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Abstract
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1. INTRODUCTION Breaking Down Stock Market Volatility

1. Introduction

A primary goal of investors is to hedge the risk on outstanding portfolios. One way of doing so

is by assessing the portfolio’s volatility over time. Traditionally, volatility is estimated by differ-

ent ARCH-type models that capture the size of stock market volatility based on its time-variation

and day-to-day clustering (Engle, 1982). However, recent studies have shown that the dynamics of

volatility are best captured by so-called component models. Lee and Engle (1993) introduced one of

these models by separating the conditional volatility into an additive short- and long-term compo-

nent. A vast literature, including Schwert (1989b), Glosten, Jagannathan, and Runkle (1993) and

Timmermann (2000), has shown that this long-term component can be identified using monthly

macroeconomic variables and the state of the economy.

However, macroeconomic variables are often measured over periods spanning several months,

whereas time-varying volatility is based on high-frequency data. That is why similar research that

uses traditional volatility models is bounded on a limited set of macroeconomic variables. Ghysels,

Sinko, and Valkanov (2007) helped to overcome this issue by introducing the mixed data sampling

(hereafter MIDAS) model. The key feature of this model is its ability to use data of different

frequencies in a single regression. It is therefore the perfect instrument to regress time-varying

volatility on macroeconomic variables. That is why Engle, Ghysels, and Sohn (2013) use this

MIDAS specification in combination with the GARCH model of Bollerslev (1986) to explain long-

term volatility in a new class of component models: the GARCH-MIDAS models. An advantage of

this model over other component models is that it allows low-frequency macroeconomic variables

to directly affect the conditional variance via the long-term volatility component.

This paper analyzes the connection between long-term volatility and economic variables through

the GARCH-MIDAS model. In particular, it attempts to answer the research question how the

growth rates of production price index inflation and industrial production influence the total volatil-

ity of daily U.S. stock returns. The foundation of the research is a replication of the results by Engle

et al. (2013). The main contribution of this paper to the existing literature is an extension of the

component models by introducing the GAS-MIDAS (Generalized Autoregressive Score model) and

GARCH-AMIDAS (asymmetric MIDAS) models. These models are based on their unique character-

istics when dealing with stock returns. For example, the GAS model is known for a better fit of

unexpected returns than GARCH (see for example Creal, Koopman, and Lucas (2013)), whereas

the asymmetric MIDAS model takes different effects of returns on volatility into account.
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2. LITERATURE REVIEW Breaking Down Stock Market Volatility

The empirical analysis covers data for the period 1885-2018, which includes daily stock returns

and the monthly macroeconomic variables producer price index and industrial production. The

latter variables have been transformed to quarterly volatilities by taking the geometric series over

three consecutive months for the period 1920-2018. The data set is first used to replicate the

results of Engle et al. (2013) and afterwards to compare the GARCH-MIDAS model with the new

component models by testing forecast capacity.

The main findings can be summarized as follows. First, the GARCH-MIDAS estimates with real-

ized variance indicate a positive and significant impact on the long-term volatility component. It

should be noted that this impact is small overall, but is able in some cases to explain around 50%

of the total variance. It is also found that the macroeconomic variables can explain a significant

part of the long-term component. Specifically, including the producer price index corresponds to an

overall increase of the variance, whereas the inclusion of industrial production is double-sided. The

impact of leveled industrial production to the persistent volatility corresponds to counter-cyclical

effects, while industrial production expressed as variances lead to business effects. Finally, the fore-

cast evaluations show that the GARCH-AMIDAS specification outperforms the traditional GARCH-

MIDAS model with macroeconomic variables for 1- and 2-month ahead forecasts. The latter model

fits the data well when using realized variances for the same time period. The GAS-MIDAS model

outperforms the other models with any economic variable for longer horizons.

The remainder of the paper is organized as follows. The literature and its relevance to this

research are discussed in Section 2. Next, the methods of Engle et al. (2013) are thoroughly

explained in Section 3, whereas the new component models are explained in Section 4. The data

that is used to derive empirical results is examined in Section 5. Sequentially, the obtained results

are presented in Section 6, after which the overall conclusions and limitations are discussed in

Section 7.

2. Literature Review

During the past century, researchers attempted to find models that can capture stock market volatil-

ity. Even though progress was made, an inevitable obstacle was the result that stock returns have

asymmetric effects on their volatility (Singleton & Wingender, 1986). The present value model of

Campbell (1991) is one of the first to encapsulate the thought that publicly accessible news may

have different effects on unexpected returns. It is in fact this information that influences the hori-
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2. LITERATURE REVIEW Breaking Down Stock Market Volatility

zon of the expectations on future cash flows and by doing so determines the magnitude of these

effects (Campbell, 1991). That is why previous research, including Engle and Lee (1999) and Cher-

nov, Gallant, Ghysels, and Tauchen (2003), considered volatility component models that separate

volatility based on the effects on the short- and long-horizon. In fact, Chernov et al. (2003) found

that at least two components are needed to capture the total volatility of stock prices based on

different stock price models. The first component is influenced by day-to-day fluctuations, whereas

the latter is determined by general conditions of the economy (Chernov et al., 2003). These two

components combined in a single model should capture the total dynamics of volatility based on

the impact of news on the macro economy and day-to-day fluctuations.

However, it has been unclear which variables influence this long-term component. This changed

when academics revisited the results of Schwert (1989b), who tries to characterize the relation

between stock market volatility and macroeconomic variables. These variables include economic

activity, macroeconomic volatility, financial leverage, and various other measurements. The moti-

vation behind this research is the observation that stock market volatility changes significantly over

time. As a matter of fact, stock market volatility reached up to twenty percent over the period 1857-

1987 (Schwert, 1989b). This result is reached by using data from the same period to determine the

realized variance by aggregating daily to monthly returns. Using a Vector Autoregressive model,

Schwert (1989b) found counter-cyclical patterns in industrial production and volatility. The intu-

ition behind this observation is that high confidence in the economy corresponds to higher demand

for products, while there is less uncertainty on the market at the same time (Schwert, 1989b).

Continuing the investigation in this field, Engle et al. (2013) used a two-component volatility

model to capture different effects on stock market volatility. More precisely, the authors specified a

unit GARCH process for the short-term component and a MIDAS model for the long-term compo-

nent. An advantage of this model is that the macroeconomic variables can be directly examined by

scaling them to the same frequency as the daily returns using a Beta weighting scheme (Engle et

al., 2013).

Overall, Engle et al. (2013) found that the explanatory power of the total volatility stays approx-

imately the same for volatility models with a quarterly time horizon, but performs better for the

biannual horizon. Specifically, by directly including the macroeconomic variables producer price in-

dex and industrial production directly into the model, the GARCH-MIDAS model seems to be more

appealing when considering a longer time horizon. The macroeconomic variables seem to explain

between 10% and 35% of the daily stock return’s volatility, which implies that the model can also
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2. LITERATURE REVIEW Breaking Down Stock Market Volatility

be useful for the short-run (Engle et al., 2013). One should note that these results are obtained

by identifying break-points in the data because, similar to the conclusions of Schwert (1989b), it is

hard to capture economic changes such as crises.

The results of Engle et al. (2013) have not gone unnoticed by other academics. After its publica-

tion in 2013, other researchers looked extensively at the implications of the GARCH-MIDAS model

in various fields. For instance, Conrad and Loch (2015) report additional macroeconomic variables

- on top of the ones used in the original paper - that can explain the behaviour of U.S. stock returns.

They support their findings by changing the GARCH(1,1) process to a threshold GARCH(1,1) pro-

cess to take into account different effects of the shocks on the short-term component. This gives rise

to the idea that changing specifications of the GARCH-MIDAS model might improve its explana-

tory power. The GARCH-MIDAS model can be further augmented, as shown by Asgharian, Hou,

and Javed (2013). They used principal component analysis to see if the predictive power of the

GARCH-MIDAS model can be improved. And indeed, by including the first principal component

the GARCH-MIDAS model outperforms the original specification and can explain business cycles

(Asgharian et al., 2013).

In a similar way, the MIDAS model can be applied in other fields. For instance, Clements and

Galvão (2009) used this model to show that the latest monthly data can directly predict U.S. out-

put growth. Their results are innovative in the field of macroeconomic forecasting, because they

showed that applying the MIDAS model to determine the direction of output growth works better

than using previously calculated forecasts (Clements & Galvão, 2009). This gave rise to the strength

of the MIDAS model when forecasting several periods ahead, instead of compounding them by in-

dividual forecasts. Bai, Ghysels, and Wright (2013) actually investigated this predictive power by

comparing the MIDAS model with the Kalman filter. The authors looked at the balance between

forecasting performances and computational power. Bai et al. (2013) found that the forecasting

performances of the two models are close, while the computational cost of the MIDAS model is

significantly less. This is attractive to the users of the latter model as it will provide results faster,

which is for instance preferred in the field of financial analysis. However, this model does not

need to be static and can be altered to take different regimes into account. Pan, Wang, Wu, and

Yin (2017) applied these so-called regime-switching MIDAS models on macroeconomic variables

to predict future oil price movements. In fact, a model with two regimes has a better forecasting

performance than the original model, because it takes structural breaks in the data into account

(Pan et al., 2017).
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3. THE GARCH-MIDAS MODEL Breaking Down Stock Market Volatility

3. The GARCH-MIDAS Model

Originally, Lee and Engle (1993) express unexpected returns as
√
τt + gitεit, with εit being the

shock. In this decomposition git represents the short-run component that captures daily fluctuations

that are implicitly connected to stock movements. On the other hand, τt represents a trend in the

return’s volatility that is directly influenced by the state of the economy.

The equation of unexpected returns has been revised in Engle and Rangel (2008) to fit their

spline-GARCH model. More precisely, assume that there are Nt days in month t, hereby allowing

the number of days to differ between months. If rit is the return on day i in month t, then it holds

that:

rit = µ+
√
τtgitεit , ∀i = 1, ...,Nt , (1)

where εit | Ii−1,t ∼ N (0,1) with Ii−1,t being the information set available at day i − 1 in month t. It

is also assumed that the expected daily return µ is constant for all i and t. In line with the research

of Engle and Rangel (2008), the short-term component git in equation (1) follows a mean-reverting

GARCH(1,1) process of the form:

git = (1−α − β) +α
(rit −µ)2

τt
+ βgi−1,t , (2)

with α,β ≥ 0 and α +β ≤ 1 to ensure that the GARCH(1,1) process is covariance stationary. On the

other hand, τt can be expressed using either a fixed time span or a rolling window.

3.1. Fixed Time Span

As mentioned in Section 2, Schwert (1989b) measured the long-run volatility using realized volatil-

ities by aggregating daily returns over a certain spanning horizon. The realized variance over a

month t is denoted by RVt. However, extensive research has shown that determining the realized

volatility in this way is noisy, because outliers can rapidly change the measure’s magnitude and pre-

cision. That is why Engle et al. (2013) regard the GARCH-MIDAS model as a filter of the realized

volatility by considering the following MIDAS regression:

τt = ξ +θ
K∑
k=1

ϕk(ω1,ω2)RVt−k , (3)
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3. THE GARCH-MIDAS MODEL Breaking Down Stock Market Volatility

RVt =
Nt∑
i=1

r2it , (4)

where ϕk is the so-called smoothing function and is given by the Beta weighting scheme:

ϕk(ω1,ω2) =
(k/K)ω1−1(1− k/K)ω2−1∑K
j=1(j/K)

ω1−1(1− j/K)ω2−1
, (5)

with ϕk(ω1,ω2) ≥ 0 for k = 1, ...,K . Traditionally, the exponential weighting scheme is used due to

its computational easiness. This paper, on the other hand, uses the Beta lag function because it can

incorporate different lag structures and weighting schemes (Ghysels et al., 2007). For example,

setting ω1 = 1 and ω2 > 1 ensures a that the weights decay over their domain, where the slope is

determined by the magnitude of ω2. The maximum number of lags K is determined by minimizing

the Bayesian Information Criterion (hereafter BIC).

The GARCH-MIDAS model with fixed time span RV is given by equations (1)-(5), where the

parameters of interest are given by the set Θ = {α,β,µ,ξ,θ,ω1,ω2}.

3.2. Rolling Window

Another way to express the realized variance is by using a rolling window, which is obtained by

removing the constraint that τt is fixed during a month. Instead, it can fluctuate throughout a

month such that the revised MIDAS regression is formulated as:

τ
(rw)
i = ξ(rw) +θ(rw)

K∑
k=1

ϕk(ω1,ω2)RV
(rw)
i−k , (6)

RV
(rw)
i =

N ′∑
j=1

r2i−j , (7)

where N ′ is expressed in days and determines the size of the rolling window. Similar to Engle et al.

(2013) the GARCH-MIDAS model with rolling windows specification is obtained by also dropping

the monthly aspect in equations (1) and (2), and combining these with equations (5)-(7).

3.3. GARCH-MIDAS with Macroeconomic Variables

It is also possible in the GARCH-MIDAS framework to replace the realized variance by other vari-

ables. As mentioned in Section 1, this paper considers the macroeconomic variables industrial
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3. THE GARCH-MIDAS MODEL Breaking Down Stock Market Volatility

production growth rate and producer price index inflation rate. The one-sided MIDAS filter that is

used in Engle et al. (2013) with these variables is given by:

log τt = ξn +θn

Kn∑
k=1

ϕk(ω1,n,ω2,n)X
m
n,t−k , (8)

where Xmn,t−k represents measure type n (either l for level or v for volatility) of macroeconomic

variablem. The exact estimation procedure of the macroeconomic volatility is explained thoroughly

in Section 5.

An interesting feature of this model is that the levels and volatilities of a single macroeconomic

variable m can be combined in one model that becomes:

log τt = ξlv +θl

Kl∑
k=1

ϕk(ω1,l ,ω2,l)X
m
l,t−k +θv

Kv∑
k=1

ϕk(ω1,v ,ω2,v)X
m
v,t−k , (9)

where Kl and Kv can be of different size. The reason behind this is that both parameters represent

the lasting effects of either levels or volatility on the long-term volatility. These effects may have

a different impact and should be scaled accordingly, in which case Kl and Kv might not be equal

(Engle et al., 2013).

3.4. Estimation Procedure

The GARCH-MIDAS models are estimated using quasi-maximum likelihood (hereafter QML). Wang

and Ghysels (2015) showed that the estimators are asymptotically normal when using realized

variance, but did not show whether this also holds for macroeconomic variables. Conrad and Loch

(2015) filled this gap this by using Monte Carlo simulation to show that the asymptotic distribution

of the estimators stays the same.

To estimate the parameters using QML the probability density function of the returns needs to be

established. A generic distribution of the returns in equation (1) is given by:

f (rit) =
1
σit
f (εit) , ∀i = 1, ...,Nt , (10)

where σit =
√
τtgit. A traditional approach in basic ARCH-type models is to assume that εit is

standard normally distributed. That is, if the monthly short-term volatility is given by gt =
∑Nt
i=1 git

9



3. THE GARCH-MIDAS MODEL Breaking Down Stock Market Volatility

and Θ is the set of unknown parameters, the log-likelihood function becomes:

` (Θ) = −1
2

T∑
t=1

[
log τtgt + log (2π) +

(rt −µ)2

τtgt

]
. (11)

However, a common result in financial research is that (daily) stock returns are often not nor-

mally distributed; see for instance Schwert (1989b), Chernov et al. (2003), and Campbell and

Hentschel (1992). In fact, returns are more diverse around their mean such that large returns oc-

cur more often than assumed by the normal distribution. The underlying distribution has in general

a higher peak and fatter tails than the normal distribution to capture these characteristics. It might

therefore be of interest to also investigate the Student’s t-distribution, which is known for its high

peak and fat tails. In that case, the log-likelihood function changes to:

` (Θ) =
T∑
t=1

[
−1
2

log τtgt + log Γ

(ν +1
2

)
− 1
2

log (νπ)

− log Γ

(ν
2

)
− ν +1

2
log

(
1+

(rt −µ)2

ντtgt

)]
.

(12)

A full derivation of the two log-likelihood functions can be found in Appendices A.1 and A.2,

respectively.

It should be noted that the equation above needs a predetermined number of lags in the MIDAS

model to capture the dynamics of τt. Because this paper uses the same data set as Engle et al.

(2013), it abstains itself from investigating the optimal number of lag years and applies the same

number as used by the authors. Therefore, τt is determined using four MIDAS lag years.1

The code that is used to estimate the parameters of the GARCH-MIDAS models is inspired by

the MATLAB files of Engle et al. (2013).2 These files only contain functions for the GARCH-MIDAS

model with fixed time span RV, which needed to be modified to suit the data and extensions better.

The optimization for all other models has been programmed manually and their description can be

found in Appendix B.

1In case of using the fixed window RV, four MIDAS lag years corresponds to K = 16. This number changes to
K = 1000 when using the rolling window RV. For the macroeconomic variables, the number of lag years is similar to
fixed window for the RV.

2Link to original code of Engle et al. (2013): https://dataverse.harvard.edu/dataset.xhtml?persistentId=

doi:10.7910/DVN/27513
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4. ALTERNATIVE COMPONENT MODELS Breaking Down Stock Market Volatility

4. Alternative Component Models

4.1. GAS-MIDAS model

For years ARCH-type models have been put under a magnifying glass by researchers to see if any

improvements were possible. Conversely, only a modest stream of academic literature focuses on

an alteration within the GARCH-MIDAS framework. An example of such research is conducted

by Conrad and Loch (2015), where the authors used an asymmetric mean-reverting GARCH(1,1)

model to confirm that the long-term component behaves counter-cyclically. However, there are

circumstances in which other model specifications are more suitable than ARCH-type models.

Consider for instance the Generalized Autoregressive Score (hereafter GAS) model by Creal et

al. (2013). When the observation density is normal this model is similar to a GARCH(1,1) process,

whereas the contrary is true when the this distribution is Student’s t. The underlying idea is that

observations that are large in magnitude may occur in the fat tails of the data’s distribution. Because

these values fall within the thickness of the distribution they should not cause the variance to

increase to their full extent (Creal et al., 2013). The Student’s t-distribution of the unit GAS model

will follow this intuition by not letting the score of the underlying distribution change the volatility

too drastically.3 This might be more suitable for stock returns, because large and small returns

occur more often than expected under a normal distribution (Glosten et al., 1993).

That is why this paper considers the GAS model within the component model framework. Par-

ticularly, let the time-varying parameter of interest be the short-term component git such that the

GAS(1,1) model is given by:

gi+1,t = c+A1sit +B1git , (13)

where sit is a function of past data. A more traditional approach to express this function is through:

sit = Sit∇it , (14)

∇it =
∂ log p (εit |git;Φ)

∂git
, (15)

Sit = Ei−1,t
[
∇it∇′it

]−1
, (16)

where εit | Ii−1,t ∼ p (εit |git;Φ ), ∇it represents the score and Sit is calculated using the inverse

Fisher information matrix. In fact, this way of determining Sit allows for straightforward deriva-

3A mathematical derivation is given by Creal et al. (2013)
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tions of different ARCH-type models (Creal et al., 2013).

The main aim of using the Student’s t-distributed GAS(1,1) model (hereafter t-GAS(1,1)) in this

paper is to compare its fit and predictive power with the t-GARCH(1,1) model in the GARCH-MIDAS

framework. The t-GAS(1,1) model is created by assuming that εt are Student’s t-distributed with ν

degrees of freedom, such that the unit GARCH specification can be replaced by:

gi+1,t = 1+α
(
1+3ν−1

) ν−1 +1

ν−1 + (1− 2ν−1)/ε2it
− 1

git + (α + β) (git − 1) , ν > 2 , (17)

with α,β ≥ 0 and α + β < 1. See Appendix A.3 for a full derivation of this model specification. The

GAS-MIDAS model can be obtained by replacing equation (2) in the GARCH-MIDAS specification

by equation (17). Note that the GAS model is a GARCH(1,1) process if ν goes to infinity, because

in that case the Student’s t-distribution converges to the normal distribution (Creal et al., 2013).

4.2. Asymmetric-MIDAS model

Another potential improvement of the GARCH-MIDAS model can be found in the MIDAS specifica-

tion. There has been tremendous research on the asymmetric effects of positive and negative re-

turns on stock market volatility; see Singleton and Wingender (1986) and Campbell and Hentschel

(1992). Models that do not take these asymmetries into account often fail to capture the full mar-

ket effects. For example, Engle et al. (2013) conclude that the GARCH-MIDAS model fails to take

economic shifts into account. Therefore, it is the question if a symmetric MIDAS model is the best

option to capture asymmetric effects of stock returns on volatility.

To capture asymmetric effects, Ghysels, Santa-Clara, and Valkanov (2005) introduced the asym-

metric MIDAS (hereafter AMIDAS), which in this framework is given by:

τt = ξ +θ

φ K∑
k=1

1+t−kϕk(ω1,ω2)Xt−k + (1−φ)
K∑
k=1

1−t−kϕk(ω3,ω4)Xt−k

 , (18)

where 1+t−k denotes the indicator function for strictly positive underlying returns or levels, 1−t−k for

nonpositive values, and φ ∈ (0,2) such that the weights sum up to one.

Note that the indicator function looks at the underlying values rather than those in Xt directly.

The reason for this is that realized variance for daily returns and quarterly macroeconomic variance

are strictly nonnegative, which implies that they cannot be separated based on different signs. This

issue is solved by separating the values in Xt based on those used in their calculation. This means

12
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that the volatilities that are used to calculate the realized variance are grouped by positive and

negative returns. This approach comes from Campbell and Hentschel (1992), who found that

the volatility feedback-effect makes negative returns stronger in magnitude. Note that a similar

approach is used for quarterly macroeconomic volatilities by using levels.

An advantage of the above specification is that it can be used in combination with GARCH and

GAS models, irrespective of their underlying probability distribution. That is why these new speci-

fications are called the GARCH-AMIDAS and GAS-AMIDAS models.

4.3. Estimation Procedure

The estimation procedure for the GAS-(A)MIDAS and GARCH-AMIDAS is similar to the original

model of Engle et al. (2013). The only difference compared to the log-likelihoods of equations

(11) and (12) is that the set of unknown parameters Θ is extended. More specifically, φ is added

to determine the asymmetric effect of positive and negative returns on long-term volatilities, and

two extra shape parameters of the additional Beta weighting function are added.

4.4. Forecast Evaluation

Finally, different forecast scenarios are considered to evaluate the predictive power of the models.

As mentioned by Engle et al. (2013), the long-term component is predetermined at time t and the

conditional expectation of the short-term component Et−1 (git) = 1+(α+β)i−1(g1,t −1) converges to

one. This means that the volatility forecast for month t of the GARCH-MIDAS model is given by:

Et−1

 Nt∑
i=1

gitτtε
2
it

 = τt Nt∑
i=1

Et−1 (git)

= τt

(
Nt +

1− (α + β)Nt

1−α − β
(g1,t − 1)

)
,

(19)

where εit | Ii−1,t ∼ N (0,1). It should be noted that this equation does not hold for models that

have a Student’s t-distribution as underlying distribution due to a difference in variance. More

specifically, if εit follows a Student’s t-distribution with ν degrees of freedom, then the equation for

volatility forecasts changes to:

Et−1

 Nt∑
i=1

gitτtε
2
it

 = τt ( ν
ν − 2

)(
Nt +

1− (α + β)Nt

1−α − β
(g1,t − 1)

)
, ν > 2 . (20)
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Similar to Conrad and Loch (2015), it is assumed that the long-term volatility stays equal to its

one-step ahead prediction; that is, τ̂t+h|t−1 = τ̂t|t−1 for h > 0. For every volatility forecast a Mincer-

Zarnowitz (hereafter MZ) regression is performed to evaluate the fit of the forecast to the actual

volatility. The individual fits are also evaluated by means of the Root Mean Squared Error and Mean

Absolute Error (hereafter RMSE and MAE, respectively). Both measures are included, because the

RMSE puts more emphasis on large deviations, whereas the MAE takes the absolute distance of

errors into account. This implies that they provide similar results in stable economic periods, while

the RMSE is stricter in crises as it punishes large errors.

5. Data

This chapter starts by discussing the retrieval of the data in Section 5.1. Next, the descriptive

statistics for the daily stock returns and macroeconomic variables are discussed in Sections 5.2 and

5.3, respectively.

5.1. Data Composition

The empirical quality of the models is assessed using U.S. daily stock returns and macroeconomic

variables of the period 1885-2018. More specifically, the daily stock returns were used before by

Schwert in his paper ”Indexes of United States stock prices from 1802 to 1987” and are obtained

from his online data library.4 However, his data set merely covers the period February 16, 1885 to

July 2, 1962 and does not provide a prevailing interpretation when used in the models (Engle et

al., 2013). That is why this set is augmented by CRSP value-weighted returns to December 2018,

such that forecasting evaluations can be conducted. The second set of variables includes monthly

producer price index (PPI) inflation rate and industrial production (IP) growth rate. Both variables

are obtained from the Federal Reserve Bank of St. Louis and cover the period January 1, 1920 to

December 31, 2018. The period 1885-1919 has been omitted for the macroeconomic data, because

it is not publicly accessible.

5.2. Daily Stock Returns

The descriptive statistics for daily stock returns can be found in Table 1. The data set of all variables

is split into different sub-samples to account for potential structural breaks. According to Engle et

4Link to the online library: http://schwert.ssb.rochester.edu/dstock.htm
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Table 1: Descriptive statistics for daily stock returns.

Daily Stock Returns (1890 - 2010)

Sample Mean St. Dev. Skewness Kurtosis Jarque-Bera Observations

1884-1919 0.00027 0.00846 -0.324 9.993 0.000 10,355
1920-1952 0.00038 0.01315 0.287 16.242 0.000 9,727
1953-1984 0.00042 0.00763 0.016 7.230 0.000 8,043
1985-2010 0.00048 0.01096 -0.929 25.280 0.000 6,558
1953-2010 0.00045 0.00927 -0.680 23.964 0.000 14,601
1890-2010 0.00037 0.01041 -0.094 20.048 0.000 33,211

Daily Stock Returns (1890 - 2018)

Sample Mean St. Dev. Skewness Kurtosis Jarque-Bera Observations

1985-2008 0.00044 0.01053 -1.128 30.146 0.000 6,054
2009-2018 0.00048 0.01060 -0.253 8.199 0.000 2,516
1890-2018 0.00037 0.01034 -0.109 19.712 0.000 35,223

Notes. Daily stock returns are obtained from Schwert’s online library and CRSP. The columns represent the
mean, standard deviation, skewness, kurtosis, Jarque-Bera p-value and the number of observations.

al. (2013), three sub-samples need to be formed to represent the effects before World War I (1884-

1919), the Great Depression (1920-1952) and after World War II (1953-2010). Extra sub-samples

have been created in the lower part of the same table to represent the sample forecasts. Table 1

shows that the descriptive statistics for the daily stock returns are very close to the values of Engle et

al. (2013). They also reflect one of the key features in financial research, namely that stock returns

are not normally distributed. In fact, they have excess kurtosis and skewness, which indicates that

a probability distribution with fatter tails might be more appropriate to fit the underlying data. This

observation is supported by the Jarque-Bera p-values which reject the normality hypothesis. A final

remark on Table 1 is that most returns are negatively skewed; indicating that there were frequent

small gains and a few large losses.

5.3. Macroeconomic Variables

While the daily stock returns do not need any transformations, the opposite holds for the macroe-

conomic variables. The reason for this is that they need to be scaled to the frequency that is used

in the MIDAS filter. Engle et al. (2013) have shown that a quarterly frequency works well, because

it ensures a good balance between covariance stability and fit. That is why the monthly leveled PPI

and IP are transformed to quarterly rates by means of a geometric series using three consecutive

months. These time series are shown in the first row of Figure 1 for PPI and IP, respectively. The cor-

responding descriptive statistics can be found in Table 2, where the separation of the sub-samples

is similar to Table 1.
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Table 2: Descriptive statistics for quarterly leveled macroeconomic data.

Macroeconomic Variables (1920 - 2010)

Sample Variable Mean St. Dev. Skewness Kurtosis Jarque-Bera Observations

1920-1952 PPI 0.00027 0.01373 -1.634 12.930 0.000 396
IP 0.00339 0.02436 0.221 9.023 0.000 396

1953-1984 PPI 0.00332 0.00478 1.763 7.259 0.000 384
IP 0.00277 0.00787 -0.916 4.638 0.000 384

1985-2010 PPI 0.00197 0.00731 -2.338 19.943 0.000 312
IP 0.00173 0.00477 -1.769 8.610 0.000 312

1953-2010 PPI 0.00272 0.00608 -1.483 21.317 0.000 696
IP 0.00230 0.00668 -1.013 5.832 0.000 696

1920-2010 PPI 0.00183 0.00965 -2.224 22.414 0.000 1,092
IP 0.00270 0.01560 0.363 19.558 0.000 1,092

Macroeconomic Variables (1920 - 2018)

Sample Mean St. Dev. Skewness Kurtosis Jarque-Bera Observations

1985-2008 PPI 0.00177 0.00740 -2.395 20.221 0.000 288
IP 0.00176 0.00440 -1.858 10.148 0.000 288

2009-2018 PPI 0.00138 0.00679 -0.248 2.726 0.372 120
IP 0.00143 0.00433 -1.516 7.202 0.000 120

1920-2018 PPI 0.00173 0.00946 -2.161 22.298 0.000 1,188
IP 0.00260 0.01498 0.395 21.150 0.000 1,188

Notes. Macroeconomic variables are obtained from the FRED. The columns represent the variable name, mean,
standard deviation, skewness, kurtosis, Jarque-Bera p-value and the number of observations. PPI stands for pro-
ducer price index and IP for industrial production. The series used to calculate these measures are the quarterly
growth rates, which are determined using geometric series.

In addition to these growth rates, volatilities are constructed to be used as input to the different

models. The approach to create quarterly volatilties is taken from Schwert (1989b) and Engle et

al. (2013). Specifically, the quarterly growth rates are regressed on four quarterly dummies and on

four lagged quarterly growth rates, which produce the following regression:

Xt =
4∑
i=1

αjDjt +
4∑
j=1

βjXt−i +ut , (21)

where the squared residuals û2t are used as an estimate for quarterly volatilities of macroeconomic

variable X. The resulting volatilities are depicted in the bottom row of Figure 1 for PPI and IP,

respectively.

The quarterly levels in Figure 1 depict the crises in the United States. For example, the growth

rates during the 1920s are mostly negative, which corresponds to the aftermath of the Great Depres-

sion. Similarly, industrial production almost halved after the Wall Street Crash in 1929 compared

to the years before. While most peaks in the time series correspond to economic crises, they are
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6. EMPIRICAL RESULTS Breaking Down Stock Market Volatility

Figure 1: The quarterly levels and volatilties for PPI and IP for the period 1920-2018

not of the same magnitude for both time series. For instance, until the 1980s industrial production

decreased hardest by crises. The reason behind this is not only economic crises, but also the arms

race during the Cold War between the United States and Soviet Union. After this period the pro-

ducer price index took most of the negative effects with its minimum during the latest economic

crisis of 2008.

6. Empirical Results

Section 6.1 discusses the estimates of the GARCH-MIDAS model with realized variance and then

turns to the macroeconomic variables in Section 6.2. Next, the estimates of the GARCH-MIDAS

model with both PPI and IP are analyzed in Section 6.3. The economic contribution of the afore-

mentioned models are compared in Section 6.4. Finally, Section 6.5 discusses the results of the new

component models and analyzes the forecasts of all component models.

6.1. GARCH-MIDAS with Realized Variance

The estimates of the GARCH-MIDAS model with realized variance can be found in Table 3. The

estimates are created by optimizing the log-likelihood function in equation (11), where ω1 has

been set to one to ensure that the weights are decaying over their domain. The parameter ω2 in
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Table 3: Parameter estimates for GARCH-MIDAS with realized variance.

Fixed Realized Variance

Sample µ α β θ ω ξ LLF BIC

1890-2010 0.00063 0.10985 0.85782 0.00894 4.48675 0.00003 113,551.4 -6.7802
(16.97) (28.92) (168.11) (25.89) (154.54) (25.75)

1890-1919 0.00053 0.15438 0.78515 0.00449 34.48643 0.00005 31,788.2 -6.9362
(7.77) (16.71) (59.15) (11.56) (2.13) (23.86)

1920-1952 0.00075 0.10472 0.85551 0.00929 5.41706 0.00003 31,267.1 -6.4233
(9.02) (5.66) (40.34) (15.56) (1.20) (3.37)

1953-1984 0.00060 0.09322 0.88826 0.00832 5.16332 0.00003 28,697.7 -7.1294
(2.33) (12.71) (84.35) (1.95) (6.21) (7.03)

1985-2010 0.00074 0.09743 0.87218 0.00702 9.64940 0.00005 21,857.0 -6.6577
(7.85) (12.24) (81.61) (11.67) (35.00) (12.77)

1953-2010 0.00064 0.09363 0.88562 0.00872 4.36340 0.00004 50,543.2 -6.9193
(11.66) (19.38) (190.43) (12.66) (4.90) (11.22)

Rolling Realized Variance

Sample µ α β θ ω ξ LLF BIC

1890-2010 0.00063 0.11397 0.84306 0.01043 9.23857 0.00003 114,023.3 -6.7830
(6.18) (4.25) (20.63) (8.94) (29.53) (8.43)

1890-1919 0.00051 0.15707 0.76180 0.00765 31.67387 0.00004 32,257.8 -6.9440
(4.42) (28.16) (52.05) (12.97) (37.93) (12.10)

1920-1952 0.00075 0.10504 0.85342 0.01109 5.26680 0.00003 31,639.6 -6.4226
(8.87) (20.35) (120.34) (28.26) (39.58) (10.18)

1953-1984 0.00063 0.10036 0.86943 0.01130 9.85999 0.00002 28,880.4 -7.1349
(8.48) (1.99) (15.90) (2.07) (10.61) (7.73)

1985-2010 0.00075 0.10432 0.84576 0.00846 21.20215 0.00004 21,640.5 -6.6526
(7.17) (14.10) (37.78) (8.62) (1.39) (5.79)

1953-2010 0.00067 0.10016 0.86505 0.00981 13.0180 0.00003 50,720.7 -6.9223
(6.38) (8.37) (41.17) (21.06) (12.84) (13.94)

Notes. The GARCH-MIDAS estimates are created using four MIDAS lag years. The values in parentheses are robust
t-statistics which are determined using HAC standard errors. LLF represents the log-likelihood function and BIC the
Bayesian Information Criterion.

the same equation is for this purpose renamed to ω in the current subsection. Almost all estimates

are significant, which is in line with the results of Engle et al. (2013). The parameter of interest

from Table 3 is θ, which represents the influence of the realized variance on the long-term volatility.

The parameter is statistically different from zero in almost all sub-periods, but remains close to zero.

This allows ω to take on any value on its domain, which means that the parameter is unidentified.

The idea that this parameter is unidentified is intensified by noticing that almost all values of ω are

different from Engle et al. (2013).

Another way of recognizing this identification issue is through the optimization procedure. The

estimates in the log-likelihood function are extremely sensitive to their starting values. For instance,
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Figure 2: Conditional volatility for the GARCH-MIDAS model using realized volatility.

changing the starting value of θ can result in a completely different set of parameters, whereas the

same does not hold for µ. This issue can be solved by adapting the procedure of Andrews and Cheng

(2012) which constructs robust critical values using simulations. This paper does not attempt to

solve these problems and merely mention its potential existence.

Next, a brief look is taken at the estimates of the GARCH(1,1) process. By construction, the

sum of α and β converges to one. Yet, as noted by Engle et al. (2013), none of the sums exceed

the maximum of 0.9815 in the period 1953-1984. When using the rolling window specification

to determine the realized variance, it seems that most values lay around 0.9685. The reason why

these sums are not close to one has to do with the long-term volatility component of the model.

The unconditional variance of the GARCH-MIDAS model is equal to τt due to the fact that the

unconditional expectation of git is equal to one. That is, the long-term component is predetermined

and dominates the persisting variance of the model as a whole. This implies that the GARCH(1,1)

process values persistence less, which results in lower values of the coefficients that control for this

effect (Bollerslev, 1986).

Alternatively, the long-term component can be expressed as the log of τt. The estimates for
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this GARCH-MIDAS model can be found in Table 10 in Appendix C. Again, the values are similar

to those of Engle et al. (2013) and follow similar a trend in the t-statistics. It is also here that

changing the starting values for the optimization results in drastical shifts in the t-statistics, which

indicates that there are possible identification issues in θ and ω.

Overall, the results for the GARCH-MIDAS model with realized variance seem to be aligned with

those of Engle et al. (2013). The parameter estimates significantly differ across periods, which

indicates that there are economic shifts throughout the sample. This thought is confirmed by the

time series in Figure 2, where the conditional volatility shifts upwards after its peak in the late

1920s due to the Great Depression. Another shift occurs after the financial crisis of 2008, which

corresponds to the idea that the conditional volatility is influenced by economic conditions. For

instance, the trust of consumers in financial products decreases when an economic crisis arises.

This may lead to less confidence in the market and more variance in their pricing. Also, several

institutions invest in those markets that are hit hardest by economic crises. An example is the

housing market, which crashed during the last crisis and let to enormous losses in the financial

sector.

6.2. GARCH-MIDAS with Single Macroeconomic Series

The parameter estimates of θl in the GARCH-MIDAS model with PPI levels are shown in Table 4.

The values range between 0.2537 and 1.1026, and are similar to those of Engle et al. (2013). In

fact, they are all positive and significantly different from zero, which implies that more inflation

leads - ceteris paribus - to more stock market volatility. During the period of the Great Depression,

the effect of a change in inflation is captured by θl = 0.2537. Simultaneously, the Beta weighting

function in equation (5) assigns a weight of 0.3588 on the first lag (corresponding to ω1 = 10.68).

This means that a one percent increase in inflation during this quarter results in a 3.1% increase

in stock market volatility next quarter (that is: e0.2537∗0.3588/3 − 1 ≈ 0.0308). It can be shown in a

similar way that for other periods a one percent increase in inflation corresponds to an increase of

2.3% during 1953-1984, 0.5% during 1953-2010 and has no statistical impact during 1985-2010.

Next, the parameter estimates of the leveled IP are investigated. The lower part of Table 4

shows that the values of θl range between -0.2414 and -0.9521, such that an increase in industrial

production - ceteris paribus - decreases the stock market volatility. This counter-cyclical business

effect is also observed by Schwert (1989b) and Engle et al. (2013). Specifically, a one percent

increase in industrial production has the biggest impact during 1984-2010 when there was a 0.1%
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Table 4: Parameter estimates for GARCH-MIDAS with level PPI and IP.

Producer Price Index

Sample µ α β θl ω1 ω2 ξ LLF BIC

1924-2010 0.00066 0.08795 0.90613 0.28910 10.68211 14.12968 -8.95922 77,649.0 -6.7108
(2.48) (2.10) (21.21) (2.65) (6.92) (6.65) (-16.51)

1924-1952 0.00077 0.09685 0.89465 0.25370 18.18765 2.65045 -8.73977 27,134.4 -6.3547
(3.68) (16.24) (141.33) (2.48) (3.80) (3.52) (-46.34)

1953-1984 0.00059 0.08851 0.89243 1.10259 7.26627 2.78565 -10.05580 28,709.4 -7.1311
(2.50) (12.09) (93.62) (7.36) (2.40) (2.71) (-83.49)

1985-2010 0.00072 0.08957 0.89807 0.87191 7.55557 13.70510 -9.2728 21,848.8 -6.6639
(9.82) (14.44) (128.11) (2.34) (0.88) (0.93) (-51.03)

1953-2010 0.00063 0.08506 0.90485 0.76829 18.10860 5.17096 -9.51986 50,536.4 -6.9177
(3.10) (18.07) (168.56) (3.45) (1.97) (2.78) (-66.54)

Industrial Production

Sample µ α β θl ω1 ω2 ξ LLF BIC

1924-2010 0.00067 0.08790 0.90533 -0.24139 11.93550 7.87982 -8.82542 77,649.9 -6.7109
(9.19) (1.63) (16.86) (-2.99) (2.44) (2.70) (-14.69)

1924-1952 0.00077 0.09808 0.89171 -0.36158 3.22549 2.85058 -8.54069 27,135.5 -6.3549
(11.03) (15.33) (130.06) (-3.67) (2.46) (2.99) (-48.92)

1953-1984 0.00060 0.08700 0.90032 -0.95210 5.19501 3.74770 -9.37186 28,706.9 -7.1305
(2.11) (10.92) (115.70) (-4.42) (1.21) (0.91) (-57.18)

1985-2010 0.00073 0.09121 0.89400 -0.84688 8.18203 2.42293 -8.98245 21,849.0 -6.6539
(2.21) (11.39) (105.52 (-3.30) (2.09) (2.06) (-47.09)

1953-2010 0.00064 0.08640 0.90257 -0.94268 4.82288 2.98514 -9.12252 50,539.6 -6.9182
(2.47) (17.53) (166.17) (-5.15) (4.94) (4.73) (-73.19)

Notes. The GARCH-MIDAS estimates are created using four MIDAS lag years. That is why the first sample starts in
1924 instead of 1920. The parameter θv is multiplied by 10−2 to represent percentages. The values in parentheses
are robust t-statistics which are determined using HAC standard errors. LLF represents the log-likelihood function
and BIC the Bayesian Information Criterion.

decrease in stock market volatility. The lowest quarterly decrease can be found during 1953-1984,

which is mostly due to the end of World War II. Once the weapons were down, the global economy

started to expand by having more trade agreements and unions that were not possible during the

war. This might explain why an increase in industrial production has the least impact on stock

market volatility during that period; given all the other macroeconomic expansions.

However, leveled PPI and IP are not the only variables that influence stock market volatility. The

uncertainty of investors about these values can have a significant impact on its own. That is why

this uncertainty is represented by macroeconomic variances, which are put in the GARCH-MIDAS

model to determine the long-term volatility. Table 5 shows the estimates of this model with PPI and

IP variances. A notable difference between these estimates with PPI and those in Table 4 is that

they are smaller in magnitude. Specifically, the minimum value it can take on is 0.0413 whereas

the maximum is 0.1498. It should be noted that both values are not significantly different from
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Table 5: Parameter estimates for GARCH-MIDAS with variance PPI and IP.

Producer Price Index

Sample µ α β θv ω1 ω2 ξ LLF BIC

1924-2010 0.00066 0.09191 0.89820 0.11642 0.68187 0.36456 -9.60176 76,554.4 -6.7037
(2.10) (24.96) (222.26) (6.86) (1.42) (1.09) (-71.73)

1924-1952 0.00074 0.09875 0.89322 0.05907 1.66980 0.50339 -9.02307 26,019.0 -6.3168
(7.47) (13.37) (117.62) (15.22) (18.05) (39.82) (-43.14)

1953-1984 0.00059 0.08482 0.90251 0.14981 8.42631 2.02360 -10.04765 28,991.0 -7.1286
(8.74) (1.49) (41.20) (0.67) (0.58) (2.95) (-9.95)

1985-2010 0.00073 0.09011 0.89880 0.04132 24.36358 215.81986 -9.22181 21,849.5 -6.6541
(7.83) (13.46) (122.77) (1.11) (0.24) (0.21) (-49.84)

1953-2010 0.00064 0.08699 0.90046 0.09703 5.61085 1.46918 -9.74143 50,535.8 -6.9176
(2.63) (19.73) (173.63) (9.05) (2.92) (2.23) (-80.60)

Industrial Production

Sample µ α β θv ω1 ω2 ξ LLF BIC

1924-2010 0.00066 0.09115 0.89886 0.48676 5.23299 1.30026 -9.46134 76,557.1 -6.7039
(2.08) (26.51) (125.90) (4.31) (0.29) (0.34) (-39.84)

1924-1952 0.00075 0.10265 0.88377 0.05804 1.05914 0.48863 -9.65860 26,035.6 -6.3209
(9.73) (13.10) (101.46) (10.19) (8.23) (7.61) (-67.20)

1953-1984 0.00060 0.08423 0.90500 0.06962 2.72020 0.74399 -10.00460 28,701.1 -7.1291
(2.74) (15.48) (88.91) (12.13) (2.77) (3.28) (-40.65)

1985-2010 0.00072 0.09099 0.89579 0.04800 221.16644 14.85785 -9.24479 21,850.5 -6.6544
(0.97) (0.63) (6.86) (3.35) (1.21) (2.56) (-5.23)

1953-2010 0.00064 0.08378 0.90786 0.02767 277.42739 165.32762 -9.39829 50,535.1 -6.9175
(13.45) (19.46) (179.13) (3.68) (6.81) (5.99) (-61.09)

Notes. The GARCH-MIDAS estimates are created using four MIDAS lag years. That is why the first sample starts in
1924 instead of 1920. The parameter θv is multiplied by 10−4 to represent percentages. The values in parentheses
are robust t-statistics which are determined using HAC standard errors. LLF represents the log-likelihood function
and BIC the Bayesian Information Criterion.

zero, such that the range becomes slightly smaller. Engle et al. (2013) only found a significant

result during World War I and after World War II, which are clearly different from these results.

This difference can be explained through the optimization procedure. As explained in Section

3.4, Engle et al. (2013) used a standard minimization procedure in MATLAB to find the MLE estima-

tors. However, changing the starting values slightly results in completely different MLE estimators.

It is plausible that the results of Engle et al. (2013) are found in local minima. That is why this

paper uses Simulated Annealing to find proper starting values, before plugging those into the min-

imization algorithm.5 The overall sign of the parameter estimates stay the same, such that the

conclusion are similar to those drawn from the estimates in Table 4.

Most interesting are the estimates for θv in the lower part of Table 5. Originally, an increase in

industrial production during the current quarter caused the stock market volatility to decrease next

5The Simulated Annealing algorithm that is used comes from the Global Optimization Toolbox in MATLAB
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6. EMPIRICAL RESULTS Breaking Down Stock Market Volatility

quarter. This conclusion changes when using IP volatilities, because then an increase in industrial

production has a positive impact on stock market volatility. Similar observations can be found

in related research, where it is concluded that the ”business cycle uncertainty matters” (Engle et

al., 2013, p. 787). All the estimates are statistically different from zero, such that the impact of

industrial production is not trivial.

6.3. GARCH-MIDAS with Both Macroeconomic Series

The parameter estimates for the model with both levels and volatilities appear in Table 6. It seems

that nearly all estimates are similar to their equivalents in the single series. The biggest difference

when using PPI is that θl is not bigger than one, such that the overall impact of inflation is slightly

less than before. The estimates for IP have also decreased in magnitude. A reason for this might be

that due to the inclusion of three additional parameters in the model, the overall standard errors

have increased. This can occur when the dimension of the models increases, which causes the

available data to be spares for the parameters to get a good fit. One way of expanding the amount

of data is by using higher-frequency returns; that is, intra-day stock returns. In fact, the parameters

that are estimated for the period 1924-2010 support this thought, because they are overall more

significant than for other periods.

6.4. Analyzing the Economic Sources

One way of understanding the impact of economic variables on stock market volatility is by ana-

lyzing their variance ratios. These ratios represent how much a variable contributed to the total

variation in that particular component model (Engle et al., 2013). This measure is calculated by

dividing the variance of the log long-term component by the log of the total variance; that is,

Var(log τt) /Var(log τtgt). Table 7 contains the variance ratios for different GARCH-MIDAS models.

Overall, the model with rolling window RV has the highest contribution with more than 47%

during the Great Depression. This number is closely followed by the fixed span RV specification,

which explains roughly 40% of the variation in quarterly volatility. The most redundant contribu-

tion of merely 2% during the same era is of the GARCH-MIDAS model with PPI level. This implies

that the long-term component almost does not fluctuate over time, such that the model merely be-

comes the GARCH(1,1) model. Particularly, the ratios for the whole sample show that the capacity

of economic contribution is 17% when including macroeconomic variables.

When both level and variance of the macroeconomic series are included, the economic contribu-
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6. EMPIRICAL RESULTS Breaking Down Stock Market Volatility

Table 7: Variance Ratios for different GARCH-MIDAS models.

Daily Stock Returns

Model 1890-2010 1890-1919 1920-1952 1953-1984 1985-2010 1953-2010

Fixed RV 37.26 12.88 51.12 12.22 27.09 24.70

Fixed RV (log) 27.76 11.03 45.40 9.54 12.46 11.65

Rolling window RV 45.21 24.70 53.69 30.28 47.08 39.05

Rolling window RV (log) 30.80 18.07 45.23 19.53 13.88 11.30

Macroeconomic Variables

Model 1924-2010 1890-1919 1924-1952 1953-1984 1985-2010 1953-2010

PPI level 2.71 - 4.14 35.83 7.32 14.08

PPI variance 11.17 - 2.19 13.20 2.39 12.14

PPI level + variance 12.33 - 3.28 36.71 10.39 17.55

IP level 4.36 - 9.39 19.23 10.03 12.47

IP variance 16.66 - 15.31 6.69 3.71 2.73

IP level + variance 5.14 - 24.72 29.02 9.66 12.48

Notes. The variance ratios are calculated by the formula: 100*Var(log τt) /Var(log τtgt). The column 1890-1919 for
the macroeconomic variables is empty, because the data for this period is unavailable (see Section 5.3).

tion of the long-run component increases and reaches its height. Specifically, around 37% and 29%

of the total quarterly variation is explained for PPI and IP, respectively. It is possible that similar

results are obtained during 1890-1919, but this cannot be investigated due to the unavailable data.

6.5. Comparison with Alternative Models

This section compares the parameter estimates of the GARCH-MIDAS model for the full sample to

those of the new component models. The GARCH-MIDAS model with Student’s t-distribution is

addressed to as the GARCH-MIDAS-t model. The names of the GARCH-AMIDAS and GAS-MIDAS

model do not change due to their uniqueness in this framework. Table 8 contains the estimates for

the different models with leveled macroeconomic series. The other tables are put in Appendix C.

It seems that the GARCH-AMIDAS model performs best for both PPI and IP when comparing the

log-likelihoods and BICs across models. The reason behind this is that the threshold parameter φ

captures the effects of positive and negative values on the long-term volatility. According to the

values of this parameter, the long-term component is mostly influenced by positive values of PPI,

whereas the opposite is true for IP. This result is in line with the results of Section 6.2, where it was

stated that an increase in industrial production decreases the stock market volatility. Another inter-

esting result is that value of θl is higher for all new component models compared to the traditional

GARCH-MIDAS model. For example, the latter claims that a one percent increase in inflation has no
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6. EMPIRICAL RESULTS Breaking Down Stock Market Volatility

effect on the stock market volatility during the next quarter. The estimates of the GARCH-MIDAS-t

model, on the other hand, suggest that this causes a 1.8% increase in volatility. The GAS-MIDAS

and GARCH-AMIDAS follow this direction by a 1.4% and 1.9% increase, respectively. The differ-

ence in effects might be due to different underlying distributions of the models and the extra shape

parameters. Specifically, the shape parameter ν is for both the GAS(1,1) and GARCH(1,1) signifi-

cantly different from zero. This confirms the idea of Section 5.2 that the returns have the Student’s

t-distribution as underlying distribution due to their high peak and fat tails.

Another way to compare the component models is to assess their predictive power using an out-

of-sample forecasting exercise. The data has been split into two subsets: (i) a training set over the

period 1985-2008, and (ii) a testing set over 2009-2018. The parameters are estimated using the

training set and then fixed, whereafter they are used during the testing sample. There are three

forecast horizons of interest: 1-, 2- and 4-months ahead. These horizons ensure that models are

not only compared based on relatively small errors from the short-horizon, but also on long-run

errors.

The estimates of the MZ-regression, RMSE and MAE are shown in Table 9. The values in bold rep-

resent the lowest errors for a certain forecast horizon given the model specification. Similar to the

results in Section 6.2, it appears that the errors of the models with PPI and IP are smaller than those

with realized variance. They also show that the GARCH-MIDAS and GARCH-AMIDAS specifications

perform the best for 1-month ahead forecasts. More specifically, the former model works well with

realized variance, whereas the latter outperforms the other models with the macroeconomic vari-

ables. When the forecast horizon increases, the GARCH-MIDAS-t model seems to perform better

when using realized variance. An evident reason for this result is that the Student’s t-distribution

takes observations in its fatter tail into account. This means that it will not let the long-term com-

ponent increase drastically for large changes in returns. However, the GAS-MIDAS model performs

best for the 4-months ahead forecasts in almost all cases. This is due to the mathematical construc-

tion of the formula, which ensures that the score of the model is not influenced heavily by large

changes in returns.

These results are validated by the estimates of the MZ-regression. None of the models seem to

create accurate volatilities for the 1- and 2-month ahead forecasts. This is different for the 4-month

ahead forecasts where most models seem to fit the MZ-regression well. The AMIDAS specification

again beats the other models based on the joint hypothesis that c = 0 and ψ = 1, which implies that

the forecasts represent the actual values well.
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7. CONCLUSION Breaking Down Stock Market Volatility

7. Conclusion

This paper analyzes to which extend economic variables can explain movements in long-term stock

market volatility using the GARCH-MIDAS model. The main aim is to answer the research question

how the growth rates of production price index inflation and industrial production influence the

total volatility of daily U.S. stock returns. By validating the results of Engle et al. (2013), it is con-

firmed that the realized variance, producer price index and industrial production strongly influence

the long-term volatility. The overall effect of the realized variance on this component is positive,

taking into account that some parameters are possibly not identified. The macroeconomic variables

show two different effects. First, an increase in inflation during the current quarter leads to an in-

crease in stock market volatility in the next quarter. The other effect is a decrease in this long-term

component when the industrial production increases. This result shows the counter-cyclical pattern

of this variable, which is also observed in the research of Engle et al. (2013).

The economic interpretation of the GARCH-MIDAS model is determined by the variance ratios,

which show that the realized variance can overall explain most of the market’s volatility. For the

full sample, this contribution can reach around 45% when applying a rolling window. On the

other hand, only 38% can be attributed to the fixed span RV during the same period. The variance

ratios of the macroeconomic variables are relatively low for the full sample, but reveal a significant

contribution during 1953-1984. In fact, the models that use both levels and variances of producer

price index and industrial production perform better than models that use these series separately.

Sequentially, the quality of the new component models is determined based on their forecasting

abilities. More specifically, these models are estimated along with the traditional GARCH-MIDAS

model on data from the period 1985-2010, after which their fit is determined on data from 2009-

2018. The GARCH-AMIDAS model outperforms the GARCH-MIDAS model with macroeconomic

variables for 1- and 2-months ahead forecasts. The GAS-MIDAS model with Student’s t-distribution

consistently achieves the best results for 4-months ahead forecasts.

However, some limitations were revealed while performing this research. First of all, the solu-

tions from the optimization procedure may be found in local minima. As explained in Section 6.3,

the estimates in this paper differ significantly from those by Engle et al. (2013). The starting values

strongly determine the optimal outcomes, which influence the results in this research. It should be

noted that the interpretation of the variables stays similar, such that the conclusions remain valid.

A second limitation can be found in the data sets that are used to conduct this research. As men-
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7. CONCLUSION Breaking Down Stock Market Volatility

tioned in Section 5.1, the macroeconomic variables of this paper are not synchronized with those

of Engle et al. (2013). The reason behind this is that the series were publicly unavailable for the

period 1885-1919, such that not all results could be validated.

Due to the existence of these restrictions, further research is needed to get better insights in the

latest volatility component models. For example, the optimization procedure of the models can be

investigated more thoroughly to avoid solutions in local optima. Moreover, the GAS-MIDAS and

GARCH-AMIDAS models can be altered to find better specifications. This could be done by chang-

ing the Student’s t-distribution to another distribution to fit the GAS-MIDAS model better. Another

extension of the new component models is the inclusion of principal components of the macroe-

conomic series as explanatory variables. These implementations might enhance these models and

help investors to hedge their risk better than they do at the moment.
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A. DERIVATIONS Breaking Down Stock Market Volatility

A. Derivations

A.1. Log-Likelihood of Normal Distribution

The distribution of the returns is given by equation (10). If we assume that εit | Ii−1,t ∼ N (0,1),

then the log-likelihood function can be written as:

` =
T∑
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2π
e−ε

2
t

)

=
T∑
t=1

log

 1σt 1
√
2π
e
− (rt−µ)2

2σ2t


= −

T∑
t=1

[
log (σt) + log

(√
2π

)
+
(rt −µ)2

2σ2
t

]

= −1
2

T∑
t=1

[
log (τtgt) + log (2π) +

(rt −µ)2

τtgt

]

(22)

A.2. Log-Likelihood of Student’s t-Distribution

The distribution of the returns is given by equation (10). If we assume that εit | Ii−1,t ∼ t(ν), where

ν represents the degrees of freedom, then the log-likelihood function can be written as:

` =
T∑
t=1

log (f (rt))

=
T∑
t=1

log
(
1
σt
f (εt)

)

=
T∑
t=1

log

 1σt Γ (ν+12 )
√
νπΓ (ν2 )

(
1+

ε2t
ν

) ν+1
2


=

T∑
t=1

[
−1
2

log (τtgt) + log
(
Γ

(ν +1
2

))
− 1
2

log (νπ)− log
(
Γ

(ν
2

))
− ν +1

2
log

(
1+

ε2t
ν

)]

=
T∑
t=1

[
−1
2

log (τtgt] + log
(
Γ

(ν +1
2

))
− 1
2

log (νπ)− log
(
Γ

(ν
2

))
− ν +1

2
log

(
1+

(rt −µ)2

ντtgt

)]

(23)
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A.3. GAS: Student’s t-Distribution

Suppose that εit follows a Student’s t-distribution with ν degrees of freedom. The observation

log-density of εit conditional on git is then given by:

log p (εit |git;Φ) = log Γ

(ν +1
2

)
− log Γ

(ν
2

)
− 1
2

log (ν)− 1
2

log (π)

− 1
2

log (git)−
ν +1
2

log

1+ ε2it
(ν − 2)git

 (24)

where Γ (.) represents the gamma function. Following the notation of Creal et al. (2013), let ∇it be

the score which is given by:

∇it =
∂ log p (εit |git;Θ)

∂git

=
ε2it (ν +1)

2g2it (ν − 2)

1+ ε2it
(ν − 2)git

−1 − 1
2git

(25)

If the scaling matrix Sit is assumed to be the inverse of the Fisher information matrix, it must hold

that:

Sit = E

[
∂2 log p (εit |git;Θ)

∂git∂git

]−1
= −

2g2it (ν +3)
ν

(26)

Hence, the short-term component is updated recursively using:

gi+1,t = 1+α
(
1+3ν−1

) ν−1 +1

ν−1 + (1− 2ν−1)/ε2it
− 1

git + (α + β) (git − 1) , ν > 2 (27)

where the unconditional variance of git is again unity.
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B. Code

Run the pipeline

1. Main: starts the process by accepting user input for the time period and model specifications,

after which it calls each component model separately.

GARCH-MIDAS model

1. garchmidas frv.m: this function collects the daily stock returns, after which it returns the

optimal parameters for the GARCH-MIDAS model with fixed span RV by optimizing the log-

likelihood function.

2. garchmidas rrv.m: this function collects the daily stock returns, after which it returns the

optimal parameters for the GARCH-MIDAS model with rolling window RV by optimizing the

log-likelihood function.

3. log garchmidas frv.m: this function collects the daily stock returns, after which it returns

the optimal parameters for the log-specification of the GARCH-MIDAS model with fixed span

RV by optimizing the log-likelihood function.

4. log garchmidas rrv.m: this function collects the daily stock returns, after which it returns

the optimal parameters for the log-specification of the GARCH-MIDAS model with rolling

window RV by optimizing the log-likelihood function.

5. garchmidas level.m: this function collects the leveled macroeconomic variable of interest,

after which it returns the optimal parameters for the GARCH-MIDAS model by optimizing the

log-likelihood function.

6. garchmidas var.m: this function collects the macroeconomic variable of interest which is

expressed by its variance, after which it returns the optimal parameters for the GARCH-

MIDAS model by optimizing the log-likelihood function.

7. garchmidas combo.m: this function combines both levels and variances of a macroeconomic

variable of interest in a single equation, after which it returns the optimal parameters for the

GARCH-MIDAS model by optimizing the log-likelihood function.
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GAS-MIDAS model

1. gasmidas frv.m: this function collects the daily stock returns, after which it returns the opti-

mal parameters for the GAS-MIDAS model with fixed span RV by optimizing the log-likelihood

function.

2. gasmidas rrv.m: this function collects the daily stock returns, after which it returns the

optimal parameters for the GAS-MIDAS model with rolling window RV by optimizing the

log-likelihood function.

3. gasmidas level.m: this function collects the leveled macroeconomic variable of interest, after

which it returns the optimal parameters for the GAS-MIDAS model by optimizing the log-

likelihood function.

4. gasmidas var.m: this function collects the macroeconomic variable of interest which is ex-

pressed by its variance, after which it returns the optimal parameters for the GAS-MIDAS

model by optimizing the log-likelihood function.

GARCH-AMIDAS model

1. garchamidas frv.m: this function collects the daily stock returns, after which it returns the

optimal parameters for the GARCH-AMIDAS model with fixed span RV by optimizing the

log-likelihood function.

2. garchamidas rrv.m: this function collects the daily stock returns, after which it returns the

optimal parameters for the GARCH-AMIDAS model with rolling window RV by optimizing the

log-likelihood function.

3. garchamidas level.m: this function collects the leveled macroeconomic variable of interest,

after which it returns the optimal parameters for the GARCH-AMIDAS model by optimizing

the log-likelihood function.

4. garchamidas var.m: this function collects the macroeconomic variable of interest which is

expressed by its variance, after which it returns the optimal parameters for the GARCH-

AMIDAS model by optimizing the log-likelihood function.
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Forecasts

1. main forecast rv.m: accepts user input for the number of steps ahead that should be per-

formed and runs the forecasting functions that deal with realized variances.

2. forecast fix.m: this function performs the forecast for any volatility component model using

its fixed span specification, and returns the statistical measures as well as the forecast errors.

3. forecast roll.m: this function performs the forecast for any volatility component model using

its rolling window specification, and returns the statistical measures as well as the forecast

errors.

4. main forecast macro.m: accepts user input for the number of steps ahead that should be

performed and runs the forecasting functions that deal with macroeconomic variables.

5. forecast level.m: this function performs the forecast for any volatility component model

using the leveled macroeconomic variables, and returns the statistical measures as well as

the forecast errors.

6. forecast var.m: this function performs the forecast for any volatility component model using

those macroeconomic variables that are expressed as variances, and returns the statistical

measures as well as the forecast errors.

Log-likelihood functions

1. logl garch.m: calculates and returns the negative log-likelihood function of the GARCH-

MIDAS model using a normal distribution.

2. logl lgarch.m: calculates and returns the negative log-likelihood function of the log-specification

of the GARCH-MIDAS model using a normal distribution.

3. logl tgarch.m: calculates and returns the negative log-likelihood function of the GARCH-

MIDAS model using a Student’s t-distribution.

4. logl macro.m: calculates and returns the negative log-likelihood function of the GARCH-

MIDAS model with macroeconomic variables using a normal distribution.

5. logl tmacro.m: calculates and returns the negative log-likelihood function of the GARCH-

MIDAS model with macroeconomic variables using a Student’s t-distribution.
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6. logl combo.m: calculates and returns the negative log-likelihood function of the GARCH-

MIDAS model with both levels and variances as macroeconomic variables using a normal

distribution.

7. logl gas.m: calculates and returns the negative log-likelihood function of the GAS-MIDAS

model using a Student’s t-distribution.

8. logl amidas.m: calculates and returns the negative log-likelihood function of the GARCH-

AMIDAS model using a normal distribution.

Utils

1. get descriptives.m: returns the time series plots and descriptive statistics for a (macroeco-

nomic) variable of interest.

2. get subsample.m: returns a subsample of a table or array based on two dates.

3. unit garch.m: performs a GARCH(1,1) process based on the historical returns and estimates

of a period and returns a vector of short-term volatilities.

4. unit gas.m: performs a GAS(1,1) process based on the historical returns and estimates of a

period and returns a vector of short-term volatilities.

5. weight scheme.m: calculates and returns the weights for a K-lagged MIDAS model based on

either a Beta or exponential weighting function.

6. weights amidas.m: calculates and returns the weights for a K-lagged asymmetric MIDAS

model based on either a Beta or exponential weighting function.

Additional

1. get macros.m: returns the quarterly macroeconomic growth rates based on the original data

set.
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C. Additional Results

Table 10: Parameter estimates for the log-specification of the GARCH-MIDAS with realized variance.

Fixed Realized Variance

Sample µ α β θ ω ξ LLF BIC

1890-2010 0.00063 0.10508 0.87278 48.42501 2.60889 -9.65944 113,526.8 -6.7787
(16.70) (5.19) (43.86) (7.06) (17.98) (-65.10)

1890-1919 0.00053 0.15394 0.78829 49.01209 28.61624 -9.80716 31,786.3 -6.9358
(3.47) (2.27) (9.98) (3.62) (3.02) (-51.29)

1920-1952 0.00075 0.10403 0.86597 43.89966 3.92198 -9.58690 31,260.1 -6.4218
(5.56) (4.18) (35.65) (9.06) (11.57) (-50.91)

1953-1984 0.00059 0.09056 0.89363 108.33486 4.31592 -10.04408 28,697.4 -7.1293
(0.93) (10.47) (71.55) (1.95) (3.07) (-41.20)

1985-2010 0.00073 0.09318 0.88777 43.34235 2.61410 -9.50914 21.851,7 -6.6561
(2.47) (12.96) (95.22) (3.88) (1.38) (-69.46)

1953-2010 0.00064 0.08764 0.89995 81.63492 0.90728 -9.77094 50,536.5 -6.9184
(12.03) (18.54) (159.09) (5.10) (2.35) (-72.82)

Rolling Realized Variance

Sample µ α β θ ω ξ LLF BIC

1890-2010 0.00062 0.10548 0.87118 55.44253 3.03702 -9.69020 113,989.1 -6.7810
(16.92) (28.41) (197.49) (33.33) (86.42) (-155.32)

1890-1919 0.00052 0.15470 0.77641 79.74407 22.12404 -9.95525 32,251.3 -6.9426
(5.42) (14.55) (66.75) (16.06) (12.47) (-172.24)

1920-1952 0.00074 0.10376 0.86725 49.76224 3.37309 -9.56545 31,629.0 -6.4205
(6.72) (4.01) (25.44) (6.36) (9.84) (-54.50)

1953-1984 0.00062 0.09410 0.88527 137.51987 6.85352 -10.21339 28,877.3 -7.1341
(8.55) (1.60) (14.59) (5.28) (4.39) (-16.15)

1985-2010 0.00072 0.09412 0.88442 41.01723 3.40478 -9.54751 21,633.4 -6.6504
(6.71) (4.77) (33.28) (8.27) (1.17) (-59.63)

1953-2010 0.00065 0.08777 0.90035 93.07176 0.64364 -9.81065 50,713.6 -6.9213
(11.03) (19.71) (178.21) (17.88) (7.16) (-88.01)

Notes. The GARCH-MIDAS estimates are created using four MIDAS lag years. The values in parentheses are robust
t-statistics which are determined using HAC standard errors. LLF represents the log-likelihood function and BIC the
Bayesian Information Criterion.
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