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Abstract

The momentum strategy of buying assets which performed well in the past and shorting those

which performed poorly has been shown to generate persistent abnormal returns. Existing

literature suggests combining this concept with predictive models in order to determine

trading positions for momentum portfolios. In this paper, we propose the use recurrent

neural networks in combination with such momentum strategies. Using data from 1953 to

2019, our empirical results show that utilizing recurrent neural networks results in similar

profitability compared to classical methods. However, as main advantage, we find that up to

a 15% improvement can be made with respect to Sharpe ratio. Additionally, during times

of relative economic turmoil, recurrent neural networks are found to perform significantly

better than the benchmark strategies.

The views stated in this thesis are those of the author and not necessarily those of Erasmus School of

Economics or Erasmus University Rotterdam.
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1 Introduction

Momentum based investment strategies are considered one of the main anomalies in financial

economics, generating excess returns unexplained by traditional asset pricing models. Introduced

by Jegadeesh and Titman (1993), momentum refers to the persistence in asset returns; stocks

performing well in the past tend to perform well in the near future, while the contrary holds for

assets with poor past performance.

Applying momentum in finance, Jegadeesh and Titman (1993), proposed an investment strategy

which buys stocks or assets that have had the best performance over the past 2 to 12 months

(winners) and shorts the assets which performed worst in this period (losers). This strategy is

referred to as the winner-minus-loser (WML) strategy and is found to generate a monthly profit

of at least 1% (Jegadeesh and Titman (1998, 2001)). Besides this classical strategy, Jegadeesh

and Titman (2001) showed that a strategy in which only the (historically) best performing assets

are bought generate excess returns, and, as opposed to buying both winners and shorting losers,

this strategy is unaffected by the case where losers generate positive returns. This strategy is

referred to as the winner only (WO) strategy.

Although Jegadeesh and Titman (1998, 2001) used a set time horizon and holding period, looking

back 12 months and generating predictions for the next, many papers have found evidence

of abnormal excess returns across different time periods, asset types and forecasting horizons

(Hurst, Ooi, and Pedersen (2017), Lemperiere et al. (2014), Baz et al. (2015)). In addition to

these variables, using different trading rules also affects profits. In this paper we are particularly

interested in the strategy proposed by Kim (2019). They combine the WML and WO strategies,

creating a ‘selective’ winner-minus-loser (SWML) strategy; buying the top decile of stocks only

if their expected return is positive and shorting the worst performing decile of stocks only if its

expected return is negative.

While WML and WO trading strategies perform well under most economic conditions, Bar-

roso and Santa-Clara (2015) observed extreme losses during market crashes, with Daniel and

Moskowitz (2016) reporting a return of the winner portfolio in March 2009 of 8% while that

of the loser portfolio outperforms it greatly with a return of 169%. In order to overcome this

issue, Barroso and Santa-Clara (2015) propose using volatility-scaled returns, improving overall

performance greatly.

Using the SWML strategy, it is necessary to compute predictions for the return in the holding

period. A simple yet effective method for this purpose is using the look-back period-based
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method. Shown its effectiveness in Moskowitz, Ooi, and Pedersen (2012) and Barroso and

Santa-Clara (2015), this approach uses the product of the past 12 months as prediction for the

next and may be formulated as
∏12
i=1 (1 + rt−i) − 1, where rt−i is the return in month t − i.

Besides this more ordinary method, recently the use of machine learning, and especially deep

neural networks, have found their way into financial time-series forecasting. Having already

been shown to perform well in fields such as medicine (Miotto et al. (2017)), demand forecasting

(Ke et al. (2017)) and finance (Heaton, Polson, and Witte (2016)), Kim (2019) showed that

machine learning can also be applied to the forecasting of trends for the purpose of applying

them to momentum strategies. They established a significant improvement in returns when

forecasting them using an architecture known as a stacked denoising autoencoder, compared

to the look-back approach. However, while Kim (2019) uses deep learning techniques with

promising results, more modern architectures such as recurrent neural networks (RNNs) are

not considered. Many papers have found that RNNs can accurately predict financial time

series, for instance, in forecasting currency volatility (Dunis and Huang (2002)) and stock return

prediction Rather, Agarwal, and Sastry (2015). Especially the most modern RNN architectures

such as Long-Short-Term-Memory and Gated Recurrent Units have been shown to perform well

compared to regular feedforward artificial neural networks.

In this study, our main objective is to investigate whether recurrent neural networks can be used

for the forecasting of momentum portfolio returns, and if so, how their performance compares

to that of already investigated methods. More specifically, we will use the long-short-term-

memory and gated recurrent unit architectures, while the models used by Kim (2019) will be

used for comparative purposes. These models include the look-back period-based approach,

support vector regression, and a stacked denoising autoencoder. Then, after expected returns

are generated using these models, trading positions will be determined by the SWML strategy.

In our empirical study, the data will be obtained from the Kenneth French data library (French

(2019)), which contains decile momentum portfolios containing stocks from NYSE, AMEX, and

NASDAQ from 1927 to present. Our research contributes to existing literature by combining

the selective winner-minus-loser strategy with recurrent neural networks, which, to the best of

our knowledge, has not been studied before.

The remainder of the paper is organized as follows. In section 2 we discuss our data, section

3 describes the forecasting models as well as their training procedure. Then, in section 4 we

present our results, while in section 5 we summarize and discuss our main findings.
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2 Data

For comparative purposes as well as the ease of access, the same data set is used as by Kim

(2019), namely the data set containing momentum-based portfolios from 1927 to present as

obtained from the Kenneth French data library (French (2019). These portfolios are constructed

according to prior return data of the previous 2-12 months and consist of stocks from the NYSE,

AMEX, and NASDAQ markets which have sufficient prior return data. Furthermore, there are

some requirements set the for returns. Each stock must have a price at the end of month t− 13,

where t is the month for which the portfolio is constructed, a good return for month t− 2, and

any missing data must be denoted as −99.0.

Besides the data directly obtained from Kenneth French data library, which is used for generating

the prediction, we will also apply volatility scaling to this original data set in order to achieve

more stable performance. Volatility scaling is done by taking the product of the ratio of target

volatility and actual volatility

r∗t =
σ target

σ̂t
· rt (1)

where rt is the return of the plain momentum strategy and σ̂t the volatility of the predicted

return which is computed from the daily returns of the previous 6 months. The scaled volatility

is computed for both a target volatility of 12% and 15% as was recommended by Barroso and

Santa-Clara (2015) and Lim, Zohren, and Roberts (2019) respectively.

3 Methodology

This section discusses the different strategies and models which are applied in this paper. First,

a quick summary of all strategies is presented, then all different forecasting models will be

discussed, and finally, the training procedure of the models is clarified.

3.1 Strategies

As mentioned in the introduction, many different momentum strategies have been proposed and

investigated. In this paper we will particularly investigate the strategy proposed by Kim (2019).

Theoretically, their Selective Winner-Minus-Loser (SWML) strategy should always outperform

strategies in which forecasting models are used in conjuncture with WML or WO. The idea

behind the SWML strategy is that that top 10% of stocks (top decile) is bought only when

its expected return is positive, and nothing is done with it otherwise. On the other hand,

the worse performing 10% of stocks (bottom decile) is shorted only when its expected return
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is negative, and nothing is done otherwise. This could lead to the situation where nothing is

invested in stocks, in which case one could invest in say risk free bonds such as treasury bonds.

For comparison reasons, we will also compute the performance measures for the classic WML

and WO strategies.

3.2 Look-back

In order to predict the (sign of the) return in the holding period one can use the following

formula the day before the start of month t

12∏
i=1

(1 + rt−i)− 1 (2)

where rt−i represents the return in month t− i. Several papers have shown that this is a simple

yet effective method of predicting momentum portfolios, also in combination with a range of

momentum strategies (Moskowitz, Ooi, and Pedersen (2012)), Kim (2019)).

3.3 Support Vector Regression

Support vector regression (SVR) is a shallow machine learning technique already widely applied

in many fields such as engineering (Clarke, Simpson, and Griebsch (2003)), travel-time prediction

(Chun-Hsin Wu, Jan-Ming Ho, and Lee (2004)) as well as in financial time series prediction (Tay

and Cao (2001)). First introduced by Drucker et al. (1996), SVR is based on the similarly named

support vector machines (SVM) (which is used for classification), taking most features from it,

only slightly changing the loss function to account for the distance from a point to the fitted

hyperplane.

While most traditional regression techniques attempt to find a function such that it produces

the least deviation between predicted and true values, SVR attempts to minimize some gener-

alized error bound in order to achieve a generalized performance (Basak, Pal, and Patranabis

(2007)). The main idea behind this is that in computing the loss, only errors which are outside

a certain margin ε from the fitted curve/hyperplane are considered in the loss functions, as is

also illustrated in figure 1 below. In general, SVR can be formulated as
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Minimize 1
2‖ω‖

2 + C
∑l

i=1 (ξi + ξ∗i )

subject to


yi − 〈ω, xi〉 − b ≤ ε+ ξi
〈ω, xi〉+ b− yi ≤ ε+ ξ∗i
ξi, ξ

∗
i ≥ 0

(3)

Figure 1: Support Vector Regression

where w represents the the vector of all coefficients in the regression function yi = 〈w, xi〉+ b+ε

(similar the the β vector in OLS), C is the penalty parameter for the error, and ξi and ξ∗i are

the slack variables accounting for the deviation from ε.

Originally, SVR and SVM are linear classifiers, however, in order to deal with non-linear trends

such as in stock returns, one can apply the kernel trick. The kernel trick is an approach to

operating in a high-dimensional space, mapping the non-linear function to a linear space without

explicitly computing all coordinates. This is done using a kernel function, which replaces the

〈w, xi〉 with 〈ϕ(x), ϕ(y)〉 in equation (3) above. In our paper we will be using a Gaussian Kernel,

to stay consistent with Kim (2019) as well as it has found to perform well in stock prediction.

The Gaussian Kernel is specified as

〈ϕ(x), ϕ(y)〉 = exp
(
−γ‖x− y‖2

)
(4)

where γ = 1
2σ2 , which can be tuned to fit the data best.

3.4 Autoencoders

An autoencoder is a specific architecture within artificial neural networks that learns to represent

the input data in a limited amount of factors (latent space). In other words, it learns to extract

the hidden features in a certain dataset. Since we work with portfolio returns of stocks that

share the feature that they performed similarly in the past as well as that they come from the

same stock markets, it may be expected that they share some common driving factors.

Before discussing the specifics of an autoencoder, it is helpful to understand the basics behind

artificial neural networks (ANNs). ANNs are based on how the neurons in our brain interact
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and make computations. Due to its complexity it performs exceptionally well in finding hidden

relationships within a data set, may it be linear or non-linear (Zhang (2003)). Figure 2 shows

a general structure of an ANN. The ‘nodes’ all the way to the left represents the input data,

while the nodes in the last layer, the right most column, represents the outputs. All layers in

between the input and output are the ‘hidden’ layers,

Figure 2: General Artificial Neural Network Structure

As can be seen, all the nodes in all the layers are densely connected; each node in one layer

is connected to each node in the previous layer. When the network is used for training or

prediction, information ‘flows’ from one side of the network to the other. The way this is done

is determined by the activation of each node and, subsequently, the activation function. This

activation function is a function of the weights of each of the connected nodes as well as an

assigned bias. A general activation function can be formulated as

z(W,X, b) = f(W TX + b) (5)

for some fixed f , with W representing the vector containing all weights, X the input vector and

b the vector of corresponding biases. In this paper two specific activation functions are used,

the sigmoid function and the tanh function. The sigmoid function is an s-shaped curve which

outputs a value between 0 and 1. It is a popular activation function within machine learning

since traditionally architectures such as artificial neural networks are used for classification and

an output between 0 and 1 may then be considered as probabilities of a certain class. On the
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other hand, the tanh function ranges from -1 to 1. This has the advantage that the negative

inputs will be mapped strongly negative and inputs close to zero will also be mapped close to zero

by the tanh function. Additionally, both functions also benefit from being highly differential,

which is of great benefit to updating the weights and bases during the training of the network.

σ(W,X, b) =
1

1 + eWTX+b
(6) tanh(W,X, b) =

2

1 + e−2(WTX+b)
− 1 (7)

In order to map the inputs to the outputs as accurately as possible, the network needs to be

trained by tuning the weights and biases of all nodes. The training is done by providing the

network with a set of inputs and corresponding outputs, after which the network repeatedly

updates its parameters by means of back propagation (a tuning procedure using the gradient

error function to update the parameters, similar to gradient descent).

An autoencoder is a bottleneck type of artificial neural network that uses the features of an

ANN to represent data in a user specified number of dimensions. More specifically, during the

training of the network, the input and output are defined as the same, while the hidden layer(s)

contain less nodes than the input/output. This forces the network to train the parameters in

such a way that it contains as much information as possible in the limited number of nodes, as it

attempts to minimize the reconstruction loss. As can be seen in figure 3, an autoencoder consists

of an encoder and a decoder. The encoder compresses the input into a latent representation,

while the decoder attempts to reconstruct the original output from the latent space. In most

uses of the autoencoder, the network is trained using the whole network structure, after which

the encoder is used to compress the input data which can then be used for a multitude of other

purposes for which a low dimensionality is desirable.
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Figure 3: Autoencoder structure

More formally, the process of an autoencoder can be formulated as

h = fe(x) = se (Wex + be)

xr = fd(x) = sd (Wdh + bd)
(8)

where fe(x) is the encoder function, and fd(x) that of the decoder. Then, h can be seen as the

latent factors and xr the reconstructed input. This is then compared to the original input using

a certain loss function L (x,xr) which in this paper is specified as the mean squared error.

In this study we use an architecture known as a stacked autoencoder. The main idea of a

stacked autoencoder is that you train multiple single layered autoencoders consecutively, each

time using the encoded output from the previous encoder as input for the next. Particularly,

we use a stacked autoencoder consisting 3 basic autoencoders, each with encoded output of 6

nodes, as can be seen in figure 4 below. The 12 input nodes represent the returns in the previous

12 months, while the single output node is that of the next month which is trained with the

final layer as a simple regression using the output from the last autoencoder. This structure was

chosen as it was found to perform best by Kim (2019).
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Figure 4: Stacked Autoencoder structure

An extension to the ordinary autoencoder is the so-called denoising autoencoder. In this type of

autoencoder, the architecture of the network and computations are the same as before, however,

the input data is corrupted. More specifically, some kind of ’noise’ is added to the input data.

The main motivation behind adding noise to the data is that one can expect the original data

to be already ’polluted’ in some way. Then, by training the network using the noisy input and

non-noisy output, the weights and biases are tuned in such a way that the noise is filtered out

and only a ’clean’ latent representation is generated. There are several types of noise one can

add. In this study we use masking noise, again, as it was found to perform best in previous

literature. Masking noise can be thought of as randomly setting a certain percentage of the

input data to zero. By doing this the network is forced to learn more robust features as well as

that it is less likely to over-fit.

3.5 Recurrent Neural Networks

Besides regular architectures of neural networks such as a (stacked) autoencoder, more recently

the use of recurrent neural networks (RNNs) has gained in popularity. A RNN is a type of deep

neural network that allows information to persist within a layer over a longer period of time

(as opposed to regular neural networks in which information only ‘flows’ forward from layer to

layer). RNNs gain this temporal dimension by adding a hidden state in each node in which

information is stored. Numerous specific architectures of RNNs exist, of which in this paper

we apply two; Long-Short-Term-Memory (LSTM) and Gated Recurrent Unit (GRU). The main

idea behind these two architectures is similar; instead of using all past information in computing
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the current output like regular RNN architectures, they introduce a memory cell in which only

the most relevant information of the past inputs is filtered out and propagated to the next point

in time (t+ 1).

3.5.1 Long-Short-Term-Memory

While in general regular RNNs model time series well, they struggle with learning long term

dependencies due to having a vanishing gradient. This vanishing gradient occurs because when

the weights of a network are tuned using the estimation error, this error is also passed through all

previous memory cells of the node to update the recurrent weights. However, the problem arises

when the network is initialized, since then the initial weights are assigned as random numbers

close to zero. Hence, when moving backward through the model updating the weights using the

error (gradient of the loss) through some matrix multiplication, the error quickly ‘vanishes’ as

it gets close to zero. This causes observations further back in time to not be as influential as

might be optimal.

First introduced by Hochreiter and Schmidhuber (1997), LSTM overcomes this issue by using

memory cells. These cells consist of different gates which regulates what information is conserved

and propagated to the next period in time, as well as that it computes the output of the cell.

In figure 5 the structure of such cell is shown including its main components. Firstly, xt and ht

are the input and output of the cell, respectively, while Ct is the current cell state. Then, there

is the so-called forget gate ft which determines how much of the previous cell state is let trough

to the current one. It can be formulated as

ft = σ (Wf · [ht−1, xt] + bf ) (9)

where W and b are the weight and bias vectors within a sigma function as specified earlier.

Then, it and C̃t are the values for the input gate and the candidate value for the current cell

state as computed from the current input. These can be computed as

it = σ (Wi · [ht−1, xt] + bi)

C̃t = tanh (WC · [ht−1, xt] + bC)
(10)

which are then combined and added to the current cell state Ct by computing

Ct = ft ∗ Ct−1 + it ∗ C̃t (11)
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where Ct−1 is the previous cell state. Finally, to compute the values for cells output gate ot and

the cell output itself ht one can apply the following formulas:

ot = σ (Wo [ht−1, xt] + bo)

ht = ot ∗ tanh (Ct)
(12)

Figure 5: LSTM cell 1

Overall, by including LSTM in this paper we ensure to have a model that can learn trends over

a long period of time. Since we deal with time series data with over 60 years of observations,

this may proof to be worthwhile.

3.5.2 Gated Recurrent Unit

A variation to LSTM introduced by Cho et al. (2014) is the Gated Recurrent Unit. GRU varies

from LSTM in that it combines the input and forget gates into a single ‘update gate’. Moreover,

it does not differentiate between output and cell state, but instead merges them to generate a

single value that is used as output as well as input for the cell state in t+ 1.

Comparing GRU to LSTM, it is most often found that they yield comparable performance

(Jozefowicz, Zaremba, and Sutskever (2015). However, GRU needs less parameters to be opti-

mized compared to LSTM, and hence one may expect it to need less data to generalize (Chung

et al. (2014). This may be helpful in our case since the amount of data used in this paper is

not considered as a lot within machine learning world (1106 observations). Furthermore, Shen

et al. (2018) found that GRU performed better than SVR in financial sequence predictions, and

therefore it is worth investigating how it will perform in predicting momentum portfolios.

1Figure obtained from Bao, Yue, and Rao (2017)
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3.6 Training Procedure

In order for fair comparison, all the aforementioned models will be trained using the same the

same data and training/test split. Specifically, they will be trained to predict one month ahead

using the past 12 months as input. The training will be done with the set of past 300 input

output pairs, where the input is 12 previous months and the output is the next. In order to

get most out of the machine learning techniques used in this paper, a search is done to find

the optimal hyperparameters. Firstly, for SVR, the three main parameters to be tuned are

C, ε, and γ, where C is the penalty parameter for the error, ε is the magnitude where within

the error is not associated with the training loss, and γ is the parameter in the Gaussian

kernel. The values used for the hyper parameter search can be found in Appendix A. As for the

autoencoders, the optimal hyperparameters found by Kim (2019) are used. Finally, as for the

recurrent neural networks, a limited amount of hyperparameters is tested. This is due to the

expensive computation times for these architectures. Extensive preliminary testing was done

however to find the most fitting hyperparameters to use in the a grid search. In the end, the

following forecasting methods and strategies will be evaluated:

• Mkt : The market returns.

• WML: Winner-minus-loser strategy.

• WO : Winner-only strategy.

• Look-back : Look-back based predictions in combination with the selective-winner-minus-loser strat-

egy.

• SVR: Predictions made using support vector regression in combination with the selective-winner-

minus-loser strategy.

• SdAE : Predictions made using the stacked denoising autoencoder in combination with the selective-

winner-minus-loser strategy.

• LSTM : Predictions made using long-term-short memory network in combination with the selective-

winner-minus-loser strategy.

• GRU : Predictions made using gated recurrent unit in combination with the selective-winner-minus-

loser strategy.

4 Results

Having generated the predictions and computed the returns according to the trading rules of the

different strategies, the strategies are judged according to the following performance metrics:

(i) Profitability: Average, minimum and maximum return, and annual return.

(ii) Risk: Annual volatility and maximum drawdown (MDD).
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(iii) Performance ratios: Sharpe ratio and the information ratio.

(iv) Return distribution: Kurtosis and skewness.

Having generated all the out-of-sample predictions and returns from 1953 to 2019, the perfor-

mance metrics are computed net of transaction fees. This is done by adopting the method used

by Barroso and Santa-Clara (2015) using a 75% turnover and a one way transaction costs of

0.2% and 0.1% from 1953 to 1997 and 1997-2019 respectively. Tables 1-3 show the metrics di-

vided into different periods; the entire period from 1943 to 2019, 1953 to 1985, and 1985 to 2019,

respectively. This division is made such that it reflects different economic conditions. Where

between 1953 and 1985 the economic market was without much turmoil or big fluctuations, be-

tween 1985 and 2019 the economic situation was more volatile, including the 1987 stock market

crash, the dot-com bubble, and the 2008 financial crisis.

Table 1 indicates that over the entire period WO and LSTM show best performance accord-

ing to most metrics. Firstly, looking at profitability, average monthly return is equal, while

LSTM performs only slightly better than WO according to annualized returns. As for the other

strategies, we find that GRU and SVR perform worse by a small margin compared to WO and

LSTM, whereas Look-back and the SdAE hardly outperform the market. Finally, WML clearly

shows worse performance, even failing to achieve better returns than the market. Looking at

tables 2-3, similar conclusions can be drawn. As expected, during the period of 1953-1985 the

returns of the strategies were greater than that of the later period, mainly due to a relative

smooth, and hence easier to predict, trend without many fluctuations. However, considering

table 3, LSTM shows much better returns relative to the other models, only decreasing 12% in

annualized return with respect to the previous period, compared to a decrease of 26% and 30%

for WO and GRU respectively.

Inspecting the other metrics such as the risk adjusted return (Sharpe ratio), it can be noticed

that LSTM outperforms all other strategies quite significantly, with the WO as well as GRU

lagging behind due to having a relatively higher annualized volatility. Furthermore, the SdAE

and SVR still outperform the market returns, while this is not the case for WML and the Look-

back strategy. As for the distribution of the returns where low kurtosis and a small negative

skewness is desirable, we see that WO and LSTM again show the best values, although the

skewness of the LSTM is preferred over that of WO. It is also worth noticing the high kurtosis

of the WML strategy, mainly caused by a large amount of large negative returns between 1985

and 2019, indicating much heavier tails.

The fact that LSTM performs best in more volatile periods, relative to the other strategies, is
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also supported by the fact that it has the lowest maximum drawdown, suggesting low downside

risk and therefore whenever losses are made they are relatively lower than those of the other

models. Compared to the baseline strategies, this holds for all strategies based on predictions

except the SVR approach.

Table 1: Performance metrics plain momentum strategies 1953-2019

Mkt WML WO Look-back SVR SdAE LSTM GRU

Avg. Return 0.010 0.005 0.016* 0.010 0.014 0.011 0.016* 0.015
Max. Return 0.166 0.096 0.312 0.308 0.312 0.312 0.312 0.312
Min. Return -0.226 -0.298 -0.328 -0.338 -0.262 -0.200 -0.262 -0.328
Ann. Return 0.120 0.063 0.214 0.130 0.176 0.144 0.215* 0.192
Ann. Vol 0.148 0.101* 0.217 0.202 0.197 0.176 0.188 0.200
Sharpe Ratio 0.813 0.622 0.984 0.643 0.894 0.820 1.139* 0.960
IR NA -0.081 0.187* 0.012 0.085 0.036 0.130 0.094
Kurtosis 1.923 20.432 3.017 3.938 3.270 3.392 3.021 4.745
Skewness -0.513 -2.695 -0.565 -0.273 -0.335 0.097 -0.038 -0.560
MDD 0.504 0.525 0.602 0.499 0.625 0.485 0.406* 0.435

Notes: The best value per performance metric is indicated by a *

Table 2: Performance metrics plain momentum strategies 1953-1985

Mkt WML WO Look-back SVR SdAE LSTM GRU

Avg. Return 0.009 0.007 0.019* 0.013 0.016 0.012 0.017 0.017
Max. Return 0.166 0.089 0.227 0.223 0.230 0.227 0.230 0.230
Min. Return -0.122 -0.137 -0.266 -0.270 -0.262 -0.180 -0.262 -0.262
Ann. Return 0.116 0.082 0.247* 0.173 0.214 0.155 0.228 0.227
Ann. Vol 0.143 0.080* 0.210 0.195 0.198 0.175 0.194 0.201
Sharpe Ratio 0.806 1.022 1.175 0.890 1.079 0.884 1.177* 1.129
IR NA -0.053 0.281* 0.070 0.174 0.060 0.178 0.174
Kurtosis 0.940 6.174 2.037 2.987 2.861 2.067 2.601 2.872
Skewness -0.036 -1.314 -0.497 -0.433 -0.456 0.015 -0.369 -0.563
MDD 0.464 0.176* 0.469 0.397 0.390 0.485 0.406 0.435

Notes: The best value per performance metric is indicated by a *

Table 3: Performance metrics plain momentum strategies 1985-2019

Mkt WML WO Look-back SVR SdAE LSTM GRU

Avg. Return 0.010 0.004 0.014 0.007 0.011 0.011 0.015* 0.012
Max. Return 0.129 0.096 0.310 0.308 0.312 0.312 0.312 0.312
Min. Return -0.226 -0.298 -0.333 -0.338 -0.220 -0.200 -0.165 -0.328
Ann. Return 0.124 0.045 0.183 0.091 0.141 0.134 0.202* 0.160
Ann. Vol 0.151 0.117* 0.223 0.208 0.194 0.177 0.183 0.198
Sharpe Ratio 0.820 0.387 0.821 0.437 0.724 0.761 1.104* 0.805
IR NA -0.104 0.112* -0.036 0.023 0.014 0.097 0.042
Kurtosis 2.660 19.885 3.694 4.641 3.755 4.596 3.523 6.626
Skewness -0.892 -2.896 -0.607 -0.134 -0.223 0.172 0.321 -0.562
MDD 0.504 0.525 0.602 0.499 0.625 0.286* 0.321 0.381

Notes: The best value per performance metric is indicated by a *
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Figures 6-8 show the cumulative returns for aforementioned time periods. Again, it confirms

claims made before, showing best cumulative returns for LSTM just before WO and GRU.

Moreover, it is clear that the curves from the strategies based on predictions are much smoother

overall, compared to the WML, WO, and Mkt. Additionally, as can be seen in figures 7 and

8, WO had highest cumulative returns in the first time period, however, mainly due great

performance during the dot-com bubble and stable returns during the 2008 financial crisis,

LSTM generated much higher returns during the early 2000’s.

Figure 6: Cumulative returns 1953 - 2019

Figure 7: Cumulative returns 1953 - 1985 Figure 8: Cumulative returns 1985 - 2019

Tables 4 and 5 show the strategy returns for the volatility scaled returns for a volatility target

of 12% (from Moskowitz, Ooi, and Pedersen (2012)) and 15% (from Lim, Zohren, and Roberts
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(2019)) respectively. Looking at table 4, the main difference with the non-scaled returns is that

LSTM performs much worse relative to the other strategies. For example, its annualized return

is 35% lower, while WO only decreased with 2% and SVR even improved by 35%. Moreover,

looking at the Sharpe Ratio as well as the MDD, WML greatly improved over the plain returns,

outperforming all other models. Considering the great increase in annualized return of SVR

and a relative decrease thereof with the LSTM, it can again be concluded that SVR performs

much better in months which have relative low volatility since those it is re-scaled to be bigger.

On the other hand, LSTM performs worse having a 12% target, implying it makes its biggest

profits in times of high volatility.

As can be seen in table 5, setting the volatility target to 15% majorly changes the results again.

In this case, WO and GRU perform best with both having an average monthly return of 1.9%.

Moreover, GRU is now the best performer when looking at the Sharpe ratio. However, when

inspecting the distribution metrics, it can be seen that all strategies, with exception of SdAE,

display less desirable values.

Overall, the main conclusion to be drawn from the volatility scaled returns is that WO performs

best according to profitability, while GRU, SVR and WML show more desirable properties when

considering the risk adjusted returns. Moreover, unlike with the plain returns, LSTM is never

the best performing strategy for any performance metric. From this it can be concluded that

LSTM benefits most in times of high volatility, GRU and SVR both perform best whenever the

volatility is low (since then the returns are scaled up), and WO is the most constant performer.

As for the different periods of the volatility scaled returns, Appendix B contains the tables for

both sub-periods and volatility targets, mostly containing expected results with, for example,

all returns being lower in the later sub-period due to the more volatile returns.

Table 4: Performance measures volatility scaled returns (12% target) 1953-2019

Mkt WML WO Lookback SVR SdAE LSTM GRU

Avg. Return 0.009 0.007 0.016* 0.010 0.015 0.011 0.014 0.014
Max Return 0.166 0.083 0.227 0.193 0.227 0.194 0.193 0.194
Min Return -0.226 -0.129 -0.407 -0.413 -0.299 -0.227 -0.413 -0.407
Ann. Return 0.120 0.082 0.209* 0.133 0.191 0.136 0.179 0.186
Ann. Vol 0.148 0.071* 0.196 0.176 0.171 0.154 0.184 0.185
Sharpe Ratio 0.813 1.151* 1.068 0.755 1.113 0.880 0.968 1.005
IR NA -0.059 0.185* 0.017 0.118 0.025 0.108 0.121
Kurtosis 1.923 5.438 5.679 8.209 3.332 3.085 7.496 7.109
Skewness -0.513 -0.938 -0.848 -0.941 -0.185 -0.091 -1.081 -1.005
MDD 0.504 0.165* 0.423 0.547 0.354 0.472 0.465 0.455

Notes: The best value per performance metric is indicated by a *
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Table 5: Performance measures volatility scaled returns (15% target) 1953-2019

Mkt WML WO Look-back SVR SdAE LSTM GRU

Mean 0.009 0.008 0.019* 0.013 0.018 0.013 0.017 0.019*
Max 0.166 0.100 0.273 0.233 0.273 0.233 0.233 0.273
Min -0.226 -0.155 -0.489 -0.489 -0.358 -0.273 -0.489 -0.358
Ann. Return 0.120 0.099 0.255* 0.166 0.233 0.165 0.226 0.251
Ann. Vol 0.148 0.085* 0.235 0.212 0.206 0.185 0.222 0.198
Sharpe Ratio 0.813 1.160 1.087 0.782 1.132 0.890 1.022 1.268*
IR NA -0.031 0.223* 0.052 0.161 0.062 0.163 0.174
Kurtosis 1.923 5.438 5.679 7.725 3.332 3.085 7.109 3.737
Skewness -0.513 -0.938 -0.848 -0.870 -0.185 -0.091 -1.005 -0.192
MDD 0.504 0.199* 0.498 0.626 0.419 0.543 0.410 0.541

Notes: The best value per performance metric is indicated by a *

Besides directly judging the performance of the models according to their final return after

trading rules have been applied, it might also be interesting to compare the forecasting models

and their forecasting performance and if it directly relates to the returns of the strategy. In table

6 two forecasting evaluation metrics are shown. Firstly, the root mean squared error is computed,

which is a measure of accuracy formulated as RMSE =

√∑T
t=1(ŷt−yt)

2

T , where yt is the actual

return at time t and ŷt the predicted value for time t. Right away it is clear that Look-back is the

main anomaly when it comes to the accuracy of its predictions. This is expected as it is designed

not to accurately predict returns, but rather its main purpose is to give an expectation of the

sign of the return. As for the other models, we see that their accuracy is rather similar, with

LSTM performing best, but only differing from GRU and SVR by 0.0001 and 0.0004 respectively.

Secondly, the hit rate was computed for the forecasting models. The hit-rate is the fraction of

correctly predicted signs of the returns and hence essential for these momentum strategies as

they fully base the long/short decision on the sign of the prediction. Unlike for RMSE, Look-

back performs much more reasonable when considering hit-rate, correctly predicting about 57%

of the signs. However, as is consistent with RMSE, LSTM shows best hit-rate by far, predicting

almost 61% of the signs of the returns correctly. GRU and SVR also perform relatively well

with a hit-rate of almost 59%, while the SdAE shows a rather poor hit-rate of 56%. Comparing

the forecasting performance metrics with those of the strategy returns, we see that mostly the

better the model scores for hit-rate, the better its final returns are, with only inconsistency

being that SdAE showed worse forecasting performance compared to Look-back, but performed

better with respect to annualized return and Sharpe ratio.
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Table 6: Forecasting and return performance metrics

RMSE Hit-rate Annualized Return Sharpe Ratio

Look-back 0.3903 0.572 0.130 0.643
SVR 0.0739 0.585 0.176 0.894
SdAE 0.0753 0.561 0.144 0.820
LSTM 0.0735 0.607 0.215 1.139
GRU 0.0736 0.588 0.192 0.960

5 Conclusion

In this paper we investigated the performance of several predictive models in combination with

the selective winner-minus-loser strategy. We compared their performance to that of classical

momentum strategies. Firstly, considering the plain, non-scaled, returns, it was found that the

best performing strategies were WO and LSTM, both yielding an average monthly return of

1.6%. However, LSTM would be preferred over WO in most situations as it demonstrates a

15% improvement in risk adjusted return, a lower maximum drawdown, as well as exhibiting a

more desirable distribution of its returns. As for the other models, they are all shown to have

inferior performance compared to WO and LSTM. For the different sub-periods WO performs

exceptionally well in times of relatively calm economic conditions, while LSTM is superior in

more recent times during several market crashes and bubbles.

This view changes when considering the volatility scaled returns, for which LSTM performs

worse compared to most other strategies. Still, WO is the best performing strategy according

to profitability (together with GRU for a volatility target of 15%), but WML outperforms it

according to Sharpe ratio and maximum drawdown. It is also worth noticing that, in contrast

to the conclusions drawn by Kim (2019), we found SdAE to not outperform WO and SVR. This

may be due to the randomness involved in the training of neural networks and/or the slightly

different specification of the model.

As for our main objective of identifying whether recurrent neural networks can be used for the

prediction of momentum portfolios, we have shown that this is certainly a viable and effective

approach. However, it must be taken into account that a limited search range for the hyper-

parameters was done for the deep learning methods. Hence, there is still improvement to be

made which would most certainly cause them to outperform the classical momentum strategies.

Moreover, under specific circumstances using the SWML strategy nothing is invested and one

could invest in risk free bonds during this month. This is not considered during this paper but
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would increase overall profits.

As for future research, we suggest altering the several deep learning methods such that they

directly generate the trading position by changing the loss function. In this way, one could

directly maximize the returns or Sharpe ratio, or minimize the maximum drawdown depending

on one’s main objective. Additionally, instead of fully relying on the sign of the predictions

in deciding the trading positions, one could propose a strategy in which the magnitude of the

prediction is taken into account.
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Appendices

A Hyperparameter search range

Model Hyperparameter Search Range

SVR
C

{
10i, 5 · 10i : −2 ≤ i ≤ 3

}
ε

{
10i, 5 · 10i : −5 ≤ i ≤ −1

}
γ

{
10i, 5 · 10i : −5 ≤ i ≤ −1

}
RNN

Learn Rate (0.1, 0.25)
Dropout ([12, 6, 1], [12, 6, 6, 1], [12, 6, 4, 1])
Structure (0.05, 0.005, 0.0005)

B Results volatility scaled returns sub-periods

Table 7: Performance measures volatility scaled returns (12% target) 1953-1985

Mkt WML WO Look-back SVR SdAE LSTM GRU

Mean 0.009 0.007 0.018 0.013 0.016 0.012 0.017 0.016
Max 0.166 0.060 0.227 0.175 0.227 0.152 0.178 0.175
Min -0.122 -0.100 -0.299 -0.303 -0.299 -0.227 -0.299 -0.303
Ann. Return 0.116 0.087 0.244 0.174 0.213 0.149 0.222 0.212
Ann. Vol 0.143 0.069 0.201 0.185 0.191 0.168 0.192 0.192
Sharpe Ratio 0.806 1.263 1.213 0.940 1.114 0.890 1.153 1.106
IR NA -0.046 0.273 0.073 0.175 0.052 0.202 0.186
Kurtosis 0.940 2.712 2.699 3.667 3.636 2.818 2.999 3.178
Skewness -0.036 -0.762 -0.504 -0.538 -0.502 -0.316 -0.676 -0.734
MDD 0.464 0.130 0.402 0.363 0.354 0.472 0.401 0.393

Table 8: Performance measures volatility scaled returns (12% target) 1985-2019

Mkt WML WO Look-back SVR SdAE LSTM GRU

Mean 0.010 0.006 0.014 0.008 0.013 0.010 0.012 0.012
Max 0.129 0.083 0.194 0.193 0.194 0.194 0.194 0.193
Min -0.226 -0.129 -0.407 -0.413 -0.126 -0.165 -0.407 -0.413
Ann. Return 0.124 0.077 0.177 0.097 0.171 0.123 0.153 0.148
Ann. Vol 0.151 0.073 0.190 0.167 0.151 0.140 0.177 0.177
Sharpe Ratio 0.820 1.056 0.931 0.577 1.132 0.878 0.865 0.836
IR NA -0.070 0.109 -0.037 0.073 -0.002 0.052 0.043
Kurtosis 2.660 7.292 9.020 14.187 1.731 3.120 12.275 12.898
Skewness -0.892 -1.065 -1.243 -1.486 0.360 0.243 -1.427 -1.520
MDD 0.504 0.165 0.423 0.547 0.315 0.263 0.465 0.455
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Table 9: Performance measures volatility scaled returns (15% target) 1953-1985

Mkt WML WO Look-back SVR SdAE LSTM GRU

Mean 0.009 0.008 0.023 0.016 0.019 0.014 0.020 0.020
Max 0.166 0.073 0.277 0.213 0.273 0.183 0.213 0.273
Min -0.122 -0.122 -0.353 -0.358 -0.358 -0.273 -0.358 -0.358
Ann. Return 0.116 0.104 0.311 0.217 0.260 0.182 0.271 0.270
Ann. Vol 0.143 0.083 0.242 0.223 0.229 0.201 0.231 0.219
Sharpe Ratio 0.806 1.261 1.289 0.974 1.135 0.901 1.174 1.229
IR NA -0.017 0.320 0.110 0.213 0.088 0.240 0.217
Kurtosis 0.940 2.826 2.566 3.440 3.636 2.818 2.999 4.248
Skewness -0.036 -0.783 -0.449 -0.487 -0.502 -0.316 -0.676 -0.531
MDD 0.464 0.157 0.457 0.433 0.419 0.543 0.410 0.455

Table 10: Performance measures volatility scaled returns (15% target) 1985-2019

Mkt WML WO Look-back SVR SdAE LSTM GRU

Mean 0.010 0.007 0.017 0.009 0.016 0.012 0.014 0.018
Max 0.129 0.098 0.235 0.233 0.233 0.233 0.233 0.233
Min -0.226 -0.157 -0.482 -0.489 -0.151 -0.198 -0.489 -0.134
Ann. Return 0.124 0.093 0.224 0.120 0.208 0.149 0.186 0.233
Ann. Vol 0.151 0.088 0.228 0.201 0.181 0.168 0.212 0.175
Sharpe Ratio 0.820 1.054 0.980 0.597 1.148 0.887 0.876 1.332
IR NA -0.044 0.165 -0.005 0.116 0.037 0.095 0.138
Kurtosis 2.660 7.493 8.566 13.421 1.731 3.120 12.275 1.634
Skewness -0.892 -1.110 -1.167 -1.397 0.360 0.243 -1.427 0.404
MDD 0.504 0.199 0.498 0.626 0.368 0.312 0.246 0.541

C Cumulative return volatility scaled returns

Figure 9: A figure
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Figure 10: A figure Figure 11: Another figure

Figure 12: A figure
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Figure 13: A figure Figure 14: Another figure

D Code

The following files have been used to generate and evaluate the results:

Look-back.ipynb: Generates the results for the look-back based approach.

SVR.ipynb: Generates the results for the support vector regression approach.

SdAE.ipynb: Generates the results for the stacked denoising autoencoder approach.

GRU.ipynb: Generates the results for the gated recurrent unit approach.

LSTM.ipynb: Generates the results for the long-short-term-memory approach.

Returns.ipynb: Computes strategies return from the predictions

Pfm.ipynb: Computes performance measures and makes plots
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