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Abstract

————————————————————————————————————–

In this paper we aim to determine and select crucial factors and variables to

predict future inflation rates of Morocco using principal component analysis and the

elastic net method of Zou and Hastie (2005). We make use of a large data set on

inflation rates of several African countries. We therefore construct several "hybrid"

forecasting models using static and dynamic regressor parameters to conduct an

out-of-sample forecasting experiment. The results of our empirical study reveal that

all the factor-based forecasting methods, whether it has static or dynamic param-

eters, outperform non factor-based methods including a benchmark autoregressive

model for different windowing methods. The inclusion of time-varying parameter

drastically improves the forecasting performance of all our forecast models.

————————————————————————————————————–
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1 Introduction

Within the world of financial econometrics and especially time series analysis, it is of

vital importance to be able to handle so-called "big data" in the context of forecasting

financial or macroeconomic variables such as inflation, GDP, and unemployment rate.

For example, being able to extract useful forecasting information for inflation from large

databases, could lead to drastic improvements in the decision-making of nowadays in-

vestors. Another example where extracting such information could play an important

role is in the context of policy decisions of governments. These are just a few example

where handling big data sets could be of vital use.

This thesis is based on the work of Kim and Swanson (2018). They analyze a large

dataset on 144 macroeconomic variables and compare several sophisticated forecasting

models with multiple benchmark time-series models by doing out-of-sample forecasting

experiments for 11 macroeconomic variables. The "hybrid" models that they construct

and apply are based on factor estimation methods, model specification methods and data

windowing methods. The main conclusion of the work of Kim and Swanson is that almost

all factor-based forecasting model in conjunction with model selection methods are supe-

rior to their baseline time-series models (without factors) when it comes to out-of-sample

forecasting.

In this paper we conduct a similar out-of-sample forecasting analysis as in the work of

Kim and Swanson (2018). However, we diferentiate from their paper by using a different

large dataset which includes inflation rates of several African countries. Also, we only

choose to forecast the inflation rate for morrocco, as this country is a major player in

African economic affairs. Our main aim is to build and apply a forecasting model that

determines which countries and which factors play a significant role in forecasting and

modeling the inflation rate in Morocco. This leads to the following research question:

”How can we determine and select crucial factors and countries for predicting accurately

the future inflation rates of Morocco?"

In order to answer this research question we make use of principal component analysis

(PCA) as our dimension reduction technique and the elastic net method of Zou and Hastie

(2005) as our shrinkage and model selection method. The elastic net method combines

the ridge regression introduced by Hoerl and Kennard (1970) and the lasso technique

of Tibshirani (1996) such that the desirable properties of both methods are preserved.

Besides that, this elastic net method has the nice property that it can select groups of

highly correlated variables. This property resembles a stretchable fishing net that retains

‘all the big fish’ and hence the name: "elastic net".
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The major innovation of this paper lies in the application of the elastic net method

of Zou and Hastie (2005) in conjunction with PCA on our large African dataset for con-

structing the best forecast model for the inflation rate of Morocco. In order to assess the

relative performance of such a "hybrid" model, we compare it with a baseline time series

model without the use of factors and the elastic net methods.

We also distinguish between two cases: static parameters and time-varying param-

eters. Once we selected the factors and countries that we use as predictor variables,

we enhance the forecasting models by applying the Kalman filter algorithm (1960) in

conjunction with maximum likelihood estimation to achieve a more realistic forecasting

model that takes into account the gradual structural changes of the effects of the chosen

predictor variables.

The forecasting results that we find for our big African data set are in line with the

main conclusion of Kim and Swanson (2018) that hybrid factor augmented models are

superior to non factor-based forecasting models. Moreover, we even find decent improve-

ments in out-of-sample predictions if we forecast with the hybrid forecasting model with

time-varying parameters for different windowing methods.

The remainder of this thesis is as follows. In Section 2, we introduce the diffusion in-

dex (DI) model framework for our dynamic factor estimation method and explain in more

details how we can incorporate the elastic net method once the factors are extracted from

PCA. Also, we explain how we include time-varying parameters in the obtained "hybrid"

forecasting model and how we compare models with the baseline autoregressive model.

Afterwards, a description of the employed dataset is given Section 3. Section 4 illustrates

how the methods work and perform by doing a Monte Carlo simulation. Section 5 presents

an empirical study of inflation rates on a big African data set. Finally, Sections 6 and 7

conclude the paper, discuss our findings and provide suggestions for further research.

2 Methodology

2.1 Diffusion index model framework

Throughout this paper, it is necessary to set the notation and foundation for the

models that we consider. Therefore, let xt denote the N × 1 vector of cross-sectional

time series variables and let X = (x1,x2, . . . ,xT )
′ be the T ×N matrix of observations.

Furthermore, let f t denote the r × 1 vector of common latent factors that can describe

the dynamic co-movement of the variables xt and let F = (f 1,f 2, . . . ,fT )
′ be the T × r

matrix of dynamic factor. The index t runs from 0 to T and stands for years. The dynamic
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factor model is then given by X = FΛ + e, where Λ represents the loading matrix of

the factors and e being the idiosyncratic error matrix.

The well known factor model mentioned above can be estimated by means of principal

component analysis. This essentially boils down to computing the eigenvectors of the

sample correlation matrix of xt. The loading matrix Λ can then be estimated as Λ̂ =

(v1,v2, . . . ,vr)
′, where vj is the jth eigenvector. Finally, the latent common factors are

then extracted as f̂t = Λ̂
′
xt for all t.

The forecasting model that we use is the same as in the paper of Kim and Swanson

(2018) and is given by

Yt+h = wtβW + f tβf + εt+h, (1)

where Yt is the target variable , h is the forecast horizon, wt the 1 × s vector of addi-

tional regressors including lags of Yt and a constant term. f t is the 1× r vector of factor

(obtained from PCA) and εt is the error term. Estimates of the coefficient vectors βW

and βf can for example be obtained by using Ordinary Least Squares (OLS) with the

extracted factors f̂t and observable variables in wt.

In order to enhance the forecasting model given in equation (1), we make use of the

elastic net shrinkage method proposed by Zou and Hastie (2005). The following subsec-

tions discusses how this elastic net works and how we construct our hybrid forecasting

models by using such a method.

2.2 Elastic net method

Considering the high-dimensional data set we have and the many factors we can ex-

tract by using principal component analysis, it is of crucial importance to obtain a useful

set of informative variables or factors as it can drastically improve the forecasting perfor-

mance. In order to prevent multicolinearity and improve interpretability of and among

the regressors in equation (1), we need some regularization method. However, at the same

time we need to use variable selection method.

Zou and Hastie (2005) remedy these issues by using the following elastic net criterion

for a target variable y (T × 1) and a regressor matrix X (T × N)1 with non-negative

penalty parameters η1 and η2:

L (η1, η2,β) = ||y −Xβ || 2 + η2 ||β|| 2 + η1 ||β|| 1, (2)

where ||β||1 =
∑N

j=1 |βj| and ||β||2 =
∑N

j=1 (βj)
2 are the `1 -norm and `2 -norm of β,

respectively. The parameter η2 corresponds to the ridge regression shrinkage parameter
1The dependent vector y and regressor matrix X here are defined generally and does not necessarily

represent the one mentioned in section 2.1.
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and for a fixed value of it, we are left with a lasso problem with shrinkage parameter

η1. Kim and Swanson (2013) explain concisely that the solution is based on augmented

data y+
T+N×1 = (y′ 0′N)

′, X+
T+N×N = (1 + η2)

−1/2(X ′
√
η2IN)

′ and that results in the

so-called naive elastic net, given by:

β̂
NEN

=

(∣∣∣β̂LS − η1/2
∣∣∣)

pos

1 + η2
sign

(
β̂

LS
)
, (3)

where β̂
LS

denotes the OLS estimator of β and (z)pos is a function, which is z if z > 0 and

0 otherwise. However, Zou and Hastie (2005) mention that this naive estimator contains

a double shrinkage which can lead to additional bias and therefore replace it with the new

correct elastic net estimator given by:

β̂
EN

= (1 + η2) β̂
NEN

. (4)

The usual way to compute the elastic net parameters for each fixed value of η2, i.e. the

lasso solution, would require quadratic programming from the area convex optimization.

However, Zou and Hastie (2005) propose an algorithm that is based on the Least Angle

Regression (LARS) method of Efron et al. (2004), which produces lasso solutions with

the same computional efforts as a single OLS fit. They call it the LARS-EN algorithm

and we make use of this algorithm to obtain our elastic net solutions. For more details

on the LARS-EN algorithm, we refer to appendix A.

As mentioned earlier, we need to solve several lasso problems for different values for

η2 and therefore the choice of the tuning parameters η1 and η2 need to be optimized. Zou

and Hastie (2005) propose two methods to do this. The first one reparameterizes the

elastic net, whereas the second one uses the popular k-fold cross-validation (CV). In this

thesis, we consider two types cross validation techniques.

The first one is the usual k-fold cross validation technique where we set k = T . Let the

total data set be split into T equally sized data sets each consisting of one observation.

Then for each partitioned data set we forecast the observation in that data set (test set)

by using the remaining T−1 data sets as our estimation set (training set) for which we can

obtain lasso estimates for each pair of (η1,η2)2. We then obtain lasso solutions for a range

of values for η1 and we can construct a range of mean squared forecast errors, accordingly.

The values of η1 and η2 that correspond to the overall minimum mean squared forecast

error is the optimal choice for the tuning parameters.

A second and more important type of cross-validation that we use is the canonical

cross-validation technique that can be used for time-series models. This technique is
2 We apply this cross validation technique via the use of the MATLAB function LASSO.
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relevant because it splits up the total data set in such a way we can use the previous

observations in the training set to forecast the observations in the test set, recursively.

We construct four times (four-fold) a training set and a test set, where each time the

training set increases in size, while the size of test set remains fixed at five observations.

Hence, the term ’canonical’. In contrast to the first CV approach where we solve the

lasso using quadratic optimization, we apply the LARS-EN algorithm to the training

sets, which in return gives us the whole lasso solution path in a more efficient way. We

obtain optimal tuning parameters in a similar fashion as in the first CV technique. The

only difference between the two types of CV techniques we use, is the partitioning of the

total data set. Figure 1 shows intuitively how the four partitionings look like.

Figure 1: An intuitive image of how the data is split in the ’canonical’ cross-validation

approach for time-series models.

2.3 Inclusion of time-varying parameters

In previous subsection we assumed that the parameters βW and βf in the variety of

equation (1) are constant over time. However, it would be more realistic to model the

parameters as stochastic variables that follow a VAR(1) process by assumption. Therefore,

let us rewrite equation (1) into the following system:

Yt = htβt + εt+h, εt ∼ N (0, 1), (5)

βt+1 = Fβt + vt+1, vt ∼ N (0, Ir+s), (6)

where ht = (wt,f t−1) is a 1 × (s + r) vector of regressors with corresponding dynamic

parameter vector βt and F = diag(φ1, φ2, . . . , φr+s). As ht contains the first s− 1 lags
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of Yt, the time index t should indeed run from s to T if s > 1, otherwise the time index t

runs from 2 to T .

Based on the papers of Hamilton (1994) and Roth (2013), we make use of the filtering

algorithm of Kalman (1960) to track the observable target variable Yt and simultaneously

predict and filter the latent dynamic parameters βt. We apply this algorithm in conjunc-

tion with the Maximum Likelihood method (ML) in order to estimate the unknown set

of parameters θ = (φ1, φ2, . . . , φr+s) given that ht is known. As we assumed normality

of the error terms εt we know that Yt |ht ∼ N (µt, σ
2
t ). The log likelihood we need to

optimize is then simply

L(θ) =
T∑

t= s

[
− 1

2

(
ln(2π) + ln(σ2

t ) +
(Yt − µt)

2

σ2
t

)]
, (7)

where the summation runs from 2 to T if s = 1, and from s to T if s > 1. For more

details about the Kalman filter and prediction equations, how we compute the conditional

moments of Yt and how we initialize the algorithm, we refer to Appendix B.

2.4 Forecasting methods

In this section, we explain how we construct our forecasting models based on the fore-

casting equation (1). Similarly to the forecasting approaches of Kim and Swanson (2018),

we make use of five forecasting specifications. For the vector wt we include a constant

term and the first lag of Yt, based on the SIC criterion.

The initial step in the first forecast specification, labeled as SP1, is to extract the fac-

tors F from the complete large data set by means of PCA. Then the elastic net shrinkage

method is applied to the regression model with and without lagged factors. Note that the

elastic net method can shrink the parameters of useless factors to zero, and hence effec-

tively selects only useful factors in our prediction model. Just like in the paper of Kim

and Swanson (2018), we label the predictive model with factor lags (at most one) with

SP1L and for both model configurations (SP1 and SP1L) exclude wt when applying

the elastic net method. We construct our final forecasts as Ŷ SP1
t+h = wtβ̂w + f tβ̂

EN
f and

Ŷ SP1L
t+h = wtβ̂w + f tβ̂

EN
f + f t−1β̂

EN
flagged

, where β̂w is the least squares estimates from

the regression of Yt on wt. For these first two specifications we use the ’canonical’ cross

validation technique.

For the second forecasting specification (SP2) we also extracts factors by using PCA,

but we use a subset of variables originating from the complete large data set. This sub-

set of variables used for PCA are pre-selected by using the elastic net method on the

regression model Yt+h = x′t βX + ut+h. With the obtained factors based on the subset
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of variables, denoted by f̃t, we forecast our target variable as Ŷ SP2
t+h = wtβ̂w + f̃tβ̂

Lasso
f̃

with β̂w and β̂ Lasso
f̃

being the OLS estimator of Yt on wt and the optimal lasso estimate

(excluding wt), respectively. Similarly, for the model with factor lags labeled with SP2L,

we have Ŷ SP2L
t+h = wtβ̂w + f̃tβ̂

Lasso
f̃

+ f̃t−1β̂
Lasso
f̃lagged

. We use the T -fold cross validation

technique when computing the optimal lasso estimates.

For the third specification (SP3) we only make use of the elastic net method on the

complete large dataset to construct the following forecast: Ŷ SP3
t+h = wtβ̂w+x′t β̂

EN
X , where

β̂w and β̂ EN
X are defined similarly as in the case of model specification 1 (SP1 and SP1L),

but the regressors xt are used instead of factors. For this model configuration we apply

the ’canonical’ cross validation technique to obtain the optimal elastic net estimates.

As our baseline model we pick the univariate autoregressive model with lag order p

(labeled with AR):

Ŷ AR
t+h = α̂ + φ̂ (L)Yt, (8)

where α̂ and φ̂ are estimated with OLS. Moreover, we choose the optimal lag order p∗ by

using the SIC criterion, as in Kim and Swanson (2018).

Once we get parsimonious forecasting models from each forecasting method (SP1 till

SP3), we then augment all six models by letting the parameter vector of the variables

to follow a VAR(1) process. We then apply the Kalman filter in combination with the

maximum likelihood method to track the latent regressor parameters βt and estimate the

unknown VAR(1) parameters F for all six models. We initialize the regressor parameters

βt with the parameter estimates of the previously obtained parsimonious models (with

static parameters). For the VAR(1) parameters, we initialize with uniform random num-

bers from (0, 1) for θ for SP1 and SP1L. For the remaining four specification (SP2 till

SP3) we start with θ = 0 as ML estimates. See also appendix B for more details.

For the comparison of the forecasting models, we require a split of the total data sam-

ple, where the first R observations are used for in-sample (IS) estimations and the last P

observations for out-of-sample (OOS) forecast evaluation purposes, such that T = R+P .

We employ both the rolling window method and the recursive window method as men-

tioned in Kim and Swanson (2018). For simplicity, we only construct one-step ahead

forecast (h = 1) and make use of the following forecast criterion (MSFE):

MSFEi,h =
T−h∑

t=R−h+1

(
Yt+h − Ŷi,t+h

)2
, (9)

where Ŷi,t+h is the forecast for horizon h from model specification i. Note that the forecast

sample size stays fixed at P observations.
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3 Data

Instead of the large data set on 144 macroeconomic variable that Kim and Swanson

(2018) use, we employ a large data set on Africa. This includes yearly inflation rates of

N = 50 countries, including 47 African countries and three non-African countries (France,

Japan, USA). The non-stationary inflation series on all countries are transformed to sta-

tionary time-series by taking the first differences of the inflation rates, see also Arize et

al. (2011). The entire sample period that we consider is from 1960 to 2015 with T = 56

observations. However, due to the data transformation we have T = 55 observations.

We split the sample in two parts. The in-sample estimation period is from 1961 to 2010

(R = 50 observations). The out-of-sample forecast validation period is from 2010 to 2015

(P = T −R = 5 observations).

Figures 2 and 3 show the graphs and histograms of the differenced and non-differenced

inflation data of Morocco over the full sample period. A few key things are to be ob-

serverd.

Firstly, the differenced inflation series seems to look less non-stationary and more

mean-reverting. Indeed, when we apply the Augmented Dickey-Fuller unit-root test for

both time-series, we get that a unit root is significantly present for the non-differenced

inflation series of morocco (p -values is 0.2255) and signicant presence of a unit root for

the differenced time-series (p -values is 0.000). This result also holds for all other inflation

series of the large data set. This supports our choice of using differenced inflation series.

Secondly, the empirical distribution of the differenced data seems to look more nor-

mally distributed than for the non-differenced inflation series. Given that some of the

methods we apply in this research assumes normality, we prefer to take first differences

of the inflation data of all the countries.
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Figure 2: Yearly differenced (right) and non-differenced (left) inflation series of Morocco

for the period 1960 - 2015.
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Figure 3: Histograms of the differenced (right) and non-differenced (left) inflation series

of Morocco for the period 1960 - 2015.

4 Simulation Study

In order to assess the performance of the elastic net method of Zhou and Hastie (2005)

as a variable selection method and shrinkage method in the context of a factor analysis,

we perform Monte Carlo simulations. For this purpose, we generate our data based on

three data generating processes (DGP). For simplicity and sake of time, we perform 100

simulation runs with sample sizes of T = 100 observations and N = 4 variables and one

dependent variable Yt. After having generated the data, we use the hybrid forecasting

methods discussed in section 2.4 and apply them for forecasting the last five observations

of Yt. We compare the predictive performances of the five forecast configurations for each

DGP in terms of the mean squared forecast error (MSFE), see also equation (7). An

important thing to note is that we exclude the additional vector wt in this simulation

study for all specifications.

4.1 DGP 1

The specification of the first true DGP is based on the first hybrid forecast method

SP1. An approach to generating our pseudo dataset ( {Yt}Tt=1 ,X) for this DGP is as

follows:

(i) Draw T random row vectors xt of length N from a multi-variate normal distribution

N (0,ΣX) where the covariance matrix of standardized regressors, or effectively, the

correlation matrix is specified as:

ΣX =


1.0 0.8 0.6 0.1

0.8 1.0 0.7 0.1

0.6 0.7 1.0 0.1

0.1 0.1 0.1 1.0

 . (10)
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The regressor matrix is then constructed by stacking the row vectors into a T ×N
matrix X = (x′1, . . . ,x

′
T )
′.

(ii) Compute the four eigenvectors of the correlation matrix ΣX and construct the 4×4

loading matrix E = (e1, e2, e3, e4). The desired and complete matrix of extracted

factors (T × N) is than computed as F = XE. Note that the first column of F

corresponds to first principal component of the correlation matrix ΣX , the second

column the second component, and etc.

(iii) We initialize the dependent variable Yt with a random number from the standard

normal distribution. Let P 1 and P 2 denote the T ×1 vectors that correspond to the

first two columns of F . By repeatedly drawing a random value ut from a standard

normal distribution, we can compute the remaining observations {Yt}Tt=2 recursively

as follows:

Yt = 1.7 · P1,t−1 + 0.9 · P2,t−1 + ut t = 2, . . . , T. (11)

(iv) Repeat steps (i)-(iii) 100 times.

4.2 DGP 2

The second DGP differs from the first DGP in the way we construct the principal

components. The second DGP is based on model specification SP2 where we construct

two factor series based on only two generated variables. For DGP 1, we used all four

generated variables to construct the real underlying factors. We explain below the steps

we take to construct our simulated dataset corresponding to DGP 2:

(i) Draw T random row vectors xt of length N from a multi-variate normal distribution

N (0,ΣX) where the covariance matrix of standardized regressors, or effectively, the

correlation matrix is specified as:

ΣX =

(
Σ sub 0

0 I2

)
, Σ sub =

(
1.0 0.9

0.9 1.0

)
, (12)

where 0 is the 2 × 2 zero matrix. The regressor matrix is then constructed by

stacking the row vectors into a T ×N matrix X = (x′1, . . . ,x
′
T )
′.

(ii) Compute the two eigenvectors of the correlation matrix Σ sub and construct the 2×2
loading matrix E = (e1, e2). The desired matrix of extracted factors (T ×2) is than

computed as F =XsubE, where the T × 2 matrix Xsub only contains the first two

columns of X.
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(iii) Similarly as in DGP 1, let P 1 and P 2 denote the T × 1 vectors that correspond

to the first two columns of F . By repeatedly drawing a random value ut from a

standard normal distribution and drawing a random standard normal value for Y1
we can compute the remaining observations {Yt}Tt=2 recursively as follows:

Yt = 1.5 · P1,t−1 + 2 · P2,t−1 + ut t = 2, . . . , T. (13)

(iv) Repeat steps (i)-(iii) 100 times.

4.3 DGP 3

The last and third data generating process does not involve the construction of factors.

However, we specify that that the dependent variable Yt only depends on two generated

variables. We generate four highly correlated variables. It is of interest to know how the

elastic net method will perform in such a case. In order to simulate the data set for this

DGP, we simply perform two steps:

(i) Draw T random row vectors xt of length N from a multi-variate normal distribution

N (0,ΣX) where the covariance matrix of standardized regressors, or effectively, the

correlation matrix is specified as:

ΣX =


1.00 0.90 0.75 0.70

0.90 1.00 0.80 0.85

0.75 0.80 1.00 0.72

0.70 0.85 0.72 1.00

 . (14)

The regressor matrix is then constructed by stacking the row vectors into a T ×N
matrix X = (x′1, . . . ,x

′
T )
′.

(ii) Initialize the dependent variable Y1 with a random number from the standard nor-

mal distribution. By repeatedly drawing a random value ut from a standard normal

distribution, we can compute the remaining observations {Yt}Tt=2 recursively as fol-

lows:

Yt = 1.2 ·X1,t−1 + 0.7 ·X4,t−1 + ut t = 2, . . . , T. (15)

(iii) Repeat steps (i)-(iii) 100 times.
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4.4 Simulation results

Table 1 shows the results of the Monte Carlo simulations for the five forecasting

methods for each data generating process and each data windowing method (rolling or

expanding). The numbers are Monte Carlo means of the computed mean squared forecast

errors with corresponding Monte Carlo standard deviations, given in parenthesis. The

results are surprisingly different.

First of all, based on the simulated data sets generated from DGP 1, we would expect

model configuration SP1 or SP1L to outperform all other forecasting methods. However,

we find that model specification SP2 consistently beats all the other forecasting methods

in terms of the MSFE criterion. The same ordering of model specifications are to be seen

for both windowing methods as each model specification seems to perform somewhat the

same when we use DGP 1 data.

For DGP 2, we would expect SP2 to be MSFE-best. However, again, we get that SP3

outperforms the other forecasting models. Fortunately, the differences in the predictions

of method SP3 and SP2 seem to be small for both the moving window method and the

expanding window method. Similarly as for DGP 1 data, we get the same ordering of the

model configurations in terms of the MSFE.

For the third and last DGP, the five models seem to perform equally decent, even

though SP2L seems to be MSFE-best. For DGP 3, the computed MSFE values do not

differ that large for both windowing methods, as in the cases of DGP 1 and 2. This

indicates that the five model specifications seem to perform equally decent if the data

were generated from DGP 3. The same ordering of model specifications in terms of

MSFE values are to be seen for both windowing methods.

In sum, the MSFE-best model specifications are SP2 for DGP 1, SP3 for DGP 2

(although SP2 seems to return low MSFE values as well), and SP2L for DGP 3. This

result seems to hold for both windowing methods.
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Table 1: Monte Carlo simulation results

Moving Window Expanding Window

DGP 1 DGP 2 DGP 3 DGP 1 DGP 2 DGP 3

SP1 81.384 46.546 30.527 81.984 46.516 30.081

(96.748) (42.144) (27.162) (97.462) (41.490) (27.163)

SP1L 67.461 48.454 27.852 67.277 48.923 27.506

(62.002) (50.180) (28.452) (62.074) (51.225) (27.400)

SP2 57.486 39.923 31.189 57.537 40.241 31.350

(60.950) (33.616) (32.003) (60.954) (33.817) (31.872)

SP2L 59.114 43.965 25.243 58.790 44.009 25.732

(51.807) (40.108) (29.039) (51.512) (40.401) (30.574)

SP3 79.802 38.727 33.800 79.539 38.823 33.890

(68.744) (32.296) (30.527) (69.097) (32.233) (31.027)

Notes: The sample size is 100 and the number of Monte Carlo replications is 100. The entries

in this table denote the Monte Carlo means of the computed MSFE values for each forecast

method and each simulated DGP data, see equation (7). The numbers in parentheses be-

low each MSFE value are the corresponding Monte Carlo standard deviations. The last five

observations of the dependent variable Yt are used for predictive evaluations for each model

configuration and DGP data. The moving window stays fixed with R = 94 observations,

whereas the expanding window increases every new forecast, from R = 94 to R = 99.

5 Empirical Study

In this section, we present the results of our prediction experiments, where we used all

five model specification for both the moving window method and the expanding window

method. We consider two cases separately: one where the regressor parameters are static

and one case where the parameters are dynamic. We show in upcoming subsections

which model configurations outperform all the other models, including our benchmark

autoregressive model in terms of the MSFE criterion for both windowing methods. Also,

we show in upcoming subsections that including time-varying parameters to the obtained

prediction models with static parameters, results in lower MSFE values for all model

specifcations.
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5.1 Results with static parameters

Table 2 shows the out-of-sample forecasting results of each model specification with

static parameters, for both the moving and expanding window method. It includes MSFE

values of the benchmark AR(1) model and the five forecasting methods we mentioned ear-

lier. Based on the SIC value, the AR model with one lag is chosen. For convenience, we

also computed the relative MSFE values for each model, where values lower than one

indicate outperformance of the benchmark AR(1) model.

For the moving window, we observe that the SP2 method has the best (lowest) MSFE

values when compared to the benchmark AR(1) model and the other four model configu-

rations. This is as expected, as we concluded from our simulation results that SP2 seem

to be MSFE-best given the three different underlying data generating processes. Also,

only two model specifications outperform the benchmark AR(1) model: SP1L and SP2.

The model that perform the worst is SP3. This is in line with the conclusion of Kim

and Swanson (2018) that factor augmented models are almost always better forecasting

models than the ones without factors.

Table 2: Out-of-sample forecasting results with static parameters

Moving Window Expanding Window

AR 0.5053 0.5044

SP1 0.5387 (1.0661) 0.5377 (1.0660)

SP1L 0.5047 (0.9988) 0.5201 (1.0311)

SP2 0.5027 (0.9949) 0.5470 (1.0845)

SP2L 0.5220 (1.0330) 0.5847 (1.1592)

SP3 1.8336 (3.6287) 0.9215 (1.8269)

Notes: The numerical entries in this table are the computed mean

square forecast errors (MSFEs), based on the use of different model

configurations estimated with an moving window and an expand-

ing window, see section 2.3 for more details on the several model

specifications. The one-step-ahead forecasts are computed yearly,

for the period 2011-2015 (P = 5). The relative MSFE values given

in parenthesis are calculated such that numerical values less than

unity constitute cases in which the alternative model has a lower

MSFE value than our benchmark AR(1) model. Entries in bold

denote MSFE-best models.
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From table 2, we can see that SP1L delivers predictions that are MSFE-best for the

inflation rates of Morocco if we apply the expanding window method, when compared to

the remaining four specifications and benchmark models. Unfortunately, all the model

specifications including the MSFE-best model, do not seem to do better than the bench-

mark AR(1) model for the expanding window method as all relative MSFE values are

larger than unity. Again, the model that performs the worst is the model specification

that does not use PCA. This supports the conclusion of Kim and Swanson (2018) that

hybrid factor-based forecasting models are superior to simple non factor-based forecasting

models.

5.2 Results with dynamic parameters

Table 3 shows the out-of-sample forecasting results of each model specification with

time-varying parameters, for both the moving and expanding window method. It includes

absolute and relative MSFE values. Relative MSFE values smaller than one, perform

worse than the SIC based AR(1) model with dynamic parameters. A striking observation

from table 3 is that the predictive performances of all models configurations including the

benchmark models improve drastically.

Table 3: Out-of-sample forecasting results with dynamic parameters

Moving Window Expanding Window

AR 0.3944 0.4158

SP1 0.5014 (1.2713) 0.5122 (1.2318)

SP1L 0.4949 (1.2548) 0.4177 (1.0046)

SP2 0.4800 (1.2170) 0.2936 (0.7061)

SP2L 0.3144 (0.7972) 0.5576 (1.3410)

SP3 0.5569 (1.4120) 0.7494 (1.8023)

Notes: The numerical entries in this table are the relative mean

square forecast errors (MSFEs), based on the use of different model

configurations estimated with an moving window and an expand-

ing window, see section 2.3 for more details on the several model

specifications. The one-step-ahead forecasts are computed yearly,

for the period 2011-2015 (P = 5). The MSFE values are calculated

such that numerical values less than unity constitute cases in which

the alternative model has a lower MSFE value than our benchmark

AR(SIC) model. Entries in bold denote MSFE-best models.
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For the moving window method we observe that the parsimonious forecasting model

obtained from the SP2 method produces the remarkable lowest MSFE value of 0.3144.

Besides that, this MSFE-best model with dynamic parameters not only beats the bench-

mark AR(1) with dynamic parameters, it is also the only forecasting model that outper-

forms the benchmark model. Even in the case with time-varying parameter, the worst

performing model still remains SP3 as it includes no factor analysis.

For the expanding window, we can see from table 3 that the SP2 model has the over-

all lowest MSFE value of 0.2936, which is even lower than the MSFE obtained from the

SP2L in the moving windowing method. In contrast to the case of constant regressor

parameters, we obtain a forecasting model with dynamic parameters that does outper-

form the benchmark AR(1) model for the expanding window method. At the same time,

model specification SP2) renders the only relative MSFE value that is lower than unity,

which was not the case for forecasting models with constant parameters. Lastly, the SP3

model produces the worst MSFE values as expected.

6 Conclusion

In this thesis we conducted a similar out-of-sample forecasting experiment as in the

research of Kim and Swanson (2018) but we made use of a different large data set on

inflation rates of several African and non-African countries. The aim was to find out

how we can construct a forecasting model that could determine the crucial factors and

countries to forecast future inflation rates of Morocco.

For this purpose we made use of the principal component analysis and the elastic net

method of Zou and Hastie (2005) to find parsimonious forecasting models with factors

as explanatory variables. We considered five model configuration that apply one or both

of these two methods. Four of those method were factor-based models and only one was

without the use of PCA. As an extention we also considered five forecasting models with

time-varying regressor parameters following a VAR(1) process. The five models were ob-

tained from the five original model configurations. The only difference between these

models lies in the assumption whether the parameters are constant or dynamic. As our

benchmark we used the simple SIC based autoregressive model.

From the results we concluded that all four factor-based models constructed with the

elastic net method were MSFE-superior to the non-factor based forecasting model when

it comes to the forecasting the last five observations of the differenced inflation rates of

Morocco. The factor augmented forecast specification with the lowest MSFE value only

outperformed the benchmark AR(1) for the moving window method and not for the ex-
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panding window method.

Furthermore, we found that the four factor-based forecast models with dynamic pa-

rameters also were superior to the model without factors. This time, the MSFE-best

factor augmented forecast specifications outperformed the benchmark AR(1) for both

windowing methods.

7 Discussion and Further Research

In this thesis we made several assumption used in order to conduct the research. Re-

laxing these assumption or considering different methods could allow for further research.

First, we assumed just like in the paper of Kim and Swanson (2018) that the variety

of the forecasting model is linear in the regressors and factors. However, it would be

interesting to see if we could obtain some out-of-sample forecasting improvements, i.e.

lower MSFE values. A suggestion for further research would be to use some non-linear

function of the regressors and factors.

Second, we assumed that the distribution of the dependent variable (target variable)

was standard normal when applying the linear Kalman filter. Perhaps, a skewed or

heavy-tailed distribution, e.g. a t-distribution, could be adopted to account for some of

the skewness and fat-tailedness we observe for our dependent variable. We therefore refer

to Roth (2013).

Lastly, we used only one of the methods that were mentioned in the papers of Kim and

Swanson (2013,2014,2018). It would be of great interest to apply a different method like

bagging, boosting or Bayesian model averaging, for example. We refer to their (working)

papers for more details on such method.
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Appendix A: LARS-EN algorithm

This algorithm proposed in Zou and Hastie (2005) is based on the least angle regres-

sion which is introduced in Efron et al. (2004). For this algorithm, it is required that

the dependent variable (vector) y is centralized and the regressor matrix X is standard-

ized. As mentioned in Kim and Swanson (2013) and Efron et al. (2004), this algorithm

constructs a set of predictor variables by adding or dropping a variable one at a time,

starting with zero coefficients for all regressors. Also recall that we use the augmented

data set (y+, X+). For this algorithm given below we start with µ̂ = X+β̂ = 0 and

choose an upperbound t for the `1-norm of the parameter vector.

Let A denote the current active set of regressors, i.e. the set indices of variables (it is

empty initially) and let the corresponding estimate be denoted by µ̂A = X+β̂A. Proceed

as follows:

(i) ComputeX+
A = ( . . . sjx

+
j . . . )j∈A,, where sj = sign(cj) from the correlation vector

c = X+(y+ − µ̂A).

(ii) Compute GA = X+
A
′X+
A, AA = (1′AGA1A)

−1/2 and uA = X+
AwA with wA =

AAG−1A 1A. Note that 1A is the vector of ones of length |A|, i.e. the size of A.

(iii) Compute the inner product vector a = X+uA.

(iv) Update the LARS-EN estimate as follows:

µ̂A+
= µ̂A+ γ̂uA, where γ̂ = min+

j∈Ac

(
Cmax−cj
AA−aj

,
Cmax+cj
AA+aj

)
, with Cmax = maxj (|cj|).

The + indicates that the minimum is taken over only positive components within

each choice of j. The optimal index ĵ that corresponds to this minimum is then

added to the current active set: A+ = A ∪ { ĵ }.

(v) If ||βA+
||1 > t or Ac

+ = ∅: stop.
Else: repeat steps (i)-(v).
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Appendix B: Kalman precitions and filtering equations

The Kalman filtering algorithm requires only two steps in each iteration: a prediction

and then a measurement update, see below. Let β̂t+1|t and β̂t|t denote the predicted and

filtered conditional expectation of βt, respectively. The corresponding covariance matri-

ces of the predicted and filtered estimates are P t+1|t and P t|t. Note that the conditional

variance σ2
t is equal to St such that we can compute the conditional moments of Yt at

each time t as µt = htβ̂t|t−1 and σ2
t = htP t|t−1h

′
t + 1.

Predictions:

β̂t+1|t = F β̂t|t ,

P t+1|t = FP t|tF
′ + Ir+s .

Measurement updates:

St = htP t|t−1h
′
t + 1 ,

Kt = P t|t−1h
′
tS
−1
t ,

β̂t|t = β̂t|t−1 +Kt(Yt − htβ̂t|t−1) ,

P t|t = (Ir+s −Ktht)P t|t−1 .

An initialization of β̂1|1 (β̂2|2 in case we have more than 1 lag) is needed and often is

started with the zero vector. As this estimate is uncertain, the entries of P 1|1 (P 2|2)

should be relatively large.

In this thesis, we initialize it with the obtained elastic net parameters from the fore-

cast model with static parameters. We then choose very small values (e.g. 0.005) for the

entries of the initial covariance matrix. More details are given in section 2.4.
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Appendix C: List of MATLAB codes

Matlab functions for LARS-EN and Elastic Net method

larsen .m

elasticnet .m

cholinsert .m

choldelete .m

Matlab functions for simulation study

SimulationSP1DGP1 .m

SimulationSP1DGP2 .m

SimulationSP1DGP3 .m

SimulationSP1LDGP1 .m

SimulationSP1LDGP2 .m

SimulationSP1LDGP3 .m

SimulationSP2DGP1 .m

SimulationSP2DGP2 .m

SimulationSP2DGP3 .m

SimulationSP2LDGP1 .m

SimulationSP2LDGP2 .m

SimulationSP2LDGP3 .m

SimulationSP3DGP1.m

SimulationSP3DGP2.m

SimulationSP3DGP3.m

SP1MW .m

SP1EW .m

SP1LMW .m

SP1LEW .m

SP2MW .m

SP2EW .m

SP2LMW .m

SP2LEW .m

SP3MW .m

SP3EW .m
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Appendix C: List of MATLAB codes

Matlab functions for empirical study: static parameters

SP1MovingWindow .m

SP1ExpendingWindow .m

SP1LMovingWindow .m

SP1LExpendingWindow . m

SP2MovingWindow .m

SP2ExpendingWindow .m

SP2LMovingWindow .m

SP2LExpendingWindow . m

SP3MovingWindow .m

SP3ExpendingWindow .m

DoCrossValidation .m

ARbenchmarkModelMovingWindowDifferencedData .m

ARbenchmarkModelExpendingWindowDifferencedData .m

Matlab functions for empirical study: dynamic static

EstimateWithKalmanFilter .m

EstimateWithKalmanFilterWithSecondLag .m

NegativeLogLMoroccoInflation .m

NegativeLogLMoroccoInflationWithSecondLag .m

DoCrossValidation .m

ARbenchmarkModelMovingWindowDifferencedDataDynamicLoadings .m

ARbenchmarkModelExpandingWindowDifferencedDataDynamicLoadings .m

SP1MovingWindowDynamicLoadings .m

SP1ExpandingWindowDynamicLoadings .m

SP1LMovingWindowDynamicLoadings .m

SP1LExpandingWindowDynamicLoadings .m
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Appendix C: List of MATLAB codes

Matlab functions for empirical study: static parameters

SP2MovingWindowDynamicLoadings .m

SP2ExpandingWindowDynamicLoadings .m

SP2LMovingWindowDynamicLoadings .m

SP2LExpandingWindowDynamicLoadings .m

SP3MovingWindowDynamicLoadings .m

SP3ExpandingWindowDynamicLoadings .m
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