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Data has become indispensable in today’s society, likewise in business and industry. Utilising data has become
more and more important in the decision-making process. In particular, accessing data in the correct matter
such that companies can act upon it, could provide insight on production performance to unfold improvement
strategies on the longer run. Accuracy of these planning parameters, such as production yields and required
resources, is therefore essential in the era of continuously innovating industries with higher societal and gov-
ernmental expectations and regulations regarding sustainability. This thesis research presents a framework
that could be implemented to gain insight on actual production parameters, actual production performance
and to present steps required to improve production efficiency and sustainability. In order to measure the per-
formance of production processes over consecutive periods, a multi-period data envelopment analysis (MDEA)
method is adapted and extended by benchmarking each inefficiently produced product in a step-wise fashion.
These benchmark steps are then combined into a classification tree resulting in a production efficiency im-
provement strategy for a tactical planning level. The framework is tested and validated for a manufacturing
firm in the fast-moving consumer goods (FMCG) industry, by two distinct data sets, and shows in one overview
what measures lead to most production performance improvement. We concluded that the parameters used
for planning differed substantially from the parameters resulting from production, resulting in significantly
different efficiency scores. We also identified significantly different efficiency scores among the different prod-
uct groups and production lines. Furthermore, evaluating the production processes on a yearly basis results in
nervous behaviour of the efficiency scores. Next, we found that an increase in unit selling price and a decrease
in packaging costs are the two main drivers leading to efficiency improvement. The feature importances of the
classification trees did not depend on the benchmark levels nor the length of evaluation subperiods. However,
the performance of the constructed decision trees did depend on the benchmark levels and length of evaluation
subperiods. In general, we concluded that the monthly and quarterly evaluations lead to robust strategies, but
this strongly depends on the distribution and fluctuations of the production factors. As the proposed frame-
work is completely data-driven, it must be tested with multiple datasets from, preferably, multiple industries.
Finally, the proposed framework is a novelty in the sense that it combines MDEA with benchmarking and ma-
chine learning. In this study, we aim to show the potential of employing this framework in practice. To this
extent, the scope in this study is limited to the framework performance with regard to dynamic behaviour and
robustness but leaves room for many other research applications and topics.
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Chapter1

Introduction

Data has become indispensable in today’s society, likewise in business and industry. Utilising data has be-
come more and more important in the decision-making process. In particular, accessing data in the correct
matter such that companies can act upon it, could provide insight on the production performance, unfolding
improvement strategies on the longer run. Accuracy of these planning parameters, such as production yields
and required resources, is therefore essential in the era of continuously innovating industries and higher so-
cietal and governmental expectations and regulations regarding sustainability. This thesis research presents
a framework that could be implemented to gain insight on actual production parameters, actual production
performance and to present steps required in order to improve production efficiency and sustainability.

On the road to lean factories and sustainable production

Despite the rapid disruptions in the field of information technology and data sciences, the applications are
not yet widely introduced in supply chain optimisation and planning processes. Large amounts of production,
sales and delivery logs (production and planning data) are available, generated by continuously monitored pro-
duction processes. Companies become more and more entangled in complex data systems with multiple infor-
mation sources, and encounter difficulties of extracting adequate production figures. We could say that they
operate in a ‘data-rich yet information poor’ environment (Shang et al., 2014). These production figures, i.e.
planning parameters, are essential for improving production performance in a highly dynamic supply chain.
Performance may be improved by, for example, increasing productivity and minimising used resources and
produced waste. Intense competition, increased demand for customised products and shortened product life
cycles has led to a range of production strategies, such as Industry 4.0. Industry 4.0 digitises and integrates
end-to-end processes with its supply chain partners and is based on smart factories, smart products and smart
services through technologies such as the Internet of Things (I0T) (Lasi et al., 2014).

Providing insights on actual parameters for planners has a positive impact on costs; working capital is bet-
ter allocated and revenue is increased as capacity and demand is better matched. It is not only in the interest
of the company to improve productivity in order to increase market shares. Companies are nowadays more
susceptible to changing environments than ever. The impact of industrial production on the environment has
led to increasing awareness regarding global climate warming and environmental pollution. Because the con-
sumption of non-renewable resources, such as petroleum and coal, increases, the industry needs to achieve
high flexibility and efficiency as well as low energy consumption and cost (Wang et al., 2016). With up-to-date
planning parameters, planners are able to reduce waste (in all forms) by improved inventory levels and bet-
ter resource allocation and transportation, such that the overall planning process is improved. Furthermore,
having the data available on sustainability performance enables us to evaluate the impact of production on the
environment and to develop steps leading to increased sustainability.
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Integration of information technology (Industry 4.0) with information management is essential to obtain a
certain level of agility (Wu, 2018). This is because organisations with agile supply chains are able to respond
better to uncertainties and changes since they are better able to synchronise supply with demand through high
responsiveness along the supply chain and convert changes into business opportunities (Swafford et al., 2008).
The merging of manufacturing and warehousing systems with production plans and logistics is captured in
cyber-physical systems (CPS), which enables so-called ‘smart production’. Such smart factories require verti-
cal integration of various components in a factory and networked manufacturing systems.

The implementation of smart factories combines smart objects with big data analytics. Smart objects are used
for reconfiguration while big data analytics can provide global feedback and coordination to achieve high ef-
ficiency (Wang et al., 2016). Smart production features high interconnection between data management sys-
tems, mass data analytics and deep integration to sustain the planning feedback loop. Aside from having data
available in the correct place and time, a translation of prior knowledge and human know-how into a knowl-
edge base of various processes and rules must also be made in order to make rapid and appropriate decisions
about complicated production processes (Li, 2016). Companies operating in such environments must adapt
flexible production technologies, such as ‘lean production’ often used in agile manufacturing. Lean produc-
ers have the ability to respond quickly to customer demand by shifting between product models or between
product lines (Kretschmer et al., 2017). The essence of lean production is minimising waste while ensuring
quality. However, many companies experience difficulties in the integration of physical operations level and
tactical planning level; they are not aligned in terms of data. As a result of this, tactical planning often does not
reflect real situations on production level, let alone enables for lean production. Furthermore, in order to in-
crease sustainability, manufacturers must know what the current level of sustainability is and what measures
lead to a decrease of negative effects on the environment. This thesis research aims to provide an approach for
data-driven decision-support for production planning to decrease waste and increase sustainability.

1.1 Problem Statement

Due to highly dynamic environments, companies should constantly evaluate and revise production strategies
(Dengler et al., 2017). In order to do so, parameters on which production planning is based must match re-
ality. Even better: tactical planning must be based on actual planning parameters resulting from real-time
production and planning data. In order to include sustainability goals on a tactical level, companies should
have insight into the actual performance of the production processes. Due to a lack of knowledge, two main
problems arise with respect to the internal information flow within the planning process.

1. Disconnectivity: production data is often available in large amounts, but is often inconsistent and highly
dispersed among multiple ERP (enterprise resource planning) platforms. Therefore, there is no general
approach for outlier detection and estimation for missing parameters. Missing production parameters
that are often estimated manually are among others:

« lead times (from production, delivery or quality handling);
« yields and waste percentages;
« speed of works or outputs per shift.

Asaresult of this, the planning process is disconnected from the production process: there is no interac-
tion between execution and planning. Tactical planning is therefore difficult because of lack of visibility
on the actual production process and its impact.
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2. Sustainability: data on sustainable aspects is often sparsely available or not monitored at all. Even if such
datais available, there is no suitable approach to evaluate the sustainability performance of a production
process including different kinds of aspects such as carbon dioxide emissions, water consumption, etc.,
without using conversions of these parameters into a single quantifiable unit (such as a monetary unit).

The first problem has a great impact on sales and operations planning (S&OP) within tactical planning. The
essence of S&OP is matching supply with demand and deciding upon how much to produce for which cus-
tomer. Such decisions are often based on rough calculations based on manually estimated production param-
eters. Planning scenarios resulting from this are often far from efficient (in terms of sustainability) and could
even be infeasible to achieve. Furthermore, if a company wants to increase sustainability, a strategy on tactical
levelis needed. But due to alack of knowledge on sustainability performance, developing such a tactical plan is
very difficult. Figure 1.1 depicts the different planning levels and the disconnected planning cycle. The closing
link is depicted in white and its influence on sales and operations planning forms the basis of this research.

decennia A
Strategic Planning
strategy and objectives
plant location
production system
Jear R The Closing Link <k Network Planning
sales and operations Automatic generation of Demand and supply balancing: productiol
planning . . volumes, intercompany transports and
v Actual purchasing lead time fulfillment
semester ¥ Actual yields == Quality Lead Time, Production
v Actual quality lead time and &= Lead Time, Yield, Transport
rejection percentages Lead Time, Batch, Campaign Size
month ) , Execution EE Prod Plan / Scheduling
Operational Planning
lot-sizing Issue stock transfers, issue and Sequenced-optimized finite plan
: : i hase orders, produce X .
machine scheduling MEEE YO e ; ¢ g =5 Setup matrix, production wheels,
ek shop floor control =R ] ) D TSy &= machine run rates and losses,
day s Transaction data logged in Quality machine preferences
- System, MES, ERP, APO

Note: The left blocks indicate the three planning levels by Fleischmann and Meyr (2003) and the planning cycle, connecting tactical and
operational level, is indicated on the right. The planning cycle starts with network planning, production planning and scheduling and

execution. The closing link, depicted in white, provides the feedback and closes the planning cycle.

Figure 1.1: Schematic overview of the planning cycle with a missing closing link

1.2 Research Objective

In the previous sections, we have discussed the background and problems regarding S&OP and lean and sus-
tainable production. In order for enterprises to become agile and for S&OP match real-time situations, we in-
troduce data-driven SSOP, in which S&OP decisions are made based on actual production parameters and thus
reflect real-time situations, rather than intuition or personal experience. The question arises how to incor-
porate planning and production data in the decision-making process in order to increase sustainable perfor-
mance. Therefore, the main objective of this research is to provide a framework that supports decision-making
on a tactical level by presenting an overall efficiency improvement strategy. The following paragraphs briefly
introduce the methods used in the framework.
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To capture the effect of using current — possibly inaccurate — parameters compared to actual logged parame-
ters, we focus solely on the production performance evaluation. This performance evaluation of each product,
comparing consumed resources with production output, could support S&OP decision making and provide
insights on how the production process and sustainability could be improved. A production process (input)
has multiple types of attributes and can, therefore, include multiple types of unit measurements, especially
when we include sustainability aspects such as carbon dioxide emissions, energy consumption and waste of
resources. Since we do not know the exact relations of these production inputs and we cannot always ex-
press them in a monetary value, we propose data envelopment analysis (DEA) to compare performances to
the production processes of multiple products. DEA is a data-oriented non-parametric method, developed by
Charnes et al. (1978) to assess the performance of a set of decision-making units (DMUs), with multiple in-
puts and outputs. By linear programming, DEA classifies DMUs either as efficient or inefficient by measuring
the performance score of each DMU. In this research, we treat every production process for each product as
a separate DMU. Hence, each DMU consumes certain resources and yields certain gains; these are referred to
as input and output factors. In this research, we focus on production process attributes such as production
yields and the required production resources. Additionally, environmental and operational attributes, such as
water consumption and CO, emissions in transportation, could be included in the analysis.

After the actual production parameters are extracted, we use DEA to evaluate the production performances
of the produced products. In order to actually close the link on the tactical planning level, we provide produc-
tion improvement steps for the decision-makers, at product level. These steps — referred to as benchmarking
steps — relate to, not only to a single production factor, but all its production process attributes. By collect-
ing this information, an overall strategy can be developed that provides steps needed to improve the entire
production performance. The following section presents what we can conclude from DEA assessments and
benchmarking strategies in literature and identifies possible research gaps.

1.3 Research Gap

There is a growing demand for decision-support systems providing solutions of tactical nature using real-
time operation information (Govindan and Cheng, 2018), and Garcia-Alvarado et al. (2016) pointed out that
the alignment of (environmental) strategies with operations planning is limited in practice. Short-term and
long-term planning should, therefore, be aligned by using actual production data. Obtaining information
from data (parameter estimation) enhances short-term planning. Translating this information into knowl-
edge enhances long-term production strategies.

DEA has been widely applied to portfolio optimisation (Karasakal and Aker, 2017) and efficiency evaluation,
and has shown its benefits when other than monetary metrics must be evaluated (Koltai et al., 2017). Because
ofits data-oriented characteristic, efficiency scores are strongly influenced by fluctuations of input and output
factors of the DMUs. The multi-period DEA (MDEA), developed by Park and Park (2009) and improved by Kao
and Liu (2014), succeeds in capturing these time effect of efficiencies.

Ghahraman and Prior (2016), Park et al. (2015) and Sharma and Yu (2010) presented DEA-based step-wise
benchmarking frameworks including clustering methods and network optimisation. The latter work extends
the benchmarking process by providing priority attributes based on decision tree methods. The priority at-
tributes form the foundation of an improvement strategy for decision-makers, focusing on how efficiency scores
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are influenced, based on the input and output factors.

The aforementioned benchmarking methods are all employed in a static setting (a single period), rather than
dynamic setting (multiple periods). Furthermore, the benchmarking steps (paths) are constructed by the DMU
efficiencies rather than the steps required to improve the production performances. The availability of histor-
ical data enables us to construct a benchmarking strategy based on historic benchmarking steps. Particularly,
utilising historic efficiency scores and benchmark targets as a learning set for the benchmarking strategy may
result in a more robust strategy. To the best of our knowledge, no research was conducted including time-
dependency in a step-wise MDEA-based benchmarking. In particular, no approach of such has been pre-
sented, and therefore, the influence of trends (in time) and fluctuations on MDEA - and its benchmarking
network — is unknown. Furthermore, the above-mentioned research papers implement and test the DEA-
based frameworks only using one data set; therefore, no proper validation method is employed. Hence, we do
not know how robust the results of these frameworks are.

1.4 Research Question

In this research, we want to show the potential of data-driven S&OP. To study the effect of using actual plan-
ning parameters instead of roughly estimated parameters, a decision-support model will be developed. In the
current situation, planning parameters are roughly estimated and may not be up to date. In the aspired situa-
tion, actual planning parameters are extracted from process data and match reality. By evaluating production
performances, we compare the current situation against the aspired situation. The first research question can
then be formulated as follows.

How can we assess production efficiency and support the decision-making process in SGOP,
and what is the effect of using the current planning parameters instead of actual planning
parameters on production efficiency?

After assessing the production performance, our goal is to improve the production efficiency to increase sus-
tainability. By using historic data as a learning ladder, a benchmark strategy can be developed. The second
research question with regard to this efficiency improvement strategy can then be formulated as follows.

How can an MDEA-based step-wise benchmarking strategy be developed based on historical
production data, and what can we say about the dynamic behaviour and robustness with
regard to periodic evaluations and benchmark levels?

With studying the dynamic behaviour, we mean the influence of subdividing the evaluated period types from
ayearly to a quarterly to a monthly level.

1.5 General Approach

From the research objective, we can distinguish three main goals, constituting three phases within the re-
search. Firstly, we develop a framework with the aim to support and improve the decision-making in S&OP
process, with regard to the two problems stated in Section 1.1 (proposal phase). Secondly, we explore the capa-
bilities of the proposed framework by two empirical studies (application phase). Thirdly, we show the potential
of the proposed framework by studying the dynamic behaviour and robustness (validation phase). Figure 1.2
shows all components within each phase.
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PHASE 1 - PROPOSAL PHASE 2 - APPLICATION PHASE 3 - VALIDATION

Dynamic Analysis &

Problem Statement Data Collection & Parameter Estimation
Robustness Check

MDEA Performance

Literature Review MDEA Benchmarking Conclusion
Assessment
Framework Strategy Development Discussion
Development 9y P

Note: MDEA: multi-period data envelopment analysis.

Figure 1.2: Overview of the Thesis Research

By developing the framework, we aim at closing the planning cycle and support the decision-making process.
Therefore, we do not aim to present optimal tactical planning, of which we believe it requires human judge-
ment and inference. However, by presenting useful insights and the dynamics of a production process, this
judgment could be eased.

The research will be conducted in cooperation with EyeOn B.V., a consultancy firm specialised in planning
and forecast services. The scope of the empirical application is narrowed down to a single company in the fast-
moving consumer goods industry (FMCG), specialised in producing one type of edible product with a large
amount of variations in size, flavours, additives, shapes, packaging, etc. The firm has multiple factories lo-
cated over Europe. Planning and production data from two countries are used for the empirical studies. These
cases are referred to as Country 1 and Country 2.

1.6 Contributions and Main Results

This research proposes an MDEA-based step-wise benchmarking framework in a dynamic supply chain set-
ting, to assess production performance and provide an efficiency improvement strategy for manufacturing
firms. The framework combines MDEA with benchmarking and machine learning techniques. This research
alsovalidates the proposed framework by historic data and proposes a method to assess the dynamic behaviour
and the robustness of the proposed framework. Therefore, the contribution of this research is three-fold.
First, the step-wise MDEA benchmarking method is performed in a dynamic setting, since the assessment
and benchmarking is performed for each considered time period. Second, a decision tree based strategy is de-
veloped, focusing on the entire production process rather than on individual products, and constructed based
on historic benchmarking steps, which has, to the best of our knowledge, not been applied before. Third, we
validate and propose an approach to assess the robustness and study the dynamic behaviour of the proposed
framework.

For the application in the FMCG industry, we concluded that the planning parameters and actual produc-
tion parameters differed a lot and that they resulted in significantly different efficiency scores. The efficiency
scores of the products belonging to certain product groups and produced on certain production lines are also
significantly different. Furthermore, evaluating the production processes on a yearly basis results in nervous
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behaviour of the efficiency scores. Next, we found that an increase in unit selling price and a decrease in pack-
aging costs are the main drivers leading to efficiency improvements. The feature importances did not change
when adjusting the benchmarklevels or length of evaluation subperiods. However, the performance of the con-
structed decision trees did depend on the benchmark levels and length of evaluation subperiods. In general,
we concluded that the monthly and quarterly evaluations lead to robust strategies, but this strongly depends
on the distribution and fluctuations of the production factors. As the proposed framework is data-driven, it
must also be tested and validated by applying it to multiple data sets from, preferably, other industries.

Finally, the proposed framework is a novelty in the sense that it combines MDEA benchmarking with machine
learning. In this study, we aim to show the potential of employing this framework in practice. We limited
ourselves to the framework performance with regard to dynamic behaviour and robustness, by adjusting the
period lengths and benchmark levels. To this extent, also other approaches must be tested to further evaluate
the dynamic behaviour and the robustness of the framework.

1.7 Outline

The remainder of the thesis report is organised as follows. Chapter 2 reviews the research background and
methods that can be used to develop the framework and Chapter 3 presents the proposed framework and val-
idation method. In the first part of Chapter 4, the proposed framework is implemented and applied to two
data sets from a manufacturing firm in the FMCG industry, using real production and planning data. Fur-
thermore, the second part of Chapter 4, presents the results regarding the dynamic behaviour and robustness
of the proposed framework. Finally, in Chapter 5, we conclude on the implications of the proposed framework
and in Chapter 6, we discuss the research limitations and recommendations for further research.






Chapter 2

Literature review

In Chapter 1, we have identified two main problems: (1) much transaction data is available, but little is known
about or is done with actual planning parameters and (2) companies have little insight on the level of sustain-
ability of their production processes. Tactical planning is therefore often disconnected from the production
process resulting in inaccurate decision-making. Furthermore, the concept of data-driven sales and opera-
tions planning (S&OP) is introduced to cope with the two problems. To embody the S&OP process, data en-
velopment analysis (DEA) is suggested for performance evaluation and benchmarking is suggested to support
the decision-makers by developing long term strategies. In this chapter both methods are further studied,
identifying possible gaps in literature.

2.1 Tactical Planning and S&OP

Fleischmann and Meyr (2003) have introduced a supply chain planning matrix in which the planning process
is subdivided into long-term, mid-term and short-term planning processes resulting from procurement, pro-
duction, distribution and sales activities. The planning levels regarding production and the planning horizons
are presented on the left in Figure 1.1. One of the reasons to not include all planning tasks within one com-
prehensive planning model is that planning horizons differ along these layers of planning processes. In gen-
eral, the longer the planning horizon is, the higher the uncertainty will be (Meal, 1984). Therefore, operational
planning is modelled much closer to reality than strategic decisions are. The layer connecting the long-term
with short-term planning is described as master planning (MP). MP has to synchronise the flow of materi-
als in the complete supply chain on a mid-term time horizon and is often referred to as tactical planning or
tactical optimisation modelling. Garcia-Alvarado et al. (2016) conclude that aligning environmental strategies
only with operations planning has its limitations. Therefore, environmental strategies must also be considered
within tactical planning. Nahmias and Olsen describe S&OP as tactical decision-making on macro level, such
as defining production levels. It is a set of business processes and technologies that enable an enterprise to
respond effectively to demand and supply variability (Goh and Eldridge, 2019). S&OP also covers a great role
of coordination, as APICS (American Production and Inventory Control Society) defines it as a process “bring-
ing together all plans for business, such as sales, marketing, development, manufacturing, sourcing and financial, into an
integrated set of plans”. For effective decision-making, production managers demand precise and real-time in-
formation, and with the abundant data available, this task is more challenging than ever (Cheng et al., 2018).
Govindan and Cheng (2018) conclude that there is a growing demand for decision-support systems providing
solutions of tactical nature using real-time information.
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2.1.1 Knowledge Hierarchy

The DIKW hierarchy presents the functional relationships between data, information, knowledge and wisdom
(Cleveland, 1982). These terms progressively increase in usefulness and in difficulty in collection (Watmough,
2013). In this hierarchy, data takes the simplest form and defined as quantities, characters or symbols on which
operations are performed. The challenge is not the shortage of data, but rather the shortcomings in quality,
availability and usefulness. When data is processed and put in particular arrangements and sequences, in-
formation is generated. It describes the what, where, when and how many. The next category is knowledge and
refers to the know-how. By cognition, knowledge translates information into instructions and makes control
of a system possible (Ackoff, 1989). Finally, wisdom adds value by applying judgment. Ackoff beliefs wisdom
requires a human actor, the understanding of why things are happening. This paradigm can serve as a frame-
work for this thesis research. Following the analogy of data, information, knowledge and wisdom, we propose
the following: from available transaction data, production performance analysis can be performed to acquire
actual parameters (information), after which knowledge discovery is applied to portray relationships and sus-
tainability mechanisms (knowledge). Finally, by modelling the found relations, we can get to an understand-
ing of what measures could apply to what attributes. Literature on these three steps (parameter estimation,
performance analysis and decision support through strategy development) confine the rest of the literature
review.

2.1.2 Performance Analysis

Karasakal and Aker (2017) showed the benefits of using data envelopment analysis (DEA) in the research and
design portfolio ranking process, because of its ability to handle multiple inputs and outputs and not requiring
the explicit form of the input and output relationships. Furthermore, Koltai et al. (2017) pointed out some ad-
vantages of using DEA instead of traditional financial-based evaluation methods: in DEA (1) efficiency scores
reflect only the performance measures relevant for management objectives, and could be influenced by the
decision-maker, (2) outputs and inputs of DMUs are not required to be expressed in monetary terms, as this
is often impossible and (3) the sources of inefficient operations and improvement possibilities could be traced
by the slack values. DEA has been applied in the supply chain field for, among others, (green) supply chain
performance evaluation (Kalantary and Farzipoor Saen, 2018; Mirhedayatian et al., 2014), and for supplier se-
lection (Torres-Ruiz and Ravindran, 2019). Product and technology selection have been addressed long before
by Doyle and Green (1991) and Khouja (1995). Using DEA to evaluate production performances is not docu-
mented in research papers before. Other (sustainability) performance analysis methods, such as developing
relational models (Augusto de Oliveira et al., 2019) to assess environmental, economic and operational perfor-
mance of industrial companies or employing an exploratory factor analysis (Zhang et al., 2017) to assess key
enablers of sustainable production and performance, all require human judgment through surveys. Survey
data leave room for interpretation of the actual situations and may lead to subjective and biased inference of
the performance analysis. In the context of this research, employing DEA as performance analysis is thus a
true data-driven and more suitable approach.

2.2 Data Envelopment Analysis

Data envelopment analysis (DEA) is a data-oriented approach for evaluating the performances of a set of en-
tities — decision-making units (DMUs), which convert multiple inputs into multiple outputs (Cooper et al.,
2004). DEA is nowadays used in many applications, because of its ability to evaluate performances of DMUs
without the need of underlying information on the (often complex) relation between the multiple inputs and
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multiple outputs. Possible applications of DMUs are hospitals, suppliers, countries, regions, etc. DEA was de-
veloped by Charnes et al. (1978) and was described as a “mathematical programming model applied to observational
data that provides a new way of obtaining empirical estimates of relations, such as production functions and/or efficient
production possibility surfaces, that are cornerstones of modern economies”. By DEA, it is possible to compare the ef-
ficiencies of DMUs based on multiple inputs and outputs, without identifying a weight function relating the
different inputs and outputs.

For the set J containing the competing DMUs, the weights of the inputs and outputs are maximised such that
a measure of efficiency is obtained. Specifically, DMU;, with j € J consumes amount z;; of input i € I and
produces amount y,.; of output r € R, under the assumption that each DMU has at least one strictly positive
input and output (positivity requirement). The fractional linear programme (2.1) is presented below, of which
the interpretation is as follows: the objective function maximises the efficiency of the DMU under evaluation,
jo, such that all efficiencies of all units are less or equal to one. The decision variables u,., v; > 0 are the variable
weights to be determined by the solution of this problem. In determining the variable weights, the data on all
of the DMUs are thus used as a reference set. A DMU is considered efficient if and only if hy = 1. Then, we
have

maximise ho(u,v) = M,
Zi Vil
subject to M <1, Vj € J, @.1)
i Vidij
Up, V5 > € >0, Viel,reR.

Model (2.1) can be transformed into a linear program. As a result, we obtain

maximise F; = E HrYrios

reR
subject to Z,uryrj—z vizi; <0, Vi€ J,
reR iel (2.2)
Z ViZijy = 1,
i€l
Pry vy > € >0, Viel,reR,

where 1, and v; are virtual multipliers (decision variables). v; and p,. represent the weights of inputi € I and
output € R respectively. The dual of model (2.2) can be formulated as follows:

minimise Ej;, = 0;; —5(2 s;+z s?),

el reR
subject to inj/\j+si_ = 2,0, Viel,
jed 2.3)
Zyrj)\j—sjf = Yrg, Vre R
jeJ
Aj >0, Vj € J,

with 6, the technical efficiency (TE). TE is achieved only if all slacks are zero such that x;;,0;, = x;;\; and
Yro = YrjAj-
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Figure 2.1 depicts four DMUs with each a single input and output factor. We can construct an efficiency fron-
tier: the boundary of the convex hull of the set of efficient observations in the input and output space. This
efficiency frontier thus indicates which DMUs are performing relatively efficiently and for which DMUs the
performance could be increased with regard to the efficient DMUs.

output y

P, production function / efficiency frontier
Y3

Y2=Y4

® P
Ys

Ya

input x
Xg X4 Xp X3 Xs

Note: DMU 1, 3 and 4 are evaluated as relatively efficient in relation to DMU 2 and 5.

Figure 2.1: Graphical illustration of DEA mechanism

2.2.1 DEA and Time Periods

Standard DEA models evaluate efficiency scores purely based on static data. However, in practice, environ-
ments are often dominated by dynamic nature of DMUs. The conventional approach of dealing with multiple
periods is to aggregate data of those periods and employ DEA, ignoring the specific situation in each period.
In Cooper et al. (2004), the window analysis technique is introduced in which it is possible to perform DEA
over time by using a moving average analogue. The DMUs are treated as new DMUs in each time period. In
this setting, efficiency scores of a DMU could be different based on the period it is evaluated in. However, the
window analysis fails to address the increase of efficiency over the time periods, as the periods are disjoint. The
Malmquist productivity index (MPI) evaluates the productivity change of a DMU between two time periods. The
MPI consists of a catch-up (product of efficiency change) and frontier-shift (technological change). The former
describes how much closer a DMU to the most efficient production frontier is, while the latter describes the
technology improvement. Malmquist DEA, developed by Fire et al. (1992), allows efficiency of DMUs to be
compared in both cross-sectional matter (along multiple DMUs) as in a time series setting. In the work of Li
etal. (2017), a new dynamic time-varying efficiency score method is applied to evaluate financial distress. They
proposed a decision-support system in which the efficiency frontier can be adjusted over time to make robust
decisions. As Li et al. pointed out, a weakness of the Malmquist DEA is its computational effort, making this
method unsuitable for large data sets. Aside from the Malmquist DEA, a connected network model proposed
by Park and Park (2009) can be used to measure the efficiency of multiple periods using the analogy of parallel
production system with multiple processes. Park and Park conclude that the multi-period DEA (MDEA) results
in more statistical reliable benchmarks and that analysts could prioritise more on units with falling efficien-
cies. However, only the overall efficiency of the DMU over multiple periods is evaluated. Therefore, Kao and
Liu (2014) proposed a relational network model taking into account the operations in each period. This model
was compared to the aggregate model and the connected network model, and Kao and Liu showed the benefits
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of calculating period-specific efficiency scores, by a case study. Koltai et al. (2017) noticed that the multi-period
network DEA treats the different periods as a parallel systems, and act therefore independently. To overcome
this, a dynamic DEA model is proposed, in which link flows’ (transition variables) must be defined to con-
nect the neighbouring periods. This requires the extra knowledge of whether a link flow has a favourable or
unfavourable effect on operation. In this current research, effects on operations and knowledge of the pro-
duction processes are missing. Furthermore, for data-driven S&OP we seek a performance analysis method
with minimal human inference. Therefore, the dynamic DEA model by Koltai et al. is not recommended. The
multi-period relational network model by Kao and Liu does succeed in measuring the efficiencies over time by
solely evaluating the inputs and outputs of each production period, making it a suitable method for production
performance analysis.

2.3 Benchmarking

Benchmarking, or process benchmarking is a widely used methodology in innovation management (Yasin,
2002). It is defined as “a continuous, systematic process for evaluating the products, services and work processes of or-
ganisations that are recognised as representing best practices for the purpose of organisational improvement” (Park et al.,
2015). The first step in benchmarking is the identification of best performing units, after which a benchmark-
ing goal can be set resulting in a series of actions to achieve optimally performing units. DEA has proven its
large-scale applicability in the integrated benchmarking approach by Ross and Droge (2002). The efficiency
frontier serves as benchmark targets for inefficient DMUs. In Figure 2.1, the first DMU serves as a benchmark
target for the fifth DMU. To cover the inefficiency gap, the input required by the fifth DMU should be reduced
to a level of around x1. DEA benchmarking can, however, result in infeasible steps (Petrovi¢ et al., 2018). As
can be seen from Figure 2.1, such a large step and may not even be possible in reality. Stepwise benchmarking
has therefore been introduced to achieve gradual performance improvement.

2.3.1 Stepwise DEA-based Benchmarking

Various methodologies are used to stipulate stepwise benchmarking. In this context, we focus on two com-
monly used approaches: stratification and clustering. Stratification comes from context-dependent DEA in
which DMU (in)efficiencies are evaluated in different contexts (Khezrimotlagh and Chen, 2018), and works as
follows. By employing the initial DEA, one obtains a set of efficient DMUs and a set of inefficient DMUs. The
set with initially efficient DMUs lie on the first stratum (or efficiency frontier). Next, the efficient DMUs are
discarded from the set of DMUs and the DEA is employed again. The efficient DMUs from the second iteration
lie on the second stratum. The procedure continues until the set of inefficient DMUs is empty. Figure 2.2a
shows an example of the resulting strata. Sharma and Yu (2010) use these strata to define the benchmarking
steps; the target DMUs for the fourth efficiency frontier lie on the third efficiency frontier, the target DMUs
for the third efficiency frontier lie on the second efficiency frontier, and so forth. Hence, this analysis helps
finding an optimal benchmark target for poor-performing DMUs in a stepwise procedure, while reckoning
the context-dependency. Evaluating a relatively large number of DMUs, however, might result in a relatively
large amount of efficiency strata. A downside of using the stratification benchmarking might, therefore, result
in a loss of tractability. In the worst case, for a set of n DMUs, only one DMU lies on each stratum, resulting
in n sets of strata, and n—1 steps for the worst-performing DMU to yield efficiency. Furthermore, despite
the context-dependency, the decision-maker cannot control the resource (input factor) decrease or produc-
tion (output factor) increase required to increase the inefficient DMUs’ performance.
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output y output y

input x input x

(a) Stratification (b) Clustering

Figure 2.2: [llustration of stepwise benchmarking based on stratification and clustering

Another approach is to construct a benchmarking network and perform clustering. By clustering, we seek to
group DMUs based on their similarity of input and output factors, see 2.2b. As was pointed out by Gonzilez
and Alvarez (2001), a reasonable strategy for an inefficient DMU is a target selection that is most similar in
its input use. Hence, considering the similarity of resources and production makes the benchmark target se-
lection more achievable. In the work of Park et al. (2015), the clustering of the DMUs is based on the cross-
efficiency as introduced by Doyle and Green (1994). As a next step, for each cluster, a benchmarking network is
constructed of which each edge connects two distinct efficiency frontiers (by stratification). Park et al. (2015)
thus combine both clustering and stratification. Ghahraman and Prior (2016) use solely clustering and suc-
ceeds in taking into account the decision-maker’s preference in terms of maximum allowed changes in inputs
(and outputs) for each step. Each cluster shows the maximum benchmark step that is possible for inefficient
DMUs to take, given the maximum allowed change in inputs and outputs.

The constructed network with DMUs on the nodes and efficiency improvement steps on the edges can then
be solved by applying the shortest path problem (SPP). Park et al. (2015) use the least distance measure (the
shortest projection from the evaluated DMU efficiency frontier) to assign weights to the edges. Ghahraman
and Prior (2016) use a combination of three parameters to assign weights to the edges: a fixed cost of each step
(for the control of the number of benchmarking steps), the relative importance of input (or output) similar-
ity and the relative importance of benchmarking risk of failure (efficiency gap between two DMUs). Again, in
the approach of Ghahraman and Prior (2016), the decision-maker has more control on the efficiency improve-
ments, but it also requires tuning of the parameters which is not in the approach of Park et al. (2015).

2.3.2 Priority Benchmarking

Many research is conducted on DEA-based benchmarking and the sequence of improvement steps, but lit-
tle has been focused on the priority of the improvement steps. Specifically, the benchmarking models do not
provide to which attribute decision-makers need to focus on at each level for improvement. To the best of
our knowledge, Sharma and Yu (2010) are the first in identifying priority attributes in DEA context. Individ-
ual DMUs benefit from changes in input or output factors. However, due to possible capacity constraints,
decision-makers need to properly focus and balance improvement steps, for the benefit of the whole firm and
not solely for the benefit of individual DMUs. Therefore, a decision tree model is employed in the work of
Sharma and Yu. The input factors and stratification class are used as dependent variables and the efficiency
scores constitute the response.
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Also, De Clercq et al. (2019) combined machine learning with DEA. By stochastic gradient boosting for the
classification of efficiency scores to isolate key features (production factors) for efficiency. However, the focus
in their paper was to identify the most important input and output factors for efficiency score classification,
rather than identifying the most important input and output factors for efficiency improvement classification.

2.4 Conclusion Literature Review

Tactical planning connects short-term operations planning and long-term strategic planning. Garcia-Alvarado
et al. (2016) pointed out that the alignment of the (environmental) strategies with operations planning is lim-
ited in practice. According to Govindan and Cheng (2018), there is a growing demand for decision-support
systems providing solutions of tactical nature using real-time operation information. On the one hand, data is
available, on the other hand, information in the form of planning parameters is needed for operations planning
and knowledge is needed to develop a production improvement strategy.

The potential of DEA for performance analysis is evident as it is applied in many fields. Its competence lies
in the fact that non-monetary metrics could be evaluated and therefore allows for a complete performance
analysis. Because of its data-oriented characteristic, efficiency scores are strongly influenced by fluctuations
of input and output factors of the DMUs. The multi-period DEA (MDEA), developed by Park and Park (2009)
and improved by Kao and Liu (2014), succeeds in capturing the time-effect of input and output factors by eval-
uating time-specific efficiency scores.

Ghahraman and Prior (2016), Park et al. (2015) and Sharma and Yu (2010) presented DEA-based step-wise
benchmarking frameworks based on benchmarking network construction. By clustering methods and net-
work optimisation, the benchmarking steps are formulated. These could be controlled by assigned weights to
the network edges or limitations on input or output factor changes. DEA benchmarking has proven its ap-
plication in a static — single-period — setting. Step-wise multi-period benchmarking has, to the best of our
knowledge, not been employed before.

In the work of Sharma and Yu (2010) and De Clercq et al. (2019), decision tree models are used to classify how
the DEA efficiency scores are established based on the given input and output factors. Sharma and Yu also
look at the benchmarking process, by identifying priority attributes resulting from the benchmark steps. The
priority benchmarking thus classifies the importance of attributes but does not provide the knowledge of how
these attributes must be adjusted in order to improve performance of the DMUs, nor captures the magnitude
or efficiency gain of each step. Furthermore, the decision tree is constructed from a single-period efficiency
analysis, which we refer to a static strategy.

To conclude, the above mentioned benchmarking methods are employed in a static setting (a single period),
rather than dynamic setting (multiple periods). The effect of time-dependency on benchmarking steps has
therefore notyet been examined. Developing decision trees from the performance analysis has been applied for
priority benchmarking, however not providing directions for performance improvement. Multi-periodicity
allows us to evaluate production performances in multiple periods and to this extent employ benchmarking
in multiple periods. Combining these (historic) benchmarking steps with the construction of a decision tree
gives insights in what factor changes lead to what efficiency improvements. Such a multi-period step-wise
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DEA-based benchmarking strategy has, to the best of our knowledge, not been presented before. The dynamic
effects of MDEA on benchmarking and strategy development is therefore unknown.
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Chapter3

Methodology

In Section 1.5, we explained our proposed model and in this chapter, we further elaborate on the steps needed
to answer the research questions. First, the general setting of the performance analysis is presented. We then
present the complete framework in full detail. Finally, two validation approaches are presented to address the
robustness of the proposed framework.

3.1 Production Data and Analysis

Figure 3.1 shows the representation of a product as a DMU. The production of a product consumes two types
of resources: raw materials and packaging materials. The production of each product yields a certain revenue
per unit and an output rate per shift (production speed). Products are (continuously) produced in batches and
the input and output factors are therefore aggregated per order. The unit production factors are estimated by
dividing the total sum of resource costs and total selling price of each order by the order quantity. By using
(M)DEA, we are not limited to comparing monetary values (resource costs and selling prices) but are also able
to include, for example, the output rate per shift in the analysis. The production speed (output per shift pa-
rameter) is also corrected as a unit parameter and does not depend on the order quantity.

input process output

raw material [€ / unit] === product === revenue [€ / unit]
packaging [€ / unit] === weighted per order === output per shift [units / shift]

Figure 3.1: Production line represented as a DMU with input and output factors

The input and output factors are obtained from production and planning data, consisting of master data and
transaction data. Relevant logs are extracted from ERP database tables. For the theoretical factors, mainly
master data were used, while for the actual production factor extraction, transaction data, consisting of the
following logs, were used for the extraction of the corresponding parameters.

« Entry Log: contains all used resources for the entire production process
— Resource parameter: raw material and packaging costs per kilogram

« Scanner Log: contains all timestamps of produced products and quantities per batch
— Yield parameter: output per shift (via production lead times)

« Sales Log: contains all sales orders

— Revenue parameter: unit price
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From these logs, the actual planning parameters — or input and output factors for the MDEA — are extracted.
The exact procedures of the data collection (per production factor) is described in Appendix A. The real-time
parameters are determined by the weighted average based on the order size. If, for example, a certain product
is produced multiple times a year, we acquire multiple values of the output per shift rate. If, for one of these
orders, the output rate was relatively low, the average output rate is affected. If this order was large then the
actual output rate should be adjusted downwards, if it was a relatively small order, the adjustment of the output
rate is limited. The other planning parameters (production factors) are determined in a similar fashion.

3.2 Proposed Framework

The proposed framework consists of three steps: performance analysis of the DMUs, benchmarking of the
inefficient DMUs and strategy development for the improvements of all inefficient DMUs. Figure 3.2 shows
the complete overview of the framework and the activities within each step.

Step 1: Performance Analysis Step 2: Benchmarking Step 3: Strategy Development

Clustering-based

Data Collection  iguummg

Actual Input/Output
Factors per DMU

\ 4

MDEA: Actual
Efficiencies

Network
Construction

v

Mapping Efficiency
Improvements

Construction of
Decision Tree

L

Theoretical
Input/Output Factors
per DMU

MDEA: Theoretical
Efficiencies

Decision-Maker

Preference

Note: The blue boxes indicate external (company) input. The white boxes relate to the developed model.

Figure 3.2: Proposed Framework for a Multi-period Step-wise DEA-based Benchmarking Strat-
egy

Step 1 Performance Analysis: In this research, MDEA will be used to capture the difference of theoretical per-
formance (based on the currently used planning parameters) and the actual performance (based on the pa-
rameters obtained from the production data). Planning parameters (theoretical production factors) can be
adjusted each year by the company and therefore, we employ the MDEA on a yearly basis. Fluctuations in ac-
tual input and output factors could be caused by either noise or trends in time. For industry, the latter could
be due to for example a change or error in the production process. To cope with fluctuations in the actual pro-
duction factors, we employ the MDEA not only on a yearly level but also on a quarterly and monthly level.

DEA knows various model variations: input- or output-oriented, constant or variable returns to scale and en-
velopment (primal) or multiplier (dual) model (Cooper et al., 2004). We expect that variations will mostly come
from the input factors, therefore, the input-oriented model suites best (Wang and Wei, 2010). The general for-
mulation of the input-oriented, constant returns to scale (CCR) model is provided in (2.2).

For the MDEA, the relational network (RN) model proposed by Kao and Liu (2014) is used. The model is also
input-oriented and can be derived from the standard CCR model, provided in (2.2). Each DMU j € J, is
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evaluated in ¢ periods. The input and output variables for period p € P are denoted by x( ?) and y(p )

spectively, and for the total quantities, it holds that z;; = q —1 x( ?) and Yrj = p:1 yﬁj). In the RN-
DEA, the multipliers associated with each input and output factor remains constant over all considered pe-
riods. Therefore, the first constraint of (2.2) also holds for each period p € P, resulting in the first con-
straint of (3.1), making the former constraint redundant. Furthermore, when calculating the overall effi-
ciency (considering all periods), all aggregated period-specific input and output factors are considered. For

J={1,..,n}, I={1,...,m},R={1,...,s}and P = {1, ..., ¢}, the RN-DEA can be formulated as follows:

maximise E;’ = g HrYrjo s

reR
subject to Zuryg)—z Via:g-’) <0, Vpe P, Vj e J,
rER iel 3.1
Z ViTij, = 1,
icl
e Vg > € >0, Vr € R, Vi€l

The overall and period-specific efficiency score per DMU j can then be computed as follows:

* x, (D)
M ZTER Hy-Yrj (p) _ ZTER luryrj
Ej - N ka0 E] - 7()7
Dier Vitij e Vi T, P

el Vi

(3.2)

with 1 and y]"-‘ being the optimal solutions obtained from (3.1).

In order to obtain the benchmarking target DMUs for inefficient DMUs, we employ the dual of the above
model. Kao and Liu (2014) present the slacks-based dual for the RN-DEA. Following the approach from Ghahra-
man and Prior (2016), we present and employ the non-slacks version of the RN-DEA dual problem:

minimise =0,
subject to Z ng)/\gp) < bjowijo, Viel,
peEP jEJ (3 3)
> 2w\ Z v vre R,
peEP jeJ
AP > g, Vp e PYjcJ,

J

(p)

where 6, is the efficiency of the DMU under evaluation and the vector A;” indicates what DMUs form the

benchmarking targets for each time period. Only if )\gp ) > 0, then DMU j forms a benchmarking target for
the DMU under evaluation jj in period p. The efficient DMUs are indicated as j* and the inefficient DMUs are
as j'. Each inefficient DMU then belongs to set

J’:{Uj\9j<1}gJ, (3.4)

jed

and each efficient DMU belongs to set

~{Uilo=1}cy (3.5)

jeJ
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with J* = J\J'. Then for each inefficient DMU ;' € J’ and for all periods p € P we define the set of
benchmarking targets

JP = { Ui\ > o} cJ,  YieJ,j#j, WpeP (3.6)
jeJ

Table 3.1 summarises the models used in the first step of the framework.

Table 3.1 Comparison of Performance

Current situation Aspired situation
Model MDEA MDEA
Period yearly yearly, quarterly, monthly

Input & output factors theoretical planning parameters  actual planning parameters from logs

Note: MDEA: multi-period data envelopment analysis.

Step 2 Benchmarking: For the step-wise benchmarking we follow the approach as presented in Ghahraman
and Prior (2016). In this approach, a benchmarking network is constructed based on the target DMUs. This
results in a large network of DMUs (nodes) and benchmarking steps (edges). By clustering, the network can
be decomposed into sub-networks. The clustering enables the decision-makers to control the benchmarking
process by adjusting the so-called benchmark levels. In the clustering approach of Park et al. (2015), one does
not have this control, as the clustering is solely based on the efficiency strata of each DMU. By this benchmark-
ing control, one has the benefit that the efficiency improvement steps are achievable and could, therefore, be
implemented in real-life. The decision-maker can limit the maximum percentage of change of inputs 6; or
outputs 07 in each step (benchmark level), by defining the following matrices:

%Az |%Azs| - %Az
51 52 . 5 DMU;
1 2 . m
Jg = 5.2 5.2 5? DN.[U2 (3.7)
5t 52 . om DMU,,
for the input factors and
%0Ay| %Ayl oo %Ay
51 62 . 53 DMU;
1 2 . s
N R e ¢.)
5t 52 e 58 DMU,,

for the output factors. We refer to the restrictions as benchmark levels. For the application, we can say that,
for example, changing the customer price doesn't require any physical changes in the production process and
may, therefore, allow for larger changes. However, adjusting the used resources requires changing the bill of
materials (and product recipe), which could have its limitations in reality. In other words, the adjustments of
some attributes could be limited to a certain bound 6; or 67, depending on the type of attribute. This stresses
the ability to control the efficiency improvement steps.
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The construction of the restricted benchmarking network, a directed graph Dj(.? ) = (V;.(,p ), A;I,) )), per period
p € P perinefficient DMU j' € .J’, is done as follows:

® _ g (p)
Vi ={j"yu g,
AD ={(j"v) |ve JP, Axly <6, Viel, (3.9)
Ay&/w) S (5;-./, VT € R},

(p)

where Vj(,p ) is the set of vertices and A i the set of allowed arcs between nodes (', v), restricted by J; and

Yo=Yl

JY. with Az? = JT Vi € I and Aijf 0 = TJ Vr € R. The constructed network is different from
9 s -/

rj’ (') J
the approach of Ghahraman and Prior (2016), in the sense that we first perform clustering and subsequently,

based on the allowed efficiency improvement steps, the arcs are created.

Furthermore, Ghahraman and Prior (2016) construct a weighted network based on the fixed costs, the relative
importance of input similarity and benchmarking risk. They use a shortest path algorithm to seek the opti-
mal benchmarking path (based on the weights). In our problem, these benchmarking networks are created
for each evaluated sub-period p € P, resulting in multiple time-specific steps. Besides, we are not interested
in individual benchmarking paths (for each DMU), but rather in an overall strategy from which the complete
manufacturing process (the entire firm) benefits. Hence, we use the restricted graphs to learn about what pro-
cess adjustments lead to efficiency improvements.

Figure 3.3 gives a graphical illustration of the step-wise benchmarking process based on the given benchmark
levels. We have an inefficient DMU 9 in two periods p = 1, 2. In the first period, only DMU 8 and 10 serve as
allowed benchmarking targets (restricted by ij and Jffj), while in the second period, DMU 6 also serves as an
allowed benchmarking target. This is due to the change of relative efficiencies over the different periods and
changes in input and output factors.

output y p=1 output y p=2

input x

input x

(a) Period 1 (b) Period 2

Figure 3.3: Change of efficiency improvement graphs

Step 3 Strategy Development: In the previous steps, the performance analysis and benchmarking process is
executed. As a result of the second step, we obtained ¢ distinct set of graphs (¢ = #(P)), of which each
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of these graph sets consists of #(J’) distinct benchmarking graphs, with #(-) the cardinality of a set. Each
graph contains the allowed efficiency improvement steps Agf ) for each inefficient DMU j' € J' ineach time
period p € P. We define set A, the union of all benchmark sets:

A= U U Agf,’). (3.10)

peEP j'eJ’

Now we seek to develop a strategy involving improvement steps (arcs) for the benefit of all DMUs. Rather than
focusing on all steps of each individual DMU in each period, we create a large set E containing all allowed effi-
ciency improvements steps or all existing arcs in set A. Each elemente € Eisa tuple containing the efficiency
improvement, the input factor modifications and the output factor modifications. A particular efficiency im-
provement of inefficient DMU j’ and target DMU v, is defined as Abjr ) = 0u—0j.

o { U (j/7 v, 0, Ae(j/’v)’ Ax%j/,v)’ . ’Ax?},’v), Ay(lj,’v)7 .. ,Ayfj/,u))} (3.11)

acA
Additionally, we add all other relevant production attributes corresponding to DMU j, such as x;;, y,; and
categorical information exogenous to the performance analysis. To this extent, we obtain a set of efficiency
improvement steps with corresponding information on the DMU (like production group and production line).

In Sharma and Yu (2010), a decision tree method is used to prioritise DMU attributes by classifying the at-
tributes based on the efficiency strata (in context-based DEA). In this research, we are not interested in what
constructs the different levels of efficiencies (strata), but rather what attributes the firm needs to focus on given
the efficiency improvement steps. The improvement steps generated by the different efficiency evaluation pe-
riods, therefore, serve as a learning set (training data) for future improvement steps or strategy. This approach
adds a dynamic factor to the MDEA-based benchmarking method and could possibly result in more robust
decisions since the benchmarking strategy is based on a history of step-wise benchmarking steps.

By fitting a classification tree to E, we stratify the predictor space — efficiency improvement Af; — into v
feature sub-regions. Therefore, the predictor spaces needs to be discretised. We use the same criteria as in the
work of Sharma and Yu (2010), in which the classification tree is constructed by information entropy, a mea-
sure of uncertainty associated with a random variable. The information entropy of a discrete random variable
X, that can take on possible values {z1, ..., , }, is

v

I(X)= —Zp(a:i) log, p(zi), 3.12)
t=1

with p(z;) = P(X = ;). The attribute with the highest normalised information gain (entropy difference),
is used to branch the decision tree. The information gain of an attribute X relative to a set Y, is defined as

follows:
Yz|

Y
(X)

with Values(X) the set of all possible values for attribute X and Y, the subset of Y for which attribute X has
value .

Gain(V,X) =I(X) - > I(Y,), (3.13)

rEValues

By following the branches of the decision tree, an efficiency improvement strategy unfolds concerning the
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entire production process and not solely the individual product level. By applying ensemble methods we can
improve the performance of the decision trees and construct a more robust benchmarking strategy.

3.3 Validation Method

The validation of the framework consists of two parts. First, we validate the model using historical data, after
which we validate the model using a pseudo benchmark set. The following paragraphs explain these proce-
dures. The procedures are all executed using multiple benchmark levels and types of evaluation periods (years,
quarters and months), such that we can study the dynamic behaviour and the robustness of the framework.

We validate the model using historic data by the following method. First, we split the historic data into two
parts: January 2017 to December 2018 (part 1) and January 2019 to June 2019 (part 2). The production efficiency
improvement strategy obtained from the first part of the historic data (benchmark set E1) is then tested on the
second part of the historic data (benchmark set Eg). Hence, given the strategy as a result of the first two years,
we measure how well it predicts the efficiency improvements for the production processes in the first half of
2019.

Next, we extend the historic data set by six months (until December 2019), by sampled production factors.
The sampling is done as follows. We create a distribution of input and output factors per DMU based on the
entire time horizon of the historic data. The distributions of the production factors of each DMU are weighted
by order quantity. By sampling, we lose time-specific information on the production data and possible season-
ality. However, by using these scrambled production factors, we may get a better indication of the robustness
of the proposed framework. The procedure of constructing this pseudo benchmark set F, with elements ¢, is
depicted in Figure 3.4. We extend the historic dataset in a step-wise fashion. First, a single event (production
order) is added to the second half of the year 2019. Next, another event is added, up until a certain number
of events, such that production takes place every week. For simplicity, the number of added events are equal
for each evaluated DMU. We then obtain a pseudo decision tree (pseudo strategy) that can be compared to the
original strategy constructed by the original decision tree (January 2017 to June 2019).

For both procedures, we validate the constructed decision trees by looking at the feature importances and the
accuracy scores. We test the rank-order of the feature importances by the Spearman’s rank-order correlation
test given the two sets of feature importances. The Spearman’s rank coefficient p measures the monotonic
relation between two variables. This test is parametric, and therefore does not assume normality.

Hj : p = 0, there is no monotonic relation between the pairs,

H;y : p # 0, there is a monotonic relation between the pairs.

If the p-values fall below a certain confidence level, we have enough evidence to reject the null hypothesis and
we can, therefore, conclude that the two sets of feature importances are significantly correlated. If that is the
case, we can conclude that both developed strategies have the same driving factors leading to production efhi-
ciency improvement.
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Note: Left: from the period-specific production factors, period-specific benchmarking steps and features are mapped from which
the original strategy is constructed. Right: the production factors are scrambled (through sampling) to create new combinations of
production factors from which pseudo benchmarking steps are mapped and the test strategy is constructed.

Figure 3.4: Construction of pseudo benchmarking steps and test strategy
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Chapter 4

Application and Validation

In this chapter, we present the findings of our proposed framework applied to two case studies as introduced
in Section 3.1. First, in Section 4.1, we describe the data and present the approach in order to obtain the actual
planning parameters. Next, in Section 4.2, we employ the proposed framework consisting of the three steps
as presented in Section 3.2 (application phase). Finally, in Section 4.3, the results of the validation phase is
presented, by the procedures as presented in Section 3.3.

In the application, we work with ERP data over two and a half years (mid-December 2016 to June 2019) from
the manufacturing firm in the FMCG industry. The ERP data is stored on SQL (Structured Query Language)
databases and is extracted via SQL querying. The data is then processed in Python 3.6, and the MDEA model is
solved using the open-source linear programming solver cvxopT package developed by Andersen et al. (2012).

4.1 Data

The following sections give a brief description of the data and the steps needed as preparation for executing
the framework: data cleaning (outlier detection) and preprocessing. Appendix A contains the algorithms used
for the estimation of theoretical and actual production factors.

4.1.1 General Description

Appendix B contains all information on the production data and will be referred to in the coming sections. The
total number of produced products, production orders and sales orders differ per year. These are summarised
in Table 4.1. A distinction is made between production orders and sales orders; a production order is an or-
der containing only one product, while a sales order could contain multiple products produced for one single
customer.

Table 4.1 Production Data Description

Country 1 Country 2
2017 2018 2019 2017 2018 2019

number of unique products produced! 248 220 184 658 676 613
number of production orders 2172 1941 879 5509 5044 3566
number of sales orders 2390 3923 2099 9250 9647 7633

! Including semi-finished products (used as raw material resource in the production for other
products). Semi-finished products are not sold and therefore do not contain a selling price.
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4.1.2 Data Cleaning and Preprocessing

Dataenvelopment analysisis a data-driven method and evaluates the relative product performance. The method
is therefore sensitive to extreme values. It is thus necessary to remove products from the subset with outlying
production factors. Production factors are considered outliers if the values are larger than (or smaller than)
the third quartile plus (or first quartile minus) 1.5 times the interquartile length (Q3+1.5xIQR or Q1—1.5%
IQR). Figures B.1 and B.9 show the distribution of the production factors including outliers, by boxplots. A
common cause for outliers to occur is an extremely low order quantity in relation to the average order quan-
tity; for example, when calculating the weighted average of the resource costs per unit, we divide by the order
quantity. When the order quantity is extremely low and the costs incurred at an average level, the resource
costs per unit become extremely high, causing outliers.

In order to employ the MDEA, we need a set of products containing production factors over the entire horizon.
Production factors with value zero, cannot be included in the analysis, as (2.1) becomes unbounded and (3.1)
infeasible. This has been defined as the ‘positivity requirement’ of DEA (Charnes et al., 1978). Therefore, only
products that are produced and sold at least once every half year are included in the analysis. For both coun-
tries, we consider production data from 2017 to 2019. Semi-finished products (used as resource for another
product) are not sold and are therefore excluded from the performance analysis. Figures B.2 and B.10 show
the production moments per products during 2017-2019 for Country 1 and Country 2 respectively.

After removing outliers and too sparsely produced products, a total of 55 products remain for the performance
improvement analysis for Country 1and a total of 108 products remain for the performance improvement anal-
ysis for Country 2. Figures B.3 — B.8 show the course of the theoretical (blue lines) and actual (grey bars) pro-
duction factors of the products suitable for evaluation, during 2017 to 2019, for Country 1, showing the output
per shift rates, raw material costs and packaging costs per unit parameters. Figures B.11 — B.19 show the same
plots for Country 2. Each bar represents a production order and the opacity of the bars indicates the production
order size: the darker the bar the larger the order size. We see much fluctuation of the actual output per shift
parameters. We also see that the theoretical value is often not reached in reality meaning that this parameter is
often overestimated in the planning process. The actual resource costs are much more constant over time, but
we can also see for quite some products discrepancies between the theoretical and actual unit resource costs.

Since in the framework we evaluate the products not only every year but also every quarter and every month
within each year, it could be the case that no production takes place in the considered period, such that the eval-
uated product does not contain any production factors for that period. To avoid production factors from being
zero, we follow an approach as depicted in Figure 4.1. If no production takes place in the current time period
(blue square), then the evaluated time period adopts the production factors of the most recent production. If
no production has taken place before, the time periods adopt the production factors of the first production to
ever take place.

4.2 Results Framework

This section presents the main results of the three steps of the framework for Country 1 and Country 2. We
refer to Appendix C for the complete presentation of results.
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Note: Production only take place at the two black dots moment a and moment b, the blue square depicts the period under evaluation (1
to 5). If no production has taken place before, the evaluated period gets production factors of the first production (1—a), if production
has taken place before, the evaluated period gets production factors of the most recent production (3+—a, 5+-b).

Figure 4.1: Procedure for Handling Zero Factors

4.2.1 Performance Analysis

The first step of the framework constitutes the performance analysis of the production processes of the differ-
ent products. The production processes are defined by the planning parameters in the theoretical setting (used
in the planning process) and production factors in the actual setting (as a result of actual production and sales).
We refer to these situations as ‘theoreticals’ and ‘actuals’. The following section presents the findings regard-
ing the difference in theoretical and actual efficiency scores. The next sections focus on the actual production
factors evaluated over multiple types of periods and the efficiency scores with regard to different categorical
attributes.

Theoretical vs. Actual Efficiencies

Figure 4.2 shows two scatterplots of the overall efficiency scores over 2017, 2018 and 2019, of Country 1 and
Country 2. These overall efficiency scores EJM are calculated according to (3.2). Figures C.1and C.2 (from Ap-
pendix C), show the theoretical and actual overall efficiency scores per product and Tables C.1 and C.2 also
present the yearly efficiency scores of Country 1 and Country 2 respectively. In general, we see that there is a
discrepancy between the theoretical and actual efficiency scores. The following paragraph explains the main
findings regarding these differences.

Table 4.2 summarises the MDEA results for both countries comparing the theoretical to the actual produc-
tion efficiencies. We can see that for Country 1 the theoretical efficiencies are slightly higher than the actual
efficiencies. This means that the theoretical production factors are slightly overestimating the actual situation.
For Country 2, this difference is much more extreme due to very low theoretical efficiencies. The most extreme
difference between theoretical and actual efficiency score is 88.23 percentage points for Country 2, while this
is 45.81 percentage points for Country 1 (for a yearly evaluation).

If we perform the paired sample ¢-test (or dependent sample ¢-test) on the overall efficiency scores as a re-
sult of the theoretical and actual production factors, we obtain a p-value of 0.0003 and 0.0000 for Country 1
and Country 2 respectively. This means that we have enough evidence to reject the null hypothesis that the true
mean difference of the two sets are equal. Therefore, we can conclude that the theoretical and actual efficiency
scores are significantly different from each other, for both countries, which is as expected as the theoretical
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and actual production factors differ substantially.

Table 4.2 Theoretical vs. Actual Efficiency Scores [%] Characteristics

2017 2018 2019 overall min. max.

Countryl theoreticals 73.19 72.89 73.34 73.12 4136 100
actuals 63.28 69.19 72.20 67.52 36.81 100

Country 2 theoreticals 22.80 20.88 20.13 20.06 4.33 100
actuals 73.22  74.25 71.27 72.61 43.82 100

Note: The yearly efficiency scores, E§p> , and overall efficiency scores, EJM ,are calcu-
lated according to (3.2) and are averaged over all products.
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Figure 4.2: Scatterplots of Theoretical Overall Efficiency Scores vs. Actual Overall Efficiency
Scores for Country 1 and Country 2

We zoom in on the low theoretical efficiency scores of Country 2. The efficiency scores show the production
performance of each product relative to the other products. The theoretical efficiency scores are on average
very low, because of large differences in performance between the products. For example, product 24 has an
efficiency score of 100% in 2017, while 14.3% in 2018 and 2019 (see Table C.2). This can be explained by the
highly underestimated raw material costs during the year 2017 as can be seen from Figure B.14. Due to the
relatively low raw material costs, the other products do not stand a fair chance competing with product 24 and
get evaluated with relatively lower efficiency scores. Product 84 receives the lowest theoretical efficiency score
of 4.33% in 2018, while the actual efficiency score is 75.31%. This can be explained by the highly overestimated
raw material costs in 2018, as can be seen from Figure B.16. The most extreme difference between theoretical
and actual efficiency score is 88.23 percentage points for product 29. We may conclude that, for Country 2,
the inaccurate theoretical resource costs cause large differences in efficiency scores, resulting in an incorrect
representation of the actual situation.

Period-Specific Efficiencies

The theoretical production factors can only be evaluated on a yearly basis, as the planning parameters are only
adjusted once a year. The actual production factors, however, can be evaluated on a more frequent basis to
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acquire more insight into the actual production performances of the products. Figures C.3 and C.4 both show
three heatmaps indicating the efficiency scores for each product per period, evaluated on a yearly (left), quar-
terly (centre) and monthly (right) basis, for Country 1 and Country 2 respectively. By subdividing the evaluated
periods, we can track the specific periods during which a production process was performing above or below
average, relative to the other production processes and production periods.

What stands out, is that by shortening the evaluation periods, the period-specific as the overall efficiency
scores decrease, as shown in Table 4.3. This can be explained as follows. On a yearly basis, the weighted average
(weighted by production order size) of the production factors is used as input data for the MDEA. Above and
below-average production factors are therefore levelled during the year. This especially holds if production fac-
tors fluctuate a lot, such as the output per shift parameter. If we average the production factors over a certain
period, the minimum and maximum values of each production factor are also averaged and are therefore less
scattered. However, if we shorten the evaluation periods, these fluctuations become more apparent. Namely,
if we evaluate the production processes on a monthly basis, the range of the production factors increase as the
minimum and maximum values become more extreme. As we have seen from the theoretical efficiencies of
Country 2, the increased range of production factor magnitudes leads to the occurrence of more, on average,
lower efficiency scores, as a few products are competing with much more beneficial production factors. Fur-
thermore, the production factors within the evaluated periods are averaged by weight, the production factors
between periods are not. If no production takes place in that specific period, the last (or first ever occurring)
production factor value is copied (see Figure 3.4); this last value represents the current production factor. This
happens more often if we consider shorter evaluation periods than if we consider longer evaluation periods. It
may therefore occur that, although on average a production factor is relatively beneficial, the individual pro-
duction factors (for shortened time periods) are not, because the production order with the beneficial produc-
tion factor and large order quantity (causing the weighted average production factor to be adjusted upwards in
case of an output factor), is assigned to only one shorter time period, while the other less beneficial production
order factors are assigned to more than one time period. This ‘positive weight effect’ is, for example, visible
for product 52 of Country 2 (Figure B.12); the high peaks of the output per shift factor are also the orders with
a relatively large order quantity (indicated by the bar hue), while the lower output per shift rates occur more
often, at smaller order quantities. If we consider the complete year 2017 as evaluation period, on average the
weighted output per shift will lie around 1000 units per shift, while if we consider each month separately in 2017
as evaluation periods, more than half of the months will have an output per shift rate of less than 500 units per
shift, causing lower performance and therefore resulting in lower period-specific and overall efficiency scores.

Table 4.3 Average Efficiency Scores [%]
per Evaluated Period Type

Year Quarter Month

Countryl  68.22 49.39 45.27
Country2  72.91 59.11 47.00

Note: Averaged efficiency scores over all
evaluated periods and products.

To summarise, the decrease in efficiency scores appearing as a result of subdividing the evaluation periods
from yearly to monthly level is due to two factors: (1) the increased scatteredness of input and output factors
and (2) due to the loss of the positive weight effect as described in the previous paragraph.
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If we compare Country 1 (Figure C.3) to Country 2 (Figure C.4), we see that Country 1 has many more (almost)
efficiently produced products (products 6, 9, 14, 36), compared to Country 2 (products 11, 74, 94). For Country
1 we see that these products are rated as efficient for a maximum of three to four months (a single quarter).
For Country 2 we see for some products efficient production for one single month (products 11, 26, 54, 93).
This shows the relevance of evaluating the production processes on such frequent time periods, as this specific
month — December 2018 — stands out for Country 2. Furthermore, we see that the efficiency scores of product
46 (Country 1) and product 107 (Country 2) are rather constant over time. This means that these production
factors — in proportion to the production factors of the other products — behave rather stable over time.

Efficiency Distributions per Exogenous Attribute

For the third step of the framework, strategy development, we suggested to also include additional attributes,
exogenous to the production process factors, such as the product group and product line, aside from the pro-
duction factors used as the efficiency evaluation. It may therefore be worthwhile to study the efficiency scores
per categorical value. Figures C.5 and C.6 show the distribution of the actual efficiency scores of the products
belonging to a certain product group or produced on a certain production line, for Country 1 and Country 2 re-
spectively, evaluated on a yearly, quarterly and monthly basis. We can see that analysing the efficiency scores
per categorical attribute results in a shift of efficiency scores for Country 1; the efficiency scores for products in
group 2 are slightly higher compared to the other products, and the efficiency scores of production line C are
slightly higher compared to the first two production lines. However, if we perform an independent two-sample
t-test, we conclude that there is no significant difference in efficiency scores between the product groups and
product lines subsamples at a confidence level of 5% (see Table C.4). For Country 2, there is a clear difference
in distribution between the production groups: product groups 5 and 6 contain more products of which the
production processes are evaluated with lower efficiency scores. If we perform the same test, we can con-
clude that the efficiency scores of product group 5 are indeed significantly different at a confidence level of 5%
compared to the other product groups (see Table C.5). The sample size of product group 6 is too small, such
that we do not have enough evidence to either reject or accept the null hypothesis of the two samples having
the same mean. Furthermore, we can also conclude that the products produced on production line G score
significantly lower compared to the other production lines, and products produced on production line E are
produced significantly more efficient compared to the other products. This motivates the choice of also includ-
ing these exogenous attributes (product group and production line) to the feature space for the construction
of the decision trees, in the third step of the framework.

4.2.2 Benchmarking

The second step of the framework constitutes the benchmarking process. From the A-values of (3.3) (or slack
variables of (3.1)) the potential target DMUs are collected. Benchmarking is then performed as described in
Section 3.2. Multiple benchmark sets are created, each with a different maximum allowance of factor changes
5;- or 7. For this research, all maximum absolute relative factor change allowance - or benchmark levels -
range from 5% - 30% with increments of 5 percentage points. For simplicity, while increasing the benchmark
levels, no distinction is made between the production factors and therefore the benchmark levels are equal for
all input and output factors.

Figure 4.3 shows how the composition of set £ changes as the level of 5;’2 (unit selling price) changes from
15% to 25%. The arcs (directed edges) indicate each benchmark step and connects an inefficient DMU with a
target DMU. For illustrative purposes, the arc thickness indicates the absolute relative factor change based on



4.2. Results Framework 31

100

- 3o oo - - R
% )o.@.v......‘ N % @.a.»......‘ 3
) O.% 5 @ ﬂ ;..%
2 . . .% 2 . _ " .% 80
[ ) . 2 .‘* 4 o 4" A\ Y .
‘e o ‘® “ %
2 . 2 ] . .
25 .6 2 } 7 .
. ) 26 N '| . '
25. . . . . ©
27. . 27.
. 2 28 / ) . 2
zs. .
3 3
29. » 29.‘ .ss
30. .55 3“. - -
® o " .f\ = \ t..a 40
S 7! \ 5
3'7—. ..553 '51..~ v LA LD
@ © » Q.
> . .a‘, 5&. .
o . o b,. \ ¢ . % 20
*® @ S ) . %
9 a9, * Logiug )
"% o0 R T L
00000 TIeees”
- ~ w .
(@) Unit Price — 5392 =15% (b) Unit Price — 6;’2 =25%
. o . Yo Yy . . .
Note: The edge widths indicate the absolute relative output factor changes Ay, ) = ”yiﬂl with 0%* the maximum absolute relative
, ™

output factor change. The node colours indicate the efficiency performances of the DMUs.

Figure 4.3: Benchmarking graphs of Unit Price factor for 2019 (yearly evaluation).

the unit selling price factor changes Ay(2j, Y the thicker the line, the larger the increase of unit selling price
required in the benchmark step.

Table 4.4 shows some characteristics of the different benchmark sets presented on the rows: the number of
elements (or benchmark steps) and the average and maximum improvement of efficiency score. We can see
that the number of elements (#E) within each set increase rapidly as the benchmark level increases. We also
see that the average (Af) and maximum (max A#) efficiency score improvement, decrease as the evaluation
periods become shorter. Evaluating on a monthly basis results in smaller accepted efficiency score improve-
ments. This was expected as the efficiency scores were lower for the monthly evaluation compared to the yearly
evaluation, and the benchmarking targets therefore also have lower efficiencies scores, leading to smaller effi-
ciency score improvements. Accepting benchmark levels of 30% leads to efficiency score improvements larger
than 30%. However, a benchmark level of 30% may not be realistic, as such change in production factor may
not be implemented in real-life.

The benchmarking process is executed for multiple benchmark levels, for each product and each evaluated
production period. This results in ¢ x b benchmark sets, with ¢ the total number of evaluated periods (per year,
quarter and month) and b the total number of evaluated benchmark levels. To keep track of these efficiency
improvement steps we proceed to the final step within the framework: strategy development.

4.2.3 Strategy Development

In the last step of the framework, we combine all prior period-specific benchmark steps into a decision tree
from which an efficiency improvement strategy can be developed. In order to construct a robust decision tree,
we first study the effect of using ensemble methods on feature importance, after which we study the effect of
adjusting the benchmark levels on the feature importance. We do this by using an aggregated benchmarking
set consisting of all created benchmark sets by the different benchmark levels (5-30%) and evaluation periods
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Table 4.4 Characteristics of benchmark steps per period evaluation type and benchmark level

Country 1 Country 2
Period Type  §-level [%] # (E) AO[%] max Af [%] #(E) AO[%] max A6 [%]
Year 5 2 3.67 6.03 3 3.61 3.98
10 8 3.78 7.89 42 3.94 9.38
15 27 4.83 16.67 124 4.51 13.52
20 77 6.48 25.02 297 6.00 23.30
25 158 7.33 28.32 579 7.49 29.00
30 291 9.72 37.16 1003 9.21 40.05
Quarter 5 5 0.89 2.19 28 0.89 3.02
10 31 2.25 9.70 92 2.55 8.92
15 107 4.11 12.97 285 4.02 17.27
20 220 4.94 21.90 670 5.26 24.36
25 433 6.05 22.33 1364 6.49 26.95
30 750 7.47 30.70 2438 8.00 32.08
Month 5 10 0.79 1.25 66 0.42 3.14
10 64 2.03 9.40 221 1.93 17.28
15 254 3.81 11.6 679 2.96 17.28
20 601 4.41 23.48 1657 4.23 20.15
25 1177 5.4 23.48 3310 5.47 27.03
30 2075 6.72 30.33 5975 6.65 27.52

Note: §-level: benchmark level, #(E): cardinality of the benchmark set (number of benchmark steps), A9:
average efficiency improvement, max Af: maximum efficiency improvement.

(years, quarters and months). The benchmarking set of Country 1 contains 6290 elements and of Country 2
contains 18,833 elements.

The distribution of the elements in the benchmark set, according to production attributes are depicted as his-
tograms in Figures C.7 and C.8 (Appendix C). We can see that the distribution of the relative change of raw
material costs (Ax1) and the relative change of packaging costs (Axs) are slightly skewed to the left, meaning
that the majority of benchmark steps require a reduction in resource costs. The distribution of unit selling
price change (Ay) is slightly skewed to the right, implicating that the majority of benchmark steps require an
increase in unit selling price. The distribution of change of output per shift parameter (Ays,) is rather symmet-
rical. Therefore, we suspect that this parameter is not a driving factor for efficiency score improvements of the
production processes.

The predictor space AFE (efficiency improvement) is discretised in bins of 0-1%, 1-5%, 5-10%, 10-25% and 25-
100%. The benchmarking sets E consists of features endogenous and exogenous to the production factors. In
other words, the endogenous features are directly related to the production factors (0, x1, z2, y1, y2, Af, Axq,
Azo, Ayp, Ays), while the exogenous features are added afterwards to expand the feature space (production
group and production line). The latter variables are categorical features and must be handled differently. These
are included in the feature space as dummy variables: for each unique category value, an extra dimension is
added to the feature space. These columns get value 1 if the corresponding element belongs to this product
group or product line, 0 if not. We now study the effect of different benchmarking sets on the feature impor-
tance.
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Feature Importance and Ensemble Methods

We explore three different ensemble methods to enhance the predictive performance of the classification tree.
We compare the classification trees constructed without ensemble method to the final classification tree con-
structed with Random Forest (an ensemble of random decision trees), AdaBoost (an iteratively weighted av-
erage of classifiers) and Gradient Boosting (a greedy sequentially grown ensemble of classifiers), with varying
number of estimators. We refer to Armano and Tamponi (2018) and Friedman and Friedman (2000) for fur-
ther information on the procedures. The number of estimators are the number of observations included in
each subsample. The benchmarking set is split into a training set and test set sized at 80% and 20% of the
complete aggregated benchmark set. The number of features to include in each split of a sub-tree is limited
to the square root of the total number of features. The sampling is performed with replacement: the number
of estimators is randomly drawn from the training set to create different training sets at each sample and to
increase randomness.

Table 4.5 shows the accuracy scores in percentages and computation time in seconds (in brackets) as a result
of the ensemble methods based on the benchmark set of Country 1 and Country 2. The accuracy is defined as
the percentage of correctly fitted elements in the test set. Random Forest returns the best accuracy scores for
all three levels of subsample size for both countries. The accuracy scores of Gradient Boosting approaches the
accuracy scores of Random Forest for a subsample size of each subtree of 1000, however, at this level, Gradi-
ent Boosting requires much more computation time. The accuracy of the classification tree without ensemble
method is 94.20% for Country 1 and 91.85% for Country 2 and takes 0.04 seconds and 0.18 seconds respectively
to complete. We obtain little gain in accuracy scores of using the Random Forest ensemble compared to us-
ing no ensemble method. Therefore, we continue studying the feature importances of only the decision trees
constructed without ensemble method and constructed with Random Forest ensemble with 100 estimators in
each subsample.

Table 4.5 Accuracy Scores [%] and Computational Performance [s] of Ensemble Methods

Country1 Country 2
10 100 1000 10 100 1000
Random Forest 94.20 (0.09) 9491 (1.38) 95.07 (9.12) 92.89 (0.35) 93.79 (3.70)  93.55 (42.20)
AdaBoost 44.20 (0.07) 52.15 (0.59) 51.67 (6.24) 50.28 (0.18) 45.5 (2.00) 37.93 (20.23)

Gradient Boosting  74.24  (0.35) 88.00 (3.37) 9531 (24.70) 62.54 (1.15) 77.17 (12.28) 92.09 (1:47.02)

Note: Per number of estimators in the subsamples (10, 100, 1000), the accuracy scores (first column) and the computation time in seconds
(second column in brackets) are given per ensemble method.

Table 4.6 shows the feature importance of the top five most important features for Country 1 and Country 2.
We see that for both countries, the degree of production factor change of the unit selling price (Ay;) is the
most important feature in the efficiency improvement steps, followed by the change of raw material (A1) and
packaging costs (Ax2), dependent on using the ensemble method or not. Furthermore, we see that the degree
of change of output per shift (Ay,) is only significant for the efficiency improvement steps for the Country 2
when we construct the decision tree without ensemble method. For Country 1, however, the relative change of
output per shift is no driving factor towards efficiency improvement. For both Country 1 and Country 2, both
decision trees return the same top three most important features. Because of better accuracy scores, we decide
to proceed with the strategy development with the Random Forest ensemble method with 100 estimators.
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Table 4.6 Factor Importance [%] and Accuracy Scores [%] of Ensemble Methods

Country 1 Country 2

No Ensemble Random Forest No Ensemble Random Forest
1 Ay, 2228 Ay 2060 Ay, 1973 Ay, 21.39
2 Azxo  20.36 Ax 17.13 Az 18.89 Auxs 16.00
3 Az 15.95 Auxzg 16.45 Axo 16.73 Az 15.37
4 0 11.79 6 11.40 xo 9.26 I1 9.02
5 T 7.83 9 7.95 Ay, 7.8 0 7.45
Accuracy 94.44 94.91 91.77 93.79

Note: Top five features ranked according to importance. Features: x1: raw material
costs, x2: packaging costs, y1 : unitselling price, y2: output per shift, 6: efficiency score,
A-: absolute relative production factor change.

The categorical features (product group and production line) do not seem significantly important for the con-
struction of the decision tree. For Country 1, there are two unique product groups and two unique production
lines. All four exogenous features score 0% importance. Country 2 has six different product groups and 19 dif-
ferent production lines of which both exogenous features are at most 0.5% important in the construction of
both decision trees (without ensemble and with Random Forest). Therefore, we decide to also construct deci-
sion trees for different subsets of the benchmarking sets based on these exogenous variables (product group
and production lines), instead of including them as features in the decision trees.

Feature Importance and Benchmark Levels

The ensemble study was performed on the aggregated benchmark set including factor change limitations of
5% to 30%. Now we study the feature importances in relation to the change of benchmark levels. As discussed
in the previous section, all exogenous features are excluded from the strategy construction. The bar plots in Ta-
ble C.6 shows us how the importance of features change according to benchmark level at 5%, 15% and 25% and
yearly, quarterly and monthly evaluation periods for Country 1 and Country 2. For both countries, we see that
the change of unit selling price is the most important feature for benchmark levels of 15% and higher, followed
by the change of raw material costs or packaging costs. No significant difference in the top most important fea-
tures can be found when changing the type of evaluated period, except for the yearly evaluation for Country 1
where the magnitude of output per shift is decisive in determining the efficiency improvement. Furthermore,
in general, no significant difference in the top three most important features can be found when changing the
benchmark level. However, for a benchmark level of 5%, we see other distributions of feature importances,
but the size of the benchmark set is rather small (less than 50 elements), and therefore, we cannot draw any
conclusions on the feature importances as a result of a benchmark level of 5%.

To conclude, the benchmark level and type of evaluation period does not seem to influence the feature impor-
tances of the constructed decision trees. The top three most important features for the efficiency improvement
strategy are the change of selling price, change of raw material costs and change of packaging costs.

Recommended Strategies

Finally, we present the constructed decision trees for the aggregated benchmark set, allowing benchmark levels
up to 30% and yearly, quarterly and monthly evaluation periods. Figures 4.4 and 4.5 show the resulting decision
trees for Country 1 and Country 2, based on 6290 and 18,833 benchmark steps respectively. The distribution of



4.2. Results Framework 35

efficiency improvements are shown as histograms at the splits and as pie charts at the nodes. Following the
decision rules from the classes with higher efficiency improvements (light blue: 5-10%, green: 10-25% and grey
25-100%) leads to the most effective efficiency improvement measures.

For Country 1 (Figure 4.4), we see that increasing the unit selling prices with 6.4% and higher and reducing
the raw material costs with 0.2% and higher, is the most effective efficiency improvement measure, as more
than 90% of production processes benefit from an efficiency improvement of 5% and higher, and around 60% of
the production processes benefit from an efficiency improvement of 10% and higher. If the raw material costs
cannot be reduced, we can still increase efficiencies by reducing the packaging costs by 3.3%. For Country 2
(Figure 4.5), the most effective efficiency improvement measure is increasing the selling prices by 8.2% and
higher and reducing the raw material costs by 12.8% and higher. If this reduction of raw material costs could
not be achieved, we can still acquire large amounts of efficiency improvements by reducing the packaging costs
with 7.3% and higher.
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Figure 4.4: Overall Strategy for Country 1

Appendix Section C.3.2 presents the recommended strategies per different type of product group (exogenous
attribute). Only for product group 1 from Country 1 and product group 1 from Country 1, we can develop a
sensible efficiency improvement strategy. The decision trees of the other product groups did not lead to any
logical measures, because alimited amount of products remain after subdividing the products into these prod-
uct groups (around 50 or less), and therefore a limited amount of benchmark steps were created. Hence, we
conclude that we have insufficient evidence to believe that the constructed benchmark steps and decision trees
indeed lead to efficiency improvement of these product groups.
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Figure 4.5: Overall Strategy for Country 2

Conclusion and Discussion of Efficiency Improvement Strategies

The above-mentioned efficiency improvement strategies seem on the one hand trivial and on the other hand
infeasible due to rather large changes of production factors. Changing the raw materials affects, for example,
the product’s recipe and may be limited in real-life. Reducing the packaging costs also lead to large efficiency
improvements, but may also have its limitation in reality. Changing the unit selling price, however, requires
less physical effort, but might be constrained by long-running contracts with the clients.

Despite the limitations of changing the production factors, the decision trees do indicate that the unit sell-
ing prices, raw material costs and packaging costs are, for the majority of products, disproportionate. After
all, the decision trees are constructed by classifying the efficiency improvements of the benchmarking steps,
and the benchmarking steps show how the production factors of the relatively inefficiently produced products
must be adjusted in order to obtain a higher efficiency score. These target production processes (target DMUs)
are therefore more efficient, or in other words, the ratio of production factors are more beneficial compared
to the inefficiently produced products. This means that, in the entire production history, there exist products
with certain combinations of production factors that yield higher efficiency scores. Knowing that the output
per shift production parameter is not significantly decisive in efficiency improvement rate, means that the sell-
ing price and resource costs of these efficiently produced products are better allocated and in better proportion
compared to the inefficiently produced products.

4.3 Results Validation

We perform the validation as described in Section 3.3. The validation consists of two parts: validation by his-
toric data and validation by extending the dataset by sampling (pseudo data). For both methods, we look at the
rank-order correlation of the feature importances of the constructed decision trees, and the accuracy scores
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of the test (pseudo) benchmark set on the train (historic) benchmark set. In order to study the dynamic be-
haviour of the framework, we first look at the efficiency scores and efficiency score differences between the
benchmark sets. Namely, the strategies developed are based on the evaluation of the production processes.
In other words, we must first look at how the efficiency scores change in order to draw any conclusions on
the dynamic behaviour and robustness of the developed strategies. The results of the validation methods are
presented in the coming sections. Additional results are presented in Appendix D.

4.3.1 Validation by Historic Data

We divide the historic data into two time periods consisting of production data of 2017-2018 and production
data up until the first six months of 2019. Figure 4.6 shows the differences in overall efficiency scores as a result
of yearly, quarterly and monthly evaluation, per product. In general, we see that the efficiency scores — as a
result of adding production factors from the first half of 2019 — are higher than the efficiency scores of 2017-
2018 for Country 1, while the opposite is true for Country 2. For Country 1, we clearly see that the differences
in overall efficiency scores evaluated on a yearly basis are much larger compared to the overall efficiency dif-
ferences evaluated on a quarterly and monthly basis. The latter two result in similar efficiency scores.

The larger differences of the yearly efficiency scores can be explained as follows. Only two periods are eval-
uated in the first part of the historic benchmark set. Adding a next period (2019) results in large changes in
efficiency scores, as changes in production data becomes happen more abruptly from 2018 to 2019 when we
take the average values over the entire years (large shifts in production data). When we evaluate the two his-
toric benchmark sets on a quarterly (and monthly) basis, the shifts in production data happen more gradually
and thus result in less abrupt changes in production efficiency. This behaviour is also visible for Country 2, al-
though less clearly. The quarterly evaluated efficiency difference also shows quite large differences in efficiency
scores, although to a lesser extent than the yearly evaluated efficiency differences. We may conclude that the
yearly evaluated efficiencies results in the largest differences in efficiency scores and the monthly evaluation is
able to gradually capture changes in production factors and therefore result in less abrupt changes in efficiency
scores when assessing the efficiency transition from 2017-2018 to 2019. Particularly, the monthly evaluation
thus results in a more stable development of efficiency scores over time.

We now look at the developed strategies. We test the constructed decision tree by the benchmark set of 2017-
2018, on the benchmark set of up until the first half of 2019. Figure 4.7 shows the accuracy scores and p-values
of the Spearman’s rank-order correlation test for Country 1and Country 2. If we construct the decision trees by
the yearly evaluated benchmark set, and for benchmark levels of 15% and lower, we obtain p-values larger than
5% and therefore have insufficient evidence to reject the null hypothesis that the rank-orders of the feature im-
portances are not monotonically related. However, at higher benchmark levels and for a yearly evaluation, we
have enough evidence to conclude that the feature importances are monotonically correlated. For the monthly
and quarterly developed efficiency improvement steps, we see that the feature importances are also correlated
at lower benchmark levels. In other words, for these period evaluation types and benchmark levels, the strate-
gies developed by the 2017-2018 benchmark set and strategies developed by the 2017-2019 benchmark set have
the same rank-order of driving factors for efficiency improvement. Finally, we look at the accuracy scores of
the constructed decision tree by 2017-2018 tested on the benchmark set of up until the first half of 2019. For
Country 1, we clearly see that testing the 2017-2018 strategy on the monthly developed benchmark sets, results
in the higher accuracy scores for the majority of benchmark levels. Increasing the benchmark levels results in
a decrease of accuracy scores. The latter behaviour is also visible for Country 2. The type of period evaluation,
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Note: Differences of overall efficiency scores (E) for the historic benchmark set up until the first half of 2019 (2) and the historic bench-
mark set of 2017 and 2018 (1), evaluated on a yearly, quarterly and monthly basis per product.

Figure 4.6: Overall Efficiency Differences per Product per Period Evaluation Type
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however, does not seem to affect the accuracy scores to the same extent as for Country 1.
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importances. Then there is sufficient evidence to believe that the ranks of feature importances are correlated.

Figure 4.7: Accuracy Scores and p-values of Validation by Historic Data

To conclude, performing the efficiency improvement framework on a yearly basis means a less frequent assess-
ment of the production processes, and therefore results in more abrupt changes in production factors. This
does not only lead to large changes of efficiency scores but also in a lower performance of the constructed deci-
sion trees compared to the monthly and quarterly assessment. Performing the efficiency improvement frame-
work on a yearly basis thus leads to a less robust strategy. Performing the efficiency improvement framework
on a quarterly and monthly basis, does result in a robust strategy, as we see a significant correlation between
the ranks of feature importances of the constructed decision trees and the higher accuracy scores.

4.3.2 Validation by Sampling

The second validation method makes use of the pseudo benchmark set constructed by the approach depicted
by Figure 3.4. We extend the complete historic production set (January 2017 - June 2019) to December 2019.
During the six months extension, we add 1 to 30 production orders (at single increments), with each produc-
tion order containing sampled production factors. We refer to each production order as a pseudo-event.

Figure 4.8a shows the average (of all products) of the differences between the overall historic efficiencies (up
until June 2019) and overall pseudo efficiencies (up until December 2019), per number of added events (n-level)
for Country 1. We see that for n = 1, the yearly evaluated pseudo efficiency scores differ the most from the
yearly evaluated actual (historic) efficiency scores, followed by the quarterly and monthly evaluated efficiency
scores. This was expected following the findings of the previous section. However, increasing the number of
pseudo-events leads to much less differences between the actual and pseudo benchmark sets. This is because
the production factors of the pseudo-events get averaged and therefore result in less hectic changes in effi-
ciency scores. This effect is visible as of n = 3 for the quarterly evaluated production processes (for n = 2
each quarter gets another set of production factors), and as of n = 6 for the monthly evaluated production



40 Chapter 4. Application and Validation

processes. Adding more pseudo-events results in minimal differences of pseudo and actual efficiency scores
as the sampled production factors get averaged out over the second half of 2019. After n = 6 we see a repeated,
but strongly dampened eftect for the monthly evaluated efficiencies; because, adding more pseudo-events get
distributed evenly over the evaluated periods, still resulting in averaged but significant changes of the produc-
tion factors between the months.
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Figure 4.8: Overall Efficiency Differences for all products per n-level

The average overall efficiency score differences between the historic and pseudo data set, also show a decreas-
ing trend as the number of added pseudo production events increase to n = 30 for Country 2, as shown in
Figure 4.8b. However, for Country 2, the monthly evaluated efficiency scores yield for all n-levels the least effi-
ciency difference. The yearly evaluated overall efficiency scores differ the most. Also, the decrease of efficiency
differences happens more slowly compared to Country 1. Looking at Figure 4.6b this might be explained by
the stronger differences of efficiencies within the historic data set. Sampling from the historic data set, then,
also results in a wider variety of production factors and therefore larger differences among overall efficiency
scores between the historic and pseudo production sets. Performing the performance analysis on a monthly
basis succeeds in capturing these fluctuations in production factors and therefore must be preferred for the
data of Country 2. As we can also see from Figure D.1 (in Appendix D), showing the boxplot distributions of
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yearly, quarterly and monthly evaluated overall efficiency scores per product for Country 1 and Country 2, the
yearly evaluated efficiency scores are much more scattered compared to the quarterly and monthly evaluated
efficiency scores. We can therefore also conclude that the yearly evaluation period leads to nervous behaviour
of efficiency scores. In particular, these efficiency scores fluctuate much more compared to the monthly and
quarterly evaluated efficiency scores.

We study the rank-order correlation of the feature importance of the historically developed strategy (actual
benchmark set) and the pseudo strategy in a similar fashion as in the previous section. Figure 4.9 shows the
results of the Spearman’s test for Country 1. From Figure 4.9a, we see that if we evaluate the production data on
ayearly basis, and accept higher benchmark levels of 20% and up, the feature importances of the two developed
strategies are only significantly correlated as of n = 5 and higher. This means that, although we see minimal
differences in efficiency scores, the benchmarking process is significantly different for lower benchmark levels
and smaller numbers of added events. When we perform the benchmarking process on a more frequent basis
(quarterly and monthly evaluation), we obtain more similarity in feature importances. This can be explained
as follows. When we evaluate the production processes on a yearly basis, the production factors get averaged
and the benchmark target selection is done on averaged production factors. If we evaluate the production pro-
cesses on a monthly (and quarterly) basis, using more exact production factors (actual time-specific values),
the benchmarking target selection is also executed with more exact production factors, reflecting actual time-
specific efficiency improvements. For Country 2, we see similar behaviour (see Figure D.2c in Appendix D).
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Figure 4.9: p-values of Spearman’s rank-order correlation test of the feature importances of the
real and pseudo benchmark sets — Country 1

Finally, we look at the accuracy scores as a result of testing the developed historic strategy on the pseudo bench-
mark set. Figure 4.10 shows for Country 1, per n-level, the accuracy scores for different benchmark levels and
period evaluation types. At n = 1, we have constant production factors for the complete second half of 2019.
We see similar nervous behaviour of the accuracy scores for the yearly evaluated production processes. Increas-
ing the number of pseudo-events leads to less differences in accuracy scores between the type of evaluation
period, as can be explained by the averaging effect. However, performing the framework on a quarterly basis
results in slightly higher accuracy scores. For benchmark levels of 5-15%, we obtain accuracy scores of 80% and
higher. Hence, we may say that, for Country 1, the developed strategies at these benchmark levels behave ro-
bust, as we still acquire 80% accuracy if we extend our benchmark set with randomly sampled pseudo-events.
Increasing the benchmark levels to 30% leads to a decrease of accuracy scores, to a level of around 60%. Despite
the lower accuracy score, we still see a strong correlation between the feature importances. Therefore, we may
say that, although the classification of efficiency improvement steps yields lower accuracy, we are still able to
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grasp the most important driving factors leading to an efficiency improvement strategy in a robust matter.

Lastly, we look at the accuracy scores of Country 2, Figure 4.11. We see similar behaviour with regard to in-
creasing the benchmark levels: the accuracy scores decrease. What stands out is that for benchmark levels of
20-30%, the accuracy scores are hardly influenced by the type of evaluation period. However, for lower bench-
mark levels, we see a strong decrease of accuracy scores if we increase our evaluation period. The best accuracy
scores are therefore achieved while evaluating at a monthly level. This was to be expected as we saw from Fig-
ure 4.8b that the monthly evaluation resulted in the least efficiency differences. Therefore, we conclude that
for Country 2, performing the proposed framework on a monthly level for benchmark levels up to 15%, yields
in a robust strategy.

To conclude, the feature importances are significantly correlated for shorter evaluation periods (quarters and
months) and at higher benchmark levels (15% and up). We found that increasing the benchmark levels leads to
a decrease of accuracy scores when testing the historically developed strategy on the extended pseudo bench-
mark set. For Country 1, we clearly see that the accuracy scores depend on the type of evaluation period, al-
though this effect seems to dampen as we increase the number of pseudo-events. For Country 2, we found
fewer differences in accuracy scores with regard to the type of evaluation period and benchmark levels. How-
ever, we do see a strong increase of accuracy scores when we shorten the evaluation periods for benchmark
levels smaller than 15%.
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Conclusion

Two main problems were identified during this study: disconnectivity of the production execution and plan-
ning cycle and lack of knowledge regarding the sustainable performance of production processes. In this re-
search an efficiency improvement framework is developed; a novel approach to assess the production per-
formances within a manufacturing company. We test the framework using actual data from two data sets
(Country1and Country 2) in the FMCG industry, and two distinct validation methods (by historical and pseudo
benchmark sets). The following sections present the main findings with regard to the empirical results and the
results regarding the potential of the framework and answer the two research questions.

5.1 Application Results and Conclusions

The first goal of this study is to develop a framework that can assess production efficiency of multiple prod-
ucts by taking into account possible fluctuations of production factors over time. By evaluating the production
performance, we can analyse the difference between the theoretical performance and actual performance. We
answer the first research question in this section by means of the empirical study in the FMCG industry.

How can we assess production efficiency and support the decision-making process in SSOB,
and what is the effect of using the current planning parameters instead of actual planning
parameters on production efficiency?

A three-step framework is proposed: an MDEA-based step-wise benchmarking framework for a dynamic sup-
ply chain setting. By the implementation of the proposed framework, we could compare the theoretical pro-
duction assessment, based on the theoretical planning parameters, to the actual production assessment, based
on actual production factors. In the data collection phase (preparation of the framework), we have seen that
there is a significant discrepancy between the theoretical planning parameters and the actual production fac-
tors. This results in significantly different efficiency scores, as we have seen in the first step of the framework,
meaning that the theoretical planning parameters are inadequate and could thus overestimate the perfor-
mance of the actual production process. This stresses the urgency of, not only revising the planning parameters
but also revising them om a periodic basis (more than once a year), as the production factors can fluctuate a
lot over time.

In the first step of the framework, we have also concluded that the efficiency scores of two product groups from
Country 1 and Country 2 were significantly different from the efficiency scores of the other product groups.
Also, for Country 2 we found that for one production line the efficiency scores were significantly lower than
the other production lines. This shows the relevance of including the exogenous production attributes in the
framework, aside from only including the evaluated production factors.
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From the second and third step of the framework, we have concluded that for both data sets (countries), an
increase of unit selling price is the most important feature for production efficiency improvement, followed by
areduction of packaging costs and a reduction of raw material costs. The output per shift production parame-
ter did not seem to be a driving factor leading to efficiency improvement resulting from the benchmark steps.
Furthermore, the exogenous features also did not seem to play a role in the classification of efficiency improve-
ment. Therefore, the strategies were also constructed per production group. For many product groups, a re-
duction of packaging costs leads to most efficiency improvement of the production processes. However, many
product groups contained too little products and benchmark steps to deduct any sensible efficiency improve-
ment strategy. Aside from the developed strategies, we also concluded that the monetary production factors
included in the framework, are for many products disproportionate, and should, therefore, be better allocated.

We must also conclude that many measures resulting from the efficiency improvement strategies — such as,
realising a certain reduction of packaging costs — seem too optimistic and might be infeasible to achieve in re-
ality. In this study, we have accepted benchmark levels of up to 30%, which is already too high. This stresses the
importance of being able to control the benchmark levels, per product and per production factor. The second
step of this framework does enable us to customise the level of increase or decrease of the different production
factors per individual product.

Finally, this framework was developed to close the gap between execution phase and tactical planning phase
within the S&OP planning cycle. The study starts with a disconnectivity between physical production pro-
cess and the operations planning process. Firstly, we close this gap by estimating actual planning parameters.
Secondly, we perform benchmarking in order to improve inefficient production processes, while taking into
account the decision-maker’s preference. Lastly, we succeed in providing an overall efficiency (and sustain-
ability) improvement strategy, connecting execution level with tactical planning level.

5.2 Validation Results and Conclusions

Aside from the empirical results, we validated the framework by two distinct validation approaches to study
the dynamic behaviour and robustness of the proposed framework, resulting in the second research question.

How can an MDEA-based step-wise benchmarking strategy be developed based on historical
production data and what can we say about the dynamic behaviour and robustness with
regard to periodic evaluations and benchmark levels?

To answer this research question, we address the dynamic behaviour and robustness separately.

Dynamic Behaviour

With dynamic behaviour, we mean the influence of type of evaluation period (year, quarter or month) and
benchmark level (5% to 25%) on the framework results, focusing on the efficiency scores, constructed decision
trees accuracy scores and ranking of its feature importances.

Subdividing the evaluation period from a yearly to quarterly to monthly level, leads to, on average, lower effi-
ciency scores. This effect is caused by the fluctuation of the production factors. When evaluating the produc-
tion factors on a smaller time scale, peaks become more dominant and the range of production factors become
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more scattered. Due to a higher range of production factors, the performances of the production processes de-
crease. Also, due to the ‘positive weight effect’, the efficiency scores of shorter evaluation periods decrease due
to less beneficial production factors.

An extensive study was done on the type of evaluation period and benchmark levels with regard to the strat-
egy development (construction of the classification trees based on the benchmark sets). We concluded that
the benchmark level and type of evaluation period does not influence the composition of the most important
features for the constructed decision trees. The top three most important features for the efficiency improve-
ment strategies (per benchmark set) are the increase of unit selling price, decrease of raw material costs and
decrease of packaging costs.

Robustness

To assess the robustness, we look at the results of the validation methods. Also, the validation procedures are
executed on a yearly, quarterly and monthly basis including benchmark levels of 5-30%. For the first valida-
tion procedure, we split the historic data into two parts and evaluate the change of efficiencies and developed
strategies. We see that a yearly evaluation leads to larger efficiency differences, as we only include three evalu-
ation periods. Production factor changes then become more apparent when evaluating another year, resulting
in more abrupt changes of efficiency scores. We can thus conclude that the yearly evaluation leads to nervous
behaviour of the performance analysis. When subdividing the evaluation periods into months, the changes
of production factors happen more gradually and therefore result in less hectic differences of efficiency scores
between the two historic data sets. We also concluded that the developed strategies as a result of yearly evalu-
ations are less robust compared to the quarterly and monthly constructed benchmark set strategies.

The second validation procedure extends the production data by sampling and creating new pseudo produc-
tion events. For Country 1, we see that the efficiency differences of both historic data set and pseudo data set
decrease rapidly as we add more pseudo-events. Performing the assessment on a monthly basis results in the
longest apparent difference in efficiency scores. For Country 2, this is true for a yearly (and quarterly) evalua-
tion. Looking at the accuracy scores of the historically developed strategies tested on the pseudo data set, we
concluded that for Country 1, a quarterly evaluation period results in the most robust strategy and for Country
2, amonthly or quarterly evaluation period results in the most robust strategy.

Lower benchmark levels result in higher accuracy scores. However, lower benchmark levels also result in less
correlation between the rank-orders of feature importances of the developed strategies.

In general, for the evaluated production data sets, we may conclude that the quarterly and monthly evalua-
tions result in robust strategies as these period types succeed in benchmarking with time-specific production
factors rather than averaged production factors. As we have seen from the production sets of Country 1 and
Country 2, a monthly evaluation might be better depending on the distributions and fluctuations of produc-
tion factors. However, we are not yet able to generalise the above conclusions, as this framework should be
tested and validated using other production and sales data sets of, preferably, other industries.
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Chapter 6

Discussion

This research presents a novel approach to assess the production performances of multiple production pro-
cesses on a periodic basis, and to develop an overall efficiency improvement strategy for the benefit of all pro-
duction processes. The proposed framework is an assembly of known techniques. Due to its novelty, little was
known about the joint performance of MDEA, the benchmarking process and classification tree development.
The following paragraphs discuss the choices made and present recommendations for further research.

6.1 Framework Design

DEA was selected as a method to assess the (sustainability) performance of production processes. This method
has shown its advantages in former research. However, due to its ability to include multiple types and a large
amount of input and output factors, the model could become abstract, and the efficiency scores could be diffi-
cult to substantiate by human reasoning. Therefore, the DEA method could be conceived as a ‘black box’ model,
because of the different relations between the input and output factors per DMU. When applying this method
to real case studies, this should be kept in mind.

For the (M)DEA, the input-oriented model was selected because it was expected that more variation would
come from the input factors. Upon collecting and processing the data, we have found that most of the fluctua-
tions come from the output per shift parameter, being an output factor. Hence, in further research, we should
use the output-oriented model and study whether the results are affected by this employing this model. Fur-
thermore, a constant returns to scale model is employed, assuming that the input factors and output factors
are directly proportional to each other. This is a strong assumption and its effects on the framework results
also need to be studied in further research.

6.2 Framework Implementation

The proposed framework is a data-driven model. The results reflect the model input data, without subjective
(human) bias. However, data-driven also means data-sensitive. In this research, we treated the production
data ‘as is’, and did not manipulate the values by advanced outlier detection and correction techniques. For
the case study, we removed many products from the production set as they contained outlying production fac-
tors. This is necessary because the (M)DEA model otherwise deforms and does not return logical efficiency
scores. This stresses the importance of not only having data available but also ensuring data quality. Therefore,
for the following studies, more time should be invested in treating irregularities in production data, instead
of removing these from the data set.
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Aside from the data quality, we must also address the completeness of data. When evaluating the production
processes on a monthly basis, many production factors had to be copied from previous months, as produc-
tion did not take place on a monthly basis for many products. Despite the fact that evaluating the production
processes on a monthly basis did give useful insights, we must also note that copying a large amount of produc-
tion factors from previous periods may result in misleading production insights. Therefore, for manufacturing
firms that produce in a more continuous fashion (with a constant set of products), such as the process indus-
try, a monthly evaluation would make more sense. An alternative approach could be employing imprecise data
envelopment analysis (IDEA); instead of assigning a single factor value to the DMU, a lower and upper bound
of that factor is used to evaluate the efficiencies and a most favourable value is selected within these bounds.
However, when the factors fluctuate a lot (like for the output per shift parameter), a lower or upper bound
could be selected which is only in accordance to one single period and could result in misleading efficiencies
when evaluated over the complete time horizon. Therefore, a combination of IDEA and MDEA could solve this
problem: if production takes place in a certain period, we select the corresponding production factors, if no
production takes place in a certain period, we use the lower and upper bounds from the production factors of
previous production periods.

Aside from inconsistent production, we must also have an approach to handle newly introduced products.
For example, if a product is introduced in 2018, we do not have any data of 2017. In this research, this was
dealt with by adopting the production factors of the first occurring production event. However, this may also
give misleading insights. It is therefore crucial that also the set of existing DMUs must be consistent over the
evaluated periods. If that is not the case, a more suitable approach to handle missing production factors must
be developed for not yet existing DMUs. A recommendation is to look into DEA methods that can handle zero
factors. In that case, the production factor set is a better representation of reality.

The proposed framework is based on data envelopment analysis. This method was chosen as a main solution
approach because of the ability to also handle non-monetary values, such as the output per shift parameter.
The other three production factors (unit selling price, raw material costs and packaging costs) were monetary
values. Therefore, for this dataset, the potential of the proposed framework may have not shown its full ad-
vantage. For further research, it is recommended to also include sustainability production factors, such as
resource waste percentages, energy consumption, wastewater production, etc. In that case, the actual benefit
of using (M)DEA might become more evident. Furthermore, due to the limited amount of included production
factors, the developed efficiency improvement strategies give marginal insights and present rather trivial find-
ings; such as, increasing the unit selling price leads to an increase of production efficiency. Also, for this case
study, the rank-order of feature importances did not differ much as a result of the changing benchmark lev-
els and type of evaluation period. When including more production factors, the dynamic effects may become
more apparent. In other words, for this data set, we did not identify any dynamic behaviour with regard to the
feature importances, but this result cannot be generalised, because we had limited production factors available
to include in the framework. Therefore, ensuring the availability of sufficient types of production data, data
quality and data consistency are critical points of attention for the next implementation of this framework.

6.3 Framework Extensions

This proposed framework was originally developed for an application in the process industry. This industry
is characterised by many continuous and complex processes. For such production processes, we can employ
‘process mining for data collection and defining suitable production factors, such as multiple types of lead
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times.

The proposed framework is not limited to applications in the manufacturing industry. The framework can
also be implemented in a more general supply chain setting, for example, to assess the (sustainability) perfor-
mance of suppliers. By considering each supplier asa DMU and including input and output factors such as the
lead times, delays, product quality and environmental aspects, we can assess the supplier’s performances and
improve supply chain performance.

This research focused mainly on the dynamic behaviour and robustness of the developed strategies. The bench-
mark levels were increased equally for all products and all production factors. However, it might be interesting
to change the benchmark levels depending on the product groups (and/or production lines) and production
factors. This requires human judgment which could also become a pitfall. Models with human preference re-
sults in a trade-off between model flexibility and capability. This must be addressed in further research.

Another interesting research focus is to implement the proposed framework in a rolling horizon setting. For
example, we evaluate the production processes over a two-year timeframe shifting along the complete historic
production data set. However, this again requires the availability of a consistent data set.

As the proposed framework is the first in combining MDEA benchmarking with machine learning, the scope
of this research is limited to the framework performance with regard to the dynamic behaviour and robust-
ness. More research can be conducted on the development of the decision trees. For the current data sets, the
ensemble methods did not improve the accuracy scores significantly. However, for further research more at-
tention could be paid to the tuning of parameters, such as tree depth, number of leaf nodes, etc. Also, it might
be interesting to study the effect of using other information gain criteria, such as the Gini index.

Finally, we discretised the predictor space in efficiency improvement categories of 0-1%, 1-5%, 5-10%, 10-25%
and 25-100%, which is, in fact, a rather arbitrary choice. For future research, it may be interesting to use ad-
vanced classification techniques to find a more suitable subdivision of classes of the efficiency improvements,
fitting to the benchmark sets.
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Appendix A

Data Collection

This appendix contains the steps taken and algorithms used for the data collection of the thesis research. The
steps and algorithms are presented per evaluated production factor and general information. The following
queries with the following fields are used:

« Product Data: product code, product description, version code, product type finished or semi-finished,
weight per unit, output per shift,

« Order Data (Value Entry): production order code, product code, quantity and kg quantity, date (posting
date), resource code, resource cost per unit,

. Sales Data: sales order code, quantity, date (planned delivery date), unit price, gross weight,

« Bill of Materials: product code, resource code, raw material or semi-finished or packaging resource,
costs (standard cost), version code, ratio (bruto), inactive? (blocked),

« Production Logs (QV Production): production order code, product code, unit and kg quantity, date
(posting), shift, time (posting), production line.

These queries are referred to in the following sections. From these queries the following could be directly ex-
tracted:

« List of all unique product codes
« List of all unique production order codes
« List of all unique sales order codes

In general, a distinction can be made between the theoretical production factors (extracted from planning
master data) and the actual production factors (extracted from production logs). The planning master data
contains planning parameters per year. In case the planning parameters are changed over the year, the most
recent parameter value is used for that year.

A.1 Resources

The theoretical resource cost values are extracted from the Bill of Materials query. A distinction is made be-
tween the raw material costs and the packaging costs. When semi-finished products are used as a resource,
this is considered as a raw materials. The following algorithm describes how the theoretical resource costs are
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obtained. We consider two Resource Types: raw materials and packaging.

Algorithm 1: Get Theoretical Resource Costs

Data: Bill of Materials, List of Products, List of Resource Types.
Input: List of Years.
Result: Theoretical Resource Costs per Year.

1 Remove inactive fields (blocked)

2 for products in Product List do

3 for years in Year List do

4 for resource in Resource Type do
5 | Sum over resource costs
6 end

7 end

s end

The actual resource costs are extracted from the Order Data query with the following algorithm. It is worth
mentioning that each production order code is unique for each product. In other words, for one production
order code, only one product code is manufactured.

Algorithm 2: Get Actual Resource Costs

Data: Order Data, List of Products, List of Orders, List of Resource Types.
Input: First and Last Date of Evaluated Period
Result: Actual Resource Costs per Evaluated Period.

1 for period in Evaluated Period do

2 Select Production Orders within First and Last Date of Evaluated Period
3 for resource in Resource Type List do
4 for product in Product List do
5 for orders in Evaluated Period for current product do
6 | Sum over Resource Costs
7 end
8 Take weighted average of resource costs based on production quantity
9 end
10 end
n end

A.2 Production Output per Shift

The theoretical output per shift values are extracted from the Product Data query. For each product and each

year the output per shift collected. If the parameter changes during the year, the most recent value of that year
is selected.

The actual output per shift values are extracted from the Production Logs query. This query consists of scan-
ning timestamps; whenever a product unit is finished, it is scanned. Each entry contains the product code,
quantity and timestamp. The procedure of getting the actual output per shifts consists of two steps: collect-
ing the total production time per order (and per product) and then converting it into output per shift. A shift
consists of eight working hours. A single production order is often executed over multiple shifts (A, B, C) and
multiple days. The following algorithm describes the procedure.
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Algorithm 3: Get Actual Output per Shifts

Data: Production Logs in ascending date and timestamp order, List of Production Lines, List of Production
Orders.

Input: First and Last Date of Evaluated Period.

Result: Actual Output per Shifts per Period.

1 ShiftLineScanCounter = 0
2 special treatment of the first line
3 for log in Production Logs do

4 for line in Production Lines do
// first scan of shift

5 if ShiftLineScanCounter = 0 then

6 | PreviousTimestamp < ShiftStartTime

7 end

8 ProductionMinutes < CurrentTimestamp— PreviousTimeStamp

// interval of last ocurred scanning timestamp and current scanning timestamp of
current shift and current production line

9 PreviousTimestamp < CurrentTimestamp // update previous timestamp
10 end

1 if PreviousDate = CurrentDate and PreviousShift = CurrentShift then

i) | ShiftLineScanCounter <— ShiftLineScanCounter+1 // update scan counter
B else

1 | ShiftLineScanCounter <— 0 // reset scan counter if new day or new shift has started
15 end

16 end

17 for orders in Production Orders do

18 Total ProductionMinutes < Sum of ProductionMinutes over production logs of current order

19 ProductionMinutes PerUnit < ProductionMinutesTotal / ProductionQuantity
20 OutputPerS’hzft — ProductionMilnutesPerUnit x480

21 end
22 for period in Evaluated Period do

23 Select Production Orders within First and Last Date of Evaluated Period

2 for product in Product List do

25 | Take weighted average of Output per Shift based on production quantity

26 end
27 end

A.3 Unit Selling Price

Both theoretical and actual unit selling price are collected in the same fashion. However, the theoretical unit
prices are evaluated on a yearly basis, where the actual unit prices are evaluated on a pre-defined period basis
(months, quarters, etc.). Since the unit selling price could differ per sales order, the weighted unit price is col-
lected based on the sales order quantity. The procedure is presented in the following algorithm.
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Algorithm 4: Get Unit Prices

1

“ B oW N

Data: Sales Data, List of Products.
Input: First and Last Date of Evaluated Period
Result: Actual or Theoretical Unit Price per Evaluated Period.

for period in Evaluated Period do
Select Production Orders within First and Last Date of Evaluated Period
for product in Product List do
for sales in Sales Data in Evaluated Period for current product do
Collect all unit prices and order quantities from sales orders of current product within Evaluated

Period
end

Take weighted average of unit prices based on sales order quantity
end

end
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Appendix B

Production Data

This appendix contains the actual production data over a period from January 2017 to June 2019. The production
data is shown in figures in the coming pages.

B.1 Countryl

Figure B.1 presents the distribution of production factors in boxplots for Country 1. The dots indicate outlying
input or output factor values. The products containing these outlying values are omitted from the data set. The
next figures show data on the remaining subset of products (55).

Figure B.2 presents for the subset of products the production moments per product. The colors indicate the
production order quantity (normalised per product). Figures B.3 and B.4 present the theoretical output per
shift (line per year) and actual output per shift (bar per order), the bar darkness indicates the production order
quantity (normalised per product), dark grey shows the largest order, light grey shows the smallest order. Fig-
ures B.5 and B.6 show the theoretical unit raw material costs (line per year) and actual unit raw material costs
(bar per order), the bar color indicates the normalised order quantity as above. Figures B.5 and B.6 show the
theoretical unit packaging costs (line per year) and actual unit packaging costs (bar per order), the bar color
indicates the normalised order quantity as above.
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Figure B.4: Theoretical and Actual Outputs per Shift per product part 2 (Country I)
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Figure B.6: Theoretical and Actual Raw Material Costs per unit per product part 2 (Country 1)
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Figure B.8: Theoretical and Actual Packaging Costs per unit per product part 2 (Country 1)
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B.2 Country2

Figure B.9 presents the distribution of production factors in boxplots for Country 2. The dots indicate outlying
input or output factor values. The products containing these outlying values are omitted from the data set. The
next figures show data on the remaining subset of products (108).

Figure B.10 presents for the subset of products the production moments per product. The colors indicate the
production order quantity (normalised per product). Figures B.11 — B.13 present the theoretical output per
shift (line per year) and actual output per shift (bar per order), the bar darkness indicates the production order
quantity (normalised per product), dark grey shows the largest order, light grey shows the smallest order. Fig-
ures B.14 — B.16 show the theoretical unit raw material costs (line per year) and actual unit raw material costs
(bar per order), the bar color indicates the normalised order quantity as above. Figures B.14 — B.16 show the
theoretical unit packaging costs (line per year) and actual unit packaging costs (bar per order), the bar color
indicates the normalised order quantity as above.
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Figure B.9: Distribution of production factors 2017-2019 (Country 2)
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Figure B.11: Theoretical and Actual Outputs per Shift per product part 1 (Country 2)
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Figure B.12: Theoretical and Actual Outputs per Shift per product part 2 (Country 2)
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Figure B.13: Theoretical and Actual Outputs per Shift per product part 3 (Country 2)



74
A
ppendi
ix
B. Producti
on D
ata

0.5
0.0 :
0.5
0.0
| 1
0

T
o1
?.0‘6 °
>
o1
10
'10‘%'
®®
10‘1'
2T
7.0‘6'6
"
17
20T
2%
9 e
Pl
2o\
ERE
1 o
0

: m’,‘ [TTTTTTTT]
1
0.0 “ ““ 2
1
0

o 0,\1 5
20,\1 A2
o 0,\3.%
5 o 0\9.'3
o 0,\1 2
20,\1 AN
s 0'\6'9
o 0,\9.'5
o 0\1 2
y o1 A
7—0,\1 A\
1 7—0\9,'\
3
7_0‘\1 A
o 0\1 0
7—0\%.’\
14 ’2—0\?’"\\
20,\1 A
. o1 A
20 ,\%,7-
; 7—0,\3_’\'7—

2
4
0
2
0 |
2
||
) l-"“__—ﬂ.l_‘ I‘ II
2
0.0
1

20\
ot
o
A
T
Y oT®
et
ono?
10‘1 *
o
10“’"
"
o1
NS
10“”'«0
et
20“
o,
20“’"%
ne?

1
0 0 1 0.0
/\“(-'L \ 2 1 2 9 3] A 1
1"\
0,\%.6 1 T (3 (¢} - 1 AA 1 % 1 (S
Q A ) ‘\%"\ o\ \ O\ [\ QN o\ 20 AD \ [ Q [\ [\ Q
A A 2 )
2 Q 2 Q ’ZQ . () 2 'l
2 g
2
2
2 2
,\%—'L
2 23 —
Q
O\
'l A
2 .
yA :
‘\9’)\

N

-

2
1
| 1.0
0.5
0.0 I
2
0 IIIITI
1

2%
e
hote
26 W
21
o
2
27
20N1°
2
28 e
1%
201
2
29 we
o1
210
o 20,\5,'\7-

1.0

1.0
0.5 |
0.0 ‘ ‘“ |
0
5
1
0.0 | |
1
| 2
1
0

2o
2o\
20\
31 W
T
2o\
N
" ?_Q’\BAQ
g0\
20T
20“9"6
20\6‘\2
20\T"
20T
20\
e
T
2T
e
?—0,\%,'\2

1.0
0.5
0.0
5
1.0
. T ) I III “
0
.0 | ‘
0 I-I-M_I-I-I.l
2

T
o
10‘?"'5'
o
2015
20\
"o
37 e
20N
0&”
0"
0*°
2o
"
N
oo™
20“1
o
e
0™

[N
0.5‘
1.0
0.
T T A
0.0 2‘
1
0

7.0“1 ?
o
e
o
20‘1
7_0
7_()
P
1
o1
2
e
2015
201
305
0™
212
20,\1 A2
o
o

o

gu
Ra
Ma
(



B.2
. Country 2
75

1.0 - ol (L
0.5
| 42
0.0 .0
. 0.5
! 0 |
'zo\%"‘o y
46 2®° |
1 f
2T ‘“:\1_0\%‘6 44
20,\%_’\7— ’ |
0 1 3
HonT G |
k
4 48 ?'0)\6‘6 0 |
0 20,\1 _’\?—0,\1 ]
2 20 0
49 ’ZQ’\%A‘\
0 2 f
"l" i
" ?-0,\3.‘\7—
| 2
0

201®
20T
2
"
2T
HovT
N
7—0,\%.’\7—
1%
oy o\ A2
e
e
20T
o1
PN
e
217,
o
e
?—0,\3_'\2

1.0 .
05
) 5
2
0.0
Il 2 .
20«%—3 i | ‘ |
e H‘
20\ 7_0‘\1 9
- \5'?;0\3 AN i | |
20N T |
e e ? i “ 1.0 |
58 ‘
5 05
20’\&30‘\% A2 v
59 '
o\ T
2T
2N
60 we

o

) 0.5 I
0.0 2 |
1
0
.5
0.0 4
2
0 |

201
7.0“”A
0
2T
21
2P
62
"
20\
20\
63 e
P
o1
e
64 e
"
T
P08
65"

0 0 1.0 [ TTETTaT
0.0
0

7_()‘\1‘ 1
o
"o ®
66 e
7.0“' o
2 -
67 20\9‘2
0 [
20N 0
68 e
201501
P\
69 e
7_()‘\1 "\1()‘\1 ©
e
o 10\8_‘\\

| “\ 1
0 ‘“ ““““““
1
4
0
2 III
0 “II“

,\6.‘\?—

o
-

2017
o1 &

2 7 7'0\9‘\

AU
1 o108

4 72 20\93
0 {

2 o1
T :
?—Q‘\%A | a 10‘\9—'1

7—0\6—'\ i |
Qe o1 "
S 2 —
20’\1 0.4 7}0\6A
20«%—3 ' |
'zms-'\’\ | 0 7—0\% |
20“ T : %AZ
20«%—5 v ]
20\3’\\ '
o1
"
7.0\3‘\0 00
o1 ’20’\%
20\%
B

80

.
i TN T
Al

10‘1
82
20,\9.'\
7—0\1 A
e
T
o2
o
?—(),\1 A2
2
1 0%
20\
9 e
88
o2
e
20\
'Lo,\g.\'l
oot

Flg’ure B |5' II[e()[e 1Ca a][(l A( ll]a] RaW ]V[atetla (o} p p
pr
(
)



76 Appendix B. Production Data

81 82 83 84 85
0.5

) 1.0
1 1

| H ‘ I -

0 0 0 0 III O 0.0

A ra 2 aAD sqA A 0B o : ; y ’
Qo1 \20«67— \s Yo ?_0\1"\91_0'\% 7_()’\3 B T n®S et et 7,0\'5‘\\ 0% @ e ® et

88 89 90
I ._. 2 -
1
I 1
0.5
0.0 0 0 I 0.0
© o . . . !
T B e o 7_0‘% ° '10‘9 ” m®° 7.0“9 > P P P R
91 94 95
1.0 \
2 1.0
0.0 0.0 I 0 0.0
7_0\6‘3 7_0‘\3'6 N9 20‘\9'6 7_0‘\3'?’ 7_0\%’6 0/\%—'\ 2O i 0\%’3 0\5’6 0/\%—'\ 22 82 Ao 0‘\9' 022 80 a0 19
fou ’)_ 7 2 7 2 N 7— 7 7 20 7
100

o
o

1.0
0.5 I '
0.0 0.0 0.0 0.0

9 A 0 ~ -0 . . ’
7_0’\% Q\®T N9 & 20'\6 AL 7_0\9 QN9 1B ,LQ‘\%A O\ 120‘\9 7_0‘\3 20/\6—‘\‘\ N9 A .10\31 20‘\%—\0 7_0‘\9’,\
101 102 103 105
—-II 1.0
0.0
0 9 o A2 A0\ 0 AQ o A2 - O o0 AQ .0 5 A . 5 i
20‘?’ 20\® 291'\:6 7009 7_0\3 e et oo 7,0‘\?’ NI oo ,,_g'\%" a0\ QY 810\%"\10\9 3,me°
107 108

1.0

0.5

0.0 0.0 W '"'""I

20 o018 g0 e e e ot 10\3‘“ @7 ?

Figure B.16: Theoretical and Actual Raw Material Costs per unit per product part 3 (Country 2)
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Figure B.19: Theoretical and Actual Packaging Costs per unit per product part 3 (Country 2)
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Appendix C

Framework Results

This appendix contains the results of the proposed efficiency improvement framework. Two datasets are used
to obtain the results, referred to as Country 1 and Country 2. The appendix is structured following the steps
within the framework.

C.1 Efficiency Analysis

For Country 1, 55 production processes are evaluated and for Country 2, 108 production processes are evalu-
ated.

C.1.1 Theoretical Efficiencies vs. Actual Efficiencies

The theoretical efficiencies are a result of using the theoretical parameters (used in the planning process) and
the actual efficiencies are a result of using the actual parameters (acquired from the production logs). Figures
C.1and C.2 show both theoretical and actual overall efficiency scores per product, evaluated on a yearly basis.

o < 0 T W ONn® Q = o
© (IR R [T

Note: The purple dots indicate the average theoretical performances and the blue bars indicate the actual performances per product.
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- theo
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Figure C.1: Theoretical vs. Actual Overall Efficiencies Country 1

The yearly and overall theoretical and actual efficiency scores are presented in Tables C.1and C.2.



Appendix C. Framework Results

82

1.0

mmm theo

W actual

0.8

el
~

- N ® YOO~

<
o
a100gAouaiolyg

0.6
0.2
0.0

1.0

s theo
W actual

0.8

<
o
9100gAouaI01yg

0.6

0.2

0.0

801
L0
9201
SoL
oL
€0k
20l
1oL
0oL
66
86
16
96
56
6
€6
26
16
06
68
88
18
98
S8
8
€8
28
18
08
6L
8L
1L
9L
7
1ZA
€L
2L
VL
0L
69
89
19
99
g9
9
€9
29
19
09
69
89
LS
95
SS

Productcode

Note: The purple dots indicate the average theoretical performances and the blue bars indicate the actual performances per product.

Theoretical vs. Actual Overall Efficiencies Country 2

Figure C.2.
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Table C.1 Theoretical vs. Actual Overall and Yearly Efficiencies Country 1

Theoretical Actual

Product Overall 2017 2018 2019  Overall 2017 2018 2019
1 97.9% 97.9% 97.9% 97.9% 79.2%  65.4% 100.0% 78.4%
2 95.2% 95.2% 95.2% 95.2% 88.7%  91.0% 91.1% 84.2%
3 100.0% 100.0% 100.0% 100.0% 95.1%  92.8% 100.0% 93.0%
4 94.6% 94.6% 94.6% 94.6% 84.8% 80.6%  89.0% 85.1%
5 85.0% 85.0% 84.8% 85.2% 66.4%  61.9% 59.6% 81.0%
6 100.0% 100.0% 100.0% 100.0% 85.1%  76.2% 100.0% 83.5%
7 94.5% 100.0% 91.1% 92.8% 77.4%  75.4% 74.3% 83.0%
8 78.8% 80.6% 78.0% 77.9% 77.5%  66.3% 73.6% 100.0%
9 58.7% 58.7% 58.7% 58.7% 78.7%  70.3%  100.0% 72.0%
10 60.1%  60.2%  60.2% 60.1% 64.3%  62.8% 64.5% 65.7%
11 65.4% 64.7% 64.7% 66.8% 72.3%  71.7% 73.4% 71.9%
12 59.9% 57.7% 57.7% 64.2%  42.0%  36.9% 37.4% 55.5%
13 46.9% 46.2%  46.0% 48.4% 44.4%  44.2% 45.1% 43.9%
14 83.3% 86.3% 86.3% 78.1% 72.5%  63.9% 65.6% 95.2%
15 58.4% 58.4% 58.4% 58.4% 61.0%  57.4% 59.1% 67.4%
16 80.8% 82.7% 82.7% 77.3% 64.8%  64.6% 64.3% 65.4%
17 42.3% 42.7% 42.7% 41.4%  48.2%  46.4% 46.4% 52.1%
18 52.8% 52.8% 52.8% 52.8% 69.8%  60.1% 61.5% 98.6%
19 77.7% 76.3% 76.3%  80.6% 63.6% 60.0% 65.5% 65.7%
20 78.1% 78.2% 78.1% 78.1% 75.2%  56.0%  90.4% 84.6%
21 67.2% 66.9% 67.3% 67.5% 65.1%  61.0% 63.4% 71.5%
22 71.9% 73.9% 73.9% 68.3% 55.9%  54.6% 55.1%  58.0%
23 65.7% 65.1% 65.0% 66.9% 67.2%  67.0% 72.6% 62.9%
24 71.9% 72.0% 71.9% 71.9% 78.1%  68.0% 77.3% 92.9%
25 88.3% 85.9% 85.9% 93.0% 71.7%  65.5% 79.6% 70.3%
26 56.9% 56.8% 56.8% 57.1% 51.5%  48.0% 51.0% 56.4%
27 56.4% 56.4% 56.4% 56.4% 53.6%  49.8% 58.6% 53.2%
28 84.5% 83.1% 83.1% 87.3% 69.2%  66.3% 73.8% 67.9%
29 57.8% 58.0% 57.6% 57.6% 44.9%  38.2% 38.6% 68.6%
30 65.4% 65.7% 65.5% 65.0% 73.8%  71.7% 74.6% 75.3%
31 74.9% 74.9% 74.9% 74.8% 71.9%  65.6% 66.3% 87.6%
32 58.1% 57.2% 56.6% 60.4% 51.1%  36.8% 41.0% 93.3%
33 67.7% 68.9% 68.9% 65.3% 65.1%  61.3% 66.7% 67.6%
34 50.0%  50.0%  50.0% 50.1% 63.9%  60.1% 66.7% 65.1%
35 66.6% 64.1% 62.2% 73.5% 59.5%  54.1% 57.9% 68.3%
36 91.0% 86.5% 86.5% 100.0% 85.4%  79.3% 100.0% 79.8%
37 67.1% 67.1% 67.1% 67.0% 59.4%  59.3% 59.6% 59.1%
38 69.1% 70.5% 70.5% 66.5% 56.8%  58.0% 53.0%  60.0%
39 68.2% 68.6%  68.0%  68.0%  50.0%  40.5% 49.9% 61.7%
40 73.5% 73.5% 73.5% 73.4% 67.6%  65.7% 68.5% 68.8%
41 100.0% 100.0% 100.0% 100.0% 89.9%  78.6% 93.7% 98.6%
42 48.4% 48.4% 48.4% 48.4% 58.7%  53.4% 54.5% 71.0%
43 99.9% 99.9% 99.9%  100.0% 89.8% 90.0% 89.8% 89.6%
44 84.7% 81.5% 81.5% 91.1% 70.4%  78.7% 78.7% 54.6%
45 63.0% 63.0% 63.0% 63.0% 77.2%  72.7% 84.1% 75.6%
46 62.7% 62.7% 62.7% 62.8% 48.9%  48.8% 48.9%  49.0%
47 55.5% 55.7% 55.4% 55.4% 61.9%  61.8% 64.6% 59.7%
48 54.8% 55.1% 54.8% 54.7% 55.7%  55.1% 51.6% 60.5%
49 95.0% 97.9% 97.9% 89.7% 70.1%  68.7% 81.7% 59.9%
50 76.2% 76.2% 76.2% 76.2% 65.5%  56.4% 71.1% 70.2%
51 76.0% 76.0% 76.0% 76.0% 62.7%  56.8% 67.5% 64.1%
52 72.3% 72.8% 72.6% 71.5%  69.0%  64.6% 64.6% 78.7%
53 80.8% 80.7% 80.7% 81.0% 89.1%  89.3% 89.3% 88.6%
54 74.6% 76.1% 76.1% 71.9% 62.5%  60.7% 60.7% 66.1%
55 95.1% 95.9% 95.9% 93.4% 69.7%  69.7% 69.7% 69.8%

73.1% 73.2% 72.9% 73.3% 67.5%  63.3% 69.2% 72.2%
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Table C.2 Theoretical vs. Actual Overall and Yearly Efficiencies Country 2

Theoretical Actual Theoretical Actual

Product Overall 2017 2018 2019 Overall 2017 2018 2019 Product Overall 2017 2018 2019 Overall 2017 2018 2019
1 54.1% 60.0% 51.1% 51.1% 57.3% 61.3% 66.6% 44.9% 55 19.4%  20.2% 19.1% 19.0% 58.6% 59.9% 53.2% 62.3%
2 19.1% 17.4% 19.8% 20.1% 69.9% 69.9% 69.2% 70.5% 56 35.2% 32.5% 36.5% 36.6% 77.7% 66.4% 67.0%  100.0%
3 8.2% 19.3% 6.3% 6.3% 72.9% 68.5% 75.0% 75.1% 57 35.1% 32.4% 36.4% 36.6% 74.2% 68.7% 79.2% 74.6%
4 9.8% 10.0% 9.9% 9.5% 75.7% 72.4% 78.9% 76.1% 58 10.3% 10.1% 10.4% 10.4% 69.2% 59.9% 79.2% 70.9%
5 19.8% 19.6% 19.8% 20.1% 65.1% 66.1% 65.9% 63.2% 59 31.5% 31.6%  30.9% 31.9% 81.1% 83.0% 80.9% 79.3%
6 14.8% 14.8% 14.9% 14.8% 61.7% 60.2% 58.5% 66.4% 60 9.4% 6.7% 12.0%  12.0% 88.4% 88.4% 93.4% 84.2%
7 12.3% 12.4% 12.3% 12.2% 61.6% 53.9% 74.5% 59.4% 61 10.7% 10.1% 11.0% 11.0% 94.1% 88.6% 96.2% 98.0%
8 21.9% 20.2% 21.0% 24.4% 78.2% 76.6% 75.1% 82.4% 62 9.7% 9.9% 9.7% 9.5% 87.9% 92.6% 92.9% 79.4%
9 31.5% 3L.6%  30.9% 31.9% 85.2% 91.2%  80.6% 84.0% 63 15.8% 15.7% 15.9% 16.0% 70.7% 70.7% 71.9% 69.5%
10 18.2% 18.7% 18.3% 17.7% 77.8% 79.2% 87.5% 68.7% 64 25.7%  26.0%  25.2%  25.8% 99.9% 99.8%  100.0%  100.0%
il 11.4% 31.7% 30.3% 5.0% 53.1% 49.0% 56.7% 54.3% 65 19.5% 19.1% 19.6% 19.8% 94.1% 98.5% 94.5% 89.3%
12 10.4% 29.6% 29.6% 4.5% 50.8% 50.7% 49.5% 52.3% 66 8.0% 5.8% 9.9% 9.9% 66.3% 76.4% 68.8% 56.9%
13 17.4% 18.4% 16.9% 16.9% 73.3% 73.3% 77.9% 69.1% 67 14.5% 16.0% 14.2% 13.5% 52.3% 55.9% 50.6% 50.3%
14 32.3% 32.6% 31.7%  32.8% 81.1% 78.5% 83.3% 81.3% 68 16.6% 17.7% 16.2% 15.9% 58.0% 62.4% 61.9% 50.5%
15 13.0% 13.4% 13.2% 12.5% 52.1% 46.1% 53.0% 58.8% 69 21.7% 21.9% 21.8% 21.4% 90.1% 92.5% 90.1% 87.9%
16 18.5% 20.9% 17.7% 16.9% 71.9% 81.8% 71.1% 63.5% 70 11.4% 8.0% 14.6% 14.7% 77.3% 81.3% 84.2% 68.4%
17 10.0% 10.8% 9.7% 9.6% 52.1% 55.9% 49.7% 50.8% 71 14.9% 14.9% 14.8% 14.9% 77.8% 84.6% 86.5% 65.7%
18 21.6% 21.4% 21.7% 21.7% 58.4% 56.0% 52.6% 66.5% 72 9.0% 6.2% 11.6% 11.6% 52.0% 52.3% 55.6% 48.5%
19 83.3% 81.5% 84.1% 84.3% 88.2% 65.2% 99.3%  100.0% 73 9.2% 6.4% 11.7% 11.7% 51.8% 49.3% 55.9% 50.5%
20 11.7% 11.7% 11.7% 11.7% 69.9% 77.3% 63.8% 69.7% 74 53.8%  46.2% 53.6% 61.5% 95.4% 85.3%  100.0%  100.0%
21 22.1% 22.9% 21.8% 21.8% 68.6% 65.5% 69.9% 70.0% 75 30.7% 31.2%  30.5%  30.6% 96.7%  100.0%  100.0% 90.7%
22 19.1% 17.4% 19.8% 20.1% 64.8% 69.4%  62.8% 62.8% 76 14.7% 64.4% 11.4% 11.4% 54.8% 45.6% 65.0% 58.8%
23 13.8% 13.8% 13.8% 13.8% 73.3% 81.7%  68.2% 71.1% 77 12.2% 9.0% 15.2% 15.2% 65.8% 61.9% 74.7% 61.6%
24 20.0%  100.0% 14.3% 14.3% 69.0% 80.8% 86.7% 51.1% 78 15.6% 16.6% 15.1% 15.2% 64.4% 63.0% 63.1% 67.4%
25 35.4% 35.1% 35.5% 35.6% 90.2% 81.3% 94.9% 94.9% 79 16.9% 17.3% 15.8% 17.6% 74.1% 66.6% 73.4% 83.8%
26 35.4% 35.1% 35.5% 35.6% 73.4% 65.0% 96.9% 61.9% 80 53.2% 57.3% 55.1%  47.0% 82.5% 83.0% 83.0% 81.6%
27 19.8% 19.6% 19.8% 20.1% 66.3% 66.8% 65.4% 66.7% 81 19.7% 11.9%  20.5% 31.3% 92.4%  100.0% 86.0% 91.2%
28 20.8% 20.7%  20.7% 21.0% 81.5% 73.1% 89.6% 83.1% 82 15.9% 13.0% 17.3% 17.4% 50.3% 65.1% 43.8% 45.1%
29 11.1% 11.8% 10.9% 10.7% 89.0%  100.0% 95.6% 74.6% 83 19.1% 17.4% 19.8%  20.1% 80.5% 81.2% 74.9% 86.0%
30 22.8% 22.7% 22.7%  23.0% 94.9% 97.9% 95.9% 91.1% 84 7.6% 11.6% 4.3% 12.7% 79.2% 75.3% 75.3% 89.1%
31 24.5% 23.6% 23.8% 26.1% 62.9% 63.7% 61.1% 63.9% 85 25.1%  28.2%  20.9%  27.6% 89.9% 93.2% 93.2% 83.9%
32 13.9% 13.9% 13.8% 13.9% 59.4% 72.5% 59.1% 50.1% 86 21.1% 21.3%  20.6% 21.4% 80.8% 83.7% 81.5% 77.6%
33 18.7% 18.6% 18.8% 18.7% 90.3% 96.8% 85.4% 88.6% 87 18.8% 18.8% 18.8% 18.8% 61.2% 61.5% 61.5% 60.6%
34 30.6% 32.5% 29.6% 29.7% 64.8% 69.7% 67.4% 58.5% 88 15.7% 15.7% 15.7% 15.7% 61.9% 62.7% 62.7% 60.4%
35 36.2% 36.1%  36.0% 36.4% 65.3% 71.9%  76.0% 53.0% 89 20.9% 19.0% 19.0%  26.2% 78.6% 93.6% 93.6% 54.8%
36 16.4% 16.5% 16.3% 16.4% 63.6% 69.3% 64.5% 57.7% 90 25.9% 25.9% 25.9%  26.0% 64.6% 64.7% 64.7% 64.6%
37 14.8% 14.4% 14.5% 15.4% 55.8% 54.9% 54.7% 57.6% 91 19.9% 19.8% 19.8%  20.1% 65.8% 68.9% 68.9% 60.0%
38 18.6% 17.8% 19.1% 19.0% 56.2% 56.1% 57.0% 55.5% 92 19.9% 19.8% 19.8%  20.1% 61.3% 61.5% 61.5% 60.8%
39 28.9% 29.3%  28.6%  28.7% 94.9% 97.6% 90.1% 97.4% 93 8.4% 12.8% 12.8% 5.0% 73.5% 77.3% 77.3% 66.8%
40 14.9% 15.0% 15.0% 14.8% 75.6% 85.3% 76.2% 67.6% 94 12.0% 11.5% 11.5% 13.2% 61.7% 60.3% 60.3% 64.6%
41 20.5% 20.4%  20.4%  20.7% 82.1% 78.4% 79.7% 89.0% 95 19.9% 19.8% 19.8%  20.1% 55.4% 57.7% 57.7% 50.5%
42 20.4% 20.5%  20.2%  20.5% 79.2% 82.7% 72.7% 83.2% 9% 19.9% 19.8% 19.8%  20.1% 51.8% 52.1% 52.1% 51.2%
43 20.2% 19.6% 19.8% 21.2% 69.3% 70.1% 69.4% 68.5% 97 24.3% 83.7% 83.7% 10.1% 53.2% 55.6% 55.6% 48.8%
44 20.2% 19.6% 19.8% 21.2% 70.6% 70.7% 70.7% 70.4% 98 24.4% 24.3% 24.3%  24.4% 84.4%  100.0%  100.0% 61.1%
45 15.3% 15.7% 14.3% 16.0% 62.3% 62.4% 61.9% 62.5% 99 15.0% 15.0% 15.0% 15.0% 97.2% 95.9% 95.9%  100.0%
46 23.4%  100.0% 18.2% 18.2% 55.9% 56.5% 58.4% 52.9% 100 25.1%  24.9%  24.9%  25.6% 90.2% 88.5% 88.5% 93.7%
47 19.4% 19.5% 19.2% 19.5% 80.9% 83.1%  82.0% 77.8% 101 9.9% 10.2% 10.2% 9.3% 96.9% 97.5% 97.5% 95.8%
48 8.2% 5.8% 10.3% 10.3% 72.2% 71.2% 70.7% 74.6% 102 18.3% 18.4% 18.4% 18.2% 95.5%  100.0%  100.0% 87.5%
49 12.6% 12.5% 12.6% 12.6% 84.3% 78.1%  83.0% 93.1% 103 12.3% 12.3% 12.3% 12.3% 66.8% 60.4% 60.4% 83.5%
50 12.2% 12.1% 12.3% 12.3% 78.2% 76.9% 79.4% 78.3% 104 12.5% 14.6% 14.6% 9.4% 59.0% 59.0% 59.0% 59.0%
51 30.3% 30.8%  30.0% 30.1% 75.9% 73.5% 79.1% 75.1% 105 19.1% 19.1% 19.1% 19.0% 48.4% 47.2% 47.2% 50.7%
52 8.4% 8.4% 8.4% 8.4% 62.8% 61.8% 63.3% 63.4% 106 25.1%  24.8%  24.8% 25.7% 80.9% 80.7% 80.7% 81.2%
53 20.9% 21.5% 19.8% 21.2% 69.6% 71.0%  69.0% 68.9% 107 24.5% 24.4%  244%  24.8% 60.5% 61.0% 61.0% 59.5%
54 20.6% 20.8%  20.4%  20.6% 89.8% 84.6%  98.2% 87.6% 108 11.9% 11.9% 11.9% 11.9% 95.3% 93.2% 93.2%  100.0%

‘ 20.1% 22.8% 20.9% 20.1% 72.6% 73.2% 74.2% 71.3%
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C.1.2 Efficiencies per Period Type

Figures C.3 and C.4 show heatmaps of the efficiency scores of the production processes evaluated on a yearly,
Quarterly and Monthly basis for Country 1 and Country 2 respectively.
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Figure C.4: Production efficiencies per evaluated period (year, quarter, month) for Country 2
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C.1.3 Efficiencies per Category

Figures C.5 and C.6 show boxplots of efficiency score distributions per categorical value for Country 1 and
Country 2 respectively. We select the exogenous production attributes as selection criteria for the subsets:

product group and product line.
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Figure C.5: Efficiency Distribution per Product Group and Product Line (Country 1)
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Figure C.6: Efficiency Distribution per Product Group and Product Line (Country 2)
Tables C.4 and C.5 show the p-values as a result of performing the independent two-sample ¢-test for subsam-

ples according to different product groups and product lines, for the quarterly evaluated efficiency scores. We
omit the subsamples with too little observations (n < 20).
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Table C.3 Sample Sizes (n) of Products per Categorical Value per Country

Country 1 Country 2
Product Group n  Product Line n  Product Group n  Product Line n
1 111 A 102 6 2 A
2 48 B 48 1 180 B 33
C 9 2 51 C 54
3 39 D 108
5 33 E 33
F 36
G 33
H 3
I 3
] 3
K 3

Table C.4 p-values of ¢-test Testing Significant Different of
Efficiency Scores per Categorical Value (Country 1)

Product Group 1 2 Product Line A B
1 - A -
2 0.756 - B 0.793 -

Note: p-values as a result of performing the independent two-sample
t-test for subsamples according to different product groups and
product lines, for the quarterly evaluated efficiency scores.

Table C.5 p-values of ¢t-test Testing Significant Different of Efficiency Scores per Categorical Value (Country 2)

Product Group 1 2 3 5 Product Line B C D E F G
1 - B -
2 0.162 - C 0.583 -
3 0.202 0.973 - D 0.231 0.048 -
5 0.004 0.003 0.009 - E 0.005 0.102 0.000 -
F 0.359 0.658 0.023 0.270 -
G 0.004 0.006 0.051 0.000 0.005 -

Note: p-values as a result of performing the independent two-sample ¢-test for subsamples according to different product
groups and product lines, for the quarterly evaluated efficiency scores.
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C.2 Benchmarking

As a result of the benchmarking process, we obtain multiple benchmark sets according to the type of period
evaluated and accepted benchmark level. The original efficiency improvement strategies are developed using
the aggregated benchmark set, consisting of all other benchmark sets. Figures C.7 and C.8 show the distri-
bution of the different production attributes, for Country 1 and Country 2 respectively. The upper histograms
show the distribution of degree change in percentage of the production attributes (between the ineffiently pro-
duced product and target product), while the lower histograms show the distribution of values of production
attributes of the inefficiently produced product.
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Figure C.7: Feature distribution of elements in the aggregated benchmark set (Country 1)
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Figure C.8: Feature distribution of elements in the aggregated benchmark set (Country 2)

C.3 Strategy Development

C.3.1 Feature Importance
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Table C.6 Feature Importances per Benchmark Level 5%, 15%, 25%

period 5% 15% 25%
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0.10 0.25 0.30
0.08 0.20 0.25
0.20
0.06 0.15
0.15
0.04 0.10
0.10
. . - . [ | . . . - ]
0.00 0.00 0.00 e L
Year ARM % APA %A Out'S % A € % E ARM % APA %A OutS % A €% E ARM%APA%AOU'IS %A€% E PA Ouvs €
Feature Importance Feature Importance Feature Importance
0.35
0.175 0.35
0.30
0.150 0.30
025
0.125 025
0.20
0.100 0.20
0075 015 015
0.050 0.10 0.10
. ] (T111] HEEm
oo I _HEm o | L oo — I
Quarter ARM % A PA %A Out/S % A€ % E RM PA Out's € ARM%APA%AOM/S %A€% E PA Outs € ARM%APA%AOU'IS%AE% E RM PA ou's €
n=>5 n = 107 n =433
Feature Importance Feature Importance Feature Importance
0.20 0.35
0.35
0.30
0.30
0.15
0.25
0.25
010 0.20 020
0.15 0.15
0.05 0.10 0.10
. H m_B
0.00 000 | ] | - 000 — |
Month ARM % A PA %A Out/S % A€ % E ARM % A PA %A OutS % A€ % E RM PA Ouvs € ARM % APA %A OutS % A€ % E RM PA Ouvs €
n =10 n = 254 n=1177
Feature Importance Feature Importance Feature Importance
0.30
04
0.04 0.25
0.02 0.20 03
0.00 0.15
0.2
~0.02 0.10
0.1
-0.04 0.05 .
e - I Py
Year ARM % A PA %A Out/S % A€ % E RM PA Out/'s € ARM%APA%AOUVS%AG% E ARM % A PA %A Out/S % A€ % E RM PA ouv's €
n=23 n =124 n =579
Feature Importance Feature Importance Feature Importance
0.35 0.30
04
0.30 0.25
0.25 020 03
0.20 015
0.15 0.2
0.10
0.10
. . - )
’ [ 1 1 | . [ |
o = = 000 || [ | oo | [
Quarter ARM % APA %A Out'S % A € % E RM PA ouvs € ARM % APA %A OuVS%AG% E RM PA Ouvs ARM % A PA %A Out'S % A € % E RM PA Ouvs €
n =28 n = 285 n = 1364
Feature Importance Feature Importance Feature Importance
05
0.30 04
0.25 o4
03
0.20 03
0.15 0.2
0.2
0.10
o1 01
B .
C L - — AR . L | L
Month ARM%AFA%AOIAI/S%AE% E PA out's ARM % A PA %A OutS % A €% E RM PA Out's € ARM%APA%AOMIS%Ai% E PA ou's €

n = 66 n = 679 n = 3310




92 Appendix C. Framework Results

C.3.2 Recommended Strategies per Product Group

In this section the decision trees per benchmark subset are presented. Each tree consists of splits and leafs.
At each split a splitting criteria (based on one of the features) and a histogram are presented. The histogram
shows how the samples are distributed according to the feature. The predictor space (efficiency improvement)
is categorised in bins: red means little efficiency improvement, dark blue means 1-5% efficiency improvement
and light blue, green and grey mean 5-50%, 10-25% and 25-100% efficiency improvement respectively. A brief
description of the efficiency improvement strategies are provided in this section.

The subsets are created by selecting the benchmark steps according to the product subgroup the inefficiently
produced product belongs to.

Figure C.9 shows the constructed decision trees for the benchmark subsets created according to product group
1 (3340 benchmark steps) and product group 2 (634 benchmark steps). For both product groups we see that a
reduction of packaging costs is the most important factor in efficiency improvement. Product group 1 contains
111 products and product group 2 contains 48 products (see Table C.3.

Country1- Group I:

Most efficiency improvement is gained if the packaging costs are reduced with 3.75% and the raw material costs
are reduced with 8.9% or higher. If the latter is not possible, we still yield a large efficiency improvement if we
increase the unit selling price with 8.6% or higher.

Country1 - Group 2:

For product group 2, most efficiency improvement is obtained while reducing the packaging costs with 6.4% or
higher. However, following the branches of the decision tree, we cannot develop a logical strategy: benchmark
steps with a packaging costs reduction between 6.4% and 10.0% or larger than 24.0% lead to great amount
of efficiency improvement. This can be explained by the relative small amounts of products from which the
benchmark steps are constructed. Therefore, we conclude that this decision tree is inadequate to develop an
efficiency improvement strategy for product group 2.

Figures C.10, C.11 and C.12 show the constructed decision trees for the benchmark subsets created accord-
ing to product group 1 (7679 benchmark steps), product group 2 (1823 benchmark steps) product group 3 (731
benchmark steps), product group 5 (1572 benchmark steps) and product group 6 (114 benchmark steps). For
the majority of product groups, we see that a reduction of packaging costs is the most important factor in ef-
ficiency improvement.

Country 2 - Group I:

If we reduce the packaging costs with 19.2% and higher the most efficiency improvement is obtained. How-
ever, such resource cost reduction may not be feasible. Therefore, for products with an efficiency score 0f 39% or
higher, increasing the unit selling price with 5.8% or higher also leads to major efficiency improvement (right

leaf node).

Country 2 - Group 2:
For product group 2 we see that a reduction of packaging costs of 20.1% leads to the largest amount of effi-
ciency improvement. However, by following the other branches of the decision tree, no logical strategy can
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Figure C.9: Decision Tree per Product Group Country 1

be deducted. This can be explained by the rather small amount of products (51, see Table C.3). Therefore, for

this subsample we must conclude that we have too little products to construct a decent efficiency improvement

strategy.

Country 2 - Group 3, 5, 6:

For the remaing product groups of Country 2, we must also conclude that the number of products affected

by the benchmark steps is also too small; 39, 33 and 12 for product group 3, 5, and 6 respectively (see Table

C.3). Also the number of elements in the benchmark steps are limited. Therefore, we cannot develop a decent

efficiency improvement strategy, as we have too little proof that the distribution of features indeed lead to

certain efficiency gain.
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Figure C.10: Decision Tree per Product Group Country 2 - part 1
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Figure C.11: Decision Tree per Product Group Country 2 - part 2
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Appendix D

Validation

This appendix contains the additional results of the validation methods as described in Section 3.3, for Country
2 (and Country 1).

D.1 Efficiency Distributions
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Figure D.1: Boxplots of the overall efficiencies of the pseudo benchmark set per product
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Note: The blue dots indicate that the actual feature importances set and the pseudo feature importances sets are significantly
correlated. The purple crosses indicate that there is weak evidence to assume correspondence between the two sets and the grey dots
indicate that there is no statistical evidence to assume corresponce of the two sets.

Figure D.2: p-values of Spearmar’s rank-order correlation test of the feature importances of the

real and pseudo benchmark sets.
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