading minutes correspond to q = 10. Growth rates are observed

from 17/06/2019 4:30 pm to 17/06/2019 20:59pm (UTC +2:00).The estimates are the

posterior median based on the I(d) model. The 67% and 90% confidence intervals and

Bayes credible sets based on the posterior are displayed below the estimates.



Appendix J. Code description

The replication zip-file consists of three main folders:

• The folder “ ‘data” contains all raw data that is used to find obtained results.

“final data.xlsx" contains the data on the extension part. The other files

and particularly “lr_correlations.xlsx" contain the data on the replication

of the results found by Müller and Watson (2018).

• The folder “matlab” contains all code that is used to obtain the results of

the replication and extension part of this paper.

• The folder “simulation” contains all code that is used to obtain the simu-

lation results.

The code in the folder “matlab” is structured as follows:

• The folder “m_utilities” consists of matlab files that are useful to the ap-

plication of the methods that are used by Müller and Watson. For ex-

ample, in this folder codes can be found that remove empty observations

from the data set and perform the data transformation (psi_compute.mat,

xp_compute.mat). All code in this folder is entirely provided by Müller

and Watson (2018).

• The folder “initial_analysis” consists of code files for which output is in-

cluded in the replication material of Müller and Watson (2018). By this

reason, the code that is provided by Müller and Watson (2018) is not

adjusted and only individual comments are added to the code.



• Whether the files are used in order to obtain the results from the replication

part or the extension part is made clear in the titles of the matlab files. The

files in the sub-folder “matlab_procs” and lrcov.mat are used for both the

replication and the extension analysis to compute the long-run covariability

parameter estimates and confidence intervals. All code files that are used

to obtain the replication results and large parts of the code files that are

used to obtain the extension results are provided by Müller and Watson

(2018) and only individual comments are added to these files. All code

files and explanations of what the code files do are listed below:

– Figure_1_replication: this file plots average growth rates, long-run

projections and projection coefficients.

– Figure_1a_replication: this file plots average growth rates over sub-

samples.

– Figure_2_extension: this file plots long-run projections and projection

coefficients of extension data.

– Figure_2_replication: this file plots long-run projections and projec-

tion coefficients of replication data.

– lr_correlations_data_calendar_replication: this file sets up the data

and calendars for the replication analysis.

– lrcov: this function computes long-run covariability statistics for two

variables.

– Table_1_a_replication: this file constructs the table containing by

other functions derived parameter values and confidence intervals for



GDP and consumption using the I(0) and I(1) model.

– Table_1_b_replication: this file constructs the table containing by

other functions derived parameter values and confidence intervals for

long-term and short-term interest rates using the I(0) and I(1) model.

– Table_2_a_replication: this file constructs the table containing by

other functions derived parameter values and confidence intervals for

GDP and consumption using the (A,B, c, d) model.

– Table_2_b_replication: this file constructs the table containing by

other functions derived parameter values and confidence intervals for

short-term and long-term interest rates using the (A,B, c, d) model.

– Table_2_extension: this file constructs the table containing by other

functions derived parameter values and confidence intervals using the

(A,B, c, d) model.

– Table_2_rollingwindows_total: this file has as output a vector of all

parameter values that is plotted in figure 23.

The following files can be found in folder “matlab_procs”:

– b_compute: this file constructs results for beta.

– beta_compute_NaN: this file computes beta for the I(0) and the I(1)

model.

– beta_compute_varcorr: this file computes the estimate of beta.

– beta_grid: this file computes Grid of values for beta.

– compute_avg_like_h0: this file computes lambda-weighted average

density under H0 : γ = γ0.



– compute_avg_like_h1: this file computes the average density under

H1 : θ ∼ W .

– compute_like_h1: computes the posterior under the uniform prior

distribution.

– corr_compute: this file constructs results for rho.

– cosine_transforms: this file computes cosine transforms and standard-

ized cosine transforms

– df_pct: computes the percentiles of each density.

– getdens_2xscale: this file derives the density of ρ under H0.

– getdens_2xscale_sym: this file derives the symmetric density of ρ

under H0.

– getdens_tri_beta0: this file derives the density of β under H0.

– getdens_tri_beta1: this file derives the density of β under H1.

– getdens_tri_inv: this file derives the density of the maximal invariant.

– getdens_tri_stddev0: this file derives the density of σy|x under H1.

– getdens_tri_stddev1: this file derives the density of σy|x under H1.

– getni: this file computes the (q−1)-th power of the normal distribution

with mean β.

– getnima: this file evaluates normal integral with powers equal to -1 on

both coefficients, non-symmetrized.

– getnimd: this file evaluates normal integral with powers equal to q - 2

on a and q-1 on beta.



– getnime: this file evaluates normal integral with powers equal to q-1

on both coefficients, symmetrized.

– I0_varcorr: this file computes the long-run covariability parameter

valuesusing the I(0) model.

– I1_varcorr: this file computes the long-run covariability parameter

valuesusing the I(1) model.

– lower_tri_invariant: this file ensures that the input, matrix X, is in-

variant.

– sigma_grid: this file computes Grid of values for sigma.

– stddev_compute: this file constructs results for sigma.

All files in the sub-folders “matlab_procs” (listed above) and “m_utilities” are

copied to the final main folder “simulation”. Other files that are needed to

obtain the simulation results are listed below:

• lrcov_Simulation: this function computes long-run covariability statistics

for two simulated data series.

• histfit: this file computes parameter estimate, empirical confidence inter-

vals and average estimated confidence intervals, and plots the histograms

for the long-run covariability parameters.

• Simulation: This file defines the parameters of the ARFIMA model that

is used to simulate the data.

• Simulation_frac_integrated: This file simulates fractionally integrated se-

ries according to the given ARFIMA parameters.



• Table_1_Simulation: this file computes 1000 times the long-run covari-

ability parameters between different simulated series using the I(0) and

the I(1) model.

• Table_2_Simulation: this file computes 1000 times the long-run covari-

ability parameters between different simulated series using the (A,B, c, d)

model.
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