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Abstract

This paper investigates the hump-shaped behavior of slopes and coefficients of determination

of predictive regressions for future excess market returns on past regressors, as discussed by

Bandi, Perron, Tamoni, and Tebaldi (2019). In doing so, the results of the former paper for two-

way aggregated regression models and classical predictive systems are first reviewed, after which

the scale-specific framework proposed by Bandi et al. (2019) is extended threefold. Firstly, a

robustness analysis is conducted to investigate the sensitivity of presented results to slight model

changes. Secondly, a high-frequency analysis is employed. Thirdly, this research formally ad-

dresses the idea of incorporating multiple regressors in scale-wise predictive systems. This paper

finds that hump-shaped behavior and scale-specific predictability remain to hold under altered

data and sample adjustments, while the location of predictability peaks may vary over scales.

High-frequency data supports the findings of Bandi et al. (2019) for the NYSE/AMEX and S&P

500 indices, while the occurrence of hump-shaped behavior in other markets is not definitive.

Adding multiple regressors preserves hump-shaped behavior, while predictability reaches up to

90%.
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1 Introduction

In the field of finance, predicting returns is one of the most relevant issues. Previous research

has drawn a wide variety of conclusions, both in favor of (Cochrane, 2007) and against (Welch &

Goyal, 2007) the notion of predictability. Furthermore, a wide variety of predictors and approaches

have been implemented, see for instance Lewellen (2004) for a discussion. This research draws on

one of the main issues recurring in research on explaining and forecasting returns, namely the low

signal-to-noise problem (Torous & Valkanov, 2000).

As in Bandi and Perron (2008), this paper aims to tackle the above problem by looking into

long-run movements of returns, as explained by variance. Through forward/backward aggregation

of returns and variance, the signal is strengthened relative to the reduced noise. Bandi et al. (2019)

build on the aggregated model by investigating the predictive relationship between returns and

variance over an aggregation horizon of up to 20 years. They find that this relationship exhibits

so-called ’hump-shaped’ behavior, with a predictive peak occurring at a horizon of around 16 years.

Furthermore, classical predictive systems are shown to be unable to replicate such behavior.

To find a data generating process capable of displaying the aggregated return-variance relation-

ship, Bandi et al. (2019) propose a modelling framework in which time series are decomposed in

components bearing different scales or frequencies of cyclical movements, resembling that of Ortu,

Severino, Tamoni, and Tebaldi (2017). Evaluation of the predictability in separated scale-specific

components leads, upon two-way aggregation, to a peak around 16 years being once again found.

The research by Bandi et al. (2019) thus not only uncovers predictability of returns in the long

run, but also introduces a scale-specific model capturing the long-run dynamics well. This paper aims

to further increase this relevance by providing three extensions on the work by Bandi et al. (2019),

after first reviewing the corresponding results. From replicating, this research concludes that small

discrepancies in results arise due to ambiguities in data processing. However, these discrepancies do

not affect the hump-shaped behavior nor the notion of scale-specific predictability.

As for the first extension, I perform a robustness analysis to check the sensitivity of the scale-

specific framework to slight modelling changes. These encompass i) a shift in the market index, ii)

sample period adjustments, and iii) varying frequencies between returns and variance simultaneously.

I show that a change from the NYSE/AMEX to the S&P 500 does not affect results to any notable

extent. In correspondence with Campbell (1991), I change the sample to the post-war period, for

which the notion of hump-shaped behavior does not change. However, the location and magnitude
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of predictive peaks are shown to be substantially affected. Finally, this paper confirms the remark

of Bandi and Perron (2008), stating that equality in aggregation horizons for returns and variance

does not necessarily yield maximal predictability, although being relatively close to ’optimal’.

Secondly, this research extends the work of Bandi et al. (2019) by performing high-frequency

analysis, i.e. taking monthly instead of yearly observations as its basis. Due to this basis, the

grouping of scales has preferable properties concerning predictive peaks, in addition to the advantage

that the number of data points increases. Hump-shaped behavior and scale-specific predictability for

the NYSE/AMEX and S&P 500 index are convincingly supported, while an analysis of the British

and Dutch stock market, via the FTSE 100 and AEX, does not lead to clear conclusions.

Finally, this paper introduces multiple predictors, including the dividend yield and inflation,

besides variance in the scale-specific framework. The inclusion of these predictors allows long-

run predictability to reach up to 90%, implying an apparent use and relevance of using multiple

regressors.

This paper will continue with a detailed literature review, after which the data for this research

are briefly described. Consequently, Section 4 summarizes the framework of Bandi et al. (2019) and

provides the basis for this research’s extensions. Subsequently, the findings from reviewing Bandi et

al. (2019) are presented, after which the extension results follow. Finally, this paper concludes and

provides discussion points as well as possibilities for future research.

2 Literature Review

In the field of finance, the relationship between risk and returns is a widely reviewed topic. French,

Schwert, and Stambaugh (1987) state that there is a positive relationship between expected risk

premia and predictable volatility, while Nelson (1991) argues the opposite is true. As Lundblad

(2007) identify, such statements are heavily dependent on the sample size, finding a positive risk-

return tradeoff in the long run. Although the above research constitutes linking expected excess

returns to future volatility, the interest of this paper is to link return predictability to past variance.

By performing predictive regressions of stock returns on risk measures, Goyal and Santa-Clara

(2003) find that such predictability is not or hardly present over the short term. More generally

speaking, predictability of returns over the short term suffers from the so-called signal-to-noise

problem (Torous & Valkanov, 2000). Due to the relatively large noise in predictive regressions, true

informative signals may be hidden behind shocks. Valkanov (2003) argues that, by construction,

the signal is amplified in the long run, whereas the effect of shocks diminishes so that aggregations
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of return horizons can lead to uncovering predictability (Fama & French, 1988) .

Similarly, Bandi and Perron (2008) investigate the long-run predictability of forward aggregated

excess market returns by backward aggregated market variance. An increased dependence and

explanatory power is found with an increasing horizon, where horizons up to 10 years are considered.

Bandi et al. (2019) generalize forward-backward regressions for aggregation horizons up to 20 years.

These regressions are performed on three different variance proxies, the first of which being realized

market variance (Andersen, Bollerslev, Diebold, & Labys, 2001). Secondly, consumption variance is

employed, based on Tamoni (2011), while the third measure relates to economic policy uncertainty,

to be named EPU henceforth (Baker, Bloom, & Davis, 2016).

For all three measures, hump-shaped behavior is found; the slopes and coefficients of determina-

tion of regressions increase until reaching a certain peak, after which a decrease kicks in. A predictive

peak is found at a horizon of around 16 years, where the R2 reaches about 55%. Contrastingly, clas-

sical predictive systems, based on modelling variance as an autoregressive process of order 1, are

shown to be unable to yield similar behavior (Bandi & Perron, 2008). Therefore, Bandi et al. (2019)

propose a new modelling framework.

The idea behind this framework lies in scale-specific modelling; separating series in components

with various frequencies. The decomposition of time series into transitory and persistent components

is introduced by Beveridge and Nelson (1981), after which a substantial amount of literature has

followed, e.g. Bollerslev, Osterrieder, Sizova, and Tauchen (2013), Daniel and Torous (1991) and

Lee and Engle (1993). A common application has been measuring business cycles (Baxter & King,

1999), for which oscillations with a frequency over 8 years are usually incorporated in the trend

or persistent component, see Zarnowitz and Ozyildirim (2006) and Yogo (2008). Contrastingly,

Bandi et al. (2019) consider transitory components with frequencies over 8 years, which may be of

significant importance (Comin & Gertler, 2006). Besides frequencies, modelling and identification of

regular time series to components usually vary across papers. The approach Bandi et al. (2019) take,

is that of modelling through (extended) Wold representations and identification via multiresolution

filters. The decomposition formally follows from Ortu et al. (2017) and Ortu, Tamoni, and Tebaldi

(2013), where component-wise observations are contained in so-called decimated observations, i.e. a

small number of observations that ’summarize’ all informative data (Müller & Watson, 2008).

Based on these decimated points, Bandi et al. (2019) introduce a DGP in which the interdepen-

dence between returns and variance is modelled via scale-specific classical predictive systems. In

doing so, predictability of returns by uncertainty components can directly be evaluated, which is
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dubbed scale-specific predictability. A predictive peak is found for cycles between 8 and 16 years,

which, due to a one-to-one relationship between decimated observations and aggregated time series,

can be translated into hump-shaped behavior in forward/backward aggregated regressions (Bandi et

al., 2019). It might be argued that the results presented by Bandi et al. (2019) are extremely volatile

to slight changes in the sample, time series or variables. For that reason, this research performs a

so-called robustness analysis.

Most research on decomposition of returns and variance makes use of the NYSE/AMEX index,

see for instance Bandi and Perron (2008) and Lundblad (2007). However, using a different data set

might lead to different results. As in Chen (2009), this research therefore includes a predictability

study based on the S&P 500 index. Secondly, it has become common practice consider post-war

samples when investigating returns and variances, as volatility and interest structures between pre-

and post-war periods differ substantially, see Ding, Granger, and Engle (1993) and Campbell (1991).

Therefore, this research investigates the effects of changing the sample to the post-war period.

Thirdly, looking into two-way aggregated regressions, it has been common practice to use the same

aggregation horizon for both the regressor and regressand (French et al., 1987). On the other hand,

Ghysels, Santa-Clara, and Valkanov (2005) and Bandi and Perron (2008) investigate the risk-return

tradeoff using different windows for return and variance, where it is found that predictability is not

necessarily largest for equal horizons.

The second extension rests on the frequency of sampling. Previous research has consisted of

analyses based on both monthly, e.g. Bandi and Perron (2008), and yearly data, e.g. Bandi et al.

(2019). Some argue that yearly data is less likely to be influenced by measurement errors (Bansal,

Kiku, & Yaron, 2009), whereas others claim that monthly data is more insightful and should be

preferred in financial applications Ghysels, Santa-Clara, and Valkanov (2006). The third extension

is based on return predictors, for which an enormous amount of literature exists. One of the most

commonly researched predictors is the dividend yield, see for instance Cochrane (2007) and Cochrane

(2009). This variable has been implemented in both short-run (Ang & Bekaert, 2006) and aggre-

gated models (Fama & French, 1988). Other predictors include financial ratios (Lewellen, 2004),

interest rate variables (Fama & French, 1989), inflation (Fama & Schwert, 1977) or other macroeco-

nomic variables such as monetary policy (Patelis, 1997), employment (Asprem, 1989) and (nominal)

exchange rates (Chen, 2009). Note that most of the above papers consider return predictability for

a single predictor, Bandi and Perron (2008) being a notable exception. The predictability of market

variance in aggregated regressions is shown to not or only slightly be affected by the inclusion of

6



an additional predictor (dividend yield). Instead of considering a bivariate model, this research will

look into multivariate (scale-specific) systems.

3 Data

Replication of the research by Bandi et al. (2019) requires data on excess market returns and the

three variance proxies (market variance, consumption variance, and economic policy uncertainty).

Data on market returns is obtained as monthly value-weighted returns from the NYSE/AMEX index

including dividends via the Chicago Center for Research in Security Prices (CRSP). By annualizing

and taking the natural logarithm, yearly continuously compounded market returns are obtained.

Subtracting the logarithmic forward-looking, end-of-the-year 3-month Treasury Bill rate, obtained

via the National Bureau of Economic Research (NBER, 1926 to 1933) and the Federal Reserve

Economic Data (1934 to 2018), yields yearly excess returns.

The yearly market variance is obtained as the sum of squared daily returns, now excluding

dividends, in a year, of course again taken from the NYSE/AMEX index (CRSP). The consumption

variance is readily retrieved from Bandi et al. (2019), while, for the EPU measure, historical data on

the economic policy uncertainty index is extracted online1. The sample is maximized for all three

measures, so that the data set constitutes data from 1926 to 2018 for market variance, 1930 to 2014

for consumption variance, and 1926 to 2014 for EPU.

For the extensions, additional data is used. The robustness analysis requires data from the

S&P index, which is similarly retrieved from the CRSP (with the same sample period) as the

NYSE/AMEX returns. For the high-frequency analysis, monthly instead of yearly data is used.

Still, the data is retrieved from the same sources and in a similar manner. Also, data on the AEX

and FTSE 100 is used, with sample periods 1983 to June 2019 and 1984 to June 2019 (source:

Datastream). The multiple regressor system requires inflation and dividend yield data for the

NYSE/AMEX index. Inflation data are retrieved from the Federal Reserve Bank, while dividend

yield data is gathered once again via the CRSP. The sample period considered here matches that of

Bandi et al. (2019), namely 1930 to 2014.

In the sense of data transformations for excess market returns, this paper differs slightly from

the approach of the authors. I strongly believe that Bandi et al. (2019) make slight mistakes in data

processing so that their results are not correct. An extensive argumentation and description of the

complete data transformation procedure for returns is attached in Appendix A.
1http://www.policyuncertainty.com/
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4 Methodology

In this section, I will first discuss replicating the findings presented by Bandi et al. (2019), after

which the three separate extensions will be discussed.

4.1 Replication

For the replication part, we will distinguish analysis on aggregated regressions and scale-specific

components.

4.1.1 Aggregated Regressions

The first finding presented by Bandi et al. (2019) is that of hump-shaped behavior in the slopes and

coefficients of determination when performing aggregated, non-overlapping, regressions of future

excess market returns on past variance. Such regressions, conducted over horizon h, can be written

as
rt+1,t+h = αh + βhvt−h+1,t + εt+1,t+h t = h, ..., T − h , (1)

where rt+1,t+h =
∑t+h

i=t+1 ri is the h-forward sum of excess market returns and vt−h+1,t =
∑t+h

i=t+1 vi−h

is the h-backward sum of variance (and correspondingly; εt+1,t+h =
∑t+h

i=t+1 εi). In the above equa-

tion, h = 1, ...,H denotes the aggregation horizon. Bandi et al. (2019) choose a maximum horizon

H of 20 years. In the above, the variance v is taken to be either one of the three measures market

variance, consumption variance or EPU (see Section 3).

Investigating the behavior of βh and the R2 in (1), Bandi et al. (2019) find that both exhibit

hump-shaped behavior over the horizon h, which goes for all three variance proxies. By performing

similar forward/backward regressions, I will aim to verify this notion.

Bandi et al. (2019) argue that the hump-shaped pattern can not be achieved by means of classical

AR(1) predictive systems, for which returns and variance (both demeaned) are modelled as

rt+1 = βvt + ut+1 (2)

vt+1 = ρvt + et+1 , (3)

When forward aggregating returns and backward aggregating variance via this system, the slope

of regression (1) becomes βρh−1 (see Appendix B for the corresponding derivation), which, due

to the fact that |ρ| ≤ 1 by definition (correlation property), does not increase with aggregation

horizon h. Therefore, performing two-way aggregated predictive regressions should not yield hump-

shaped behavior. Note that Bandi et al. (2019) state that the slope equals βρh, which thus slightly
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deviates from our derivation. To check for hump-shaped behavior, I simulate the data generating

processes (2) and (3) for which specifics are provided in Online Supplement A of Bandi et al. (2019)2.

Forward/backward aggregation of returns and variance consequently lets us investigate the behavior

of the regression slopes and coefficients of determination via (1).

4.1.2 Scale-specific framework

In contrast to classical predictive systems, Bandi et al. (2019) argue that, by separating return and

variance series into certain scales or frequencies, a data generating process capable of capturing the

hump-shaped behavior can be formed. By filtering data into scale-wise components, information can

be separated into long- and short-term cycles, bearing different informative values. In correspondence

with Bandi et al. (2019), this research will be based on cycles with a frequency that increases like

powers of 2. Specifically, the j − th component consists of cyclical movements with a frequency

between 2j−1 and 2j years. This so-called dyadic property is illustrated in Table 7, see Appendix C.

The maximum scale employed will, in the remainder of this paper, be denoted by J .

In the remainder of this section, the decomposition will be explained by using the general notation

for a time series xt. However, the complete decomposition holds for any other (weakly stationary)

time series, so that the following process can directly be applied to both returns rt and variance vt.

Both Bandi et al. (2019) and Ortu et al. (2013) start by defining the process xt as

xt =

+∞∑
j=1

x
(j)
t , (4)

so that an observation of a time series at time t will equal the sum of all its components at time t.

It is common practice to break such a decomposition down in transitory and persistent components

(Beveridge & Nelson, 1981). A transitory component at scale j and time t, denoted as x̂(j)t , represents

cyclical movements with a frequency between 2j−1 and 2j years, while a persistent component at

scale j and time t, or π(j)t , can be viewed as a moving average of the remainder series after all

transitory effects up to scale j have been taken into account. Breaking down this decomposition, we

have
2Online Supplement Bandi et al. (2019)
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xt =
xt − xt−1

2︸ ︷︷ ︸
x̂
(1)
t

+
xt + xt−1

2︸ ︷︷ ︸
π
(1)
t

(5)

=
xt − xt−1

2︸ ︷︷ ︸
x̂
(1)
t

+
xt + xt−1 − xt−2 − xt−3

4︸ ︷︷ ︸
x̂
(2)
t

+
xt + xt−1 + xt−2 + xt−3

4︸ ︷︷ ︸
π
(2)
t

, (6)

which is equivalent to Section 5 in Bandi et al. (2019). Intuitively, a persistent component at scale

j−1 can be broken down into a transitory component at scale j and a persistent component at scale

j. Bandi et al. (2019) formally denote this property by stating that

x̂
(j)
t = π

(j−1)
t − π(j)t , (7)

where

π
(j)
t =

∑2j−1
i=0 xt−i
2j

. (8)

As Ortu et al. (2013) state, computing the transitory and persistent components will lead to

overlapping moving averages (read: persistent components), which could lead to biased persistence

and serial correlation in the decomposed components. Besides, we note that component-wise ob-

servation x̂
(j)
t is a linear combination of ’regular’ observations xt to xt−2j+1. Therefore, to form

non-overlapping scale-specific observations, henceforth called decimated observations, one should

focus on the subseries {
x̂
(j)
t ; t = k2j , k ∈ Z

}
, (9){

π
(j)
t ; t = k2j , k ∈ Z

}
, (10)

so that, with sample size T , the number of scale-specific decimated observations for scale j equals

bT/2jc. These points can be recovered from (8), however, common practice is the use of an operator

matrix which can be used to immediately reconstruct decimated points from regular observations

and vice versa. In the case of Bandi et al. (2019), the operator matrix is chosen to be the Haar

matrix, so that the transformation of regular to decimated points follows a Discrete Wavelet (Haar)

Transform. For the case J = 2, this is illustrated by
π
(2)
t

x̂
(2)
t

x̂
(1)
t

x̂
(1)
t−2 ,

 =



1
2

1
2

1
2

1
2

1
2

1
2 −1

2 −1
2

1√
2
− 1√

2
0 0

0 0 1√
2
− 1√

2




xt

xt−1

xt−2

xt−3

 , (11)
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or, inversely, 
xt

xt−1

xt−2

xt−3

 = (T (2))−1


π
(2)
t

x̂
(2)
t

x̂
(1)
t

x̂
(1)
t−2 ,

 (12)

where T (2), which is the Haar matrix for J = 2, is the 4 × 4 matrix in (11). From the above

transform, it can be seen that decimation allows us to completely reconstruct an original time series

from only a few points. In this transform, (11) - (12) slightly deviates from the system presented in

Section 5 of Bandi et al. (2019), in the sense that we scale the Haar matrix T (2) by a certain factor.

This is done to make sure that the Haar matrix is orthonormal, so that the ’unit energy’ property

(Lindsay, Percival, & Rothrock, 1996) of wavelets is satisfied. As (11) is directly related to (8), the

latter equation should be scaled in a similar fashion. This leaves us with

π
(j)
t =

∑2j−1
i=0 xt−i√

2j
. (13)

Note that the above equation, in combination with (7), is not restricted to a certain choice of J .

Therefore, the coefficients in the Haar matrix T (J), for arbitrary J , can simply be derived from the

coefficients of linear combinations in (7) and (13), following a similar procedure as that of Ortu et

al. (2013). The case J = 4, which is employed for the empirical data, is elaborated on in Appendix

D. Furthermore, the Haar matrix T (J) is orthogonal, so that components should be uncorrelated

across scales. The obtained decimated observations (9), for j = 1, ..., J and series rt and vt, can be

used to both model and evaluate scale-specific predictability. A data generating process, following

Bandi et al. (2019), based on frequency-wise modelling can be depicted (for scale j) by

r
(j)

k2j+2j
= βjv

(j)

k2j
+ u

(j)

k2j+2j
, (14)

v
(j)

k2j+2j
= ρjv

(j)

k2j
+ e

(j)

k2j+2j
, (15)

where r and v denote returns and variance respectively, while u and e are white noise shocks. The

above system will be referred to when simulating a scale-specific system. When the interest is merely

evaluating scale-specific predictability, performing the regression (14) suffices.

Due to the structure of the Haar transform, there exists a one-to-one relation between regular

and decimated observations; the one can directly be transformed into the other. Therefore, when

modelling decimated observations and translating these into regular observations, one can once

again perform aggregated regressions to evaluate the behavior of regression slopes and coefficients
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of determination. When the scale-specific DGP (14) - (15) is constructed so that predictability

(βj 6= 0) occurs at scale j∗ only, Proposition I (Bandi et al., 2019) state that a predictive peak in

two-way aggregated regressions should occur at horizon h = 2j
∗ . Thus, setting j∗ = 4, a peak in

predictability should occur at a horizon of 16 years, which, in the case of corresponding hump-shaped

behavior, would be in consistence with the empirical results of Bandi et al. (2019). To verify whether

the data generating process (14) - (15) can in fact recover hump-shaped behavior from decimated

observations, we use simulation. Specifics for this simulation can be found in Appendix H or part B

of the Online Supplement of Bandi et al. (2019).

4.2 Extension

Besides reviewing Bandi et al. (2019), this paper provides three extensions.

4.2.1 Robustness Analysis

It might be probable that slight changes in the data have a large effect on the conclusions drawn

based on scale-specific predictability relations. To investigate this sensitivity, this research will make

slight adjustments to establish robustness. Firstly, a change in data is employed by using the S&P

500 instead of the NYSE/AMEX index for market returns and realized variance. In this case, the

methods for aggregation and scale-specific predictability discussed in Section 4.1 remain exactly the

same. Secondly, the sample period is, as described in Section 2, adjusted to the post-war period,

as structural change during the Great Depression or World War II may have taken place. The

sample used in this analysis will commence in 1951. Thirdly, the behavior of aggregated regressions

when varying the horizon over which frequencies are measured between regressand and regressor is

investigated. I do so by considering all possible combinations of horizons (H = 20) and evaluating

their R2’s. A similar approach can be taken for scale-specific predictability, in which the assumption

of equal scale j for both r
(j)
t and v

(j)
t in (14) was made. Leaving out this assumption, we may

perform predictive regressions for all possible combinations of scales for returns and variance (with

J = 4).

4.2.2 High-frequency Analysis

It may be possible that altering the aggregation horizon, as in Section 4.2.1, leads to the conclusion

that predictability peaks occur at a horizon larger than 16 years. However, the framework of Bandi

et al. (2019) merely allows us to model returns and variance for frequencies up to 16 years, as

increasing the scale, e.g. J = 5, would imply that the number of decimated observations for this
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scale reduces to bT/32c = 2 observations (as the maximum sample size T = 93). In this case,

predictive regressions on decimated components would thus not be informative. To solve this issue,

changing the frequency of data sampling might prove to be a solution.

This section therefore investigates monthly instead of yearly observations. For scale j, move-

ments with cycles between 2j−1 and 2j months are thus included. This analysis constitutes the

NYSE/AMEX, S&P 500, AEX and FTSE 100 index. Due to interest rate availability and the estab-

lishment of the latter two indices in 1983 and 1984 respectively, the sample period for the first two

indices ranges from 1933 to 2018 (T = 1024), while the sample size of the AEX and FTSE 100 equals

532 and 526 respectively. Because of the difference in sample size, J = 8 for the NYSE/AMEX and

S&P 500, while J = 6 for the AEX and FTSE 100. An overview of the frequencies belonging to

each scale is provided in Table 7 of Appendix C.

4.2.3 Multiple Regressor System

Besides altering frequencies, the scale-specific system can be expanded into higher dimensions by

adding multiple regressors next to the variance. As described in Section 3, these regressors include

the dividend yield and inflation.

The forward/backward aggregated regression (1) can be generalized by writing

t+h∑
i=t+1

rt+1,t+h = αh + β1,h

t+h∑
i=t+1

x1,i−h + β2,h

t+h∑
i=t+1

x2,i−h + ...+ βM,h

t+h∑
i=t+1

xM,i−h +

t+h∑
i=t+1

εi , (16)

with xm,t regressor m = 1, ...,M , while t runs, just as in (1), from h to T − h. As with (1), we can

perform the above regression and evaluate its coefficients and R2.

In similar fashion, we may extend this multivariate framework into scale-specific relations, so

that the predictive relationship (14) can be written as

r
(j)

k2j+2j
= β1,jx

(j)

1,k2j
+ β2,jx

(j)

2,k2j
+ ...+ βM,jx

(j)

M,k2j
+ u

(j)

k2j+2j
, (17)

where x(j)
m,k2j

is a decimated point at scale j and time k2j (with k ∈ Z) for predictor m = 1, ...,M .

For each scale, regression (17) can directly be employed to investigate scale-specific predictability.

The decimated returns and predictors can once again be retrieved from using either a Haar transform

or relation (13), for the latter of which one should make sure observations are non-overlapping, see

support (9) - (10).
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5 Results

In the following, the results of this research will be presented in the same order as Section 4. Note that

these results differ from those presented by Bandi et al. (2019); this is due to slight discrepancies

in data and methods used. For a detailed explanation and discussion, the reader is referred to

Appendices A and I.

5.1 Replication

As with Section 4.1, this section can be divided into an analysis of aggregated regressions and

scale-specific modelling.

5.1.1 Aggregated Regressions

Performing the two-way aggregated regressions (1) based on returns from the NYSE/AMEX index

and the three variance proxies described in Section 3, the coefficients of determination for a horizon

up to H = 20 years are illustrated in Figure 1. As in Bandi et al. (2019), the R2 of the three variance

proxies all exhibit an upwards trend in the first years, leading up to a peak, after which a decrease

kicks in; the so-called ’hump-shaped’ behavior. As opposed to the findings in Bandi et al. (2019),

Figure 1 shows that the R2 for the market variance is highest when h = 17. Therefore, the empirical

peak would not occur at scale j = 4, which contains movements between 8 and 16 years (Table 7)

but rather at scale j = 5. For the consumption variance and EPU proxy, peaks occur at h = 13

and h = 16 years respectively. The peaks for these graphs lie around 60%, therewith slightly higher

than the 55% as presented by Bandi et al. (2019).
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Figure 1: Plot of the R2’s for two-way aggregated regressions of excess market returns on market variance,
consumption variance and economic policy uncertainty for the NYSE/AMEX index.
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Besides the R2, Table 1 provides slopes and corresponding t-statistics (Newey-West and Valka-

nov, 2003) based on the forward/backward aggregated regressions of excess market returns on market

variance. From this table, it becomes clear that the regression slope exhibits some sort of hump-

shaped behavior as well, with a peak occurring at h = 15. In Bandi et al. (2019), h = 16 leads to

the highest slope, while the magnitude of their slopes is larger than that in Table 1. Similar tables

can be constructed for the Consumption Variance and EPU proxies, for which similar hump-shaped

behavior in slopes and R2’s holds. Therefore, we do not discuss these tables separately, but both

are provided in Appendix E.

Table 1: Table containing properties for forward/backward regressions (1) of NYSE/AMEX returns on market
variance over horizon h. Panels A1 and A2 contain slope estimates (b), Newey-West t-statistics (NW ),
Valkanov (2003) t-statistics and R2’s

Panel A1: rt+1,t+h = αh + βhvt−h+1,t + εt+1,t+h

h 1 2 3 4 5 6 7 8 9 10
b 0.192 0.366 0.558 0.467 0.285 0.200 0.253 0.346 0.619 0.823
NW 0.281 0.630 1.722 1.542 0.854 0.587 0.760 1.019 1.795 2.364
Valkanov 0.038 0.091 0.167 0.185 0.128 0.096 0.129 0.177 0.320 0.424
R2 (%) 0.148 0.846 2.784 3.389 1.642 0.942 1.671 3.126 9.534 15.584
Panel A2: rt+1,t+h = αh + βhvt−h+1,t + εt+1,t+h

h 11 12 13 14 15 16 17 18 19 20
b 0.998 1.311 1.488 1.647 1.748 1.729 1.675 1.547 1.376 1.172
NW 3.017 4.131 4.914 6.189 8.055 9.021 9.925 9.385 8.131 6.236
Valkanov 0.519 0.744 0.899 1.061 1.188 1.240 1.252 1.161 0.984 0.832
R2 (%) 21.717 36.272 45.409 53.716 59.285 61.373 61.838 58.251 50.126 41.801

As described in Section 4.1, classical predictive systems (2) - (3) should not be able to replicate

the hump-shaped behavior as observed in Figure 1. This is confirmed using Simulation A, see

Appendix F. From simulating classical predictive systems and correspondingly forward/backward

aggregating returns and variance, it follows that both R2 and β are hump-shaped in only 2.17%

of the simulated regressions. This number even decreases to under 1% when also imposing the

restriction that the maximum of R2 should exceed 50%, as it does in the empirical case. It is thus

hard to argue that classical predictive systems are able to have long-run predictability following a

tent-shaped pattern.

5.1.2 Scale-specific Framework

Now turning to the scale-specific framework, we may begin with investigating the four separate

components. For these four components based on excess market returns, the decimated points,

constructed by means of the normalized discrete Haar transform (Appendix D), and ’redundant’

calendar-time scale-specific points, constructed by means of (13), are plotted in Figure 2. The

calendar-time specific points are redundant, as all information about the regular time series is already
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captured in the few decimated points. Similar decompositions can be made for the three variance

proxies, which are not given in this paper.
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(d) Excess Market Returns, scale j = 4

Figure 2: Graphs of the decomposed series of excess market returns for the NYSE/AMEX market index
over time. The solid (blue) lines represent scale-specific calendar-time observations, while the (red) diamonds
constitute decimated observations.

As a consequence of the wavelet decomposition of the scale-specific framework from Section 4.1,

decimated observations from different scales should be uncorrelated. To investigate whether this

property goes up empirically, we compute correlations across scales. Note that these correlations are

calculated based on the redundant, overlapping data, so that the same, reasonably large, number of

observations can be established for each scale. As calculation of a scale-specific calendar-time point

at time t via (13) requires knowledge of the regular time series from time t to time t − 2j + 1, we

compute correlations by leaving out the first 2J − 1 periods. The corresponding correlations are

provided in Table 2.

Table 2: Pairwise correlations between separate components based on redundant, overlapping observations for
excess market returns, market variance, consumption variance and economic policy uncertainty (EPU). The
returns and market variance come from the NYSE/AMEX index.

Returns Market Variance Consumption Variance EPU
Scale j 2 3 4 2 3 4 2 3 4 2 3 4
1 -0.03 -0.01 0.12 0.15 -0.08 0.02 0.01 0.06 -0.07 0.19 -0.04 -0.01
2 -0.09 0.15 0.09 0.07 0.09 -0.20 0.21 0.06
3 0.12 0.25 -0.07 0.39
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From Table 2, it follows that most pairwise correlations are low, which is in consistence with

theory. Some correlations are relatively high, which may be a consequence of leakage occurring

between scales due to the overlapping of observations (however, one should evaluate significance of

these correlations to make defnitive inferences). Having looked at the (decimated) components, we

may now investigate predictability. Performing predictive regressions (14) for each scale separately,

taking decimated points as inputs, leads to Table 3. As the regressions are predictive, a regression for

scale j contains bT/2jc− 1 observations. From Table 3, one can see that the R2 is highest for j = 4

for all three variance proxies, which is in correspondence with Bandi et al. (2019). The corresponding

values furthermore resemble those depicted in Figure 1 quite neatly, taking into account that the

three respective graphs have an R2 that reaches around 60% at its peak.

Table 3: Predictive regressions of the components of excess market returns on each of the variance prox-
ies separately. The table reports coefficient estimates, t-statistics and R2’s for each regression using the
NYSE/AMEX index in Panel A and the S&P 500 index in Panel B.

r(j)
k2j+2j

= βjv
(j)

k2j
+ u

(j)

k2j+2j

Panel A: NYSE/AMEX Panel B: S&P 500
Market Variance

Scale j 1 2 3 4 Scale j 1 2 3 4
β̂j -1.07 3.10 -0.88 3.20 β̂j -1.13 2.58 -0.72 2.10
t-stat -1.13 1.86 -0.86 1.00 t-stat -1.32 2.01 -0.87 0.89
R2 (%) 4.49 16.14 8.48 42.95 R2 5.33 17.78 11.01 40.49

Consumption Variance
Scale j 1 2 3 4 Scale j 1 2 3 4
β̂j -6.05 -9.71 -3.47 2.09 β̂j -7.18 -9.67 -3.31 2.46
t-stat -1.29 -2.67 -0.96 3.51 t-stat -1.47 -2.74 -0.86 5.34
R2 (%) 7.60 29.69 11.49 73.35 R2 8.28 30.69 11.30 86.42

EPU
Scale j 1 2 3 4 Scale j 1 2 3 4
β̂j -0.04 -0.09 -0.06 0.06 β̂j -0.04 -0.09 -0.06 0.06
t-stat -1.16 -1.25 -2.13 1.55 t-stat -1.26 -1.35 -2.03 1.63
R2 (%) 5.37 6.73 33.86 56.39 R2 5.67 7.74 33.26 59.53

To investigate whether the results in Table 3, or the scale-wise framework in general, are in

consistence with the behavior of R2 in forward/backward aggregated regressions, simulations are

again taken out. These show that some type of double-hump arises; the R2 increases until reaching

a peak around h = 7 years, after which a decrease kicks in. From h = 10 onwards, R2 rises again

before reaching an ultimate peak at h = 16. Although results are provided in Appendix H, it

becomes clear that the hump-shaped behavior fits not all too badly with the scale-specific system.

The percentage of simulations for which both R2 and β are hump-shaped lies around 17.6%. When

imposing the restriction that the R2 should reach over 50%, still 13.28% satisfies this restriction.
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5.2 Extension

This section will start off with a robustness analysis, after which higher-frequency data and systems

with multiple regressors are analyzed.

5.2.1 Robustness Analysis

The first adjustmentis that of using a returns from the S&P 500 instead of the NYSE/AMEX market

index. By performing forward/backward aggregated regressions for all three variance proxies, Figure

3a is obtained. As this figure shows, using S&P 500 does not change the hump-shaped behavior in

any meaningful way, so that predictive peaks with an R2 approaching 60% occur around a horizon

of 16 years. In this case, the predictive peak for the market variance proxy is situated at h = 16,

instead of h = 17, as was the case in Figure 1.
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(a) S&P 500.

0 2 4 6 8 10 12 14 16 18 20

Horizon h (in years)

0

10

20

30

40

50

R
2
 (

%
)

Market Variance

Consumption Variance

Economic Policy Uncertainty

(b) Post-war period, NYSE/AMEX.

Figure 3: Plot of the R2’s for two-way aggregated regressions of excess market returns on market variance,
consumption variance and economic policy uncertainty for the S&P 500 index (left) and the post-war period
using the NYSE/AMEX index (right).

Panel B of Table 3 contains properties of scale-specific predictive regressions for the S&P 500

index. As with the NYSE/AMEX index, the R2 is highest for regressions for component j = 4.

Besides, the differences in R2 and slope estimates are only slight between the two indices. Therefore,

one could say that changing the market index to the S&P 500 does not change the findings in any

meaningful way, so that the results are relatively robust to the choice of index. Therefore, we will

stick with the NYSE/AMEX index in the remainder of this section.

To further investigate sensitivity, consider the post-war sample period commencing in 1951. For

this sample period, a graphical representation of the R2 of forward/backward aggregated regressions

is to be found in Figure 3. Again, the graphs of all three variance proxies seem to be in line with

the hump-shaped behavior, although the predictability peaks are relatively low. The coefficients of

determination for scale-specific regressions (14) show a similar pattern (see Table 4), with peaks for
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j = 4, although the R2’s at these peaks are not as high as in the case of the larger sample. As the

sample size is reduced, the reliability of the predictive regressions deteriorates, so that one should

not focus too much on the results presented in Table 4.

Table 4: Table containing the R2 (%) of scale-specific predictive regressions for the post-war sample, based
on returns from the NYSE/AMEX index

R2 of regression: r(j)
k2j+2j

= βjv
(j)

k2j
+ u

(j)

k2j+2j

Scale j 1 2 3 4
Market Variance 4.98 12.98 6.63 19.11
Consumption Variance 8.94 15.69 21.13 24.87
Economic Policy Uncertainty 5.15 17.29 22.11 47.56

The third and final part of this sensitivity analysis consists of analyzing the interactions be-

tween return- and variance-specific aggregation horizons. By considering all possible combinations

of horizons (while keeping H = 20) for regressand and regressor, we may find the ’best’ predictive

relation. These relations are provided in Table 5. From this table, we can deduct that the ’optimal’

combination of aggregation horizons for returns and variance i) does not necessarily occur at the

same horizon, and ii) does not necessarily lie within the perks of J = 4. As monthly (high-frequency)

analysis allows us to separate frequencies reaching over 20 years, this analysis seems highly relevant.

Table 5: Table that gives the unrestricted (optimal lags) and restricted (equal lags) best combinations of
aggregation horizons for variance and returns, as measured by R2 in forward/backward regressions for NY-
SE/AMEX returns and the three variance proxies.

Market Variance Consumption Variance EPU
Optimal lags Equal lags Optimal lags Equal lags Optimal lags Equal lags

[hvariance, hreturns] [14, 20] [17, 17] [12, 14] [13, 13] [11, 20] [16, 16]
R2 (%) 65.23 61.84 60.76 57.78 75.63 61.28

Before turning to the high-frequency analysis, we may note that component-wise predictive

regressions could yield a ’best’ predictive model when regressand and regressor do not follow the

same scale. However, it turns out that choosing j = 4 for both returns and variance (all three

proxies) yields the highest R2 from all possible combinations.

5.2.2 High-frequency Analysis

As explained in section 4.2.2, we investigate the behavior of (scale-specific) predictability using

monthly returns instead of yearly returns as a basis. In doing so, I make use of the NYSE/AMEX,

S&P 500, FTSE 100 and AEX indices. The results of two-way aggregated regressions for these

indices of excess market returns on market variance over horizon h is provided in Figure 4a. In this

graph, we let h run from 1 to 250 months (just over 20 years). Note that the graphs for the FTSE
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100 and AEX ’stop’ at h = 200. This is due to only having a limited amount of data points for

these two indices. In consistence with the yearly patterns, hump-shaped behavior is present with

a peak around 16 years (h = 192) for the S&P 500 and a peak around 17 years (h = 204) for the

NYSE/AMEX index. Especially the latter is interesting, as a frequency of 17 years was not included

in the yearly fourth scale. For the FTSE 100 and AEX, there seems to be some kind of hump when

looking at the first 160 months. However, from h = 160 to h = 180, the R2 of aggregated regressions

for both indices increases sharply, leading to some kind of double-hump with peaks reaching over

80%. One could note that the regressions for h large, e.g. 180, are not too reliable due to the small

amount of data. However, Figure 4a still shows that hump-shaped behavior for the FTSE 100 and

AEX may not be present.
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Figure 4: Plot of the R2’s for two-way aggregated regressions over horizon h of excess market returns on
market variance for the NYSE/AMEX, S&P 500, FTSE 100 and AEX (left). Plot of the R2’s for two-way
aggregated regressions of excess market returns on i) market variance, inflation rate and dividend yield, ii)
consumption variance, inflation rate and dividend yield, iii) EPU, inflation rate and dividend yield, and iv)
market variance, consumption variance, EPU, inflation rate and dividend yield (right).

To investigate scale-specific behavior, we perform predictive regressions (14), where we take J = 8

for the NYSE/AMEX and S%P 500. Fo the FTSE 100 and AEX, J = 6 would be the maximum

number of scales (to ensure the number of decimated points for each scale remains sufficiently large),

so that we could merely look at frequencies up to 64 months or 51
3 years, which would not be too

informative. For the predictive regressions, we thus focus on the NYSE/AMEX and S&P 500 index.

Table ?? reports coefficient estimates, along with t-statistics and R2’s for each scale separately. The

R2’s correspond well with the patterns observed in Figure 4a, in the sense that the peak occurs at

the highest scale with an R2 of around 70%. To investigate whether the above patterns follow from

actual predictability or mere spurious behavior, one could again perform simulations. However, due

to the significance of coefficient estimates and more specific filtering, this would not be expected.

Performing such simulations is left for future research.
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Table 6: Coefficient estimates, their t-statistics, and the R2 of scale-wise predictive regressions of excess
returns on market variance for scales j = 1 to j = 8, using the NYSE/AMEX or S&P 500.

NYSE: r(j)
k2j+2j

= βjv
(j)

k2j
+ u

(j)

k2j+2j

Scale j 1 2 3 4 5 6 7 8
β̂j 1.04 1.00 0.37 -0.94 -2.08 0.00 -0.47 18.19
t-stat 1.38 0.98 0.49 -0.57 -1.48 0.00 -0.13 1.73
R2 (%) 0.38 2.50 0.27 2.51 7.93 8.77 12.04 68.28
SP: r(j)

k2j+2j
= βjv

(j)

k2j
+ u

(j)

k2j+2j

Scale j 1 2 3 4 5 6 7 8
β̂j 0.71 0.88 0.62 -0.85 -1.85 0.16 -0.61 13.67
t-stat 1.04 1.02 0.86 -0.61 -1.47 0.05 -0.20 1.58
R2 (%) 0.23 2.27 0.58 2.38 7.53 9.41 15.08 65.64

5.2.3 Multiple Regressor System

The final extension, as described in Section 4.2.3, is that of using a multiple regressor system, for

which dividend yield and inflation are used as additional predictors besides the variance. Figure 4

plots the R2 of two-way aggregated regressions for three combinations of predictors included. All

three graphs seem to be in line with the hump-shaped behavior reported before, while the predictive

peak reaches almost 90%.

We may investigate whether scale-specific predictive regressions are in line with the hump-shaped

pattern observed. To do so, we use the redundant scale-specific observations formed by (13) for the

system containing all three variance proxies, dividend yield and inflation. We choose this system

as its R2, visible in Figure 4, generally is the highest of the three graphs. We use redundant data

to prevent identification issues. As the scale j = 4 contains bT/2jc = 5 decimated observations,

using 5 predictors would lead to over-identification. The scale-specific regressions result in R2’s of

8.80, 9.05, 27.51 and 42.35 % for scale 1 to 4. Extensive results from these predictive regressions are

given in Table 16, Appendix G. Although the R2 is highest for j = 4, its magnitude is substantially

smaller than that in Figure 4.

6 Conclusion & Discussion
In this paper, the behavior of slopes and coefficients of determination in predictive regressions for

returns as presented by Bandi et al. (2019) is first reviewed, after which extensions are applied.

In reviewing, the hump-shaped behavior of R2’s in forward/backward aggregated regressions of

excess market returns on variance is replicated. By performing simulations, this paper shows that

classical predictive systems are unable of capturing the same kind of movements in coefficients

of determination of aggregated regressions. Therefore, this research applies scale-specific systems,

given by Bandi et al. (2019), to model decomposed time series based on frequencies of cyclical
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movements. By means of such decompositions, scale-specific predictability between returns and

variance is investigated, for which, in correspondence with Bandi et al. (2019), peaks are found

for components with frequencies between 8 and 16 years. Through simulations, this scale-specific

behavior fits in well with the observed hump-shaped behavior of aggregated regressions.

By performing robustness analyses, this research analyses the variability of the results of Bandi

et al. (2019). Choosing a different data set (S&P 500 instead of NYSE/AMEX index) is shown not to

change results in any meaningful way. Adjusting the sample period to the post-war period does not

alter the notion of hump-shaped behavior, although the magnitude and location of predictive peaks

slightly change. As for the location of peaks, this paper shows that these do not always occur between

8 and 16 year and aggregation horizons do not have to be equal for both returns and variance to

maximize R2. High-frequency analysis allows a separation into a larger amount of scales, while more

data points are used. This leads to support of hump-shaped behavior and scale-specific predictability

for the NYSE/AMEX and S&P 500 index, while the behavior of the FTSE 100 and AEX is not

conclusive and requires further analysis and more data points. By introducing a multiple regressor

system, this research provides its final extension. Incorporating dividend yields and inflation rates

is shown to not clearly affect hump-shaped behavior, while increasing predictability up to near 90%.

A major drawback of this research and the framework of Bandi et al. (2019) is the number

of observations. The maximum sample period includes 93 yearly observations, a number which

decreases quickly with the increase of scales. Therefore, one should either find larger data sets,

e.g. Lundblad (2007), or find a way to overcome the issue of having few data points. Furthermore,

this research could be improved by putting more focus on evaluating significance of estimates, for

instance by considering confidence intervals for the R2 or standard errors for correlations across

scales. Lastly, investigating stock markets outside the US with relatively many data points could

be investigated, to establish whether hump-shaped behavior is merely a US ’coincidence’ or really a

’stylized fact’.
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A Excess Market Returns Data

Before delving into a detailed description on the used data for excess market returns, I would like

to note that I received code and data from the authors. Consequently, I will both explain my own

thoughts and the implementation of the authors. As you will note, there are some discrepancies

between the methods Bandi et al. (2019) use and the ones I pursue. The sample period used by

Bandi et al. (2019) ranges from 1930 to 2014.

As noted in Appendix B of Bandi et al. (2019), the excess market returns are defined as the

difference between the continuously compounded market returns and risk-free rate. Section 3 notes

that the market returns are obtained as the NYSE/AMEX monthly value-weighted index including

dividends from the Chicago Center for Research in Security Prices (CRSP). Although the data I

obtained from the CRSP are exactly similar to the data of Bandi et al. (2019) for the period 1930 -

1972, differences arise afterwards. This discrepancy is most likely explained by the fact that Bandi

et al. (2019) obtained their data some time ago, such that the data series might have been adjusted

slightly.

Most logically, one would transform these monthly data to annual continuously compounded

data by using

ry =

12∑
m=1

ln(1 + rm,y) y = 1, ..., Y , (18)

where y and m respectively denote year and month, while r is a simple return. The above equa-

tion states that annual continuously compounded returns equal the sum of monthly continuously

compounded returns in a year. This is the approach that I will take in annualising data, but the

approach of Bandi et al. (2019) deviates from this method a bit.

The method Bandi et al. (2019) use, rests on restructuring the data so that dividend yield and

capital gains yield are separated. To do so, Bandi et al. (2019) obtain monthly returns excluding

dividends via the CRSP. By combining the returns including and the returns excluding dividends,

the price index and dividend are calculated for each time, after which Bandi et al. (2019) form

monthly simple returns by means of

rm,y =
Dm,y + Pm,y

Pm,y−1
m = 1, ..., 12 , y = 1, ..., Y , (19)

whereDm,y and Pm,y are the dividends and price index in monthm of year y respectively. Intuitively,

the above approach should in the end deliver simple returns that are exactly equal to the value-
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weighted return including dividends, but, as the data file sent by the authors suggests, this is not

the case. In Appendix J I include a derivation which proves that both returns should be equal.

Therefore, the discrepancies between the returns are most likely due to rounding errors. In this

paper, I stick to using the value-weighted returns including dividends as readily obtained from the

CRSP and thus do not persuade the transformation of Bandi et al. (2019).

The annualized returns via (18) are nominal returns, i.e. inflation is not taken account for.

However, to compare returns over the years, we should be using real returns. These real returns can

be computed by

rreal,t = rnom,t − rinfl,t , (20)

so that real returns equal nominal returns minus inflation at time t. The inflation data are obtained

once again via CRSP as the annual rate of change of the Consumer Price Index. Bandi et al. (2019)

obtain their inflation data via monthly CPI numbers from the Bureau of Labor Statistics (BLS) and

consequently calculate the change of the December CPI of consecutive years. This results in exactly

the same numbers as those from the CRSP. As we are working with continuously compounded

returns, I transform the simple inflation data by means of

rinfl,t = ln(1 +Rinfl,t) , (21)

where r is the continuously compounded inflation, while R is the simple inflation.

Now subtracting inflation from annual market returns, we obtain real annual market returns.

However, we are interested in the excess returns. Therefore, we need to involve the risk-free rate

in these computations. Data on the risk-free rate is obtained from the Federal Reserve Economic

Data (FRED) and contains monthly data from 1934 to 2014. The annual risk-free rate is taken to

be the risk-free rate in December of the respective year. This is not equal to the end-of-year rate,

as FRED T-bill data is reported on the first day of a month. Therefore, the risk-free rate in a year

equals the risk-free rate on the 1st of December of the respective year. For the period 1930 to 1934,

data is obtained from the National Bureau of Economic Research (NBER), as explained by Welch

and Goyal (2007). Again, these rates are nominal, implying that inflation has to be taken account

for.

As we subtract inflation from both market returns and risk-free rate, looking at inflation seems

irrelevant. However, Bandi et al. (2019) do not use the same inflation rates for the market returns

and the risk-free return. This should not be the case, as inflation is a general measure of the economy
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and its price level. It seems that Bandi et al. (2019) use inflation for the risk-free rate that originates

from an outdated file (the 2014 version of data from the website of Amit Goyal3), while the most

recent version of this file (2017) contains inflation numbers that are exactly equal to those for the

market returns (as obtained from the CRSP). In this paper, I neglected inflation rates in calculating

excess returns, as one should use the same inflation rate for both risk-free rates of return and market

returns.

3http://www.hec.unil.ch/agoyal/
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B Classical Predictive System Aggregation

For a classical predictive system on demeaned variables, we have

rt+1 = βvt + ut+1 (22)

vt+1 = ρvt + et+1 . (23)

When forward aggregating returns, while backward aggregating variance over horizon h, i.e. sum-

ming up h consecutive variables, equation (33) becomes

t+h∑
i=t+1

ri = β
t+h∑

i=t+1

vi−1 +
t+h∑

i=t+1

ui , (24)

for which the variance sum can be written as

t+h−1∑
i=t

vi = ρh−1
t∑

j=t−h+1

vj +
t+h−1∑
i=t

h−2∑
k=0

ρkei−k , (25)

on the condition that h > 1. In case h = 1, the system boils down to (33) and (34). Now

implementing (25) into (24), taking into account that the latter terms in both equations simply are

error terms, one can write
t+h∑

i=t+1

ri = βρh−1
t∑

j=t−h+1

vj + uh , (26)

with uh the combination of all error terms for horizon h, so that the two-way aggregated regression

should yield a slope equal to βρh−1, which, when h increases, should not increase. Therefore, the

classical predictive system should not be able to replicate hump-shaped behavior in its slopes. This

concludes the derivation.
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C Dyadic Scales

The table below gives the scales and corresponding frequencies for both yearly and monthly data.

Table 7: Frequencies for the different scales based on yearly as well as monthly data. The monthly data is
used for the high-frequency analysis, whereas yearly data is employed otherwise.

Yearly Monthly
Scale j Frequency (in years) Scale j Frequency (in months) Frequency (in years)
1 1 - 2 1 1 - 2 1

12
- 1

6

2 2 - 4 2 2 - 4 1
6
- 1

3

3 4 - 8 3 4 - 8 1
3
- 2

3

4 8 - 16 4 8 - 16 2
3
- 1 1

3

5 16 - 32 1 1
3
- 2 2

3

6 32 - 64 2 2
3
- 5 1

3

7 64 - 128 5 1
3
- 10 2

3

8 128 - 256 10 2
3
- 21 1

3
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D Haar transformation

The formula for the Haar transformation for J = 4 is given by



xt

xt−1

xt−2

xt−3

xt−4

xt−5

xt−6

xt−7

xt−8

xt−9

xt−10

xt−11

xt−12

xt−13

xt−14

xt−15



= (T (4))−1



π
(4)
t

x̂
(4)
t

x̂
(3)
t

x̂
(3)
t−8

x̂
(2)
t

x̂
(2)
t−4

x̂
(2)
t−8

x̂
(2)
t−12

x̂
(1)
t

x̂
(1)
t−2

x̂
(1)
t−4

x̂
(1)
t−6

x̂
(1)
t−8

ˆxt − 10
(1)

x̂
(1)
t−12

x̂
(1)
t−14



, (27)

where (T (4))−1 is the (16 x 16) inverse Haar matrix. This matrix can be derived using the

representations in (11) and (13) and is given by
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Table 8: Haar matrix J = 4
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E Aggregated Regression Tables

The following two tables are similar to Table 1 in Section 5.1, but applied to different variance

proxies. Table 9 represents the statistics for the consumption variance, while Table 10 depicts the

properties for the economic policy uncertainty.

Table 9: Table containing properties for forward/backward regressions (1) of NYSE/AMEX returns on con-
sumption variance over horizon h. Panels A1 and A2 contain slope estimates (b), Newey-West t-statistics
(NW ), Valkanov (2003) t-statistics and R2’s.

Panel A1: rt+1,t+h = αh + βhvt−h+1,t + εt+1,t+h

h 1 2 3 4 5 6 7 8 9 10
b 1.838 2.084 0.790 -0.055 -0.038 0.462 1.798 2.705 3.087 4.061
NW 1.138 2.408 0.821 -0.075 -0.043 0.436 1.657 2.502 2.574 3.507
Valkanov 0.135 0.236 0.111 -0.009 -0.006 0.079 0.327 0.497 0.554 0.747
R2 (%) 1.828 5.380 1.250 0.009 0.004 0.633 9.894 20.300 24.000 36.542
Panel A2: rt+1,t+h = αh + βhvt−h+1,t + εt+1,t+h

h 11 12 13 14 15 16 17 18 19 20
b 4.893 5.251 5.331 4.967 4.687 4.317 3.947 3.298 2.473 1.378
NW 4.242 4.920 5.553 6.096 7.409 8.028 8.173 6.117 3.920 2.021
Valkanov 0.960 1.088 1.150 1.072 1.005 0.948 0.880 0.722 0.509 0.291
R2 (%) 48.744 55.035 57.777 54.328 51.135 48.249 44.590 35.167 21.286 8.124
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Table 10: Table containing properties for forward/backward regressions (1) of NYSE/AMEX returns on
economic policy uncertainty over horizon h. Panels A1 and A2 contain slope estimates (b), Newey-West
t-statistics (NW ), Valkanov (2003) t-statistics and R2’s

Panel A1: rt+1,t+h = αh + βhvt−h+1,t + εt+1,t+h

h 1 2 3 4 5 6 7 8 9 10
b 0.025 0.028 0.025 0.013 0.009 0.012 0.019 0.026 0.030 0.034
NW 1.913 1.930 1.434 0.951 0.628 0.891 1.480 2.322 3.167 3.906
Valkanov 0.175 0.234 0.235 0.154 0.120 0.192 0.336 0.506 0.634 0.740
R2 3.039 5.305 5.359 2.375 1.455 3.649 10.364 20.855 29.242 36.043
Panel A2: rt+1,t+h = αh + βhvt−h+1,t + εt+1,t+h

h 11 12 13 14 15 16 17 18 19 20
b 0.036 0.039 0.040 0.041 0.040 0.039 0.037 0.034 0.030 0.025
NW 4.344 4.571 4.313 4.039 3.841 3.696 3.590 3.503 3.405 3.330
Valkanov 0.849 1.007 1.095 1.159 1.177 1.236 1.211 1.112 0.925 0.765
R2 42.643 51.095 55.318 58.121 58.887 61.282 60.319 56.214 47.093 37.852

F Simulation A

For this simulation, a classical predictive system following equations (2) - (3) is generated with

parameters β = 1.8, ρ = 0.734, σe = 0.0095, σu = 0.180 and ρu,e = −0.045. These values are

conform with the numbers provided in Online Supplement A of Bandi et al. (2019). Note however

that the standard deviation of shocks e and u are mixed up in the subscript of Table A.1 in the Online

Supplement. The shocks are generated via a bivariate normal distribution, ρu,e being the correlation

between both shock types. The sample size T = 85 is chosen to equal the number of observations in

the data set for the consumption variance. After having generated returns and variances following

the DGP, two-way aggregated regressions are taken out. Consequently, the corresponding behavior

of the slope and coefficient of determination of these regressions is investigated and compared to the

case in which β = 0 (no predictability). In doing so, σu changes to 0.195.

The results for both the assumptions of predictability and no predictability are presented in

Table 11 and 12. Both tables resemble the values given by Bandi et al. (2019) in Online Supplement

A quite neatly.

F.1 Predictability

Under the assumption of predictability (β = 1.8, see section 3.1.2), we perform 100.000 simulations,

for which results are reported in Table 11.

As is visible in Table 11, slope estimates decline with the aggregation horizon. This is consistent

with the theoretical implication of the slope in an aggregated classical predictive system being βρh−1.

However, the data imply slopes that first increase, reach a peak, and then decrease. In fact, this
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Table 11: Distribution of slope estimates from simulating via the assumption of predictability. The table
reports the mean, median, standard deviation, 5th and 95th percentile of the coefficient estimates over a
horizon h, running from 1 to 20.

β

h 1 2 3 4 5 6 7 8 9 10
Mean 1,83 1,55 1,28 1,03 0,83 0,66 0,51 0,39 0,27 0,17
Median 1,82 1,56 1,28 1,05 0,85 0,69 0,53 0,40 0,29 0,19
St. Dev. 1,52 1,61 1,71 1,81 1,92 2,03 2,15 2,28 2,41 2,55
5th -0,65 -1,09 -1,53 -1,95 -2,33 -2,69 -3,03 -3,34 -3,68 -3,99
95th 4,34 4,20 4,07 3,98 3,93 3,94 3,99 4,07 4,16 4,26
β

h 11 12 13 14 15 16 17 18 19 20
Mean 0,08 0,00 -0,08 -0,15 -0,22 -0,29 -0,35 -0,41 -0,47 -0,52
Median 0,10 0,01 -0,07 -0,15 -0,22 -0,29 -0,35 -0,41 -0,47 -0,53
St. Dev. 2,68 2,83 2,97 3,13 3,29 3,46 3,63 3,81 3,98 4,16
5th -4,29 -4,61 -4,93 -5,23 -5,53 -5,86 -6,20 -6,53 -6,86 -7,17
95th 4,40 4,56 4,70 4,87 5,06 5,26 5,47 5,70 5,94 6,17

Table 12: Distribution of R2 from simulating via the assumption of predictability. The table reports the
mean, median, standard deviation, 5th and 95th percentile of the coefficient of determination of aggregated
regressions over a horizon h, running from 1 to 20.

R2

h 1 2 3 4 5 6 7 8 9 10
Mean 2,94 4,36 5,19 5,84 6,52 7,29 8,16 9,13 10,19 11,33
Median 1,86 2,54 2,80 3,03 3,37 3,76 4,29 4,90 5,53 6,25
St. Dev. 3,22 5,05 6,28 7,24 8,10 9,00 9,95 10,95 12,03 13,15
5th 0,02 0,02 0,03 0,03 0,03 0,03 0,04 0,04 0,05 0,06
95th 9,50 14,89 18,32 20,98 23,67 26,40 29,46 32,53 35,85 39,35
R2

h 11 12 13 14 15 16 17 18 19 20
Mean 12,52 13,76 15,03 16,36 17,72 19,11 20,52 21,94 23,32 24,65
Median 7,04 7,95 8,88 9,91 11,05 12,26 13,56 14,94 16,36 17,70
St. Dev. 14,27 15,38 16,47 17,54 18,57 19,56 20,51 21,43 22,28 23,10
5th 0,06 0,07 0,08 0,09 0,11 0,13 0,14 0,15 0,16 0,17
95th 43,26 46,87 50,13 53,70 56,84 60,03 62,93 65,76 68,27 70,68

hump-shaped behavior in the coefficient β is only captured in 5.69% of the simulations, as can be

seen in Table 18. Furthermore, from Table 12 note that the average R2 does not exceed 25% and

increases over the aggregation horizon. This is in correspondence with long-run predictive behavior

in regressions (Valkanov, 2003). Still, in the empirical application, the coefficient of determination

reaches over 50% and follows a hump-shaped structure. Only 3.16% of the simulations have a

hump-shaped R2 with maximum reaching over 50%. Combining the two above observations on the

descriptive statistics of both β and R2, we note that in only 0.96% of the cases both are hump-shaped

while R2 exceeds 50% at its peak. A variety of combined statistics is provided in Table 18.
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Table 13: Descriptive statistics on β and R2. The table reports the percentage of simulations for which the
slope and coefficient of determination of aggregated regressions follow hump-shaped behavior and R2 exceeds
50%. A slope or R2 contains hump-shaped behavior when the respective variable increases monotonically
over years 6-12 and decreases over years 16-20. The second column contains statistics when predictability is
assumed, while the third column takes β to equal zero.

Descriptive Statistic β = 1.8 β = 0

β increasing 6-12 (%) 13.18 21.25
β decreasing 16-20 (%) 38.39 32.54
β hump-shaped (%) 5.69 7.72
R2 increasing 6-12 (%) 17.84 19.17
R2 decreasing 16-20 (%) 18.83 19.02
R2 hump-shaped (%) 7.03 7.46
R2 hump-shaped & R2 > 50% (%) 3.16 3.22
R2 hump-shaped & R2 > 50% & R2

16 - R2
20 > 30% (%) 1.30 1.27

R2 and β hump-shaped (%) 2.17 2.63
R2 and β hump-shaped & R2 > 50% (%) 0.96 1.25
R2 and β hump-shaped & R2 > 50% & R2

16 - R2
20 > 30% (%) 0.44 0.58

F.2 No predictability

Under the assumption of no predictability, i.e. β = 0, we again perform 100.000 simulations for

which the results are presented in a similar manner to those in the previous section.

Table 14: Distribution of slope estimates from simulating via the assumption of no predictability. The table
reports the mean, median, standard deviation, 5th and 95th percentile of the coefficient estimates over a
horizon h, running from 1 to 20.

β

h 1 2 3 4 5 6 7 8 9 10
Mean 0,02 0,03 0,03 0,04 0,04 0,05 0,06 0,06 0,07 0,08
Median 0,02 0,03 0,03 0,03 0,04 0,04 0,04 0,05 0,07 0,07
St. Dev. 1,65 1,75 1,86 1,96 2,07 2,18 2,30 2,43 2,56 2,69
5th -2,66 -2,82 -3,00 -3,17 -3,35 -3,51 -3,68 -3,86 -4,06 -4,29
95th 2,75 2,91 3,08 3,26 3,45 3,63 3,83 4,05 4,26 4,49
β

h 11 12 13 14 15 16 17 18 19 20
Mean 0,09 0,10 0,10 0,11 0,11 0,11 0,11 0,12 0,12 0,13
Median 0,08 0,09 0,10 0,10 0,11 0,11 0,11 0,11 0,12 0,14
St. Dev. 2,84 2,99 3,15 3,32 3,49 3,67 3,85 4,04 4,23 4,41
5th -4,50 -4,72 -4,98 -5,22 -5,48 -5,76 -6,05 -6,37 -6,65 -6,94
95th 4,72 4,94 5,19 5,48 5,73 6,03 6,31 6,61 6,92 7,19

From Table 14, we see an increasing mean β estimate over horizon h. A similar pattern is visible

for the coefficients of determination, see Table 15. This is in correspondence with so-called unit

root behavior. Due to simply summing up observations, dependence between consecutive points

arises while shocks have longer-lasting effects. Still, the behavior of both β and R2 does not seem

to match the behavior found in the data. To illustrate this, again, a variety of descriptive statistics

is reported in Table 18. It is apparent that these statistics do not deviate all too much from those
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under the assumption of predictability. For instance, the percentage of simulations for which both

β and R2 are hump-shaped while R2 exceeds 50% in its peak is only 1.25%. In similar fashion as in

the previous section, we can thus state that assuming no predictability in returns does not allow us

to replicate the hump-shaped behavior in the data.

Table 15: Distribution of R2 from simulating via the assumption of no predictability. The table reports the
mean, median, standard deviation, 5th and 95th percentile of the coefficient estimates over a horizon h,
running from 1 to 20.

R2

h 1 2 3 4 5 6 7 8 9 10
Mean 1,20 2,28 3,36 4,44 5,53 6,63 7,76 8,92 10,12 11,34
Median 0,56 1,08 1,62 2,18 2,76 3,38 4,04 4,76 5,52 6,35
St. Dev. 1,67 3,09 4,47 5,79 7,09 8,33 9,53 10,71 11,90 13,06
5th 0,00 0,01 0,01 0,02 0,02 0,03 0,04 0,04 0,05 0,06
95th 4,57 8,64 12,65 16,51 20,59 24,36 28,16 31,93 35,64 39,41
R2

h 11 12 13 14 15 16 17 18 19 20
Mean 12,59 13,86 15,16 16,49 17,82 19,16 20,53 21,90 23,23 24,51
Median 7,19 8,11 9,07 10,05 11,13 12,24 13,49 14,75 16,10 17,51
St. Dev. 14,22 15,36 16,48 17,59 18,64 19,64 20,59 21,48 22,29 23,03
5th 0,07 0,07 0,08 0,09 0,10 0,12 0,13 0,14 0,16 0,17
95th 43,03 46,73 50,45 53,82 56,99 60,16 63,16 65,98 68,31 70,46
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G Multiple Regressor System

Table 16 reports R2-values, coefficient estimates and t-statistics in scale-specific predictive regres-

sions with the five predictors; market variance, consumption variance, economic policy uncertainty,

dividend yield and inflation. The table is based on the NYSE/AMEX index.

Table 16: Coefficient estimates, t-statistics and R2 of predictive regressions of excess market returns on market
variance, consumption variance, EPU, dividend yield and inflation, based on the NYSE/AMEX index, so that
M = 5 equals the number of predictors.

r(j)
t+2j

= β1,jx
(j)
1,t + β2,jx

(j)
2,t + ...+ βM,jx

(j)
M,t + u

(j)

t+2j

Scale j 1 2 3 4
Predictor m β̂m,j t-stat β̂m,j t-stat β̂m,j t-stat β̂m,j t-stat
Market Variance 1.01 (0.97) -0.42 (-0.50) 0.26 (0.39) -1.25 (-1.06)
Consumption Variance 5.67 (1.99) -4.59 (-2.24) -0.54 (-0.39) 4.95 (2.32)
EPU -0.01 (-0.45) 0.01 (0.36) -0.01 (-0.53) 0.03 (2.39)
Dividend Yield 0.32 (1.45) -0.24 (-1.20) 0.44 (2.78) -0.04 (-0.18)
Inflation 0.26 (0.29) 0.24 (0.37) 1.27 (2.82) 0.36 (0.99)
R2 (%) 8.80 9.05 27.51 42.35
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H Simulation B

The second simulation constitutes generating data following the system (14) - (15). In doing so, it is

assumed that predictability is only existent for cycles between 8 and 16 years (j = 4), with β4 = 2.80

and all other β′s zero. The autoregressive parameter ρ4 is set equal to 0.2, while all other ρ′s are

set to 0. The shocks u(4)
k24+24

are also set to zero to make sure hump-shaped behavior is not a result

of spurious behavior. As for the shocks u and e, correlation between the two different shock series

is assumed to be zero. The variance parameters σ(j)u are computed from the data and given by 0.02,

0.012 and 0.005 for j = 1,2,3. The variance parameters σ(j)e are given by the authors to be 0.257,

0.354, 0.437 and 0.377 for j = 1,2,3,4. To investigate hump-shaped behavior in aggregated models,

the generated observations should be transformed from scale time into calendar time. This transfor-

mation can be taken out by multiplying the inverse Haar matrix with a column vector of scale-time

data, see Appendix D. Simulation B also contains contemporaneous aggregation, i.e. forward/for-

ward aggregation of excess market returns and market variance, to confirm that predictability in

forward/backward aggregation is not coincidental. The assumption of no predictability is simulated

as well, which results in
r
(j)

k2j+2j
= u

(j)

k2j+2j
j = 1, ..., 4 , (28)

so that the slope β equals zero.

All simulations in this sections have sample size T = 128 and 10.000 replications.

H.1 Predictability

Under the assumption of predictability, where we take β4 in (14) to equal 2.8 in correspondence with

Bandi et al. (2019), the results for performing forward-backward regressions are provided in Table

17. Both the median of β and of R2 seem to follow hump-shaped behavior, in the sense that both

increase until reaching a peak at h = 16, after which both decrease again. The peak for the R2

takes on a median value of 47.41%. However, it is striking that the median adjusted R2 is negative

for a horizon of 1, which should not happen. Furthermore, the coefficient of determination seems to

increase until h = 7, after which a decrease kicks in until the aggregation horizon exceeds 10. This

’double hump-shaped behavior’ distorts the results when evaluating this simulation on the same

basis as Table 8. Therefore, we consider the R2 to possess hump-shaped behavior when it increases

from h = 9 until h = 13, while decreasing from a horizon of 16 to 20 years. Descriptive statistics
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are provided in Table 18, column 1.

Table 17: Statistics for the simulation of scale-specific systems based on the assumption of predictability for
the fourth scale. For a horizon h of 1 to 20, the table reports the median and standard deviation of the slope
and median of the adjusted coefficient of determination for forward-backward aggregated regressions.

A1
h 1 2 3 4 5 6 7 8 9 10
Median β 0,02 -0,01 -0,07 -0,19 -0,36 -0,51 -0,57 -0,51 -0,29 0,03
St. Dev. β 0,11 0,16 0,22 0,26 0,30 0,32 0,34 0,35 0,36 0,38
Median Adj. R2 -0,31 0,04 0,62 1,86 5,20 9,03 10,46 7,48 2,15 0,94
A2
h 11 12 13 14 15 16 17 18 19 20
Median β 0,38 0,72 0,96 1,14 1,26 1,31 1,28 1,21 1,11 0,95
St. Dev. β 0,39 0,42 0,46 0,51 0,54 0,56 0,55 0,52 0,49 0,48
Median Adj. R2 3,78 13,67 25,75 36,97 44,67 47,41 45,42 40,37 32,84 23,83

Table 18: Distribution of slope estimates from simulating via the assumption of predictability (2nd column,
forward-backward), no predictability (3rd column) and contemporaneous regressions (4th column, forward-
forward). The table reports the mean, median, standard deviation, 5th and 95th percentile of the coefficient
estimates over a horizon h, running from 1 to 20.

Descriptive Statistic β4, fb = 2.8 β4 = 0 β4, ff = 2.8

β increasing 6-12 (%) 30.69 5.24 1.43
β decreasing 16-20 (%) 52.48 11.56 3.48
β hump-shaped (%) 21.43 1.36 0.29
R2 increasing 9-13 (%) 33.86 8.82 50.17
R2 decreasing 16-20 (%) 58.24 9.24 43.52
R2 hump-shaped (%) 28.38 2.12 32.01
R2 hump-shaped & R2 > 50% (%) 19.24 0.04 1.08
R2 hump-shaped & R2 > 50% & R2

16 - R2
20 > 30% (%) 14.80 0.01 0.07

R2 and β hump-shaped (%) 17.59 0.43 0.06
R2 and β hump-shaped & R2 > 50% (%) 13.28 0.01 0.00
R2 and β hump-shaped & R2 > 50% & R2

16 - R2
20 > 30% (%) 10.84 0.00 0.00

H.2 No predictability

Similar to the assumption of predictability, taking βj to be zero for all j = 1,2,3,4 can be investigated

as well. This is done as to find out whether the possible hump-shaped behavior is actually due

to assuming predictability. The results for forward-backward aggregated regressions are given in

Table19.

From this table, we can see that the median slope estimates approximate zero for all aggregation

horizons, which is conform the data generating process. Furthermore, the R2 again is negative at

the beginning (small h), while its magnitude remains small over all horizons. The third column of

Table 18 reports descriptive statistics for the assumption of no predictability. From these statistics it

can be seen that the likeliness of hump-shaped behavior is much smaller than for the assumption of
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Table 19: Statistics for the simulation of scale-specific systems based on the assumption of no predictability
for the fourth scale. For a horizon h of 1 to 20, the table reports the median and standard deviation of the
slope and median of the adjusted coefficient of determination for forward-backward aggregated regressions.

B1
h 1 2 3 4 5 6 7 8 9 10
Median β 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
St. Dev. β 0,02 0,02 0,02 0,02 0,02 0,02 0,02 0,02 0,02 0,02
Median Adj. R2 -0,40 -0,31 -0,16 -0,03 0,15 0,26 0,41 0,38 0,44 0,51
B2
h 11 12 13 14 15 16 17 18 19 20
Median β 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
St. Dev. β 0,02 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03
Median Adj. R2 0,62 0,69 0,76 0,90 1,15 1,30 1,22 1,03 0,95 0,92

predictability. The percentage of simulations for which both β and R2 show hump-shaped behavior

lies around 0.43%, while imposing the restriction of R2 exceeding 50% leaves us with only 0.01% of

the simulations.

H.3 Contemporaneous Aggregation

In correspondence with Online Supplement B of Bandi et al. (2019), we investigate whether forward/-

forward aggregation of returns and variance may yield (hump-shaped behavior in) predictability. The

results from such aggregated regressions are provided in Table 20.

Table 20: Statistics for the simulation of scale-specific systems based on the assumption of predictability for
the fourth scale. For a horizon h of 1 to 20, the table reports the median and standard deviation of the slope
and median of the adjusted coefficient of determination for forward-forward aggregated regressions.

C1
h 1 2 3 4 5 6 7 8 9 10
Median β 0,03 0,05 0,06 0,07 0,07 0,07 0,05 0,03 -0,02 -0,08
St. Dev. β 0,08 0,14 0,20 0,25 0,30 0,35 0,39 0,42 0,44 0,46
Median Adj. R2 -0,33 0,03 0,40 0,79 1,19 1,48 1,74 1,99 2,28 2,58
C2
h 11 12 13 14 15 16 17 18 19 20
Median β -0,15 -0,23 -0,30 -0,37 -0,42 -0,45 -0,43 -0,38 -0,32 -0,24
St. Dev. β 0,47 0,47 0,47 0,47 0,47 0,47 0,47 0,47 0,48 0,49
Median Adj. R2 2,92 3,31 4,05 5,04 5,92 6,56 5,97 4,92 4,10 3,39

As Table 20 illustrates, hump-shaped behavior of the slope of forward-forward aggregated regres-

sions does not seem to be apparent. In fact, the median slope is lowest for an aggregation horizon of

16 years. As for the adjusted coefficient of determination, its magnitude is relatively small through-

out all values of h, although there seems to be some kind of upward trend until h = 16, after which

the R2 decreases again. Still, Table 20 does not seem able to capture the empirical hump-shaped

behavior. This is again illustrated by Table18, in which a variety of descriptive statistics is given.
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From these statistics, it can be deducted that a hump-shaped R2 is present in 32.01% of all simu-

lations, which is a substantial part. However, due to the small magnitude of these R2’s, as well as

hardly any hump-shaped β, the percentage of simulations for which both the slope and coefficient

of determination are hump-shaped while the peak of the R2 exceeds 50% is equal to 0.00%. This

confirms the hypothesis of contemporaneous aggregation not being able to replicate the behavior

observed in the data.
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I Note

This research has adjusted data compared to the data used by Bandi et al. (2019), based on the belief

that slight mistakes were made. Therefore, the results presented in Section 5.1 are not completely

equal to those presented by Bandi et al. (2019). However, I have been able to exactly replications

these results. Results are available upon request or can be generated using the code in Appendix

K. As a practical sidenote, it should be said that Bandi et al. (2019) use the sample period 1933

to 2014 for market variance, 1931 to 2014 for consumption variance, and 1930 to 2014 for economic

policy uncertainty.
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J Monthly returns derivation

The monthly CRSP return data including dividends, VWRETD, and the data excluding dividends,

VWRETX, are used as a starting point, while the price index at t = 0 is set equal to 100. The

monthly simple returns including dividends are calculated by using

rt =
Dt + Pt

Pt−1
− 1 t = 1, ..., T , (29)

with Dt and Pt noting dividends and the price index at time t respectively. The price index at time

t is rewritten as

Pt = Pt−1(1 + VWRETXt) t = 1, ..., T , (30)

while the dividends at time t are denoted by

Dt = Pt(
VWRETDt + 1

VWRETXt + 1
− 1) t = 1, ..., T (31)

The above is exactly what Bandi et al. (2019) do to find monthly simple returns including dividends.

However, it can be shown that, using the above equations, rt should exactly equal VWRETDt.

Namely,

rt =
Dt + Pt

Pt−1
− 1

=
Pt(

VWRETDt+1
VWRETXt+1 − 1) + Pt−1(1 + VWRETXt)

Pt−1
− 1 (32)

=
Pt−1(1 + VWRETXt)(

VWRETDt+1
VWRETXt+1 − 1) + Pt−1(1 + VWRETXt)

Pt−1
− 1

=
Pt−1(1 + VWRETDt)− Pt−1(1 + VWRETXt) + Pt−1(1 + VWRETXt)

Pt−1
− 1

=
Pt−1(VWRETDt + 1)

Pt−1
− 1

= VWRETDt

This concludes the derivation that monthly CRSP returns should equal monthly returns formed via

the transformation of Bandi et al. (2019).
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K Codes

In this appendix, I will briefly explain the codes used. With this paper, I send a ZIP-file with all

codes (including a .txt-file containing explanations). However, I will give a short explanation to

every code here.

K.1 Folder Annual Analysis

consumptionvar.m: generates a vector with consumption variance observations over the sample

period.

corrscale.m: computes correlations between the redundant data across different scales.

dividendyield.m: generates a vector of dividend yields for either the NYSE/AMEX or S&P 500

index.

epu.m: generates a vector of EPU variance observations over the sample period.

excessreturns.m: generates a vector of excess returns from either the NYSE/AMEX or S&P 500

index.

laglength.m: generates a matrix containing the R2’s for all combinations of aggregation horizons

between regressand and regressor.

Main.m: the code that links all other codes together and reports all results when run. This is the

code of main interest.

marketvar.m: generates a vector of market variance observations from either the NYSE/AMEX or

S&P 500 index.

MultipleMain.m: the code that links all other codes together for the multiple regressor extension.

This code should be run to retrieve all results in Section 5.2.3.

multipolsaggregate.m: code that runs two-way aggregated regressions for a system with multiple

regressors.

multipredreg.m: code that runs scale-specific predictive regressions for a system with multiple re-

gressors.

normtoscale.m: code that transforms regular time series observations into (redundant) scale-specific

points.

nwest.m: not my own code, but retrieved online; runs a Newey-West regression.

olsaggregate.m: code that runs two-way aggregated regressions for a system with a single regressor.

predreg.m: code that runs scale-specific predictive regressions in a system with a single regressor.
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scalehorizon.m: code that returns properties of scale-specific regressions for all possible combinations

of scales for regressand and regressor.

scaletodec: code that transforms scale-specific calendar-time observations to decimated points.

T4inv.m: code that returns the Haar and inverse Haar matrix for J = 4.

K.2 Folder High-frequency Extension

corrscale.m: computes correlations between the redundant data across different scales.

excessreturns.m: generates a vector of excess returns from either the NYSE/AMEX or S&P 500

index, based on monthly observations.

Main.m: the code that links all other codes together and reports all results when run. This is the

code of main interest.

marketvar.m: generates a vector of market variance observations from either the NYSE/AMEX or

S&P 500 index.

normtoscale.m: code that transforms regular time series observations into (redundant) scale-specific

points.

nwest.m: not my own code, but retrieved online; runs a Newey-West regression.

olsaggregate.m: code that runs two-way aggregated regressions for a system with a single regressor.

predreg.m: code that runs scale-specific predictive regressions in a system with a single regressor.

predregFTSEAEX.m: code that runs scale-specific predictive regressions for either the FTSE 100 or

AEX index.

scaletocec.m: code that transforms scale-specific calendar-time observations to decimated points.

T4inv.m: code that returns the Haar and inverse Haar matrix for J = 4.

K.3 Folder Simulations

simulationA.m: runs the first simulation (based on classical predictive systems).

SimulationB.m: runs the second simulation (based on scale-specific classical predictive systems).

K.4 Folder Exact Replication Codes

consumptionvar.m: generates a vector with consumption variance observations over the sample

period.

corrscale.m: computes correlations between the redundant data across different scales.

epu.m: generates a vector of EPU variance observations over the sample period.
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excessreturns.m: generates a vector of excess returns from the NYSE/AMEX index.

Main.m: the code that links all other codes together and reports all results when run. This is the

code of main interest.

marketvar.m: generates a vector of market variance observations from the NYSE/AMEX index.

normtoscale.m: code that transforms regular time series observations into (redundant) scale-specific

points.

nwest.m: not my own code, but retrieved online; runs a Newey-West regression.

olsaggregate.m: code that runs two-way aggregated regressions for a system with a single regressor.

predreg.m: code that runs scale-specific predictive regressions in a system with a single regressor.

scaletocec.m: code that transforms scale-specific calendar-time observations to decimated points.

T4inv.m: code that returns the Haar and inverse Haar matrix for J = 4.
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