
Feature Selection With GenSVM Using Group Lasso Regularization

Daniël de Bondt
416090

supervisor: Prof. dr. Patrick J.F. Groenen
second assessor: U. Karaca

Abstract

An extension is proposed to the GenSVM classification algorithm by replacing the square
penalty term by a group lasso regularization. A majorization for this new penalty term is
derived and the extended model is implemented in Python. This new technique is then
tested on two data sets and compared with the regular GenSVM. The group lasso extension
is shown to behave as a feature selector, setting row vectors, corresponding to a specific
attribute, of the SVM coefficient matrix collectively to zero. In terms of performance, the
group lasso GenSVM is shown to be competitive to the base model.

Bachelor Thesis Econometrics/Economics

Erasmus School of Economics
ERASMUS UNIVERSITY ROTTERDAM

July 7, 2019

Contents

1 Introduction 3

2 Literature 3

3 Data 4

4 Methodology 5
4.1 GenSVM . 5
4.2 Group Lasso Introduction . 6
4.3 Majorization . 8
4.4 Computational Implementation . 9

5 Results 9

6 Discussion 14

A Additional Results 16
A.1 Warm Starts . 16
A.2 Breast Tissue Profiles with ARI . 16

B Code Implementation 17

2

1 Introduction

Over the past decades, immense technological advancements have been made around computers
and their computational ability. This development greatly expanded the possibilities for many
scientific areas of expertise, one of which is numerical optimization. The field of machine learning
emerged: while previously a model would be built around the data, now the data is often the
driving force in training the model, sometimes even determining structural relations.

A well-known subset of machine learning problems is classification, where every data point
can be attributed to a certain class. The task of the model here is, using specific attributes or
features of the data, to predict to which class an unknown data point belongs. Several popular
classification methods exist in current literature. The Multinomial Logit gives a classic Econo-
metric approach, allowing for economic interpretation. The K-nearest neighbours algorithm
provides a simple intuitive alternative, yet lacks in memory and computational performance
(Bhatia et al., 2010). Neural Networks are the current state-of-the-art solution for many differ-
ent contexts, being especially applicable for abundant data with complex relations such as text
or image recognition.

Support vector machines (SVMs), introduced by Cortes and Vapnik (1995), are another
machine learning technique aimed at classification. The SVM originated for the binary case of
two classes and aims to transform the data in such a way that both classes are linearly seperable.
The essential idea of SVM are the support vectors, the observations that are incorrectly classified
or close to the classification boundary. Correct classifications are sought after, but there is no
measure as to how ’correct’ the classification is. The loss function over which the model is
optimized only takes into account the (almost) incorrect instances, the support vectors, and
this leads to a sparse solution.

The aim of this research will be to extend the GenSVM algorithm introduced by Van den
Burg and Groenen (2016). Instead of the squared penalty term in the GenSVM loss function, a
group lasso penalty will be used. It is expected that this will cause the algorithm to implement
a way of feature selection, selecting a subset of most useful attributes from the available data.
For classification tasks within an economic context this would give additional interpretation of
the independent variables at hand. In order to be able to include this extension, the GenSVM
base algorithm will first have to be implemented separately from the existing package, and as
such this will be a major preparatory step.

The rest of this paper will continue as follows. The next section will explore the existing
literature surrounding SVMs and the group lasso penalty. Then section 3 will describe the
different data sets that are used to test performance. Section 4 will lay out the methodology
that is needed to build the GenSVM algorithm and introduce the proposed group lasso extension.
Subsequently, section 5 displays the most interesting results and findings. Finally, section 6 will
provide a discussion to these results and mention some limitations and further research.

2 Literature

An overview is given by Van den Burg and Groenen (2016) of several ways in which the SVM
framework has been extended to a multiclass context in three specific ways. Heuristic ap-
proaches, combining multiple binary SVMs are the simplest and also most common, partly
because of their availability through software packages. However, they can prove a computa-
tional burden. The second set of methods introduced is a generalization of these heuristics
through error correcting codes. The main drawback of these however, is the difficulty in finding
the correct corresponding coding matrix. The third proposed group of methods is the single
machine approach. Here all boundaries are computed simultaneously. These methods often still
lead to a very large dual problem, hurting computational time.

GenSVM is introduced by Van den Burg and Groenen (2016) as a single machine multiclass

3

SVM that generalizes to the binary SVM for K, the number of classes, equal to two. An
accompanying iterative majorization method is also derived, to allow for solving the primal
problem directly. GenSVM is compared with seven other multiclass SVM methods and was
shown to be competitive, while yielding a significant computational efficiency improvement
over most of the other methods.

The lasso (least absolute shrinkage and selection operator) method was coined by Tibshirani
(1996) in an attempt to combine profitable aspects of both discrete subset selection and ridge
regression. A penalty to the coefficients is applied, like in ridge regression, but instead of
squaring the coefficients, the sum of the absolute value is taken. It shrinks the coefficients,
similar to ridge regression, and while doing so it naturally sets some of them to 0, a way
of internal subset selection. This provides a level of sparsity. The method was tested against
subset selection and ridge regression for several regression scenarios with competitive yet varying
results, highly dependent on the structure of the underlying model.

The lasso works by selecting individual coefficients. For more specific problems where ex-
planatory variables are grouped into factors, Yuan and Lin (2006) have developed an extension,
named the group lasso. Here the penalty term is defined as the sum over the `2 or Euclidean
norms of all groups of coefficients. For the case where all groups contain only one element this
simplifies to the regular lasso. Within groups however, the penalty behaves similar to the ridge
regression, whose penalty involves the same `2 norm, but squared.

Yuan and Lin (2006) proposed an extended shooting algorithm to solve their group lasso
regression. A coordinate descent approach is taken however by Wu et al. (2008) to solve a more
general loss function g(θ) with lasso and group lasso error terms. Here, a first mention is made
of majorizing the outer square root of the the group lasso as to help numerical optimization.
Additionally, cross validation is brought forward as a way to determine the optimal value of
parameter λ.

Yang and Zou (2015) introduce a more general groupwise-majorization-algorithm (GMD) for
group lasso penalized learning problems that only requires a loss function to satisfy a quadratic
majorization condition. What is of interest here, is that the algorithm is tested on two binary
SVMs, which hints at the applicability of a group lasso error within an SVM framework. While
the algorithm itself could probably be applied to a group lasso GenSVM, it is hard to predict
its efficiency because of its generality.1

3 Data

For this research two data tasks will be used. Firstly a comparatively small dataset of breast
tissue attributes and classifications, also used in Van den Burg and Groenen (2016) will be
assessed to be able to compare the method to previous literature. The goal however, is to
find a new application where the expected feature selection will be able to play an important
role. For this reason, another dataset concerning drug use will be used. It contains a number
of attributes and usage levels of several different drugs, out of which alcohol is selected for
this analysis. This second dataset has been created by Fehrman et al. (2017) and an extensive
analysis has already been made, to which this paper would be a nice addition. Both datasets can
be obtained from the UCI Machine Learning Repository, Dua and Graff (2019). An overview
of specifi statistics can be found in Table 1 below. The breast tissue data set has 10 different
real valued attributes and its class sizes do not differ by too much, making it a prime candidate
to test classification machine learning techniques. The alcohol use data set is somewhat less
ideal because the input variables come from survey respondents and are originally categorical in
nature. These categorical values are subsequently quantified into real numbers. This should be

1It is also way more convenient to make an adjustment to the IM algorithm of Van den Burg and Groenen
(2016) than implementing the entire (GMD) algorithm for the GenSVM, which would be outside the scope of
this thesis.

4

Table 1: Data sets summary statistics.

Data set #instances #attributes #classes smallest class size largest class size

breast tissue 106 10 9 14 22
alcohol use 1885 12 7 34 795

kept in mind as it may cause some complications in the analysis. Additionally, the group sizes
vary by quite a lot in this data set, which may be handled by using group corrected weights,
but could still cause some unexpected results. Both data sets are normalized to average around
zero. The breast tissue data is scaled into the interval [-1,1], where the alcohol use attributes
have differing intervals around zero. While the alcohol data set might not be as clear compared
to the breast tissue one, it poses as an example where these machine learning techniques could
find a real world, economic application.

4 Methodology

This section lays out the methodology that is used for the proposed group lasso extension. The
first part will concern the base GenSVM model and introduce the main idea and notation of the
multiclass support vector machine. Next, the intuition behind the group lasso implementation
for GenSVM is introduced, along which the lasso and group lasso methodogy will be presented.
After this the exact derivation of the majorization for the group lasso is given, followed by a
desciption of the practical implementation.

4.1 GenSVM

The GenSVM introduced by Van den Burg and Groenen (2016) tackles the task of classifying
a data instance xi of m known attributes with unknown label yi, and assigning it to one of K
classes. This is done by training a model around a known data set X of size m× n, where n is
the amount of data instances, and corresponding labels y of size 1×n. This model consists of a
mapping, or weight matrix W from m to a (K−1) space. More explicitly, the transformation of
a data instance xi is done in the following way s′i = x′iW + t′, where the vector t of dimension
K − 1 denotes the bias terms. The resulting vector s′i is the representation of data instance i
in the (K − 1) space. To divide this (K − 1) space into K classes a K by (K − 1) coordinate
matrix UK of vertices is constructed with distance 1 between each two vertices as described in
Van den Burg and Groenen (2016). Each vertex of UK corresponds to one of the classes and
predictions can be made by selecting the closest vertex to a transformed unknown data point.
This matrix also helps us define the miss classification error of instance i with respect to the
boundary between class k and j in terms of a projection on the difference between these vertices
in the following way:

q
(kj)
i = (x′iW + t′)(uk − uj). (1)

This error is then propagated through a Huber hinge loss to make sure correct classifications
within a certain error margin get zero loss. The Huber hinge is flexible in the κ parameter,
allowing the model to adapt to various different data structures, and is given by:

h(q) =


1− q − (κ+1)

2 if q ≤ −κ,
1

2(κ+1)(1− q)
2 if q ∈ (−κ, 1],

0 if q > 1.

(2)

Another level of flexibility is added by summing these Huber errors using the `p norm. This
`p norm determines how much multiple errors within one instance contribute to the total loss.

5

Additionally the ρi parameter is introduced to allow for weighting observations, for example
to correct for group sizes. All of the above, combined with the quadratic regularization term,
results in the following loss function:

L(MSVM)(W, t) =
1

n

K∑
k=1

∑
i∈Gk

ρi

∑
j 6=k

hp
(
q
(kj)
i

)1/p

+ λ trW′W. (3)

In order to minimize this loss function, Van den Burg and Groenen (2016) derive an iterative
majorization (IM) algorithm. IM works by means of finding an auxiliary majorization function
that is greater than the original function and touches the original function at a supporting
point, denoted with an overline dash, in this case V. If this majorization is chosen to be an
easily optimized function, optimization of this majorization function will step-wise also optimize
the original function in an efficient manner. A more detailed introduction into IM and a full
derivation of the majorization function of GenSVM can be found in Van den Burg and Groenen
(2016).

For the GenSVM majorization an extra notation is introduced:

V = [tW′]′,

z′i = [1 x′i],

δkj = uk − uj ,

such that q
(kj)
i = z′iVδkj .

Using this notation, equation (3) turns into:

L(MSVM)(V) =
1

n

K∑
k=1

∑
i∈Gk

ρi

∑
j 6=k

hp
(
q
(kj)
i

)1/p

+ λ trV′JV. (4)

A majorization of this loss function, the exact derivation of A and B can be found in Van den
Burg and Groenen (2016), is derived to be:

L(MSVM)(V) ≤ trV′(Z′AZ+λJ)V − 2 tr (V
′
ZA + B′)ZV + Γ(3), (5)

where Γ(3) is the collection of constants, not dependent on V and thus irrelevant for the opti-
mization. Taking the derivative with respect to V and setting to zero gives the following linear
system:

(Z′AZ+λJ)V = Z′AZV + Z′B, (6)

the solution of which determines the Iterative Majorization (IM) update. It can be easily
obtained through Gaussian elimination as this system is of the desired form AX = B.2

4.2 Group Lasso Introduction

GenSVM makes use of a quadratic penalty term to help regularize the coefficient matrix V. By
shrinking the weights to a certain extent this prevents overfitting and improves out-of-sample
performance. While the penalty term is not part of the core SVM model, it does affect the way
it is trained and the optimal solution that is found. Changing this penalty term would thus
significantly change the behaviour of the algorithm.

2This A and B are general matrices, not to be confused with the ones from the derivation in equations (5)
and (6)

6

w1

w2

Figure 1: Graphical comparison of the contour lines, both equal to a constant, say 1, for the `1
(red) and `2 (blue) norm over two coefficients w1 and w2.

The quadratic penalty can be regarded as a squared `2 norm:

λ trV′JV = λ

m∑
i=1

K−1∑
j=1

w2
ij = λ ‖(W)‖22 . (7)

One natural tweak to this would be to instead use the `1 norm, defined as ‖W‖1
∑m

i=1

∑K−1
j=1 |wij |.

In fact, this is exactly what Tibshirani (1996) proposes within the context of OLS regression
models by introducing the least absolute shrinkage and selection operator (Lasso). It keeps the
desirable property of stability from ridge regression (OLS with a squared penalty), while also
performing a form of feature selection by setting some parameters to zero. This can be made
more intuitive by examining Figure 1. The contour lines for both the `1 (red) and `2 (blue)
norm are displayed. Imagine now, that a convex loss function, whose global optimum we will
assume lies outside both contour lines, were to be optimized within this constraint. For the `2
norm this constraint optimum could lie anywhere on the circle, since any place on the circle
has a unique tangent that could match with the loss contours. For the `2 norm however, there
is a very big chance that the constraint optimum will fall on one of the four corners, since they
have a wide range of possible tangents to match with the loss contours. All of these corners lie
on an axis, meaning either of the coefficients (w1 or w2) is set to zero.

Unlike an OLS setting, where every coefficient βi corresponds to the effect of one explanatory
variable and where lasso was first developed, the GenSVM coefficient matrix W consists of rows
of coordinate coefficients that correspond to a single input variable or attribute. A single element
of this matrix is only partly (in one dimension) responsible for the effect of the specific attribute
on classification performance. In order to be able to apply the lasso its feature selection in a
meaningful way, one would have to group these rows of coordinate coefficients together and
penalize them in such a way that entire rows of coefficients are pushed to zero. This is where
the group lasso comes into play, first developed by Yuan and Lin (2006). The group lasso
penalty is given by:

λ

M∑
i=1

∥∥w′i∥∥2 = λ
M∑
i=1

K−1∑
j=1

w2
ij

1/2

, (8)

with w′i being the vector of parameters corresponding to group i, in this case the i’th row of
W with elements wij . If all parameters are in the same group (M = 1), this acts similar to a
ridge regression, except that the norm is not squared. If all parameters are in their own group
(The size of all wi is 1), it simplifies to the lasso described above. Plugging this penalty term

7

back into the loss function of (3) gives the following equation:

L(GL−MSVM)(W, t) =
1

n

K∑
k=1

∑
i∈Gk

ρi

∑
j 6=k

hp
(
q
(kj)
i

)1/p

+ λ

M∑
i=1

∥∥w′i∥∥2 (9)

4.3 Majorization

Similar to Van den Burg and Groenen (2016) the goal is to derive a quadratic majorization
function for our newly established regularization term. Upon further inspection of this term in
(8), the only non-linear, non-quadratic part would be the square root. It is therefore sufficient
to find a majorization of this operation, after which a term quadratic in W is left.
The most straightforward majorizing function of the square root in its simplest form f(x) =

√
x

would be a linear function g(x, x) = bx + c, as illustrated in figure (2). Here, x denotes the
supporting point, as used in the IM algorithm.

x

f(x)

g(x, x) = 1
2
√
x
x+

√
x
2 = 1

2x+ 1
2

f(x) =
√
x

x

√
x

Figure 2: Illustration of a linear majorization function of f(x) =
√
x where the supporting point

x = 1

To construct the specific majorization function, the following conditions should be met:

f(x) = g(x, x),

f(x) ≤ g(x, x) ∀x ∈ χ.

Using the fact that these conditions imply ∇f(x) = ∇g(x, x) a linear majorizing function can
be derived for f(x) =

√
x as:

g(x, x) =
1

2
√
x
x+

√
x

2
, (10)

where especially the term linear in x, 1
2
√
x
, is of great importance, as this is what remains after

taking a derivative with respect to x. This will become clearer later. Applying this majorization
to the Group Lasso regularization term using the norm notation in (8) gives

g(W,W) = λ

M∑
i=1

1

2 ‖w′i‖2
w′iwi + Γ(4), (11)

where Γ(4) denotes arbitrary constant terms. This expression is to be regarded with some
caution though, as the group lasso is expected to push some coefficient vectors w′i to zero. In
such a case, dividing by the `2 norm of the supporting vector will cause computational trouble.
For this reason a safeguard is built into the implementation and in practice the denominator

8

in (11) is replaced by 2 max(‖w′i‖2 , ε) for some value ε arbitrarily close to zero. In this case
ε = 10−32 is chosen.

Rewriting the above majorization function into matrix notation and replacing W with
V = [tW′]′, yields:

g(V,V) = λ trDVV′ + Γ(4) = λ trV′DV + Γ(4), (12)

withD(M+1)×(M+1) = diag (0,
1

2 ‖w′1‖2
,

1

2 ‖w′2‖2
, ...),

= diag (0,
1

2 ‖v′2‖2
,

1

2 ‖v′3‖2
, ...).

Here, v′i denotes the i’th row of the supporting solution V with the index shifted one place down
compared to W because of the top row of constants. This can subsequently be implemented in
the majorization of the entire loss function (9) using (5) while replacing λJ with λD:

L(GL−MSVM)(V) ≤ trV′(Z′AZ+λD)V − 2 tr (V
′
ZA + B′)ZV + Γ(4), . (13)

And similar to the GenSVM derivation, finding the next V equates to solving the following
linear system, originating after taking the derivative with respect to V and equating to zero:

(Z′AZ+λD)V = Z′AZV + Z′B. (14)

4.4 Computational Implementation

In order to incorporate the Group Lasso penalty term into the GenSVM framework, the al-
gorithm from Van den Burg and Groenen (2016) has been implemented independently from
the already existing package in C. This has been done in the Python programming language
because of both the ease of use and the abundance of powerful auxiliary packages. A class
called My GenSVM is created that contains the entire model including methods for initializa-
tion, optimization and many auxiliary computation methods. The full code base for this class
can be found in Appendix B3. The test runs and analysis is done using Jupyter notebooks, as
this allows to store results and variables in a work environment as well as providing easy access
to useful visualization methods such as the matplotlib package.

5 Results

As a baseline it makes sense to first validate the rewritten GenSVM implementation by checking
if it provides the same results as the package provided by Van den Burg and Groenen (2016).
While the package was originally coded in C, it does provide two shells for the higher level
languages of Python and R. Unfortunately though, the Python package proved unable to be
successfully installed and thus the comparison is to be made between the new Python imple-
mentation and the existing package in R. One resulting difficulty is that the random seed is
hard to control across the different platforms. This challenge is overcome by exporting the
optimal V from R at iteration 0 and using this as the starting V for the Python code. The
rest of the optimization is completely deterministic with no randomness and as such, the two
programs should yield nearly equivalent results, with the only exception being some possible
rounding errors. An experiment is run for both programs on the breast tissue data set with
the following parameters: κ = 0, p = 1, λ = 2−12, ε = 10−6, using unit weights and the base
quadratic penalty term, the result of which can be found in Table 2 below.

3This also includes a link to the relevant GitHun repo

9

Table 2: Comparison of the GenSVM package in R and the new implementation in Python
using the breast tissue data set, for κ = 0, p = 1, λ = 2−12, ε = 10−6 and unit weights.

Program Iterations Runtime (s) Final loss v11 v21

Package in R 1782 0.261838 0.5045575814538870 -9.4337379 -2.5625487
Python 1782 162.362478 0.5045575814539558 -9.43373792 -2.56254874

Both programs took the same 1782 iterations to reach a sufficient solution. The obtained losses
are very similar, only differing by a value smaller than 10−13, insignificant with a stopping
criterion of ε = 10−6. The coefficients are equal, with Python reporting an extra decimal of
accuracy. The only stark difference would be the computational time, where the R package (with
a C backend) is about 600 times faster than the Python implementation. From these results
it can be concluded that the Python implementation was done correctly, yielding the same
result as the established GenSVM package. One big downside however, is the computational
inefficiency of the Python code. While this does not pose any direct issues, it will limit the
ability to use thorough cross-validation in the optimization of parameters.

Now that the validity of the base code is established, the group lasso extension can be
further examined and tested. One expected property of the group lasso is the feature selection
by means of setting groups of coefficients, in this case attribute vectors, to zero. This can
be illustrated using profile plots, where for a range of values for λ the `2 norm over specific
attributes is plotted. Figures 3 and 4 display these profile plots for λ ∈ {2−14, 2−13, ..., 24} on
the breast tissue data set for the base GenSVM and the group lasso extension respectively.
The in- and out-of-sample hitrates are also displayed on the right axis to indicate what values
for λ are relevant in terms of performance. For retrieving the out-of-sample hitrate a simple
validation technique is used, where a random 20% of the data is kept apart as a test set.4

Figure 3: Profile plots of the attribute norms for the base GenSVM algorithm on the breasttissue
dataset, for different values of lambda. The in- and out-of-sample hitrates are also
displayed on the right axis. p = 1, κ = 0, ε = 10−6, unit weights

As lambda increases, the coefficients are penalized more heavily and should thus shrink, this
holds for both the regular GenSVM and the group lasso extension. For the regular GenSVM,
with a quadratic penalty, one would expect this process to occur continuously. This hypothesis
is confirmed by the findings in figure 3. Figure 4 displays a very different picture however.

4This could of course be improved by a more sophisticated (k-fold) cross validation, but this is omitted due
to computational constraints

10

Figure 4: Profile plot of the `2 norm of rows of the optimal V matrix (corresponding with
specific attributes) for the extended GenSVM algorithm with Group Lasso penalties
on the breasttissue dataset, for different values of lambda. The in- and out-of-sample
hitrates are also displayed on the right axis. p = 1, κ = 0, ε = 10−6, unit weights

It can clearly be seen that the group lasso makes a trade-off between entire attribute vectors and
doing so, the weakest predictor falls first, here AREA, the area under the spectrum. Eventually
all coefficient vectors get set to zero one after the other as λ increases. What is interesting to
note is that for the optimal value for λ in terms of out-of-sample performance (blue), which
lies around 2−10 and 2−8, there are already 3 attributes at or close to zero. This means that
the model actually has better predictive accuracy without these attributes included. It can be
argued that the feature selection that the group lasso brings to the table thus improves the
model’s performance, or at least for this data set. Furthermore it can be seen that the base
model has an optimal value of λ slightly lower than the group lasso extension. This can be
explained by the square root in the group lasso penalty term that, apart from changing the
structure, also decreases the overall level of the penalty. This allows for a comparatively larger
λ in the extension to get a penalty level similar to the base model.

What was also found during the experiments surrounding these profile plots was that the
group lasso extension behaves quite unexpectedly to certain kinds of warm starts. Van den Burg
and Groenen (2016) describe warm starts as a way to speed up training by simply starting the
optimization at the optimal solution of the previous set of parameters. However, in applying
this technique for a series of λ in descending order this yielded much different results compared
to the same experiment with a cold random starting solution. The high λ in the first few runs
set a lot of attribute vectors to zero, but it appears that in consequent runs with lower λ it
remains very difficult to escape these zero coefficient values. It seems the solution space is very
flat around these solutions, often resulting in the first next step already satisfying the ε stopping
criterion and thus yielding little improvement albeit sufficient by the algorithm’s terms. The
relevant profile plots describing this phenomenon can be found in Appendix A.1.

Next, the second data set will be examined. The alcohol use data set has much varying
class sizes and it thus makes sense to use weights ρi that correct for these group sizes and these
weights are used for all results concerning this data. For this data set, the profile plots seem
much less interpretable. Starting with the profile plot for the group lasso extension displayed
below in figure 5.

11

Figure 5: Profile plot of the `2 norm of rows of the optimal V matrix (corresponding with
specific attributes) for the extended GenSVM algorithm with Group Lasso penalties
on the alcohol use dataset, for different values of lambda. The in- and out-of-sample
hitrates are also displayed on the right axis. p = 1, κ = 0, ε = 10−6, group weights

Here, a similar occurrence as in figure 4 can be observed where the attribute norms are
pushed to zero. Most surprisingly, these zero coefficients seem to have a better performance
in terms of hitrate than an actual fitted model. This leads to believe hitrate might actually
not be as good as a performance measure, since a constant prediction for a frequent class
appears to outperform an actual data based prediction. This same phenomenon was described
by Van den Burg and Groenen (2016) and the adjusted Rand Index (ARI) was brought forward
as a solution to this issue. The ARI uses random predictions as a base line and describes the
extra discriminatory power the model predictions have compared to this random base line. The
same results as figure 5, but now with the ARI, are displayed in figure 6 below.

Figure 6: Profile plot of the `2 norm of rows of the optimal V matrix (corresponding with
specific attributes) for the extended GenSVM algorithm with Group Lasso penalties
on the alcohol use dataset, for different values of lambda. The adjusted Rand Index
is also displayed on the right axis. p = 1, κ = 0, ε = 10−6, group weights

While the ARI does favor a model with relevant coefficients, other than the hitrate, it still
seems very inconsistent even yielding a negative value for λ = 2−4 . This may be due to the
specific test and training set division. When we examine the results for the base GenSVM

12

model on this data set though, displayed in figure 7, this inconsistency does not show. All
coefficients follow a smooth downwards sloping path, similar to the first data set (figure 3).
While the ARI does differ among different values of λ, there is a clear optimal λ = 10−6. Upon
the realization that the adjusted Rand Index would act as a better performance measure, it
would make sense to reevaluate the earlier results for the breast tissue data set including an
ARI. This has been done and results are shown in Appendix A.2, but no significant difference
has been found between ARI and hitrates for this data set.

Figure 7: Profile plot of the `2 norm of rows of the optimal V matrix (corresponding with
specific attributes) for the base GenSVM algorithm on the alcohol use dataset, for
different values of lambda. The adjusted Rand Index is also displayed on the right
axis. p = 1, κ = 0, ε = 10−6, group weights

The preceding profile plots have given an insight into the inner workings of the group lasso
penalty extension and its effects on training the GenSVM. While it is nice to see the coefficients
behave like what was expected, this does not yet show the real relevance of a group lasso
penalty. To this end the performance will be evaluated between the base GenSVM and the
group lasso extension. Both models are evaluated for different combinations of parameters,
κ ∈ {−0.9, 0.5, 5}, p ∈ {1.0, 1.5, 2.0} and λ ∈ {2−14, 2−13, ..., 2−5}, for both of the two data sets.
For each pair of κ and p the optimal λ is reported in Tables 3 and 4 along with the corresponding
ARI value on the test set, the maxima of which are underlined.

Table 3: Comparison of the GenSVM model and the group lasso extension using the breast
tissue data set, for ε = 10−6 and using group weights.

Parameters Base GenSVM Group lasso
κ p ARI optimal λ ARI optimal λ

-0.9 1.0 0.797989 2−14 0.797989 2−10

-0.9 1.5 0.827560 2−14 0.827560 2−10

-0.9 2.0 0.827560 2−14 0.827560 2−9

0.5 1.0 0.827560 2−14 0.827560 2−10

0.5 1.5 0.827560 2−14 0.827560 2−11

0.5 2.0 0.827560 2−14 0.827560 2−11

5.0 1.0 0.773067 2−14 0.827560 2−12

5.0 1.5 0.724097 2−14 0.827560 2−13

5.0 2.0 0.699062 2−12 0.793073 2−13

13

Table 4: Comparison of the GenSVM model and the group lasso extension using the alcohol
use data set, for ε = 10−6 and using group weights.

Parameters Base GenSVM Group lasso
κ p ARI optimal λ ARI optimal λ

-0.9 1.0 0.016258 2−12 0.014627 2−8

-0.9 1.5 0.012678 2−14 0.013527 2−11

-0.9 2.0 0.012606 2−14 0.011972 2−12

0.5 1.0 0.012530 2−6 0.012692 2−6

0.5 1.5 0.011172 2−10 0.011135 2−8

0.5 2.0 0.010734 2−14 0.011262 2−10

5.0 1.0 0.012294 2−12 0.013104 2−10

5.0 1.5 0.011335 2−12 0.011239 2−14

5.0 2.0 0.011373 2−14 0.012777 2−11

It appears that for the smaller breast tissue data set (Table 3) both models peak at an ARI of
about 0.83, achieved by many different pairs of parameters. This lack of discrimination between
the models is probably explained by the size of the test set. The breast tissue data set only has
106 instances and thus a 20% test set will contain no more than 21 testable predictions. It is
thus very likely that even differently trained models will make similar predictions for all these 21
cases. What can be noted though, is that the group lasso is slightly more flexible for its choice
of parameters, achieving the optimal ARI for the pairs of (5.0,1.5) and (5.0,2.0) where the base
GenSVM does not. Also it uses a substantially higher optimal λ, which was already established
earlier. For the alcohol usage data set it turns out that both models share an optimal parameter
configuration of κ = −0.9 and p = 1. What can also be noted is that the base GenSVM model
peaks at a slightly better performance with an ARI of 0.016258, compared to the 0.014627 for
the group lasso model. Among the spectrum of parameter settings and data sets however, both
models produce quite similar results. The group lasso can at least be said to compete with the
original GenSVM algorithm.

6 Discussion

An extension to the GenSVM is proposed by means of a group lasso penalty term. The majoriza-
tion of this penatly term is derived and implemented within the existing GenSVM algorithm.
The algorithm was reprogrammed in Python and it was shown that this implementation works
equivalently to the original GenSVM package. From the literature it was expected that this
extension would act as a means of feature selection, where the coefficient vectors of certain
attributes would be set to zero. This expectation has been confirmed by the findings from
experiments on both the breast tissue and alcohol use data sets that were applied in this re-
search. From the profile plots it can clearly be seen that certain attribute vectors are pushed to
zero. In some cases the optimal model configuration in terms of ARI or hitrate also contained
one or more of these attribute vectors at zero, showing the relevance of this feature selection
mechanism in practice.

The general performance of the new group lasso model has also been tested against the base
model with a quadratic penalty. The base GenSVM outperformed the group lasso model for

14

the alcohol usage data set, but both models achieved similar results for the smaller breast tissue
data set.

The research and results of this paper are mainly limited by the small range of test cases,
caused by a lack of computational power. A mere two datasets are examined and cross validation
is kept to only keeping a fifth of the data in a separate test set. While the experiments show
some promising results they could be extended and additionally validated by testing on a wide
variety of data sets and using a more sophisticated, nested or k-fold, cross validation technique.
Given greater computational power this would further explore the possibilities of a group lasso
GenSVM in practice. Another possible extension would be to implement the GMD algorithm
(Yang and Zou, 2015) for the GenSVM and compare the performance. While this does add to
the group lasso penalty application, it could be regarded as an entirely separate project.

To conclude, the proposed group lasso GenSVM extension has proven to be capable of
feature selection. It can perform competitively compared to the base GenSVM and provides
an extra option for tackling classification problems when the task at hand suits the feature
selection property.

References

Bhatia, N. et al. (2010). Survey of nearest neighbor techniques. arXiv preprint arXiv:1007.0085.

Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine learning, 20(3):273–297.

Dua, D. and Graff, C. (2019). UCI machine learning repository.

Fehrman, E., Muhammad, A. K., Mirkes, E. M., Egan, V., and Gorban, A. N. (2017). The five
factor model of personality and evaluation of drug consumption risk. In Data Science, pages
231–242. Springer.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society: Series B (Methodological), 58(1):267–288.

Van den Burg, G. J. and Groenen, P. J. (2016). Gensvm: A generalized multiclass support
vector machine. Journal of Machine Learning Research, 17(224):1–42.

Wu, T. T., Lange, K., et al. (2008). Coordinate descent algorithms for lasso penalized regression.
The Annals of Applied Statistics, 2(1):224–244.

Yang, Y. and Zou, H. (2015). A fast unified algorithm for solving group-lasso penalize learning
problems. Statistics and Computing, 25(6):1129–1141.

Yuan, M. and Lin, Y. (2006). Model selection and estimation in regression with grouped vari-
ables. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 68(1):49–67.

15

A Additional Results

A.1 Warm Starts

Figure 8: Profile plot of the `2 norm of rows of the optimal V matrix similar to figure 4, but
now using warm starts to speed up the training. The value for λ is iterated over in
ascending order, starting with a small value and ending with the largest.

Figure 9: Profile plot of the `2 norm of rows of the optimal V matrix similar to figure 4, but
now using warm starts to speed up the training. The value for λ is iterated over in
descending order, starting with a large value and ending with the smallest.

A.2 Breast Tissue Profiles with ARI

From the below figures it can clearly be seen that the ARI follows the general path of the
out-of-sample hitrate for this breast tissue data set, both with quadratic and with group lasso
penalty terms. Note that once all coefficients are shrunk to zero the model has no explanatory
power anymore as the ARI is shown to also be zero, even though there will still be some lucky
hits. This displays a strong argument in favor of using the adjusted Rand Index, but the general
results from figures 3 and 4 remain valid.

16

Figure 10: Profile plot of the `2 norm of rows of the optimal V matrix for the breast tissue data
set similar to figure 3, but now with the ARI included.

Figure 11: Profile plot of the `2 norm of rows of the optimal V matrix for the breast tissue data
set using group lasso error terms similar to figure 4, but now with the ARI included.

B Code Implementation

My apologies for the inconvenient font. Since the code contains a few longer the lines this was the
best way to fit everything on the page without changing the code structure. A more comprehen-
sive code base including examples can be found on my Github: https://github.com/DanieldeBondt/GL-
GenSVM
import numpy as np
import time
import sk l ea rn . metr i c s

class My GenSVM:
”””The main SVM o b j e c t ”””

def i n i t (s e l f , x , y , rho=”unweighted” , lamb=10 ∗∗ −8, kappa=0, p=1, ep s i l un=10 ∗∗ −6, d e s c r i p t i o n=” un sp e c i f i e d ” ,
extens ion=False , max iter =10000 , burn in=51, seed =124):

s e l f . x = x
s e l f . y = y
Sad ly t h e lambda v a r i a b l e name i s u n a v a i l a b l e in python , s i n c e i t has i t s own f u n c t i o n a l i t y , t hu s lamb
s e l f . lamb = lamb
s e l f . kappa = kappa
s e l f . p = p
s e l f . ep s i l un = eps i l un
s e l f . d e s c r i p t i o n = de s c r i p t i o n
s e l f . ex tens ion = extens ion

17

s e l f . max iter = max iter
s e l f . burn in = burn in
np . random . seed (seed)

n = number o f data i n s t anc e s , m = number o f f e a t u r e s / a t t r i b u t e s
s e l f . n , s e l f .m = x . shape
k = number o f c l a s s e s
s e l f . k = int (np .max(y))− int (np .min(y))+1
rho de t e rmines t h e we i g h t s o f d i f f e r e n t c l a s s e s as to how they impact t h e t o t a l e r r o r
i f rho == ”unweighted” :

s e l f . rho = np . ones (s e l f . k)
e l i f rho == ”weighted ” :

s e l f . rho = s e l f . we ighted roh ()

Z i s t h e n by (m+1) matr ix o f da ta i n c l u d i n g t h e i n t e r c e p t o f ones
s e l f . Z = np . concatenate ((np . ones ((s e l f . n , 1)) , s e l f . x) , 1)

J i s t h e m+1 d i a g ona l matr ix used to t rans form V to W
s e l f . J = np . diag (np . ones (s e l f .m + 1))
s e l f . J [0] [0] = 0

U k i s t h e K by (K−1) matr ix o f v e r t e x c o o r d i n a t e s
s e l f . U k = s e l f . g ene ra t e u k (s e l f . k)

The main i t e r a t i v e ma j o r i z a t i o n a l g o r i t hm
def f i t im (s e l f , s t a r t i n g v=None , p r i n t i ng=True) :

s t a r t i n g t ime = time . time ()
V hat i s t h e f i r s t s u ppo r t i n g po i n t o f v a r i a b l e s t and W’ o f d imens ions (M+1) by (K−1)
i f s t a r t i n g v i s not None :

v hat = s t a r t i n g v
else :

v hat = np . random . randn (s e l f .m + 1 , s e l f . k − 1)

I n i t i a l i z e o t h e r s t a r t i n g v a l u e s
l o s s e s = []
h i t r a t e s = []
t = 1
doubl ing = False
l o s s = s e l f . compute loss (v hat)
l o s s p r e v = (1 + 2 ∗ s e l f . e p s i l un) ∗ l o s s
print (” S ta r t i ng l o s s : ” , l o s s)

Loop u n t i l convergence i s reached
while (l o s s p r e v − l o s s)/ l o s s > s e l f . e p s i l un and t <= s e l f . max iter :

a l p ha i s = np . z e ro s ((s e l f . n , 1))
b e t a i s = np . z e ro s ((s e l f . n , s e l f . k−1))
for i in range (s e l f . n) :

Find c l a s s o f i n s t an c e i
c l a s s i = int (s e l f . y [i])

I n i t i a l i z e l o c a l da ta s t r u c t u r e s
suppor t ing qs = np . z e ro s ((s e l f . k , 1))
hubers = np . z e ro s ((s e l f . k , 1))
nonzeros = 0

Compute qs (p r o j e c t i o n d i s t a n c e s) , t h e i r huber h i n g e s and de termine e p s i l o n (nonzeros)
for j in range (1 , s e l f . k+1):

i f j == c l a s s i :
continue

support ing q = s e l f . compute q (i , c l a s s i , j , v hat)
suppor t ing qs [j −1] = support ing q
hubers [j −1] = s e l f . huber (support ing q)
i f hubers [j −1] != 0 :

nonzeros += 1
i f nonzeros > 1 :

e p s i l o n = 0
else :

e p s i l o n = 1

I n i t i a l i z e l o c a l da ta s t r u c t u r e s
sma l l a = np . z e ro s ((s e l f . k , 1))
smal l b = np . z e ro s ((s e l f . k , 1))

Compute a , b and omega and s u b s e q u e n t l y a l pha and b e t a
i f ep s i l o n :

for j in range (1 , s e l f . k+1):
i f j == c l a s s i :

continue
sma l l a [j − 1] , smal l b [j − 1] = s e l f . compute a b (suppor t ing qs [j − 1] , 1)

a l pha i s [i] = s e l f . compute alpha s imple (smal l a , c l a s s i)
b e t a i s [i] [:] = s e l f . compute beta s imple (smal l a , smal l b , support ing qs , c l a s s i)

else :
omega = s e l f . compute omega (hubers , s e l f . p)
for j in range (1 , s e l f . k+1):

i f j == c l a s s i :
continue

sma l l a [j − 1] , smal l b [j − 1] = s e l f . compute a b (suppor t ing qs [j − 1] , s e l f . p)
a l pha i s [i] = s e l f . compute alpha omega (smal l a , omega , c l a s s i)
b e t a i s [i] [:] = s e l f . compute beta omega (smal l a , smal l b , support ing qs , omega , c l a s s i)

Cons t ruc t ma j o r i z a t i o n mat r i c e s A, B and f o r t h e e x t e n s i o n D
A = np . diag (a l ph a i s . f l a t t e n ())
B = b e t a i s
i f s e l f . ex tens ion :

D = s e l f . compute D (v hat)
system a = np . matmul (np . matmul (s e l f . Z .T, A) , s e l f . Z) + np . mult ip ly (s e l f . lamb , D)

else :
system a = np . matmul (np . matmul (s e l f . Z .T, A) , s e l f . Z) + np . mult ip ly (s e l f . lamb , s e l f . J)

system b = np . matmul (np . matmul (np . matmul (s e l f . Z .T, A) , s e l f . Z) , v hat) + np . matmul (s e l f . Z .T, B)

18

So l v e t h e l i n e a r sys tem to g e t V+ (new V)
new V = np . l i n a l g . s o l v e (system a , system b)

Only s t a r t s t e p d ou b l i n g a f t e r 50 i t e r a t i o n s burn−in
i f doubl ing :

new V = 2∗new V−v hat

Update l o s s , s t o r e or p r i n t d i a g n o s t i c s and s e t new suppo r t i n g po i n t V hat
l o s s p r e v = l o s s
l o s s = s e l f . compute loss (new V)
l o s s e s . append (l o s s)
h i t r a t e = s e l f . compute h i t rate (new V , s e l f . x , s e l f . y)
h i t r a t e s . append (h i t r a t e)
i f p r i n t i ng or (np .mod(t−1, 100) == 0 and t >1):

print (” I t e r a t i o n : ” , t−1)
print (” l o s s : ” , l o s s)
print (” In sample IRA : ” , s e l f . compute ar i (new V , s e l f . x , s e l f . y))

v hat = new V

Check i f burn−in i s over f o r s t e p d ou b l i n g
i f t == s e l f . burn in :

doubl ing = True
t += 1

to t a l t ime = time . time()− s t a r t i n g t ime
print (”Training time : ” , t o t a l t ime)
print (” I t e r a t i o n s : ” , t−1)
print (” Fina l l o s s : ” , l o s s)
return v hat , l o s s e s , h i t r a t e s , t o t a l t ime

Given a s o l u t i o n V, p r e d i c t s t h e l a b e l s o f g i v en x us ing t h e SVM
def pr ed i c t da ta (s e l f , V, x) :

t s t a r = V[0 , :]
W star = np . d e l e t e (V, (0) , ax i s=0)
s p r o j = np . matmul (x , W star) + t s t a r

d i s t anc e s = []
for row in s e l f . U k :

d i s t anc e s . append (np . l i n a l g . norm(s p ro j−row))
l a b e l = np . argmin (d i s t an c e s) + 1
return l a b e l

def compute ar i (s e l f , V, x , y) :
p r e d i c t i o n s = np . z e ro s (y . shape)
for i in range (len (y)) :

p r e d i c t i o n s [i] = s e l f . p r ed i c t da ta (V, x [i])
a r i = sk l ea rn . metr i c s . ad ju s t ed rand s co r e (y . f l a t t e n () , p r e d i c t i o n s . f l a t t e n ())
return a r i

This f u n c t i o n computes t h e h i t r a t e be tween t r u e and p r e d i c t e d l a b e l s
Kind o f o b s o l e t e s i n c e packages can do i t more e f f i c i e n t l y
def compute h i t rate (s e l f , V, x , y) :

h i t s = 0
misses = 0
for i in range (len (y)) :

p r ed i c t i on = s e l f . p r ed i c t da ta (V, x [i])
i f p r ed i c t i on == int (y [i]) :

h i t s += 1
else :

misses += 1
h i t r a t e = h i t s / (h i t s + misses)
return h i t r a t e

Computes t h e l o s s L MSVM or L GL−MSVM as d e s c r i b e d by fo rmu la s in t h e paper
def compute loss (s e l f , V) :

summed loss = 0
for k in range (1 , s e l f . k+1): # k from 1 to K

c l a s s r a n g e = s e l f . f i n d c l a s s i n d i c e s (k) # f i n d G k
for index in c l a s s r a n g e : # i in G k

norm sum = 0
for j in range (1 , s e l f . k+1):

i f j == k :
continue

q i = s e l f . compute q (index , k , j , V)
huber q = s e l f . huber (q i)
norm sum += huber q∗∗ s e l f . p

summed loss += s e l f . rho [k − 1] ∗ norm sum ∗∗ (1 / s e l f . p)
i f s e l f . ex tens ion :

This l i n e cou l d g i v e a s q r t warning , caused by n e g a t i v e non d i a g ona l e l emen t s o f VV ’ , bu t s i n c e t h e
t r a c e i s taken (on l y over d i a g ona l e l emen t s) , t h i s e r r o r can be i gnor ed .
r e g u l a r i z e r = s e l f . lamb ∗ np . sq r t (np . matmul (s e l f . J , np . matmul (V, V.T))) . t r a c e ()

else :
r e g u l a r i z e r = s e l f . lamb ∗ np . matmul (V.T, np . matmul (s e l f . J , V)) . t r a c e ()

return summed loss / s e l f . n + r e g u l a r i z e r

def compute alpha s imple (s e l f , smal l a , c l a s s i) :
ep s i l o n = 1 , we can use t h e s imp l e ma j o r i z a t i on
alpha = (1/ s e l f . n) ∗ s e l f . rho [c l a s s i − 1] ∗ np .sum(sma l l a)
return alpha

def compute alpha omega (s e l f , smal l a , omega , c l a s s i) :
ep s i l o n = 0 , we need to app l y omega
alpha = (1/ s e l f . n) ∗ s e l f . rho [c l a s s i − 1] ∗ np .sum(sma l l a ∗ omega)
return alpha

def compute beta s imple (s e l f , smal l a , smal l b , support ing qs , c l a s s i) :
One row o f B, 1 by K−1

19

def beta map (a , b , q) : return b−a∗q
sum = np . z e ro s ((1 , s e l f . k−1))
for j in range (1 , s e l f . k+1):

i f j == c l a s s i :
continue

element = beta map (sma l l a [j −1] , smal l b [j −1] , suppor t ing qs [j −1])
de l t a = s e l f . U k [c l a s s i −1, :] − s e l f . U k [j −1, :]
sum += np . mult ip ly (de l ta , element)

return np . mult ip ly (1 / s e l f . n ∗ s e l f . rho [c l a s s i − 1] , sum)

def compute beta omega (s e l f , smal l a , smal l b , support ing qs , omega , c l a s s i) :
One row o f B, 1 by K−1
def beta map (a , b , q) : return omega∗(b−a∗q)
sum = np . z e ro s ((1 , s e l f . k−1))
for j in range (1 , s e l f . k+1):

i f j == c l a s s i :
continue

element = beta map (sma l l a [j −1] , smal l b [j −1] , suppor t ing qs [j −1])
de l t a = s e l f . U k [c l a s s i −1, :] − s e l f . U k [j −1, :]
sum += np . mult ip ly (de l ta , element)

return np . mult ip ly (1 / s e l f . n ∗ s e l f . rho [c l a s s i − 1] , sum)

def compute a b (s e l f , x , p) :
a and b are computed as from Table 4 , Appendix C in Van den Burg and Groenen (2016)
a = 0
b = 0

i f p != 2 and x <= (p + s e l f . kappa − 1) / (p − 2) :
a = 1 / 4 ∗ p ∗∗ 2 ∗ (1 − x − (s e l f . kappa + 1) / 2) ∗∗ (p − 2) # (22)
b = a ∗ x + 0.5 ∗ p ∗ (1 − x − (s e l f . kappa + 1) / 2) ∗∗ (p − 1) # (20)

e l i f x <= − s e l f . kappa :
a = 1 / 4 ∗ p ∗ (2 ∗ p − 1) ∗ ((s e l f . kappa + 1) / 2) ∗∗ (p − 2) # (19)
b = a ∗ x + 0.5 ∗ p ∗ (1 − x − (s e l f . kappa + 1) / 2) ∗∗ (p − 1) # (20)

e l i f x <= 1:
a = 1 / 4 ∗ p ∗ (2 ∗ p − 1) ∗ ((s e l f . kappa + 1) / 2) ∗∗ (p − 2) # (19)
b = a ∗ x + p / (1 − x) ∗ ((1 − x) / np . sq r t (2 ∗ (s e l f . kappa + 1))) ∗∗ (2 ∗ p) # (17)

e l i f x > 1 :
i f p == 2 :

a = 1 / 4 ∗ p ∗ (2 ∗ p − 1) ∗ ((s e l f . kappa + 1) / 2) ∗∗ (p − 2) # (19)
b = a∗x # g i v en

else :
a = 1 / 4 ∗ p ∗∗ 2 ∗ (p / (p − 2) ∗ (1 − x − (s e l f . kappa + 1) / 2)) ∗∗ (p − 2) # (23)
b = a ∗ ((p∗x+s e l f . kappa−1)/(p−2)) + 0.5∗p∗(p/(p−2)∗(1−x−(s e l f . kappa+1)/2))∗∗(p−1) # (24)

return a , b

def compute omega (s e l f , hubers , p) :
def p power (x) : return x ∗∗ p
omega = (1/p)∗np .sum(np . app l y a l ong ax i s (p power , 0 , hubers))∗∗ (1/p−1)
return omega

def compute q (s e l f , i , y i , j , V) :
return np . matmul (np . matmul (s e l f . Z [i , :] , V) , s e l f . U k [y i −1, :] . T − s e l f . U k [j −1, :] . T)

This computes t h e ma j o r i z a t i o n matr ix D f o r t h e Group Lasso p ena l t y e x t e n s i o n
def compute D (s e l f , v hat) :

d i agona l e l ement s = np . z e ro s (s e l f .m + 1)
for i in range (1 , s e l f .m+1):

I f t h e denominator i s z e ro we need to s e t i t so some p o s i t v e number c l o s e to z e ro to p r e v en t d i v i d i n g
by ze ro .
denom = max(10∗∗−12 , (2∗np . l i n a l g . norm(v hat [i , :])))
element = 1/denom
diagona l e l ement s [i] = element

D = np . diag (d iagona l e l ement s)
return D

def f i n d c l a s s i n d i c e s (s e l f , k) :
i n d i c e s = []
for i in range (len (s e l f . y)) :

i f s e l f . y [i] == k :
i n d i c e s . append (i)

return i n d i c e s

def huber (s e l f , q) :
output = 0
i f q <= − s e l f . kappa :

output = 1 − q − (s e l f . kappa+1)/2
e l i f q <= 1:

output = 1/(2∗(s e l f . kappa+1))∗((1−q)∗∗2)
return output

def weighted roh (s e l f) :
weights = np . z e ro s (s e l f . k)
new y = s e l f . y . f l a t t e n () . astype (int)
counts = np . bincount (new y)
i f 0 not in new y :

counts = counts [1 :]
for i in range (s e l f . k) :

weights [i] = s e l f . n/(counts [i]∗ s e l f . k)
return weights

@staticmethod
def gene ra te u k (c l a s s e s) :

U = np . z e ro s ((c l a s s e s , c l a s s e s −1))
for k in range (1 , c l a s s e s +1):

for l in range (1 , c l a s s e s) :
i f k <= l :

U[k−1] [l −1] = −1/(np . sq r t (2∗(l ∗∗2+ l)))
e l i f k == l + 1 :

20

U[k−1] [l −1] = l /(np . sq r t (2∗(l ∗∗2+ l)))
return U

def pr int mode l (s e l f) :
print (”This i s the mu l t i c l a s s SVM fo r ”+s e l f . d e s c r i p t i o n)

21

	Introduction
	Literature
	Data
	Methodology
	GenSVM
	Group Lasso Introduction
	Majorization
	Computational Implementation

	Results
	Discussion
	Additional Results
	Warm Starts
	Breast Tissue Profiles with ARI

	Code Implementation

