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Abstract

The aim of this research is to study the identification properties of the GARCH-MIDAS model,

introduced by Engle, Ghysels, and Sohn (2013). Since there is no formal research outcome that the

specific model suffers from identification problems, its small estimated parameter values suggest

this suspicion. To verify this notion, we estimate three distinct GARCH-MIDAS models with

stock market and macroeconomic data to check the range of the estimated parameter values. It

is found that two out these models possibly suffer from identification issues, due to their small

t-statistic values. Next, to formally verify their identification issues, a Monte Carlo simulation

study is performed according to the methodology of Andrews and Cheng (2012). Through this

simulation, it is found that the GARCH-MIDAS model suffers from identification issues, and new

critical values should be computed to make valid inferences from the model. Nevertheless, the new

robust critical values, namely the Least Favorable and the Type-I critical values, do not solve the

identification problems in the two models and create identification issues to the third model as well.
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1 Introduction

Modeling and forecasting volatility with stock market data has been an intertemporal issue

among experts in the quantitative finance area for many decades now. However, the strand of

literature that incorporates macroeconomic indicators into such models started a few years ago. The

idea of creating such models comes from the links between stock market volatility and business cycle

fluctuations, but also with real and nominal macroeconomic volatility among other macroeconomic

variables (Officer (1973), Schwert (1989)). Precise volatility forecasts are vital for practitioners in

numerous fields, like asset management and risk management, as such estimates lead to important

decision-making processes. Having the means to construct accurate volatility forecasts can give an

edge to financial institutions, as it allows them to change their investment positions in short notice.

Volatility modeling became widespread with the seminal research on Autoregressive Conditional

Heteroskedasticity (ARCH) and Generalized ARCH (GARCH) models by Engle (1982) and Boller-

slev (1986), respectively. These two models are known for modeling time variation in volatility

while addressing the volatility clustering patterns. However, GARCH models cannot incorporate

data with different frequencies, that is low-frequency macroeconomic data and high-frequency stock

market data. The solution to this issue is given by the Mixed Data Sampling (MIDAS) model intro-

duced by Ghysels, Santa-Clara, and Valkanov (2004). In this model, a lag polynomial term basically

“maps” the high-frequency data with the low-frequency data using a weighting function (Ghysels,

Sinko, & Valkanov, 2007). Since the introduction of the MIDAS model, there have been many

extensions of it; the one considered on this report is the GARCH-MIDAS model firstly introduced

by Engle et al. (2013).

The GARCH-MIDAS framework models volatility with two components, first, the short-term

component which is a GARCH(1,1) process, and second, the long-term component which is the

MIDAS model. Even though the GARCH-MIDAS model has been extensively used in the literature,

there is a suspicion that it might suffer from identification issues. Such issues arise due to the non-

linearity of the MIDAS model, and the small (in magnitude) parameter estimates that it generates.

If this is the case, there is a logical reason to cast doubts regarding the results and relations

presented in Engle et al. (2013). Taking into account the aforementioned introduction, in this

report, we address the following research question:

To what extent do GARCH-MIDAS models su�er from identi�cation issues,

and can we get reliable results if we account for such issues?

1



FEB24100 A Study on the Identi�cation Loss in GARCH-MIDAS Models

The �rst step to answer the aforementioned research question is to estimate three di�erent

GARCH-MIDAS models with stock market and macroeconomic data, as in Engle et al. (2013).

Once the models are estimated, the relevant MIDAS parameters are investigated whether they

possibly demonstrate from identi�cation issues. Next, a Monte Carlo simulation study is employed

to formally conclude whether the models su�er from identi�cation problems by examining the

parameter distribution densities with the methodology of Andrews and Cheng (2012). Finally, the

last step to answer the research question of this report is to calculate the robust critical values and

review whether such critical values improve the inference of the models estimated in the �rst step.

The estimation of the three di�erent GARCH-MIDAS models showed that two out of three

models might su�er from identi�cation issues. In particular, the �xed-timed span model with the

realized volatility and the �xed-time span model with the industrial production growth rate have

insigni�cant MIDAS parameters, resulting in possible identi�cation loss of the model. Next, the

Monte Carlo simulation study showed that the GARCH-MIDAS model su�ers from identi�cation

loss when the MIDAS parameter � takes values between 0 and 0.1 in absolute terms. For that

reason, new robust critical values were calculated in the hopes of making better inferences from the

GARCH-MIDAS model. However, these critical values did not only solve the identi�cation issues

in the two aforementioned models but also turned the previously identi�ed model to unidenti�ed

as well.

The structure of this report is as follows: Section 2 presents an overview of the existing liter-

ature on the GARCH-MIDAS model, its ancestor, and the identi�cation problems of the speci�c

model. Section 3 presents the data and key descriptive statistics, whereas Section 4 outlines the

methodology of this report. The results are thoroughly explained in Section 5, while Section 6

describes the relevant conclusions and suggestions for future research.

2 Literature Review

The speci�c section is devoted to the discussion and review of the existing literature. Section 2.1

introduces the papers that research the MIDAS model, whereas Section 2.2 presents the GARCH-

MIDAS model and its extensions. Finally, the relatively new research on the identi�cation issues

of the GARCH-MIDAS model is outlined in Section 2.3.

2



FEB24100 A Study on the Identi�cation Loss in GARCH-MIDAS Models

2.1 Introduction to MIDAS Models

The GARCH-MIDAS model has a long-term volatility component that is modeled according to

the MIDAS speci�cation and �ltering procedure, which was introduced by Ghysels et al. (2004).

The reasoning behind such a model creation is to combine data with di�erent frequencies or to

account for data availability limitations. An example of such an application is the Value-at-Risk

(VaR) modeling for getting the forecasted future losses of a stock portfolio. It is common to take 10

days for the VaR variable, but the returns series can be of a daily, or even tick-by-tick, frequency.

The \mapping" between the di�erent horizon variables is done by an (in)�nite lag polynomial,

which in most cases is the normalized exponential Almon or the Beta function. The MIDAS model

produces parameter estimates that are more e�cient in comparison to the ordinary model cases

where there is an aggregation of the least frequent sampling series (Ghysels et al., 2004).

The MIDAS model has been applied and extended many times by researchers with several

macroeconomic indicators. A notable case that combines both cases is the paper written by

Clements and Galv~ao (2008). The authors extended the MIDAS model by incorporating an au-

toregressive term and used this extended model to forecast the US output growth more e�ciently

compared to more standards methods. According to their results, the extra autoregressive term

added explanatory value and improved the forecasting power of the model. On the other hand,

Gu�erin and Marcellino (2013) di�erentiated themselves by adjusting the MIDAS model to incor-

porate di�erent regimes; in particular, they allowed parameters to change according to the regime

that they are. The Markov-Switching MIDAS model that they introduced performs well in contrary

to the standard MIDAS model, a conclusion drawn from empirical applications and simulations.

Furthermore, Armesto, Engemann, and Owyang (2010) selected a variety of macroeconomic vari-

ables, i.e. monthly employment growth and quarterly GDP growth among others, and forecast

them with either averaging the higher-frequency data or the MIDAS model. The authors showed

that averaging the data yields results that are comparable to the results obtained with the MIDAS

model; however, the latter ones are preferred due to the bene�cial properties of forecasting.

2.2 Overview of GARCH-MIDAS Models

Engle and Rangel (2008) introduced a nonparametric approach to model equity volatility,

namely the spline-GARCH model. In this framework, volatility is modeled by linking the dy-

namic properties of a time series together with macroeconomic information. This model combines
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stock market data of higher-frequency with macroeconomic indicators of lower-frequency. To be

more speci�c, a unit GARCH model is used for the high-frequency component, whereas an expo-

nential quadratic spline is used for the low-frequency component. An appealing property of the

spline-GARCH model is that it relaxes the assumption of mean reversion, which is in contrast with

most stochastic volatility models (Engle & Rangel, 2008). In the empirical part of their paper,

Engle and Rangel found that short-term interest rates and gross domestic product are the primary

cause for a uctuating low-frequency market volatility. A notable observation is that the higher

the ination volatility, the higher the market volatility. However, this result might not be robust

due to the sensitivity of including the case of Argentina in the data set.

A few years later, Engle et al. (2013) presented the GARCH-MIDAS model, which is an en-

hanced version of the spline-GARCH model. In particular, volatility is again decomposed into two

distinct components. However, an adjustment in the long-term component is applied. Instead of us-

ing an exponential quadratic spline, the authors incorporated the MIDAS model to account for data

with di�erent frequencies in a more elaborated way. In a similar manner with the spline-GARCH,

the short-term component is the unit GARCH model. The authors state that one advantage of the

introduced model is that it avoids the two-step procedure used by Schwert (1989). Regarding the

empirical part of the paper, the authors used a historical time series of 120 years and concluded to

promising results regarding the longer horizon forecasting. More speci�cally, the macroeconomic

forecasts are approximately the same as the stock market forecasts when measured over the quarter

horizon, although they do prevail in the biannual horizon. With respect to the shorter horizon,

the authors found that the IP growth rate and the PPI ination rate explain 30% (on average)

of the one-day-ahead volatility in almost all the considered subsamples. These results show that

macroeconomic indicators are important for both short-term and long-term horizons.

Since its introduction, the GARCH-MIDAS model has often been applied by researchers, the

most recent one being the one by Conrad, Custovic, and Ghysels (2018). The authors applied the

GARCH-MIDAS framework to examine potential drivers of the short- and long-term components

of the Bitcoin volatility. An interesting, yet irregular, result of this research is that the Bitcoin's

long-term volatility is negatively a�ected by the S&P 500 realized volatility. Nevertheless, this

�nding may not hold in reality due to the relatively small sample size, which is only four years.

Next, Fang, Chen, Yu, and Qian (2018) use the GARCH-MIDAS model to investigate if the Global

Economic Policy Uncertainty (GEPU) Index can accurately forecast the gold futures volatility com-

ponents. The authors found that the GEPU Index has a signi�cantly positive e�ect on the gold
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future monthly volatility forecasts. Furthermore, when comparing the out-of-sample performance

of the GARCH-MIDAS with the one of the simple GARCH, they found that the former one per-

forms better when including the GEPU and realized volatility. This outcome veri�es the fact that

including low-frequency macroeconomic indicators enhances the model to better explain the short-

and long-term volatility estimates.

Although the GARCH-MIDAS model links the lower frequency with the higher frequency data

e�ectively, Engle et al. (2013) state that it possibly su�ers from structural breaks, and for this

reason, they consider various subsamples. This shortcoming inspired Pan, Wang, Wu, and Yin

(2017) to develop the Regime-Switching GARCH-MIDAS (RS-GARCH-MIDAS) model that allows

the short-term component of the volatility to change among two distinct regimes. The two regimes

are modeled in such a way that they account for the dynamics of the oil volatility. The in-sample

estimation of the model showed that the level of the macroeconomic variables has a signi�cantly

adverse e�ect on the volatility of oil. On the other hand, the out-of-sample model estimation showed

that adding together di�erent macroeconomic variables can signi�cantly increase the predictive

performance of the RS-GARCH-MIDAS model.

2.3 Identi�cation Issues in GARCH-MIDAS Models

A possible shortcoming of the GARCH-MIDAS model is that it may su�er from identi�ca-

tion issues for some speci�c elements of its parameter space. Such a problem may arise when the

data cannot e�ciently �t the model, and as a result, \noisy" parameter estimates are consistently

produced. Researchers categorize the identi�cation problem into three types: (i) the strong iden-

ti�cation, (ii) the semi-strong identi�cation, (iii) weakly identi�cation, and (iv) non-identi�cation

(Andrews & Cheng, 2012). Despite the lack of literature on the identi�cation issues of the GARCH-

MIDAS model, Andrews and Cheng (2012) developed a procedure that accounts for identi�cation

problems in a broader class of models. These models are estimated using the general method

of moments, maximum likelihood, and least squares among others. Their objective is to present

severely distorted estimates, con�dence intervals, and statistical tests under the non- or weakly

identi�cation category using a Monte Carlo simulation framework. By applying their methodol-

ogy to a unit Autoregressive Moving Average (ARMA) model, the authors ascertained a distorted

(bi-modal) distribution for most of the considered parameter estimates. For this reason, they in-

corporate robust critical values (Type-I, Type-II, and Least Favorable) to correct the statistical

inference of the considered model. After the speci�c publication, a strand of literature emerged on
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this topic. Among the most important follow-up studies are Andrews and Cheng (2013, 2014) and

Cheng (2015), which produce comparable results with Andrews and Cheng (2012).

The above-discussed papers investigate and present solutions to identi�cation issues regarding

the in-sample estimation. However, loss of identi�cation in a model may have serious e�ects for

the out-of-sample analysis. By using an analogous approach as Andrews and Cheng (2012), Naghi

(2018) showed that models with non- or weak identi�cation type produce aggrandized forecast

errors. This means that the forecast errors are larger when a model su�ers from identi�cation loss

compared to forecast errors under a model with the strong identi�cation type. This result stems

from using a Smooth Transition Autoregressive (STAR) model that gives uniform and bi-modal

distributions for the parameter estimates. These nonstandard distributions lead to void inferences

regarding the predictive ability of the considered model. The author suggested two methods to

correct the out-of-sample inference, and these are the Type-I and Least Favorable robust critical

values.

3 Data

The �rst part of this report is a case study involving stock market and macroeconomic data.

For this reason, a macroeconomic indicator is retrieved from the Federal Reserve Economic Data

(FRED R ) of the Federal Reserve Bank of St. Louis1, a publicly accessible database. The variable

is the Industrial Production (IP), which is transformed into the natural IP growth rate. The IP

growth rate has a time range from January 1926 to December 2010 on a quarterly basis, yielding

340 observations in total. Additionally, the stock returns of the value-weighted series are obtained

from the database of the Center for Research in Security Prices (CRSP)2. The time range for this

variable is, as before, from January 1926 to December 2010, but on a daily basis. This results in a

returns series with 22528 observations.

Since the two considered series include data of almost 85 years, it is natural to wonder whether

there are multiple structural breaks. To account for this issue, Engle et al. (2013) divide the entire

sample into �ve subsample periods, inspired by the seminal work of Schwert (1989). The reasoning

behind the speci�c division of subsamples, according to the authors, is that they address the e�ects

of several (�nancial) events that occurred the previous century like the World War II and the Great

Moderation era among others. In this report, we divide the sample in a similar manner into three

1FRED website: https://fred.stlouisfed.org
2CRSP website: http://www.crsp.com/products/research-products/crsp-historical-indexes
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subsamples. Note that the �rst subsample in this report starts from 1926 and not from 1920 as in

Engle et al. (2013) due to data limitations.

The descriptive statistics for both variables in the relevant subsamples and the entire sample

period are presented in Table 1. Regarding the daily returns, one can observe that the third sub-

period (1985� 2010) has the highest mean returns. However, this fact implies a high standard

deviation among other time periods. The lowest mean returns are observed during the �rst sub-

period (1926� 1952), which in addition demonstrates the highest standard deviation as well. This

irregular fact can be partly explained by the e�ects of the Great Depression, or it may be noise in

the data. As for the IP growth rate, its highest average value is observed in the �rst subsample,

whereas the lowest values is detected in the third subsample. Another notable observation is that

the standard deviation of the IP growth rate ranges from 0.0128 to 0.0629, which is a rather wide

interval. A �nal important observation is that the returns, in all subsamples and the whole sample,

do not seem to follow a normal distribution as their skewness and kurtosis values are far from the

normal values of 0 and 3, respectively.

Table 1: The descriptive statistics for the daily returns and the quarterly macroeconomic variable.

Sample Variable Mean St. Deviation Skewness Kurtosis

1926-1952
Daily returns 0.00018 0.0142 0.3151 14.8755

IP growth rate 0.01200 0.0629 -0.1243 4.2872

1953-1984
Daily returns 0.00026 0.0078 0.0692 7.3322

IP growth rate 0.00860 0.0227 -0.5987 3.7843

1985-2010
Daily returns 0.00038 0.0117 -0.7834 23.0842

IP growth rate 0.00520 0.0128 -2.0102 8.9921

1926-2010
Daily returns 0.00027 0.0115 -0.0244 19.8675

IP growth rate 0.00860 0.0387 -0.0264 9.5554

4 Methodology

The �rst component of this report is devoted to a case study where stock market and macroeco-

nomic data are used to estimate the GARCH-MIDAS models in accordance to Engle et al. (2013).

The speci�cations of these models, for both the rolling window and �xed-term span cases, are pre-

sented in Section 4.1. The second component of this report is devoted to Monte Carlo simulations

of the GARCH-MIDAS model to investigate the existence of identi�cation issues and compute ro-
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bust critical values. The steps of the Monte Carlo simulation are presented in detail in Section 4.2,

whereas the methodology for computing the robust critical values is described in Section 4.3.

4.1 The GARCH-MIDAS Model Speci�cations

The three GARCH-MIDAS models that are examined in this report have been selected from the

paper published by Engle et al. (2013). More speci�cally, the considered GARCH-MIDAS models

have a:

1. Rolling window realized volatility and two years of MIDAS lags,

2. Fixed-term span realized volatility and four years of MIDAS lags,

3. Fixed-term span IP growth rate and four years of MIDAS lags.

The speci�cation of the GARCH-MIDAS model considered in this report is equivalent to the

one introduced by Engle et al. (2013). This implies that the unexpected returns can be expressed

as follows:

r i;t = � +
p

� t � gi;t " i;t 8i = 1 ; : : : N t ; (1)

where the return of day i on quarter t is notated as r i;t , the mean of the entire return series is� ,

the short-term volatility component is gi;t , the long-term component of volatility is � t , the error-

disturbance term given the information set up until day ( i � 1) from quarter t is " i;t j I i � 1;t � N (0; 1),

and the last day of each quarter is denoted asN t . It should be noted that the index t is treated

only at a �xed frequency of a quarter. Engle et al. (2013) also consider a monthly and a biannually

�xed period, but these cases are not investigated here. Next, the componentgi;t is modeled with

the volatility dynamics of a GARCH(1,1) model and is written as:

gi;t = (1 � � � � ) + �
(r i � 1;t � � )2

� t
+ �g i � 1;t ; (2)

where it holds that � � 0; � � 0 and � + � < 1 to guarantee that gi;t remains positive. This

short-term volatility component varies on a daily basis, and its speci�cation does not change for the

three examined models. On the other hand, the component� t measures volatility in the long-term

with the quarterly realized volatility as a proxy, but it has a di�erent speci�cation for each of the

three considered models. For the model with the �xed-time span realized volatility, � t is calculated

with the following MIDAS regression model:

� t = m + �
KX

k=1

� k (! )RVt � k with RVt =
N tX

i =1

r 2
i;t ; (3)

8
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where m and � are the intercept and the slope of the MIDAS regression, respectively, andK is the

number of quarterly MIDAS lags included in the model. As a last step to complete the GARCH-

MIDAS model speci�cation for the �xed-time span realized volatility version, the weighting function

� k (! 1; ! 2) is de�ned with a slightly changed Beta Lag polynomial as in Ghysels et al. (2007). In

particular, Engle et al. (2013) state that the optimal weighting function is monotonically declining

when ! 1 is equal to 1, and by setting ! 2 = ! , the weighting function becomes:

� k (! 1; ! 2) =
(k=K )! 1 � 1(1 � k=K )! 2 � 1

P K
j =1 (j=K )! 1 � 1(1 � j=K )! 2 � 1

, � k (! ) =
(1 � k=K )! � 1

P K
j =1 (1 � j=K )! � 1

; (4)

where the weights are positive, their summation is equal to 1, and the restriction! > 1 need to hold

to allow recent observations to take higher weights. An advantage of using this weighting scheme

is that it can �t multiple lag structures in a very manageable way (Engle et al., 2013). Equations

(1) to (4) form the GARCH-MIDAS model for the �xed-time span realized volatility case with a

parameter space � (f t ) = f �; �; �; m; �; ! g.

However, the restriction that � t is �xed for quarter t can be relaxed by making both short- and

long-term volatility components change on a daily frequency. This implies that the rolling window

case changes slightly the model speci�cation above and the long-term component in Equation (3)

is now de�ned as:

� (rw )
i = m(rw ) + � (rw )

KX

k=1

� k (! )RV (rw )
t � k with RV (rw )

i =
N 0X

j =1

r 2
i � j ; (5)

where all parameters have the same explanation as in Equation 3,N 0 is equal to 65 (quarterly

frequency), and K is the number of daily MIDAS lags. Therefore, by dropping index t from

Equations (1) and (2) and together with Equations (4) and (5) the GARCH-MIDAS model for the

rolling window case with parameter space �(rw ) = f �; �; �; m (rw ) ; � (rw ) ; ! g is formed.

Apart from the realized volatility, a macroeconomic variable is also considered in the analysis of

this report. The inclusion of the IP growth rate in the GARCH-MIDAS model alters the formula of

the long-term component � t in Equation (3). In particular, � t has a log version now and Equation

(4) has two weights instead of one, that is:

log � t = m(mv ) + � (mv )
KX

k=1

� k (! 1; ! 2)X t � k ; (6)

where X t � k is the level of the macroeconomic variable, parametersm and � have the same expla-

nations as in Equation (3), and the Beta Lag weighting function � k (! 1; ! 2) is now de�ned as:

� k (! 1; ! 2) =
(k=K )! 1 � 1(1 � k=K )! 2 � 1

P K
j =1 (j=K )! 1 � 1(1 � j=K )! 2 � 1

: (7)
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Consequently, the �xed-time span GARCH-MIDAS model with the macroeconomic variable is de-

�ned with Equations (1), (2), (6), and (7) and has a parameter space � (mv ) =

f �; �; �; m (mv ) ; � (mv ) ; ! 1; ! 2g. Finally, the estimation of the GARCH-MIDAS models above is done

with the Maximum Likelihood Estimate (MLE) approach, and the relevant Log-Likelihood Function

(LLF) is:

LLF = �
1
2

TX

t=1

�
log(2� ) + log gt (�) � t (�) +

(r t � � )2

gt (�) � t (�)

�
: (8)

4.2 Monte Carlo Simulation of the GARCH-MIDAS model

After the estimation of the three models, a close examination of the parameter estimates and

the t-statistics is performed to investigate for possible identi�cation issues of the models under

examination. To establish a clear opinion whether the GARCH-MIDAS models su�er from iden-

ti�cation issues, we perform a Monte Carlo simulation study with monthly frequencies and 2,000

iterations for each case. The built-up procedure of the simulations is described in the paragraphs

below.

The �rst step of the Monte Carlo simulation is to initialize the long-term volatility component,

� t , with a unit Autoregressive (AR) model for the �rst twelve months, which correspond to one

year of MIDAS monthly lags. The initialization for � t is the following:

log � t = � 0 + � 1� t � 1 + ut ; (9)

where � 0 = 0 ; � 1 = 0 :6 and ut
i:i:d:� N (0; 1). The log version of� t is taken to ensure that it remains

positive. Following the initialization of the long-term volatility, the GARCH process, gi;t , and

the returns series,r i;t , are initialized with Equations (2) and (1), respectively. Subsequently, the

long-term component � t is re-estimated with Equation (3), which implies that gi;t , and r i;t are also

re-calculated with the same formulas as beforehand. This computational procedure of the Monte

Carlo simulation can be summarized with the following Data Generating Process (DGP):

r i;t =
p

� t � gi;t " i;t 8i = 1 ; : : : N t (10)

gi;t = 0 :05 + 0:05
r 2

i � 1;t

� t
+ 0 :90gi � 1;t (11)

� t = 0 :5 + �
KX

k=1

� k (! )RVt � k (12)

RVt =
N �X

i =1

r 2
i;t (13)
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where " i;t
i:i:d:� N (0; 1); K = 12; N � = 22, and the adjusted Beta Lag polynomial � k (! ) is de�ned

as in Equation (4).

The Monte Carlo simulation framework described above is performed for di�erent values of

h = (b ; ! ) 2 H , where b =
p

n� and H is the model sample space. More speci�cally, the four

types of identi�cation discussed in Section 2.3 are considered in this simulation study, and for that

reason, the di�erent values of b are chosen as in Andrews and Cheng (2012). This fact implies that

� is chosen in such a way that b = (0; 0:1; 0:5; 1). The selection of parameter� is (0; 0:07; 0:19; 0:3)

and ! = (1 ; 1:5; 2; 3). The particular choice of the parameter estimates stems from the decision to

check the identi�cation issue of the GARCH-MIDAS model for di�erent values of weights ! .

In each iteration of the Monte Carlo simulation, the parameter estimates are obtained by

applying the MLE method to Equation (8). Next, the simulated t-statistics for parameter � are

calculated with the usage of the simulated and true parameter estimates in the following way:

Tn (� ) =
�̂ � �

SE(�̂ )
; (14)

where the standard error of�̂ is obtained from the Hessian matrix of the LLF. The speci�c t-statistics

are used to construct the two robust critical values described in the following section. Additionally,

the obtained simulated values of� are plotted on histograms for the examination of identi�cation

de�ciencies. According to Andrews and Cheng (2012), the histograms for the non-identi�ed and

the weakly identi�cation cases should look bi-modal and for the semi- and strong identi�cation

category normal. The inspection of the normality of the di�erent distribution densities of � is done

with the Jarque-Bera normality test.

4.3 Solutions for Identi�cation Loss

The close examination of the obtained distributions densities from the Monte Carlo simulations

is performed to determine whether identi�cation issues exist in the considered GARCH-MIDAS

models. If this is the case, then the methodology of Andrews and Cheng (2012) is employed for

the calculation of robust critical values.

First, the Least Favorable (LF) robust critical value is the most straightforward measure con-

sidered, as it is large enough regardless of the identi�cation type of the model. Even though the

LF critical values are asymptotically correct, they have a wide range, and are not so informative,

especially when the model is under the strong identi�cation type. The LF robust critical values are

11
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calculated in the following way:

cLF
1� �;T = max

�
suph2H c1� � (h); c1� � (1 )

	
; (15)

where c1� � (1 ) is the standard normal critical value, c1� � (h) is the critical value calculated with

Equation (14), and � = 0 :05.

The second robust critical value considered is the Type-I critical value, which is a natural exten-

sion of the LF critical value. It basically uses a data-dependent Identi�cation Category Selection

(ICS) statistic to determine the identi�cation category of the considered model. The ICS statistic,

AT , is calculated and compared to a certain threshold� T and from the outcome of this comparison,

the Type-I robust critical value is computed in the following way:

~c1� �;T =

8
><

>:

cLF
1� � ; if AT � � T ;

c1� � (1 ); if AT > � T ;
(16)

wherecLF
1� � is the LF robust critical value, c1� � (1 ) the standard normal critical value, and � = 0 :05.

The data-dependent constant, � T , is equal to (lnT)1=2 as indicated in Engle et al. (2013) and

Andrews and Cheng (2012). The constant is de�ned as:

AT = ( T ^� 0
T �̂ � 1

�;T �̂ T =d� )1=2; (17)

where d� measures the dimensionality of parameter� and �̂ � 1
�;T is the covariance matrix of � .

When AT � � T holds, the model is recognized to have the weak identi�cation type, and the

procedure assigns the LF robust critical value as Type-1. However, whenAT > � T holds, then

the model is considered to have a semi-strong or strong identi�cation type, and the ICS procedure

assigns the critical value of the standard normal distribution as Type-I.

5 Results

This section is dedicated to the explanation of the obtained results. The results from the

estimation of the three GARCH-MIDAS models are thoroughly presented in Section 5.1. Next,

Section 5.2 is devoted to the results of the veri�cation of the identi�cation issues in the GARCH-

MIDAS models. Finally, the computation results of the robust critical values are outlined in Section

5.3.

12
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5.1 Estimation Results of the GARCH-MIDAS Models

The �rst examined model is based on the rolling window realized volatility, including two years

of daily MIDAS lags. The obtained parameter estimates for each of the three subperiods and the

entire sample are reported in Table 2. The numbers in parentheses correspond to robustt-statistics,

that are calculated from Heteroscedasticity and Autocorrelation Consistent (HAC) standard errors.

The speci�c choice of standard errors is selected because the assumption of consistent sample errors

is frequently violated in time series analysis. Additionally, the last two columns refer to the Log-

Likelihood Function (LLF) value and the Bayesian Information Criterion (BIC) of the examined

model, which provide a perspective regarding on which period is preferred over another one.

Table 2: Parameter estimates of the GARCH-MIDAS model with rolling window realized volatility.

Sample � � � � ( rw ) ! m ( rw ) LLF BIC

1926-1952
0.00056 0.10805 0.85550 0.10664 2.1901 0.00618 22896.07 -6.21

(6.04) (15.51) (87.77) (21.17) (23.05) (10.84) | |

1953-1984
0.00041 0.09580 0.88181 0.10741 3.4470 0.00483 26686.65 -7.07

(3.79) (0.74) (6.69) (7.19) (0.89) (5.49) | |

1985-2010
0.00063 0.09960 0.85581 0.09547 9.7246 0.00663 19566.32 -6.45

(1.77) (4.79) (12.56) (4.36) (6.48) (10.08) | |

1926-2010
0.00051 0.09725 0.87202 0.10572 3.4618 0.00545 72681.91 -6.62

(6.81) (18.97) (150.82) (9.99) (44.01) (14.57) | |

A quick look in Table 2 reveals that almost all parameters are signi�cant, except for a few cases

in the second and third subperiods. The fact that � (rw ) is signi�cant and positive indicates that the

model behaves well and that the information contained in the realized volatility MIDAS lags help to

explain the long-term volatility component � i . Moreover, the positive estimates of� (rw ) reveal that

higher realized volatility implies a higher volatility level in the long-term horizon. In addition, the

identi�cation issue in the model seems to be absent since the values of� (rw ) are approximately equal

to the one of the weak identi�cation category in Andrews and Cheng (2012). This fact implies that

the inferences made above regarding the long-term volatility component do hold in reality. An extra

indication of the correct model identi�cation is the monotonically decreasing weighting function

over the number of daily MIDAS lags, as shown in Figure 1.

13



FEB24100 A Study on the Identi�cation Loss in GARCH-MIDAS Models

Figure 1: Optimal weights for the rolling window realized volatility model.

Another important observation is related to the values of parameters� and � . Although in a

typical GARCH model, the summation of � and � is equal to 1, this summation is noticeably less

than this value in this report. In particular, the summation of the speci�c parameter estimates

ranges from 0.9554 to 0.9776, across all three subsamples and the entire sample as well. This

irregularity was also observed in Engle and Rangel (2008) and Engle et al. (2013) without any

formal explanation of why this phenomenon appears. Nevertheless, this �nding implies a lower

persistence of the short-term volatility component gi . Furthermore, it should be mentioned that

the values of thet-statistics signi�cantly change when adjustments are made to the constraints and

the starting values. As the objective of this section is to replicate the methodology of Engle et al.

(2013), their constraints and starting values are also applied in the current methodology with small

adjustments whenever needed.

Moving on to the model with the �xed-term span realized volatility, including four years of

quarterly MIDAS lags, the obtained results are illustrated in Table 3. Once again, robust t-

statistics are calculated through HAC standard errors and are presented within the corresponding

parentheses. Furthermore, the Log-Likelihood Function (LLF) value and the Bayesian Information

Criterion (BIC) are reported to make comparisons across the di�erent time spans considered.

A general notice for this model is that no big di�erences are observed compared to the rolling

window model described above. The values of� seem to be lower than the corresponding values

of the rolling window model. More speci�cally, � is only signi�cant in the �rst subperiod and

the entire sample, whereas it is insigni�cant in the other two subperiods. This result implies that

general conclusions from this model cannot be made for all considered time ranges. Therefore, only

14
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Table 3: Parameter estimates of the GARCH-MIDAS model with �xed window realized volatility.

Sample � � � � ! m LLF BIC

1926-1952
0.00049 0.09746 0.86782 0.09696 5.7117 0.00592 20834.69 -6.20

(4.11) (8.07) (45.63) (18.38) (47.99) (12.24) | |

1953-1984
0.00046 0.08826 0.90268 0.10183 0.9596 0.00599 25013.81 -7.10

(0.47) (2.69) (29.22) (1.15) (4.76) (2.80) | |

1985-2010
0.00056 0.07410 0.89393 0.09396 13.680 0.00640 18037.07 -6.49

(2.19) (10.88) (81.96) (1.83) (2.73) (10.42) | |

1926-2010
0.00051 0.09722 0.87530 0.09768 4.9502 0.00592 77518.77 -6.64

(10.68) (27.46) (314.52) (17.32) (123.90) (17.21) | |

the signi�cant and positive values for � in the �rst subsample and the entire sample illustrate that

the quarterly realized volatility MIDAS lags contain information that help model the low-frequency

volatility component � i;t .

Next, an irregular pattern is observed for the values of the parameter! . In the �rst subsample

and the whole sample, the values for parameters� and ! are quite close. However, during the third

subperiod, � has a close value with the aforementioned periods, but the value of! is tripled. This

result might be the e�ect of the identi�cation problems of the model, and this hypothesis can be

veri�ed with the two panels of Figure 2. According to Engle et al. (2013), the optimal weighting

function is decreasing over the MIDAS lags, but this is not the case for the weighting function of the

second subsample with an insigni�cant value for� . The strong exponentially increasing weighting

function in the right panel of Figure 2 poses serious identi�cation problems in the model, which in

turn results into insigni�cant parameter estimates.

It is worth mentioning that the t-statistics change drastically, as the restrictions and the starting

values of the GARCH-MIDAS model change. This phenomenon is clear for the estimates of the

whole sample, where thet-statistics of � and ! are approximately equal to 314 and 123, respectively.

Regarding the � and � parameters, the �xed-term span model presents, on average, the same

estimates as the rolling window model. This implies that the summation of these parameters is

still lower than 1, ranging from 0.9653 to 0.9909. This observation implies a low persistence of the

short-term volatility component gi;t .
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Figure 2: Optimal weights for the �xed-time span realized volatility model.

The last model examined in this section is the �xed-term span GARCH-MIDAS model with the

Industrial Production (IP) growth rate instead of the realized volatility in the long-term component.

For this model, � i;t is modeled with the log speci�cation as introduced in Equation (6) and the Beta

weighting function is altered compared to the previous two models. There are two weights,! 1 and

! 2, corresponding to Equation (4). The obtained parameter estimates, together with the robust

t-statistics for the four di�erent time periods, are shown in Table 4.

Table 4: Parameter estimates of the GARCH-MIDAS model with �xed window IP growth rate.

Sample � � � � ! 1 ! 2 m LLF BIC

1926-1952
0.00050 0.15384 0.84616 1.34396 1.0002 17.4751 0.06436 20663.60 -6.15

(0.18) (6.45) (35.50) (0.81) (0.09) (2.68) (0.96) | |

1953-1984
0.00051 0.17482 0.82518 1.23227 1.6530 29.3820 0.04221 24853.70 -7.05

(1.49) (21.80) (102.88) (3.43) (0.86) (11.26) (0.32) | |

1985-2010
0.00063 0.16572 0.83428 -0.00062 1.0034 36.6461 0.00032 17866.27 -6.43

(6.18) (18.84) (94.82) (-0.01) (5.76) (91.55) (0.01) | |

1926-2010
0.00049 0.10529 0.89471 -1.78811 98.5528 80.3329 0.03648 70403.56 -6.60

(8.96) (13.35) (113.48) (-5.82) (4.31) (6.75) (0.14) | |

The �rst notable observation is that all four values of the parameter � changed drastically

contrary to the two models with the realized volatility. Especially for the �rst two subperiods and

the full period, the values of � are clearly above one, but for the period 1985� 2010, it is even
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smaller than the two models presented above. The fact that the model generated such a parameter

estimate poses again the identi�cation question. Moreover, the smallt-statistic values for the �rst

and third subperiod give an extra reason to believe that the speci�c model is unidenti�ed in certain

time ranges. Nevertheless, inferences can be made when parameter� is signi�cant. The obtained

estimates present results that are in contrast, that is, higher IP growth rate results into higher

long-term volatility for the second subperiod and lower long-term volatility for the entire sample.

However, the MIDAS lags of the IP growth rate in both time ranges contain information that helps

interpret the long-term component of volatility � i;t .

Additionally, the inclusion of the ! 1 term in the model, changed the values for parameter! 2 a

lot, making it even six times higher than in the model with the realized volatility. However, the ! 1

term has a value that is quite close in the three subperiods, but signi�cantly larger for the whole

sample, which seems a bit irregular. This might be the result of the identi�cation issue of the model

described a few lines above, but it can be veri�ed with the graphs of the optimal weighting function

shown in Figure 3. The introduction of the second weight in the function should not change the

behavior of the function signi�cantly. However, the right panel in Figure 3 shows the opposite. The

weights do not represent a monotonic function, as in the other cases, and their values are higher

for past observations.

Figure 3: Optimal weights for the �xed-time span IP growth rate model.

Last but not least, we observe that the summation of parameters� and � is almost equal to 1.

This result is in contrast with what was observed in the previous two models. This fact leads to the

outcome that constraint � + � < 1 is fully satis�ed in the optimization procedure and that there is

a normal rate of persistence for the short-term volatility component of the GARCH-MIDAS model.
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5.2 Monte Carlo Simulation Study Results

This section is devoted to the discussion of the results obtained from 16 distinct Monte Carlo

simulations, each one aggregating 2000 iterations. First, the distribution densities of the di�erent

estimated parameters b and! are presented in Figure 4. By inspecting these �gures, we reach an

initial conclusion that the results of Andrews and Cheng (2012) are partly veri�ed. The authors

found that the format of the distributions changes according to the real value of b, that is, smaller

values of b produce bi-modal distribution densities. On the other hand, as b becomes larger, these

densities approximate the normal distribution.

(a) ! = 1

(b) ! = 1 :5

(c) ! = 2

(d) ! = 3

Figure 4: Histograms of the estimated parameter� for di�erent values of ! .
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In this report, the distribution densities for the �rst two cases of b being equal to 0 and 0.1,

which correspond to the non- and weakly identi�cation categories and the underlying values of 0

and 0.07 for � , seem to follow a bi-modal distribution. These densities do not have the normal

distribution properties, a conclusion drawn by the outcome of the Jarque-Bera (JB) normality test

presented in Table 5. The high skewness and kurtosis values and the lowp-values for b = (0; 0:1)

and all cases of! clearly indicate this �nding.

One can recognize the bi-modal densities, for the non- and weakly identi�cation categories, by

the two large spikes around 0 separated by a trough in the �rst two columns of Figure 4, respectively.

The particular type of distribution is clearly shown for the aforementioned values of b and! = 1,

as a deep trough separates the two characteristic peaks of the distribution. However, increasing

the value of ! decreases the bi-model e�ect in most of the densities presented in Figure 4. This

observation implies that increasing the value of! , while keeping a �xed parameter b, results in an

improvement of the model behavior. Additionally, this e�ect is less severe on the densities for the

weakly identi�cation category, as the trough is not as deep as in the previous case.

These results verify the bi-modality distribution densities of the parameter estimates of the

ARMA(1,1) model in Andrews and Cheng (2012). It should be noted that the explanation of this

Table 5: Outcome of the Jarque Bera normality test.

! = 1 ! = 1 :5

b=0 b=0.1 b=0.5 b=1 b=0 b=0.1 b=0.5 b=1

Mean 0.0328 0.0440 0.0474 0.0636 0.0324 0.0422 0.0507 0.0727

St. Deviation 0.1167 0.1270 0.1402 0.1267 0.1183 0.1303 0.1224 0.1421

Skewness 1.0407 1.7934 2.3043 3.3198 0.8005 1.8327 2.6999 2.5920

Kurtosis 14.3475 14.1975 16.6486 18.6598 13.1021 15.6284 18.3805 14.1206

P-value JB test 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010

! = 2 ! = 3

b=0 b=0.1 b=0.5 b=1 b=0 b=0.1 b=0.5 b=1

Mean 0.0286 0.0417 0.0554 0.0791 0.0291 0.0469 0.0526 0.0894

St. Deviation 0.1185 0.1384 0.1376 0.1474 0.1239 0.1328 0.1330 0.1534

Skewness 0.8524 1.5865 2.2339 2.7920 0.6563 2.1248 2.1043 2.4064

Kurtosis 12.4749 14.4931 14.3511 14.1628 13.4109 15.4377 15.8704 12.1360

P-value JB test 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010
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phenomenon is not su�ciently justi�ed in the existing literature. However, it may be associated

with the value of the parameter � being very close to zero. In such a case, the parameter! cannot

be uniquely estimated, and b takes any value close but not equal to 0.

On the other hand, when b is equal to 0.5 and 1, which is the representation of the semi-strong

and strong identi�cation categories with the values for � being equal to 0.19 and 0.3, the density

distributions do not seem to follow a normal distribution. This is veri�ed by the low p-values of the

JB normality test and the values of the skewness and kurtosis presented in Table 5. The particular

values di�er quite a lot from the corresponding values of a normal distribution, which are 0 and 3,

respectively.

These �ndings are in contrast with the results of Andrews and Cheng (2012), who mentioned

that having at least a semi-strong identi�cation category, results in having a normal distribution

density for the estimated parameter b. More speci�cally, one can observe that the obtained distri-

bution densities in the third and fourth column of Figure 4 seem to follow a Student-t or Cauchy

distribution rather than a normal distribution. The large number of extreme values, higher than

0.2 in absolute terms, seems to raise the skewness value, whereas the observed high peaks between

0 and 0.1 imply a high value for the kurtosis of the distribution.

An explanation for the non-normal distribution densities for the speci�c identi�cation categories

might be the small number of iterations in the Monte Carlo simulations and the fact that only

a small sample size was used. One can check the asymptotic properties of a model by taking

several sample sizes at an increasing order and perform at least 5,000 iterations in each of the

Monte Carlo simulations. Therefore, the obtained Cauchy/Student-t distribution densities are not

invalid based on the selected sample size and the amount of the simulation iterations. Another

explanation for the non-normal distribution densities for the speci�c identi�cation categories could

be the starting values of the GARCH-MIDAS model in the optimization technique. As noted

in Section 5.1, changing the starting values of the model yields a completely di�erent set of the

estimated parameters. Therefore, the fact that only a few di�erent parameter values were input

into the simulation could explain the non expected type of distribution densities. Furthermore,

another cause for this irregular result could be the consideration of only monthly estimates for the

long-term volatility component � i;t . Engle et al. (2013) mentioned that they perform the research

for monthly, quarterly, and biannually estimates of the � i;t component. However, the quarterly

estimates resulted in the best results. Hence, the fact that the quarterly and biannually estimation

of � i;t is not explored in this report, could clarify the obtained type of distributions.
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