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Abstract

This paper investigates macroeconomic effects on the volatility of the S&P500 stock market index
in the GARCH-MIDAS setup of Engle et al. (2013). This setup is extended to a two-regime
Markov-switching model. The results indicate a significant effect of macroeconomic variables
on volatility. There are four variables leading volatility: real consumption, consumer sentiment,
housing starts and the term spread. Implementation of the Markov-switching extensions shows
that a second regime primarily corresponds to “outliers” in volatility. Descriptively it is on par
with the single-regime GARCH-MIDAS in the 2000-2010 period, but in terms of forecasting the
regime-switching model is inferior, with decreasing accuracy as the forecast horizon increases.
This suggests that regime information is sufficiently contained in the macroeconomic variables,
such that explicitly accounting for regimes becomes unnecessary when considering a diversified
stock index for a developed country.
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1 Introduction

The vast majority of individuals are risk-averse and would thus most likely prefer to see a steady

increase in their wealth as opposed to large upward or downward swings. Spikes in volatility, the

degree of variability of returns to an investment (commonly measured as the variance of returns),

suggest stable returns are unlikely and large swings in wealth are more probable. Consequently,

volatility is a term often associated with anguish by individuals who do not want to face the risk

of large losses. On the other hand, there are antifragile (Taleb, 2012) elements whose potential is

unlocked in the face of volatility. One must only think of the derivatives market, where deeply out-

of-the-money options can see significant gains in value as volatility increases, due to an increased

probability of maturing in-the-money. Similarly, active strategy hedge funds would consider low

volatility periods dangerous to their profits. This is corroborated by the rise in passive exchange-

traded funds (ETFs), and decreasing assets under management by the hedge fund industry in

the post-2008 global financial crisis volatility lull. The implication of these various complicated

economic relationships to volatility is that forecasting volatility levels is of crucial importance, not

just in the short-run but also in the long-term. Asset managers will be keen on rebalancing portfolios

to optimise their risk-return tradeoff in preparation for changes in volatility levels. Failure to do so

could result not only in decreased profits but might lead to investors pulling their money from the

funds. Consequently, volatility prediction and being able to prepare in advance is a competitive

edge for any investor and fund manager alike. Therefore, the implementation of strong predictive

models for volatility is crucial in light of the fact that asset managers are predicted to be in charge

of more than USD100 trillion in global assets under management by 2020 (PWC, 2017).

The analysis and forecasting of volatility has come a long way since the introduction of the

Generalized Autoregressive Conditional Heteroskedasticity (GARCH) models by Engle (1982) and

Bollerslev (1986). However, the link between stock market volatility and macroeconomic factors

had already been postulated by Officer in 1973 and subsequently by Schwert in his article “Why

does stock market volatility change over time?” (1989). Only in 2013 did Engle, Ghysels, and Sohn

address this parsimoniously by incorporating macroeconomic factors into the GARCH-class models

through a MIDAS (MIxed DAta Sampling) term. They showed that the inclusion of macroeconomic

factors significantly improves volatility estimates, and improves the accuracy of volatility predictions

at long horizons. However, the model developed by Engle et al. is still susceptible to structural

breaks in the volatility process, decreasing the accuracy of forecasts if the break goes undetected, an

issue crucial to risk-management (see Andreou & Ghysels (2003) or Ang & Timmermann (2012)).

In this paper, I develop the Markov-switching GARCH-MIDAS (MS-GM) model as an extension

of Engle, Ghysels and Sohn’s approach. This model incorporates different volatility regimes in

order to improve structural stability and potentially account for structural breaks. In fact, regime-

switching models are one type of stochastic break process in which there are multiple different

data generating processes that “mix” at each point in time depending on a Markov chain. The

motivation for specifically using a two-regime Markov-switching model is the relation of volatility to

the business cycle. Volatility is countercyclical, implying that it is higher during recession periods
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as opposed to periods of economic growth. In fact, it is hypothesised that the underlying volatility

process differs during booms and busts, in the sense that it would be expected that during a

downturn there is a GARCH process with higher unconditional variance, while during an upswing

the underlying GARCH process has a lower unconditional variance. Indeed, Hamilton & Lin (1996)

find volatility to be higher during recessions. The effect of modelling this way is that forecasts are

improved, especially in the short-term (e.g. see Hamilton & Susmel (1994) or Klaassen (2002)).

First, the results of Conrad & Loch are replicated to show that the GARCH-MIDAS implemen-

tation is correct. Their paper is chosen, as opposed to the original paper of Engle et al. (2013),

as they apply a wider selection of macroeconomic variables, which give more flexibility in model

choice in case one macroeconomic factor is rejected due to identification issues (explained in section

4.2). In fact, the original paper by Engle et al. (2013) is a subset of this paper, as Conrad and Loch

also consider the industrial production and inflation time series, akin to Engle et Al.

This extension is important to the scientific community as a regime-switching model has only

been partially implemented by Pan et Al. (2017) in an application to the oil markets. Most impor-

tantly, the MS-GM model nests both the simple GARCH process and the single-regime GARCH-

MIDAS, consequently it could serve as a basis for further developing a more generalised model.

This paper proceeds as follows: looking at the volatility of the S&P500 index, it is determined

what kind of macroeconomic effects on volatility exist. Thereafter the MS-GM model is estimated

over the same period and macroeconomic variables. The in-sample fit of the MS-GM model is

assessed and contrasted with the single-regime model. Thereafter, the forecasting performance of

both variants is investigated in a short-term and long-term scenario. Summa sumarum, an answer

to the following research question is sought:

Does a Markov-switching GARCH-MIDAS volatility model improve upon the descriptive and

predictive performance of the GARCH-MIDAS of Engle et al. (2013)?

Given the results of the respective models, it is found that, as with Engle et al. (2013) and

Conrad & Loch (2015), macroeconomic variables have a significant influence on volatility. In

fact, the consumer sentiment, real consumption, housing starts and term spread actually contain

leading information for volatility. Implementation of the Markov-switching extensions shows that

descriptively it is on par with the fit of the single-regime GARCH-MIDAS. However, in terms

of forecasting the regime-switching model is inferior. This suggests that regime information is

sufficiently contained in the macroeconomic variables, such that explicitly accounting for regimes

becomes unnecessary when considering a diversified stock index for a developed country.

The remainder of the paper is structured as follows: section 2 outlines the state of current

research and embeds the MS-GM. Section 3 gives an overview of the data under investigation, while

section 4 outlines the methodology for the MS-GM model and how the model will be evaluated.

In section 5 the results of the model implementation are presented and analysed. Lastly, section 6

concludes and suggests some further avenues for research.
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2 Literature Review

The use of Autoregressive Conditional Heteroskedasticity (ARCH) models to capture the persis-

tence and clustering in volatility dates back to the seminal work of Engle (1982). Since this time,

the Generalized ARCH (GARCH) class models developed by Bollerslev (1986) have been a staple

in the analysis of volatility, together with stochastic volatility models. Over the course of time,

they have been applied and extended numerously, for instance through the exponential-GARCH

variation of Nelson (1991), and the asymmetric GARCH of Engle & Ng (1993). However, as

Schwert (1989) points out, stock market volatility is linked to macroeconomic activity. In fact, it

is empirically suggested that volatility is better described by component models that use a form

of long-term volatility. Consequently, several models have been proposed to achieve exactly this

goal. Engle & Lee (1999) develop an additive mean-reverting volatility model, with a long-term

mean component and short-term transitory component modeled by different GARCH(1,1) pro-

cesses. Several others have also proposed a variety of two-factor models: Ding & Granger (1996)

propose a class of long-memory models, Alizadeh et al. (2002) use price-range based stochastic

volatility models, Chernov et al. (2003) consider multiple stochastic volatility factors, and Adrian

& Rosenberg (2008) consider an additive model of short and long-run volatility. Despite these

innovations, the major innovations for GARCH-type processes came in 2008 and 2013. In 2008,

Engle and Rangel propose the multiplicative two-component spline GARCH, which uses a gradu-

ally changing deterministic component, and a short-term GARCH. Subsequently, in 2013, Engle,

Ghysels, and Sohn develop the GARCH-MIDAS (MIxed DAta Sampling) model, that facilitates

a direct inclusion of low-frequency macroeconomic data into the long-term volatility component.

Specifically, it makes use of the standard GARCH(1,1) process in modelling short-term volatility,

and a MIDAS term developed by Ghysels et al. (2006) for the long-term process. Engle et al.

find that the macroeconomic series they include have an approximately 30% contribution to the

volatility in the most recent period, while it accounts for roughly half of the predicted volatility

across their entire sample. Most prominent is the improved forecasting ability when considering

longer-term horizons. When comparing the mean-squared forecasting error of the models including

a macroeconomic variable with those of the spline-GARCH they find it to be consistently lower.

Since 2013, the GARCH-MIDAS model has been applied in multiple contexts. Asgharian et

al. (2013) extend the analysis of macroeconomic effects by looking at the principal components

of macroeconomic as a dimension-reduction technique. They suggest this improves the predictive

quality of the model, however, this is contested by Conrad & Loch (2015) who don’t find signif-

icant improvements. In fact, Conrad & Loch (2015) apply the GARCH-MIDAS to a wide set of

macroeconomic variables related to the United States. They find these variables to be significant

influences on volatility, and are able to categorise them into leading (e.g. housing starts) and

coincidental variables for volatility based on their weighting schemes, which reflect the counter-

cyclical nature of volatility. There are also several applications to the Chinese market, including

inflation and production (Girardin & Joyeux, 2013), and the effect of “hot money” (Wei, Yu, et

al., 2017). In turn, Conrad et al. (2018) consider cryptocurrencies and their long-term components.
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Furthermore, a variety of applications focus on the analysis of commodities, such as agricultural

commodity price volatility investigated by Dönmez & Magrini (2013), oil price volatility in terms

of supply and demand characteristics (Pan et al., 2017), U.S. monetary policy (Amendola et al.,

2017), as well as economic policy uncertainty (Wei, Liu, et al., 2017). The majority of these papers

find a significant effect of the macroeconomic variables on the volatility series under consideration.

More importantly, these papers find that the volatility forecasts at longer horizons (for example in

Wei, Liu, et al. (2017)) are improved substantially over the basic GARCH models. There remains

debate as to parameter reduction in macroeconomic variables however, as the current literature

primarily finds including a single macroeconomic variable or realised variance as the most accurate

and parsimonious forecasting specification. Principal components have not significantly improved

the forecasting performance, indeed it appears that the model confidence set approach of Wei, Liu,

et al. could be the ideal solution for reducing parameters.

Despite the inclusion of a long-term macroeconomic component, Engle, Ghysels and Sohn (2013)

still find that “the full sample models are not immune to breaks” when using industrial production

and inflation as factors. Thus, they are forced to split their sample into sub-samples in order to

improve fit. Structural breaks in the volatility processes of asset prices have been found by multiple

researchers. A concise overview is provided in Andreou & Ghysels (2002), who find structural breaks

in the parameters aligned with the Russian and Asian crises. The fact that structural breaks are not

accounted for is a significant limitation in the GARCH-MIDAS model, as the majority of breaks can

only be determined ex-post, with one of the many testing methodologies provided (see for example

Bai & Perron (1998)). However, in order to forecast accurately, structural breaks should ideally be

accounted for in the model itself. Using a regime-switching model is one way to include some of

these potential breaks into the model specification and improve forecasting accuracy. Regimes are a

particular kind of structural break in which the overall data generating process depends on several

underlying volatility processes that are activated at each period based on a probability. This allows

for the discrete shifts in volatility that characterise a structural break. The reason for applying

regimes to model volatility, particularly the two-regime model, stems from the countercyclical

nature of volatility. Volatility tends to increase during economic downturns, and remain at low

levels during upswings. Thus two GARCH processes that differ in unconditional variance could

characterise the volatility process. Indeed, researchers such as Hamilton & Lin (1996) use a regime

approach and find volatility to be higher during recessions.

Regime-switching models determined by a Markov process have been introduced to economics

by Hamilton (1988; 1989). There are several key results worth mentioning in connection to volatility

modelling. Initially suggested by Diebold (1986), research into the existence of regimes in volatility

was conducted by Lamoreux & Lastrapes (1990) as well as Kim & Kon (1999), who find that the

introduction of different regimes into the GARCH process reduces the persistence parameters in

the GARCH process. Consequently, not accounting for such changes can lead to model misspec-

ification. On a theoretical level, Mikosch & Stărică (2004) as well as Hillebrand (2005) suggest

that the process driving the persistence in a GARCH(1,1) model to unity is due to non-stationarity
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brought about by “changes in the unconditional variance” of the underlying volatility process. This

suggests that the application of multiple regimes of different GARCH(1,1) processes in the short-

term volatility component could capture these changes in unconditional variance. Implementing

such a regime-changing model, Hamilton & Susmel (1994) find that it improves fit and forecasting,

and distinguish between high- and low-volatility regimes, where high volatility regimes are loosely

associated with recessions. Klaassen (2002) extends the generalised regime switching model de-

veloped by Gray (1996) to dollar exchange rates, and thus resolves an issue wherein single-regime

forecasts overestimate the level of volatility. Most recently, Haas et al. (2004) develop a new ap-

proach Markov-switching GARCH by using an ARCH(∞) specification. They also find significantly

improved forecasts in exchange rate volatility as the regimes are able to account for the changes in

unconditional variance observed by Hillebrand and Mikosch and Stărică. On the other hand, Haas

et al. (2004) does find that in some cases the regime estimates are not significant, such that it is

not necessarily the case that all volatility series have a regime structure.

In this paper, I propose a GARCH-MIDAS specification that includes a regime-switching un-

conditional variance component to improve the structural stability of the GARCH-MIDAS model

and account for some of the structural breaks in a parsimonious manner. In the single-regime model

of Engle et al., the macroeconomic variables create a time-varying unconditional variance. This

opens up the possibility that the information about different regimes, with a high and low volatil-

ity regime, is already contained in the macroeconomic information and thus explicitly modelling

regimes may not be necessary. In this regard, the following question is assessed:

(S1) Does the information in macroeconomic variables incorporate changes in regime sufficiently

to render a second regime insignificant?

If the regimes account for the majority of changes in the variance, then it could be that the

significance of the macroeconomic variables decreases or their weighting schemes differ because they

contain little additional information. In this respect, it is also interesting to investigate whether the

lead and coincidental weighting structures that were found in Conrad & Loch (2015) are retained

in the presence of regimes.

Based on the literature reviewed, as well as work by Stărică et al. (2005), it is likely that

if regimes are present then the inclusion of two regimes would lead to an improvement in the

forecasting ability of the GARCH-MIDAS model. In essence, two sub-questions will be investigated:

(S2) Does a Markov-switching GARCH-MIDAS specification improve short-term forecasting in

comparison to the single-regime GARCH-MIDAS specification?

(S3) Does a Markov-switching GARCH-MIDAS specification improve long-term forecasting in

comparison to the single-regime GARCH-MIDAS specification?
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3 Data

This section gives a comprehensive overview of the stock return and macroeconomic data used.

The period under consideration dates from 1st January 1969 until 31st December of 20101. The

data has been sourced from Conrad & Loch (2015) and was originally collected from the St. Louis

Federal Reserve Database (FRED), the University of Michigan, the Chicago Federal Reserve, the

Oxford MAN Institute, and the Bureau of Economic Analysis.

Stock Market Returns: The daily percentage log returns2, ri,t, based on close prices of the

United States’ S&P500 index are considered. Monthly realised volatility is then calculated as

RVt =
∑Nt

i=1 r
2
i,t, where Nt is the number of days in month t. Lastly, the true daily realised variance

based on 5-minute intra-day sub-sampling is collected across the period for the 1st January 2000

until the 31st December 2010 in order to assess forecasting performance. Realised variance is used

for forecast evaluation as volatility is not directly observable, and while the squared daily returns are

an unbiased proxy they are noisy. Realised variance on the other hand is unbiased and non-noisy.

Macroeconomic Variables: The eleven macroeconomic variables considered in this paper are

observed at a quarterly frequency, and include: the real consumption (CONS), the University

of Michigan’s Consumer Sentiment Index (CSI), real GDP, housing starts (HOUSE), inflation3

(INFL), the industrial production index (IPI), the Chicago Federal Reserve’s National Activity

Index (NAI), the Institute for Supply Management’s new orders index (NOI), corporate profit, the

term spread as measured by the difference in 10-year Treasury bond and three-month Treasury bill,

and lastly the unemployment rate (UNEMP). In order to apply the variables in the context of the

GARCH-MIDAS models, the following transformations are taken to guarantee stationarity based

on an augmented Dickey-Fuller test at the 10% significance level. The NAI, NOI, term spread and

RV are included without manipulation. The first difference of the CSI and unemployment rate are

taken. For all other variables the annualised percentage growth4 are considered. Table 1 contains

summary statistics and figure 1 shows time-series plots of the transformed variables.

The descriptive statistics lead to several immediate observations. Primarily, it appears that all

series exhibit excess kurtosis and skew in either direction. This suggests that none of these series

is normally distributed, and that observations around the mean are of extremely high frequency.

Additionally, for housing, profit, realised variance and term spread the maximum is of much larger

magnitude than the minimum, suggesting that outliers in these series could be present. If these

extreme observations correlate with spikes in volatility, then such outliers in macroeconomic series

(for instance the spikes in housing starts in the early 1980s) could be determinant for volatility in

the sense that they contain a lot of information.

1This sample includes the 1973 oil crisis, 1987 Black Monday, the 1997 Asian financial crisis, the 1998 Russian
financial crisis, the 1999 Argentine crisis, the dot-com bubble burst in 2001, and the 2008 Global Financial crisis

2100 × log(Pt/Pt−1), where Pt is the price level at time t
3measured by the change in GDP deflator
4100 ×

[
(Xt/Xt−1)4 − 1

]
, where Xt is the level of the macroeconomic variable at time t
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Table 1 – Descriptive statistics of the transformed data (1st Jan. 1969 - 31st Dec. 2010)

Obs. Max Mean Median Min SD Skew Kurtosis AC(1)

S&P500 Return Data

Returns 10852 10.957 0.023 0.041 -22.900 1.088 -1.019 28.611 0.015

Macroeconomic Variables

∆ CONS 172 10.185 2.947 3.351 -11.926 2.956 -1.249 7.427 0.078

CSI 172 16.267 -0.156 -0.333 -14.700 5.350 0.107 3.608 -0.078

∆ GDP 172 11.158 2.442 2.586 -10.367 3.190 -0.969 5.820 0.493

∆ HOUSE 172 236.050 5.890 -0.805 -69.026 43.567 1.792 10.105 0.124

INF 172 13.691 3.729 3.027 -0.327 2.628 1.206 4.208 0.826

∆ IPI 172 21.156 2.150 3.194 -29.033 6.641 -1.056 6.586 0.543

NAI 172 1.917 -0.017 0.117 -3.407 0.884 -1.409 6.243 0.734

NOI 172 71.900 54.744 55.850 27.267 7.726 -0.747 4.031 0.738

∆ PROFIT 172 180.271 12.328 11.409 -70.805 29.607 1.514 10.047 0.134

RV 172 1143.404 74.747 43.961 11.607 121.562 6.399 51.112 0.377

SPREAD 172 3.800 1.660 1.772 -1.430 1.281 -0.425 2.291 0.878

∆ UNEMP 172 1.767 0.031 -0.033 -0.9667 0.382 1.319 6.620 0.501

1 The daily realised variance series starts on 1st Jan. 2000
The presented statistics include the number of observations, maximum, mean, median, minimum, standard
deviation, skewness, kurtosis, and first-order autocorrelations. The delta, ∆, denote series that have been
transformed, as described in the data section (section 3).

Figure 1 – Time-series graphs of the transformed data. The shaded areas represent recessions as determined
by NBER

The time-series plots of figure 1 give a strong indication of the variation in each of the variables.

For instance, inflation appears to have a consistently declining shape whereas the consumer senti-
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ment index and term spread have a stronger series of peaks and troughs. Looking at the recession

shadings, in particular, the cyclical nature of the macroeconomic variables can be approximated.

For instance, housing starts, industrial production, and national activity are pro-cyclical in nature,

experiencing troughs during recessions. Meanwhile realised variance and unemployment a strongly

counter-cyclical, as would be expected. This suggests that the coefficients of the macroeconomic

variables could also correspond to the cyclical nature of the macroeconomic variables in contrast

to the counter-cyclical nature of volatility.

4 Methodology

This section outlines the econometric techniques applied within this paper. Firstly, the GARCH-

MIDAS (GM) model, as developed by Engle et al. (2013), is introduced (section 4.1). Thereafter, the

Markov-switching GARCH-MIDAS (MS-GM) model is developed (section 4.3), before presenting

the forecasting and evaluation techniques applied (sections 4.4 & 4.5).

4.1 The GARCH-MIDAS Model

To begin with, the return, ri,t, on the S&P500 on day i of month t is defined by

ri,t = µ+
√
τt × gi,tεi,t, (1)

where µ is the time-invariant mean return, and εi,t is a exogenous shock scaled by the product

of long-term volatility τt and short-term volatility gi,t. It should be noted that i ∈ {1, . . . , Nt},
where Nt is the number of days in quarter t ∈ {1, . . . , T}. In this context it is assumed that

the distribution of the shocks, εi,t, conditional on all available information is standard normal, i.e.

εi,t|Ri−1,t ∼ N(0, 1) with Ri−1,t denoting all information up to day i− 1 of month t.

Initially, the results of Conrad & Loch (2015) are replicated, thus their asymmetric threshold

GARCH model for the short-term volatility is applied. As noted in the introduction, Conrad &

Loch’s results include the variables of the original paper by Engle et al., thus making their results

a quasi-subset to those of Conrad & Loch. Hence, short-term volatility can be written as

gi,t = (1−α−β−γ/2) + (α+γI[ri−1,t−µ<0])
(ri−1,t − µ)2

τt
+βgi−1,t s.t. α > 0, β ≥ 0, α+β+γ/2 < 1, (2)

where IA is an indicator function equal to 1 if condition A is satisfied, and 0 otherwise. The

asymmetric GARCH(1,1) model implies that current volatility is the sum of a baseline level, 1−α−
β−γ/2, the returns shock of the prior period scaled by α with additional weight γ if negative, and the

prior period volatility scaled by β. In this model, α+β+γ/2 measures the persistence in volatility

and encapsulates the “long memory” characteristic. When using only a short-term GARCH model

to approximate the volatility process, the literature consistently finds α+ β + γ/2 ≈ 1, suggesting

a very high degree of persistence is to be expected. With the assumptions given in equation 2,
ri,t−µ√

τt
=
√
gi,tεi,t is a covariance-stationary asymmetric GARCH(1,1) process.

The innovation of Engle, Ghysels and Sohn (2013) lies in the definition of the long-term volatility
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component, τt, via a MIDAS (MIxed DAta Sampling) term. Specifically, τt can be summarised as

log(τt) = m+ θ

K∑
k=1

ϕk(ω1, ω2)Xt−k, (3)

where the log of the long-term volatility is the sum of a baseline constant m and K ≥ 0 lags of the

macroeconomic variable X weighted by the MIDAS weighting function ϕk(·) which is presented

in equation 4. An important implication is that the use of the multiplicative components gi,t and

τt imply that the GARCH-MIDAS in effect follows an asymmetric GARCH process with a time-

varying unconditional variance τt. This follows from the fact that the unconditional variance of

the short-term asymmetric GARCH (equation 2) is equal to 1. The use of log(τt) ensures that the

long-term volatility component is non-negative. Furthermore, it is assumed that the component τt

is covariance stationary.

The variable X in the definition of τt (equation 3) refers to one of the macroeconomic variables

introduced in the data section (section 3). The addition of more than one macroeconomic variable

is not considered, on the basis that Guérin and Marcellino (2013) find a severe non-convergence

problem as the number of parameters in Markov-switching MIDAS models increases.

The MIDAS weighting function is the beta function of Ghysels, Sinko and Valkanov (2006) and

can be written as

ϕk(ω1, ω2) =
(k/K)ω1−1(1− k/K)ω2−1∑K
j=1(j/K)ω1−1(1− j/K)ω2−1

. (4)

This formulation of the weighting function requires only two parameters and guarantees that all

weights are non-negative and sum up to 1. Additionally, it can generate a variety of forms including

equal weights (ω1 = ω2 = 1), a slow or fast decline, and hump shapes.

The restriction of ω2 ≥ 1 is enforced in order to guarantee that the weights are declining overall.

In the literature, it is also common to fix ω1 = 1, in order to reduce the number of parameters

and guarantee declining weights. However, Conrad & Loch (2015) discover hump-shaped weighting

structures for some variables5. Consequently, both a restricted and unrestricted estimation is

undertaken for each macroeconomic variable and compared via a likelihood ratio test.

The estimation of the GARCH-MIDAS model is done via quasi-maximum likelihood estimation

(QMLE) following the determination of exogenous parameters. Firstly, the number of lags is set at

K = 12 to replicate the work of Conrad & Loch (2015). Given K = 12, the remaining parameters

are gathered in the vector Θ = {α, β, γ,m, θ, ω1, ω2}. The log-likelihood function given by

LLF(Θ) = −1

2

T∑
t=1

Nt∑
i=1

log(2π) + log(τt(Ri−1,t) gi,t(Ri−1,t)) +
ri,t − µ

τt(Ri−1,t) gi,t(Ri−1,t)
(5)

is then maximised in these parameters. The estimation effectively begins on 01-01-1973, as this is

the first available observation of τt based on K = 12 lags, i.e. a three-year lag period.

5housing starts, consumer sentiment, and term spread
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4.2 Identification of the GARCH-MIDAS

It has been noted that identification issues can arise in the GARCH-MIDAS model. If θ → 0,

the parameters ω1 and ω2 are likely not identified, as they may take any value without altering

τt. To fully resolve the issue of non-identification is beyond the scope of this paper. However, two

measures are taken in order to reduce the likelihood of suffering from non-identification. In the

first place, a global optimisation algorithm6 is used. This should increase the likelihood of having

the correct ωj in case of non-identification as a larger variety of starting values are accounted for

such that the QMLE optimum is less likely to be local. This means that even with θ → 0 it is

more probable to find the correct ωi. Furthermore, based on the work of Andrews & Cheng (2012),

an identification-category selection (ICS) procedure is applied to determine whether θ is finite, and

thus weakly-identified or unidentified. This requires the the calculation of An, which is defined by

An =
(
nθ̂′nΣ̂−1′θθ,nθ̂n/dθ

) 1
2

, (6)

where Σ̂−1
′θθ,n is the upper-left dθ quadrant of the variance of θ. In the case of the GARCH-MIDAS

model only θ is considered as the key parameter, such that the formulation of An reduces to the

t-statistic of θ. An is then compared to critical value κn = (lnn)−
1
2 = (ln 9592)−

1
2 = 3.028, where

n = 9592 is the number of dates for which volatility is estimated. If An > κn the model is considered

identified, and normal analysis ensues. Else, the model with this specific macroeconomic variable

will be considered unidentified, and not further treated.

4.3 The Markov-Switching GARCH-MIDAS Model

Time-series of volatilities often show evidence of multiple structural breaks. Regime switches are

one type of structural break that can occur, and are useful in volatility modelling due to the

countercyclical nature of volatility, as explained in the theoretical framework (section 2). In this

paper the GARCH-MIDAS model is extended to a two-regime Markov-switching GARCH-MIDAS

(MS-GM) model, where regimes have different unconditional variances.

In order to allow for regimes in the short-term volatility component, it is assumed that gi,t
depends on the latent and unobservable process si,t, which can take values j ∈ {0, 1} at each point

in time. This implies that gi,t now takes the form of

g
(j)
i,t = α0j + (α1 + γ1[ri−1,t−µ<0])

(ri−1,t − µ)2

τt
+ βgi−1,t s.t. α1j , βj ≥ 0, (7)

where the Asymmetric GARCH(1,1) process includes a constant for the unconditional variance,
α0j

1−α1−β−γ/2 , that depends on the realisation si,t = j. The latent process si,t is governed by a

first-order ergodic7 homogeneous Markov Chain with probability transition matrix

P =

 p00 1− p00
1− p11 p11

 , (8)

6The basinhopping approach of the Scipy package in Python, which is based on the work of Wales & Doye (1997)
7The assumption of ergodicity is required for the Hamilton filter applied to calculate the recursive smooth inference

probabilities in the Expectation Maximisation Algorithm
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where pij = P(si,t = j|si−1,t = i), implying that the current state of si,t depends solely on the prior

state of the latent variable, si−1,t.

This new GARCH(1,1) model suffers from the issue of path-dependence, due to the presence

of gi−1,t, which depends on the previous state of si,t. This problem has been approached by Gray

(1996) and Klaassen (2002) but their solutions suffer from analytical intractability according to

Haas et al. (2004), whose solution of re-writing of the model as an ARCH(∞) is thus followed.

In order to re-write the GARCH process the restriction max{β0, β1} < 1 is imposed. This

should have no tangible effect on the resulting parameter estimates as it is commonly observed

that α+ β ≈ 1, but persistence remains below one. Additionally, Lamoreux and Lastrapes (1990)

find that the estimates of the persistence parameter, α + β, decline as regimes are introduced.

Given the restriction, the GARCH(1,1) model can be reformulated into an ARCH(∞) formulation

where g
(j)
i,t only depends on the parameters of regime j that can be written as

g
(j)
i,t = α0j(1−βj)−1 +α1

∞∑
q=1

βq−1
(ri−q,t − µ)2

τt
+γ

∞∑
q=1

βq−11[ri−q,t−µ<0]
(ri−q,t − µ)2

τt
s.t. α1j , βj ≥ 0. (9)

In equation 9, the elements of the summation term are considered 0 up to the point i = 1, t = 1

where the sample data starts. The implementation of the MS-GM model requires that in the long-

term volatility component, τt, the restriction m = 0 is applied. This is done in order for α0j to

be identified, as the regime-switch includes the constants in g
(j)
i,t , thus the additional constant m in

the τt specification would interfere.

Based on the work of Pan et al. (2017), the parameters are estimated by maximising the log-

likelihood of equation 10. In order to avoid starting value dependency, this is once again optimised

across several starting values through the basinhopping algorithm. This also aims to avoid the

numerous local-minima that can occur in the n2 different possible paths for the latent process s.

The likelihood function can be written as

log(L(RNt,T ; Γ)) =
T∑
t=1

Nt∑
i=1

log[P(si,t = 0 | Ri−1,t)f(ri,t | si,t = 0, Ri−1,t; Γ) (10)

+ P(si,t = 1 | Ri−1,t)f(ri,t | si,t = 1, Ri−1,t; Γ)],

where f(·) represents the density function of the normal distribution.

The probability P(si,t = j | Ri−1,t) is determined recursively by applying a Hamilton filter.

Specifically, using the formulation of equation 11, the inference and one-step forecast probabilities

are calculated by the recursions of equations 12 and 13.

Ωi,t|i,t =

P(si,t = 0 | Ri,t)

P(si,t = 1 | Ri,t)

 (11)

Ωi,t|i,t =
[
Ω′i,t|i−1,tfi,t

]−1
Ωi,t|i−1,t � fi,t (12)

Ωi+1,t|i,t = P ′Ωi,t|i,t (13)

12



Where � denotes the Hadamard (elementwise) product of two matrices of the same dimension.

4.4 Forecasting

In order to compare the single-regime and two-regime GARCH-MIDAS models, short-term and

long-term forecasting accuracy is considered. For the case of short-term forecasting, the 15-step

ahead forecast is considered. Whereas for the case of long-term forecasting the 75- and 125-step

forecasts are evaluated. These values correspond roughly to three-weeks, three months and five

months in calendar time, assuming that there are five trading days per week.

Forecasting with the single-regime GARCH-MIDAS follows the straightforward point-forecast

methods of a GARCH model. The asymmetric h-step ahead forecast can be formulated as

ĝi+h,t|Ri,t
= 1 +

(
α+ β +

1

2
γ

)h−1
(gi+1,t − 1). (14)

With the GARCH-MIDAS, forecasts of volatility also depend on τ . As with the GARCH

models, the one-step-ahead τt+1 is predetermined at point t. This means that for the 15-, 75- and

125-day horizons τt is determined a priori. Forecasting τt would be beyond the scope of this paper,

as this requires direct forecasts of macroeconomic variables. It is common practice in the literature

to thus take τt+q = τt+1 ∀q > 1 (for instance in Conrad & Loch (2015)).

In the two-regime Markov-switching model, the h-step ahead forecast takes a slightly different

from, namely

E [τtgi+h,t | Ri,t] = τtE [gi+h,t | Ri,t]

= τt

[
P(si+h,t = 0|Ri,t)E(g

(0)
i+h,t | Ri,t) + P(si+h,t = 1|Ri,t)E(g

(1)
i+h,t | Ri,t)

]
. (15)

In short, the h-step forecast is calculated for each regime separately, and then the weighted by the

probability of being in regime j ∈ 0, 1 in h periods.

The h-step forecast for each regime can thus be written as

E(g
(j)
i+h,t | Ri,t) = α0j(1− β)−1 + α1

∞∑
q=1+h

βq−1j

(ri−q,t − µ)2

τt
+ γ

∞∑
q=1+h

βq−11[ri−q,t−µ<0]
(ri−q,t − µ)2

τt
, (16)

which follows from the ARCH(∞) representation of section 4.3. This representation guarantees the

information is restricted to historical information available at day i of quarter t and is calculated for

both regimes individually. it should be noted that this expectation converges to the unconditional

volatility of each regime as h → ∞. The probability of being in each regime h days ahead can be

calculated via

Ωi+h,t|Ri,t
= (P ′)h × Ωi,t|i,t. (17)

The forecasts will proceed by estimating the parameters of the model on the sample leading up

to 1st January 1999. Thereafter, forecasts starting with the 1st January 2000 will be generated for

each of the models. This guarantees that no future information is included in the model estimates,

and should thus give a more powerful assessment of the out-of-sample performance.

The forecasts will be evaluated against the intra-day subsampled realised variance using the

13



mean squared prediction error (MSPE, equation 18) as well as the QLIKE (equation 19) criterion

from Conrad & Kleen (2018), who find that the QLIKE is the preferred criterion for evaluating

volatility forecasts on a theoretical level. This is because the QLIKE criterion is robust to noise

in the volatility proxy. This is in line with the earlier findings of Patton (2011). For both criteria,

lower statistics are preferable and perfect forecasts would result in both being equal to zero.

MSPE =
1

N

N∑
n=1

(σ2
n − σ̂2

n)2 (18)

QLIKE =
1

N

N∑
n=1

[
σ2
n

σ̂2
n

− ln

(
σ2
n

σ̂2
n

)
− 1

]
(19)

For completeness the Mincer-Zarnowitz regression, σ2 = β0 + β1σ̂
2 where σ̂2 is the volatility

forecast and σ2 is the true volatility proxied by the intra-day subsampled realised variance, will also

be considered. However, it will only be considered whether the parameter estimates of the linear

regression are in line with expectations (i.e. intercept β0 = 0 and slope β1 = 1). The R2 measure

is not considered as Conrad & Kleen (2018) find it to be unreliable due to the R2 being high when

the squared error is also high.

4.5 Evaluation & Interpretation

There are several ways in which the results of the estimated models will be evaluated. Given that a

model is identified, parameter significance is assessed through t-statistics. Robust standard errors

are computed by making use of the asymptotic theory of direct Maximum Likelihood Estimation.

Specifically, the numerical approximation8 of the Hessian matrix is used.

For an economic interpretation, a variance decomposition approach is considered. Specifically,

based on Engle et al. (2013), the variance ratio of equation 20 is calculated for each model. A

higher variance ratio implies that the long-term component explains a larger share of the expected

volatility. However, it should be noted that a low variance ratio does not imply this is not the case,

as it could be that the underlying variable moves very smoothly but still determines volatility.

VAR(X) =
V ar(log(τt))

V ar(log(τtgi,t))
(20)

Lastly, the in-sample fit of the models will be contrasted. Using the realised variance across

the period from the 1st of January 2000 onward, all identified models will be evaluated against

the realised variance for this period. The assessment will take the same form as the forecasting

evaluation. Specifically, the mean squared error (analogous to the MSPE, equation 18) and the

QLIKE criterion (equation 19) are evaluated. Additionally, the Mincer-Zarnowitz regression will

be performed. This investigation should lead to an answer as to whether the Markov-switching

model can better describe the underlying volatility process.

8This makes use of the numdifftools package in Python
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5 Results

This section outlines the empirical results obtained, and will proceed as follows: first, the results

of the single-regime GARCH-MIDAS are presented in section 5.1. This is a replication and slight

improvement of the results already obtained by Conrad & Loch (2015), and serves to show that

the model was implemented correctly. Thereafter, section 5.2 outlines the in-sample performance

of the Markov-switching GARCH-MIDAS. Finally, sections 5.3 and 5.4 compare the in-sample and

forecasting performance of these models.

5.1 The single-regime GARCH-MIDAS

The results of the single-regime GARCH-MIDAS are presented in three ways: table 2 presents the

parameters of the model as estimated by quasi-maximum likelihood, while figure 2 visualises the

implied weighting structures in the MIDAS term and figure 3 shows the time series graphs of the

annualised volatility as determined by the chosen models. In order to analyse the results, first,

the short-term GARCH is analysed, before considering the long-term component in terms of the

countercyclical nature of volatility, identification issues as well as the lead-lag structures in τt.

Beginning with the short-term volatility component, all models exhibit similar coefficients in

the short-term asymmetric threshold GARCH(1,1) component (table 2). Namely, µ ≈ 0.026, α ≈
0.019, β ≈ 0.91, and γ ≈ 0.095, all of which are significant at the 1% level. These results also mirror

those of Conrad & Loch (2015) exactly. In line with the general findings of single-regime GARCH

models, persistence is approaching unity, i.e. α+β+ 1
2γ ≈ 0.985. Ostensibly, this is due to the fact

that regimes are not accounted for, as the addition of the long-term MIDAS does not appear to

affect the finding of near-unity persistence. As is common to threshold GARCH models, negative

return shocks have a larger effect on volatility than positive ones due to the leverage effect.

The true heart of the GARCH-MIDAS models lies in the long-term component, τt. Economically

speaking, the sign of the θ coefficient for the MIDAS term including macroeconomic volatility reveals

the counter-cyclical nature of volatility. For indicators that are generally pro-cyclical, such as real

consumption, housing starts, national activity or the term spread, the sign of θ is negative. This

implies that volatility increases whenever there is a decrease in these indicators which is associated

with an economic contraction. Meanwhile, generally counter-cyclical macroeconomic indicators,

such as realised variance, inflation, and unemployment, have positive θ coefficients. In fact, the

signs of the θ parameters correspond to the type and cyclicality of the macroeconomic variables in

lists of business cycle indicators such as those of Stock & Watson (1989) or Hertzberg & Beckman

(1989). Visually, this is captured loosely in the volatility spikes that appear around periods of

recession (grey shaded areas in figure 3).

Almost all coefficients θ are significant at the 1% level. Based on the identification test of

Andrews & Cheng (2012) mentioned in the methodology (section 4.2) it is found that the model

with inflation and the restricted case of the real consumption models are not identified. The effect

of this can be seen in the undynamic flat shape of the annualised τt for inflation in figure 3, as

compared to those of the term spread or consumer sentiment index. Consequently, the inflation
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model is dropped from further analysis.

Overall, based on the Bayesian Information Criterion it appears as though the restricted new

orders index, as well as the unrestricted term spread, offer the best model fit. Unsurprisingly, the

unidentified inflation model performs worst based on the BIC. It should be noted that the absolute

difference in BIC values is not very large for these different models, suggesting a very similar

fit. The variance ratios, on the other hand, offer a different picture. Here the housing starts, new

orders index, and term spread dominate the other models. Unemployment, consumption, and GDP

explain the lowest fraction of their respective models. This is in line with the idea of leading and

coincident indicators, as it could be hypothesised that leading indicators are more key in explaining

volatility than are coincident indicators such as unemployment.

Figure 2 – Restricted and unrestricted weighting schemes of the asymmetric simple GARCH-MIDAS of Conrad
& Loch (2015). Note that there is the restriction ω2 > 1. Orange lines represent the unrestricted case, while

blue lines represent the restricted case of ω1 = 1

The lead-lag structure of the macroeconomic models is akin to that found by Conrad & Loch

(2015). Specifically, the models using real consumption, the consumer sentiment index, housing

starts, and term spread have a hump shaped weighting structure (see figure 2), as determined by a
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likelihood ratio test with a 10% significance level. The weighting shape suggests that these variables

contain leading information for future volatility. For the remaining variables, the unrestricted

weighting scheme very closely mirrors that of the restricted case (see figure 2). Consequently, these

variables appear to be coincident indicators of the business cycles. This is confirmed by the inclusion

of consumer confidence, term spread, and housing starts in leading economic indicators such as that

of the OECD (2012). Interestingly, new manufacturing orders are also in the leading indicators

of Hertzberg & Beckman (1989), but the likelihood ratio test does not reject the restriction of

monotonically decreasing weights. In this sense, also the real consumption index is surprising, as

it is not in the index of variables. It should be noted that this is only a weak rejection of ω1 = 1,

whereas CSI, housing starts and term spread more strongly reject the restricted model.

Looking at the term spread first, the coefficient θ is negative, implying that an increase in the

term spread has a dampening effect on volatility. With a maximum weight of 0.195 on the 5th lag,

this means that a 1% increase in the term spread 5 quarters ago leads to a e−0.2425×0.1953 − 1 =

−0.046 ≈ 4.6% reduction in volatility. This effect makes economic sense, volatility is countercycli-

cal while the term spread is pro-cyclical. Researchers, including Estrella & Hardouvelis (1991),

have found that changes in the term spread are a predictor of future real economic activity. This

makes the term spread a predictive variable in the business cycle analysis, and thus also for coun-

tercyclical volatility. An interpretation of this could be taken along the following lines: a negative

or small term spread implies high short-term interest rates and low long-term interest rates. This

represents an excess demand for the long-term “safe haven” treasury bonds, which guarantees in-

terest payments at a fixed rate for a longer period of time. These portfolio allocation choices are

symptomatic of a lack of confidence in the future short-term state of the economy, which corre-

lates with higher variance in the returns of the stock-market, and thus volatility. Investigating the

term-spread volatility time-series of figure 3, shows that the long-term τ component mirrors the

volatility process very closely. Indeed, unlike some of the other variables it also moves with the

2001 dotcom bubble, which was concentrated in the technology sectors and thus might not have

such pronounced macroeconomic effect as other prior crises.

Considering housing starts, Leamer (2007) makes the case that these are an important leading

indicator for U.S. recessions. Kydland et al. (2016) suggests that housing starts are an important

indicator due to the high dependence on mortgage financing. From an intuitive standpoint, the

purchase or construction of a house is a large investment for the majority of individual households

in the United States. Assuming that the majority of individuals are risk-averse, a positive outlook

on the future potential of the economy and consequently increases in personal income and value

in the new home are important factors promoting a purchase decision. Thus increases in housing

starts reflect positive attitudes toward the future of the economy. Additionally, many housing

projects will be partially financed by mortgages in order to spread the payments for the real estate

across time. Hence, the available rate of financing is an important consideration in starting a

house. Mortgage rates, in turn, are negatively correlated with future GDP, such that in a low-rate

environment it is likely that an upturn will follow as more people start houses based on cheap
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Figure 3 – Time Series plots of both the annualised total volatility τtgi,t (blue) and the long-term component
τt (orange). For real consumption, CSI, housing starts and term spread the unrestricted model is used, for all
other variables the restriction ω1 = 1 applies. Grey shadings indicate the periods of recession, as determined by

the National Bureau of Economic Research

financing. The relationship of the interest rates and future GDP has been outlined for the term

spread already and is analogous here. The effects of this leading information are reflected in the

estimated volatility time series shown in figure 3. Here it can be seen that the annualised τ mirrors

the level of volatility extremely closely for the period until 1991. Thereafter, the dotcom bubble of

the late 1990s and early 2000s cause high volatility that was limited to the digital sector, and thus

isolated from the real economy. Meanwhile, there again is a very visible spike in volatility around

the 2008/9 financial crisis which depended heavily on mortgage-related derivatives. However, it

should be noted that the spike presented by housing is not as extreme as the actual volatility.

Concluding this analysis, it appears that the leading information of housing starts is thus reflected

in the GARCH-MIDAS through unrestricted weights and negative θ.

Lastly, the likelihood ratio test finds that the Consumer Sentiment Index, as well as real con-

sumption, are significantly better described by an unrestricted weighting scheme. As with the term

spread and housing start, it appears as though this variable contains information that leads the
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volatility process. From an economic perspective, this is not surprising. An increase in the consumer

sentiment index indicates a positive outlook on the economy from a consumer perspective. This

translates into a higher willingness to purchase new products. Most importantly, these indicators

imply that the savings rate of individuals has decreased and spending on goods and services has

increased. This, in turn, translates into increased production and profits, and potentially wages.

Improved economic conditions spell an upturn in the business cycle, and consequently dampening

of stock market volatility. The leading information may come from two factors. On the one hand,

an increased willingness to spend would also include larger items or services that may be linked to

larger periods of deliberation. Additionally, consumer sentiment might have a lagged response to

new information concerning the state of the economy. Combining these factors suggests that an

increase in consumer sentiment and real consumption will mark an extended period of willingness

to spend and improvement in the economy. A look at figure 3 suggests that the τ related to the

consumer sentiment index mirrors the shape of the volatility extremely well. Meanwhile, the real

consumption time series suggests that there is little variation in the long-term component, but the

changes that do occur mirror the changes in the volatility level. However, this might be a spurious

finding of leading information as generally real consumption is considered a coincidental or lagging

indicator of the business cycle.

Overall, the single-regime GARCH-MIDAS model presents economically reasonable results, with

leading business cycle indicators also leading volatility. Identification issues were not pronounced,

except for the case of inflation. Indeed, the inclusion of the macroeconomic variables explain

between five and twenty percent of the variance in volatility.

5.2 The Markov-Switching GARCH-MIDAS

In this section, the in-sample results of the two-regime Markov-switching GARCH-MIDAS are anal-

ysed. In first place, the short-term component is considered. Thereafter, the countercyclical nature

of volatility, parameter significance and identification issues are examined. Lastly, an investigation

into the effects of regime-switching is conducted. The parameter estimation results are presented

in table 3, with a visualisation of the volatility time-series for the identified models in figure 5 and

corresponding weighting structures in figure 4.

In terms of the short-term GARCH component, gi,t, observations similar to the single-regime

GARCH-MIDAS (section 5.1) can be made. Specifically, the parameters α1, β and γ are all

significant at the 1% level. These parameters are extremely similar across the different models,

with α1 ≈ 0.015, β ≈ 0.93, and γ ≈ 0.07 (see table 3). These results also show that persistence

remains high, at α1+β+ 1
2γ ≈ 0.98, which is almost identical to the single-regime GARCH–MIDAS.

This is to be expected9 as the only difference in the two short-term components is the unconditional

variance, modeled through the intercept α0j . However, it should be noted that the AR component

9The literature finds that the persistence decreases when regimes are incorporated into all the coefficients. This
is not done here due to convergence issues mentioned in section 4.3. Thus the same α1 and β is in both regimes, and
persistence does not necessarily need to decrease
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β has increased in comparison to the single-regime case. Additionally, in the regime-switching

case, the coefficients α1 and γ are smaller in magnitude, probably due to the fact that some of the

unexpected returns are accounted for by the different high and low volatility regimes. For instance,

when in a high volatility regime, “unexpected” returns would be less unexpected by virtue of the

high volatility regime, which implies that large swings in security prices, reflected in large and often

negative returns, are expected. The ratio of the two coefficients remains the same however, with

γ > 0 reflecting the leverage effect often observed with volatility.

Figure 4 – Time Series plots of both the annualised total volatility τtgi,t (blue) and the long-term component
τt (red) for the identified models in the two-regime Markov-switching setup. Additionally, for housing starts,
profit, term spread and unemployment, the unrestricted models are taken based on a likelihood ratio test. Grey

shadings indicate the periods of recession, as determined by the National Bureau of Economic Research

The counter-cyclical nature of volatility is confirmed again by the signs of the θ coefficients in

the two-regime GARCH-MIDAS. As discussed in the context of the results of the single-regime

GARCH-MIDAS, the macroeconomic variables that are pro-cyclical have a negative coefficient.

The same applies here, pro-cyclical variables such as the CSI, or NAU show negative θ, meanwhile

countercyclical variables such as inflation or RV have positive coefficients. The notable exception

to this is the model with unemployment. In the restricted model, the expected positive sign of θ

is confirmed, as unemployment is counter-cyclical, however in the unrestricted model the sign is

negative. At first glance, this seems economically counterintuitive. Considering the unrestricted

weighting scheme for unemployment (figure 4) it appears that the model is misspecified. Unlike

the steadily decreasing weighting scheme of the restricted model, the unrestricted model puts the

largest weight onto the furthest observation. This implies that the most important observation

stems from three years (12 quarters) prior to the date of the volatility that is estimated. When

considering the time-series plots of the change in the unemployment rate (figure 1 of section 3) this

suggests that the lag is so far back that the unemployment considered is actually in the “prior state”

of the business cycle. For instance, during the 2008-09 financial crisis, volatility was at an extreme

level and the economy in a recession (see figures 3 or 5), however, the unemployment change that

has most weights in the MIDAS term stem from the 2005-06 period when unemployment changes
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were, in fact, negative (figure 1). Consequently, the resulting long-term implication is that there

is a large positive τ , or in other words, a high unconditional variance. This suggests that while

unemployment is countercyclical, information from the prior business cycle might have predictive

power. In this respect, it is possible that the number of MIDAS lags, K = 12, is too small and

increasing this could result in a hump shape with a peak between 3-5 years as this is the common

length of a business cycle. An alternative explanation for this far lag could be that unemployment

lags the business cycle, as it often takes time before it is possible to release workers from a company.

Identification issues in the two-regime Markov-switching GARCH-MIDAS are much more pro-

nounced than in the single-regime GARCH-MIDAS. Based on the results in table 3 the majority

of the models are not identified. The models that remain identified are those which in the single-

regime setup rejected the restriction of ω1 = 1 and contain leading information for the volatility.

Additionally, for the spread, RV and unemployment both the restricted and unrestricted models are

identified. Likewise, the restricted profit model is identified. Inspecting the θ coefficients actually

reveals that all of the coefficients are of the same sign but of smaller magnitude in the two-regime

model as compared to the single-regime model (with the exception of unemployment, as detailed

above). In effect, this suggests that the information contained in these models was in part related

to explaining the changes in regimes, i.e. the sudden shifts in unconditional variance, such that

explicitly accounting for a regime-structure takes the place of this information as it is contained in

the macroeconomic variables. The result is that a very reduced set of models is available, and these

models contain additional information on either the state of the economy or of the stock market

that is relevant to the development of volatility across time. For instance, corporate profits could

be relevant in giving information about specific firm “health” in addition to the sudden changes in

unconditional variance that generally mark a regime switching model.

Using the handful of models that are identified (restricted profits and RV, as well as unrestricted

CSI, housing, unemployment, and spread), the structure of the regimes is now assessed. Overall,

the low volatility regime is represented by α00 ≈ 0.015, with a range of 0.0079 at the minimum and

0.0723 at the maximum. Meanwhile, the high volatility regime is not consistent among models.

There is a wide range of values represented, ranging from 0.45 to 4.17 in the case of the NOI. On

average, the low-volatility regime has α00 ≈ 0.015 and the high-volatility regime has α01 ≈ 0.6

(excluding the large NOI observations). This translates to annualised unconditional volatility of
√

252× 0.75 ≈ 13.75%, and
√

252× 30 ≈ 86.95% for the low- and high-volatility regimes respec-

tively. This shows the stark difference in baseline values of the two regimes, and considering the

small standard errors suggests that they are significantly different from one another (i.e. a 95%

confidence interval for both coefficients would not overlap).

The probability of remaining in the regime is high, at p00 ≈ 99%, for the low-volatility regime

while it is extremely small for the extremely high-volatility regime at p11 ≈ 20%. A t-test reveals

that p00 is in fact significantly different from 1 for all models, except for NOI, and that p11 is

significantly different from 0 for all models. Based on the probabilities and stark differences in

intercept, this suggests that regimes are indeed present. However, a view of figure 5, suggests a
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different picture. In figure 5, the upper time series plots show the volatility series based on the

two-regime estimates, while the lower plots show the probability of being in regime 1 at any point

in time, i.e. P(si,t = 1 | Ri,t).

Figure 5 – Time Series plots of both the annualised total volatility τtgi,t (blue) and the long-term component
τt (red) for the identified models in the two-regime Markov-switching setup. Additionally, for housing starts,
profit, term spread and unemployment, the unrestricted models are taken based on a likelihood ratio test. Grey

shadings indicate the periods of recession, as determined by the National Bureau of Economic Research

Hamilton (1990) refers to changes in the regime as “occasional discrete shifts”. These changes

in the regime are governed by probabilities, in this case through the workings of a Markov chain.

The workings of which are reflected in the results of the two-regime Markov-switching model. The

main finding related to the incorporation of a second regime is now presented.

Considering the annualised total volatility in comparison to the annualised long term compo-

nent in figure 5, it is clear that the total volatility closely resembles the shapes of the long-term

volatility, in effect, there is a GARCH process that moves around the long-term τ component.

This closely mirrors the results of the single-regime model (see figure 3), and is due to the same

explanations already given there. Incorporating a second regime, it appears that the probability of

the second high-volatility regime jumps upward whenever there is a short and extreme “shock” in

the annualised volatility that is not accompanied by a corresponding spike in the long-term com-

ponent. These shocks are characterised by a distinct lack of volatility buildup going into the spike.

To illustrate this phenomenon, consider the housing series in figure 5. In the lead up to 1980, there

are several spikes in the annualised volatility. However, these do not cause corresponding increases
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in the probability of high-volatility regime as there is a distinct increase in the volatility up until

that point. Meanwhile, events such as the 1987 black Monday stock crash which do not have a

build up of volatility across several weeks prior receive jumps in the probability of the high regime.

In effect, it appears that for all identified Markov-switching series the second regime is “active” for

the sudden jumps in volatility that are not fully explained or cannot be explained by the macroeco-

nomic information that governs the predominant volatility regime. Consequently, it appears that

looking only at the observations characterised in part by the high-volatility regimes, these are the

“outliers” to the macroeconomic explanation of volatility. In this sense, naming the regimes as

continuous regime, for the macroeconomically dominated regime, and shock regime for the high-

volatility outlier regime could be more apt. It is also likely that the model is overfitted because

the outliers in the sample are accounted for by the regime with increased unconditional variance.

Generally, overfitting results in improved in-sample fit with worse forecasting performance. This

is explored in the next sections. Overall, this suggests again that the macroeconomic variables

already contain sufficient information for the relation of the business cycle to volatility, such that

the modelling of regimes that generally correspond with the business cycle is not necessary.

The results found for the S&P500 differ from those obtained by Pan et al. (2017) who find

much higher persistence for the second regime when considering global oil markets. This is not

entirely surprising, however, as it is possible that through the aggregation of multiple stocks into

one index, the S&P might be less prone to speculative attacks as compared to the crude oil market.

Thus if a single stock experiences extreme swings, this does not imply the entire index will. This

aggregation is similar to the diversification that is often undertaken in portfolios, and suggests

that macroeconomic variables, which affect the majority of the index constituents, would have

a larger explanatory power. Meanwhile, the oil market might be less driven by macroeconomic

fundamentals (Pan et Al. only use production and a demand index) than the S&P is, as it is only

a single commodity. Hence, individual unexpected jumps in volatility might be more common, and

not explained by supply and demand but instead by regimes. As a consequence, incorporating

regimes into the oil market model of Pan et Al. might add more information, as compared to the

case of the S&P500 analysed here.

5.3 Comparison of In-Sample Fit

The in-sample fit of the single-regime and two-regime Markov-switching GARCH-MIDAS models

is compared analogously to the forecasts. Specifically, the intra-day sampled realised variance is

used as the baseline true volatility, and MSPE, QLIKE and the Mincer-Zarnowitz regression are

performed on the available data (1st January 2000 until the 31st December 2010). The results are

displayed in table 4.

The results show that both models fit the original data extremely well. In terms of the MSPE

and QLIKE statistics, the performance of all macroeconomic models in both regime cases is very

similar. The MSPE and QLIKE are slightly lower in the single-regime case, with an average of

4.1575 and 0.1980 in comparison to the 4.2417 and 0.2075 of the two-regime case.
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Table 4 – In-sample fit comparison of the single-regime GARCH-MIDAS and two-regime Markov-
switching GARCH-MIDAS models using intra-day Realised Variance as baseline (1st Jan. 2000 -

31st Dec. 2010)

Mincer–Zarnowitz

MSPE QLIKE β0 β1 R2

Single-Regime Results

Consumption (U) 4.2554 0.1983 0.0057 ( 0.12) 0.8023*** (60.91) 57.57%

CSI (U) 4.1880 0.2015 -0.0183 (-0.41) 0.8139*** (61.30) 57.87%

GDP 4.2059 0.1971 -0.0051 (-0.11) 0.8142*** (60.85) 57.52%

Housing (U) 4.1376 0.2050 -0.0493 (-1.10) 0.8314*** (61.18) 57.78%

IPI 4.1631 0.1989 -0.0205 (-0.46) 0.8217*** (61.12) 57.73%

NAI 4.1786 0.2007 -0.0131 (-0.30) 0.8077*** (61.86) 58.32%

NOI 4.1171 0.1936 -0.0140 (-0.32) 0.8229*** (61.63) 58.14%

Profit 4.1918 0.1890 0.0066 ( 0.15) 0.8217*** (60.39) 57.15%

RV 4.1394 0.2006 -0.0342 (-0.78) 0.8142*** (62.21) 58.60%

Term Spread (U) 3.9907 0.1945 -0.0455 (-1.02) 0.8671*** (61.25) 57.83%

Unemployment 4.1651 0.1983 -0.0164 (-0.37) 0.8200*** (61.16) 57.76%

Two-Regime Results

Housing (U) 4.2501 0.2153 -0.0978 (-2.09) 0.8715*** (57.97) 55.13%

Profit 4.2212 0.1991 -0.0563 (-1.21) 0.8689*** (58.08) 55.22%

RV 4.3552 0.2114 -0.0572 (-1.23) 0.8302*** (58.28) 55.40%

Term Spread (U) 4.1188 0.2042 -0.1014 (-2.17) 0.9079*** (58.43) 55.52%

Unemployment (U) 4.2765 0.2084 -0.0607 (-1.30) 0.8631*** (57.63) 54.84%

The table shows in-sample fit for the period 01-01-2000 until 31-12-2010 based on the model estimation
in comparison to the intra-day realised variance. MSPE refers to Mean Squared Prediction error. The
Mincer-Zarnowitz regression is of the form σ2 = β0 + β1σ̂2, where σ̂2 is the estimated volatility. The
values in brackets show the t-statistics of the respective coefficients. For the single- and two-regime mod-
els, the best-in-category variable has been bolded. The (U) denotes those models where the unrestricted
weighting scheme is used. Note: non-identified models have been omitted from this analysis.

Differences between the two models arise when considering the Mincer-Zarnowitz results. Over-

all the results appear similar, with intercepts that are not significantly different from 0 and slopes

that are significant and tend to 1. When looking more closely, it appears that the slope coeffi-

cients of the single-regime model are below those of the two-regime model, while the intercepts

are slightly higher. This implies that the two-regime model is less likely going to over-estimate

the magnitude of the volatility as compared to the single-regime model. The interpretation of the

second regime as shock regime is an explanation of this. Accounting for the shocks with discrete

jumps in unconditional variance means that the magnitude estimates in each regime are less af-

fected by aberrant observations. A visual representation of this is shown in figure 6, where single-

and two-regime term spread GARCH-MIDAS is overlaid on the realised variance. The figure shows

that the realised variance often is below the estimated volatility, which remains at the upper level

of the realised variance observations. Additionally, the peaks of the two-regime model (gold line in

figure 6) match the sudden jumps in volatility more closely than the single-regime model. However,

neither of the models fully match the discrete jumps of the 2000 to 2003 period or of the early

2008 period. The results of the in-sample assessment lead to a provisional answer to the question

of whether the information in macroeconomic variables incorporates regime changes (question S1
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Figure 6 – Time series plot of the Term Spread models in both the single and two-regime cases, overlaid on
the intra-day subsampled realised variance

of section 2). Namely that because the model fit between both cases is strikingly similar, this

suggests that there is not much additional information in modelling discrete regime switches as this

information appears to already be contained in the changes in macroeconomic variables.

5.4 Forecasting Performance Evaluation

In this section, the forecasting performance of the single- and two-regime GARCH-MIDAS models

are compared at three horizons, 15-days, 75-days, and 125-days. The dominance of the GARCH-

MIDAS over the simple GARCH(1,1) model in terms of long-horizon forecasting has been shown

multiple times in the literature (e.g. see Conrad & Loch (2015)) and is thus not repeated here. The

results of the forecasting exercise are shown in table 5 for the single-regime model, and in table 6

for the two-regime model. In both cases, the non-identified models have been omitted.

Beginning with the short-term forecasts, it can be stated that while the performance of the

single- and two-regime models is similar, the two-regime model performs slightly worse. This

becomes evident when considering the MSPE and QLIKE values. For the single-regime case, these

average 6.9 and 0.35 respectively, while for the two-regime case they are 7.5 and 0.5. The same

effect occurs with the long-term forecasts, where for 75-days the MSPE and QLIKE of the two-

regime are 15% and 380% higher than the single-regime forecasts. Similar observations are made

for the 125-day forecasts where differences are 12% and 260%.

Before evaluating the performance of the two-regime model, an investigation into the single-

regime performance is undertaken. Considering the forecasting framework (see equations 14 and 15

of section 4.4), it is observed that as the forecast horizon h increases, the forecast itself converges

to the unconditional variance, i.e. as h → ∞ ⇒ gi+h,t = E(gi+h,t | Ri,t) → 1 by the nature of

the Asymmetric GARCH(1,1) specification of Conrad & Loch (2015) (see equation 2 of section

4.1). Since the forecast of σ2 also depends on τt this implies that in the very long horizons,

27



Table 5 – Forecasting evaluation of the single-regime GARCH-MIDAS using intra-day
Realised Variance as baseline (1st Jan. 2000 - 31st Dec. 2010)

Mincer–Zarnowitz

MSPE QLIKE β0 β1 R2

15-Day Forecasts

Consumption (U) 0.834 0.948 0.298 (4.897) 0.742 (32.219) 27.5 %

CSI (U) 0.820 0.976 0.249 (4.081) 0.758 (33.000) 28.5 %

GDP 0.846 0.952 0.310 (5.038) 0.737 (31.329) 26.4 %

Housing (U) 0.825 0.946 0.184 (2.893) 0.792 (31.745) 26.9 %

IPI 0.839 0.957 0.284 (4.588) 0.751 (31.481) 26.6 %

NAI 0.831 0.943 0.262 (4.309) 0.734 (32.920) 28.4 %

NOI 0.842 0.937 0.311 (5.083) 0.741 (31.545) 26.7 %

Profit 0.891 0.951 0.416 (6.805) 0.680 (29.629) 24.3 %

RV 1.0 1.0 0.445 (7.034) 0.578 (27.210) 21.3 %

Term Spread (U) 0.817 0.968 0.177 (2.742) 0.927 (30.854) 25.8 %

Unemployment 0.835 0.946 0.277 (4.493) 0.752 (31.800) 27.0 %

75-Day Forecasts

Consumption (U) 0.882 0.967 0.540 (5.504) 0.811 (11.502) 4.6 %

CSI (U) 0.855 0.866 0.270 (2.675) 0.983 (14.145) 6.8 %

GDP 0.889 0.991 0.608 (6.233) 0.755 (10.762) 4.1 %

Housing (U) 0.856 0.851 0.075 (0.654) 1.083 (13.769) 6.5 %

IPI 0.885 0.969 0.539 (5.300) 0.801 (10.916) 4.2 %

NAI 0.872 0.877 0.530 (5.681) 0.740 (12.504) 5.4 %

NOI 0.883 0.935 0.618 (6.776) 0.748 (11.768) 4.8 %

Profit 0.891 0.898 0.757 (9.423) 0.640 (12.261) 5.2 %

RV 1.0 1.0 0.985 (12.509) 0.319 (8.772) 2.7 %

Term Spread (U) 0.905 1.061 -0.205 (-1.266) 1.734 (11.017) 4.2 %

Unemployment 0.881 0.941 0.505 (4.979) 0.821 (11.332) 4.5 %

125-Day Forecasts

Consumption (U) 0.906 0.951 0.699 (4.181) 0.767 (4.876) 0.9 %

CSI (U) 0.875 0.797 0.051 (0.328) 1.277 (9.856) 3.4 %

GDP 0.910 0.966 0.824 (4.933) 0.647 (4.086) 0.6 %

Housing (U) 0.862 0.751 -0.317 (-1.923) 1.493 (11.503) 4.6 %

IPI 0.905 0.928 0.706 (4.028) 0.740 (4.573) 0.8 %

NAI 0.892 0.831 0.675 (4.917) 0.696 (6.322) 1.4 %

NOI 0.901 0.884 0.638 (4.508) 0.832 (6.385) 1.5 %

Profit 0.885 0.778 0.499 (4.475) 1.008 (10.040) 3.6 %

RV 1.0 1.0 1.452 (15.368) 0.009 (0.169) 0.0 %

Term Spread (U) 0.906 0.946 -0.350 (-1.571) 2.018 (8.422) 2.5 %

Unemployment 0.901 0.900 0.605 (3.513) 0.827 (5.289) 1.0 %

The table shows forecast performance at three horizons. MSPE and QLIKE refer to the
ratio as compared to the RV model. The Mincer-Zarnowitz regression is of the form
σ2 = β0 + β1σ̂2, where σ̂2 is the estimated volatility. The values in brackets show the
t-statistics of the respective coefficients. For each forecast horizon, the best-in-category
variable has been bolded. The (U) denotes those models where the unrestricted weighting
scheme is used. Note: non-identified models have been omitted from this analysis.

given the assumption of τt+h = τt+1 used here, the forecast simply reduces to τt+1. In effect this

means that the long-term volatility forecast is converging to the one-step macroeconomic effect.

Considering again the plots of the fit (figure 3), the majority of long-term components mirror the

lower bounds of volatility (with the exception of RV, which tends to be above the volatility level,
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Table 6 – Forecasting evaluation of the two-regime Markov-switching GARCH-MIDAS
using intra-day Realised Variance as baseline (1st Jan. 2000 - 31st Dec. 2010)

Mincer–Zarnowitz

MSPE QLIKE β0 β1 R2

15-Day Forecasts

Housing (U) 0.997 1.057 0.073 (1.095) 1.697 (30.939) 25.9%

Profit 0.99 1.034 0.17 (2.564) 1.503 (29.605) 24.3%

RV 1.0 1.0 0.312 (4.69) 1.257 (26.874) 20.9%

Term Spread (U) 1.044 1.052 -0.306 (-3.989) 2.172 (30.213) 25.0%

Unemployment (U) 1.002 1.043 0.048 (0.706) 1.675 (30.035) 24.8%

75-Day Forecasts

Housing (U) 1.016 1.167 -2.089 (-8.094) 11.467 (14.098) 6.8%

Profit 1.02 1.237 -2.091 (-9.24) 12.457 (16.196) 8.8%

RV 1.0 1.0 0.432 (2.9) 2.726 (7.508) 2.0%

Term Spread (U) 0.984 0.734 -0.78 (-4.119) 5.236 (12.408) 5.3%

Unemployment (U) 1.019 1.175 -4.465 (-10.014) 18.721 (13.404) 6.2%

125-Day Forecasts

Housing (U) 1.005 1.065 -1.97 (-7.196) 11.376 (12.815) 5.7%

Profit 1.011 1.173 -2.718 (-9.601) 15.382 (15.064) 7.7%

RV 1.0 1.0 1.415 (8.599) 0.136 (0.324) 0.0%

Term Spread (U) 0.966 0.601 -1.37 (-7.224) 6.609 (15.619) 8.2%

Unemployment (U) 1.009 1.1 -4.606 (-7.931) 19.862 (10.502) 3.9%

The table shows forecast performance at three horizons. MSPE and QLIKE refer to the
ratio as compared to the RV model. The Mincer-Zarnowitz regression is of the form σ2 =
β0 + β1σ̂2, where σ̂2 is the estimated volatility. The values in brackets show the t-statistics
of the respective coefficients. For each forecast horizon, the best-in-category variable has
been bolded. The (U) denotes those models where the unrestricted weighting scheme is
used. Note: non-identified models have been omitted from this analysis.

perhaps due to effects of shocks). This explains the positive intercept coefficient of the Mincer-

Zarnowitz regressions. Figure 6 of the in-sample spreads shows that with intra-day realised variance

as baseline the estimated volatility tends to be in the upper range of intra-day variance fluctuations.

This in turn explains the β1 < 1 phenomenon of the mincer-Zarnowitz regressions in the single-

regime case. Overall, the single-regime GARCH-MIDAS models appear to give forecasts that are

quite accurate. Within this class of models, the short-term 15-day forecasts are most accurate when

using the term spread. Ostensibly, this is due to changes in market expectations which are almost

instantaneously reflected in the term spread, while other variables are lagged and thus might not

reflect changes in market expectations as promptly. Intermediate-term forecasts are dominated by

consumer sentiment, with housing also showing high accuracy (unbiased and β1 ≈ 1). This is also

true of the long-term 125-day forecasts. Here, housing starts are again dominant. This is due to

the large investment that starting a house requires, these investments will mostly be made when

the individuals that are investing are positive in their outlook on the economy, else there would

most likely not be a sufficient rate of return on investment to warrant the initial outlay. The paper

of Conrad & Loch (2015), as well as the remaining literature, have generally observed that at such

horizons the forecasting performance of the GARCH-MIDAS class of models is definitively superior
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to the use of only a GARCH component. When considering the forecasts overall, the models that

have an unrestricted weighting scheme appear to perform best in terms of forecasting performance.

For instance, term spread, housing, and consumer sentiment are often among the best forecasting

models in terms of MSPE and QLIKE. This is in line with the interpretation that these variables

contain leading information about the underlying volatility process. It should be noted that at

the longer-term horizon (125-days), the horizon is almost at exactly the weighting peak of the

unrestricted models. For example, the highest weight of the housing starts occurs at a 4-month lag,

which is almost exactly 125-days prior. At this horizon, the unrestricted models, with exception of

consumption, are all unbiased. However, they appear to underestimate the magnitude of volatility,

as indicated by β1 > 1 for CSI, housing and term spread, whereas all other models are downward

biased and overestimate the volatility (β0 > 0 and β1 < 1).

Turning to the forecasts using the two-regime model, the results are not promising. As described

above, the QLIKE characteristics, as well as the MSPE, are significantly higher when using this

two-regime approach. The reason for the under-performance of the two-regime model is again due

to the nature of long-term forecasting and can be seen when considering the coefficients of the

Mincer-Zarnowitz regression. In the case of the Markov-switching model, the same convergence

characteristics as for the single-regime model are in play. In this case, the volatility for each

regime converges to the regime specific unconditional variance,
α0j

1−α1−β−γ/2 , which is approximately

ḡ(0) ≈ 0.75 and ḡ(1) ≈ 30. Likewise, the probability of being in the respective regimes converges

to the steady-state probabilities. Taking p00 ≈ 99% and p11 ≈ 20% these converge to steady state

probabilities ϑ0 ≈ 98.77% and ϑ1 ≈ 1.23%. Summa summarum, on average the unconditional

volatility that the two-regime models converge to is τt+1

(
ϑ0ḡ

(0) + ϑ1ḡ
(1)
)

= 1.1 × τt+1. At first

glance, this does not appear significantly different from the single-regime models, which converge

to τt+1. However, the forecasting performance of these models is considerably worse. In fact, for

every category analysed here (MSPE, QLIKE, β0 and β1) the Markov-switching model is inferior

to the single-regime model, and performance drops much more rapidly in the horizon. In the short-

term 15-day scenario, the Markov-models show a significantly higher β1 coefficient as compared

to the standard models, suggesting that they significantly underestimate the magnitude of future

volatility. In fact, this is true across forecast horizons. The reason for this is the predominant time

spent in regime 0, which has a much lower unconditional variance than the single-regime GARCH-

MIDAS model. This leads to forecasts that are consistently below the intra-day volatility, which

becomes more extreme as the forecast horizon increases.

In terms of ranking the models by forecasting ability, the term-spread appears to consistently

outperform the other models regardless of the horizon. This is in contrast to the optimal long-term

models when considering the single-regime models, where housing starts and consumer sentiment

outperform the term spread at long horizons.

Overall, the answer to questions S2 and S3 of section 2 is that a Markov-switching model does

not improve forecasting ability in comparison to the original GARCH-MIDAS models. In fact, the

forecasting ability of the single-regime GARCH-MIDAS is superior in every metric considered here.
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6 Conclusion

In conclusion, the answer to the research question posed in the introduction (section 1) is that the

two-regime Markov-switching GARCH-MIDAS model does not yield significant improvements in

descriptive ability, and is inferior in terms of forecasting. This follows from the observation that the

second regime of the Markov-switching model is primarily activated when there are sudden spikes

in volatility, and thus acts somewhat as an outlier detection mechanism (section 5.2). This implies

that the macroeconomic variables considered in this GARCH-MIDAS setup already incorporate

information related to regime changes. Thus the time-varying unconditional variance represented

by τt sufficiently accounts for periods of high and low volatility. In terms of in-sample fit the

two-regime model is on par with the single-regime model (section 5.3), while under-performing

severely in terms of forecasting (section 5.4). These observations could be in line with a diagnosis

of overfitting in the case of the two-regime model.

There are several limitations inherent in the results presented in this paper. In the first place,

the index considered is the S&P500. The United States is a developed country, with a functioning

economy and free capital market. With a developed economy it is possible, as shown in this and

other papers, to distill the effects on volatility of the macroeconomy. However, this might not be

the case for less developed capital markets or those subject to capital controls. The clear impacts

of housing or consumer sentiment, which contain regime information, might not be as clear for a

country such as Vietnam or Egypt, where regimes in volatility might be present. Additionally, it

should be noted that a limited period of time has been considered, which stops shortly after the

financial crisis of 2008. Consequently, it is possible that the current effects of the macroeconomy

onto the volatility process might have changed. For instance, the prolonged period of depressed

long-term interest rates that have arisen from central banks’ quantitative easing programs might

have changed the relation of the term spread to the underlying volatility process.

While the results of this paper hold for the particular case of the S&P500, further research is

warranted into the macroeconomic effects on volatility and the presence of regimes. For instance, it

should be investigated whether regimes still exist for individual assets or smaller groups of assets,

and in which cases the macroeconomic variables are sufficient to describe regimes. In considering

the S&P500 index, the aggregation of 500 individual stocks reduce the impact of individual shocks

and thus there are more clear macroeconomic effects than there could be on an individual stock.

Different approaches to changes in the volatility process should also be explored, for instance, it

could be plausible that the significance of the macroeconomic variables is dependent on the state

of the economy, such that in a downturn effects might be larger. This could be explored through a

Markov-switching MIDAS component, or an activation function for the MIDAS component when

there are significant changes in the macroeconomic fundamentals.
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Mikosch, T., & Stărică, C. (2004). Nonstationarities in Financial Time Series, the Long-Range

Dependence, and the IGARCH Effects. Review of Economics and Statistics, 86 (1), 378–390.

Nelson, D. (1991). Conditional Heteroskedasticity in Asset Returns: A New Approach. Economet-

rica, 59 (2), 347–370.

OECD. (2012). OECD System of Composite Leading Indicators. Retrieved from http://www.oecd

.org/sdd/leading-indicators/41629509.pdf

Officer, R. (1973). The Variability of the Market Factor of the New York Stock Exchange. The

Journal of Business, 46 (3), 434–453.

Pan, Z., Wang, Y., Wu, C., & Yin, L. (2017). Oil price volatility and macroeconomic fundamentals:

A regime switching GARCH-MIDAS model. The Journal of Empirical Finance, 43 , 130–142.

34

http://www.oecd.org/sdd/leading-indicators/41629509.pdf
http://www.oecd.org/sdd/leading-indicators/41629509.pdf


Patton, A. (2011). Volatility forecast comparison using imperfect volatility proxies. Journal of

Econometrics, 160 (1), 246–256.

PWC. (2017). Asset & Wealth Management Insights - Asset Management 2020: Taking stock. Re-

trieved from https://www.pwc.com/gx/en/asset-management/asset-management-insights/

assets/am-insights-june-2017.pdf

Schwarz, G. (1978). Estimating the Dimension of a Model. The Annals of Statistics, 6 (2), 461–464.

Schwert, G. (1989). Why Does Stock Market Volatility Change Over Time? The Journal of

Finance, 44 (5), 1115–1153.

Stock, J. H., & Watson, M. W. (1989). New indexes of coincident and leading economic indicators.

NBER macroeconomics annual , 4 , 351–394.
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A Code Appendix

The code used to derive the results of this thesis has been attached as a zip file. It can be broken

down into the following files:

1. basin_settings includes the settings used in the basinhopping optimisation algorithm

2. thesis_settings includes listings of the output and input files used for the code

3. latexExport includes functions to export tables to .tex format, it is used in the data section

4. likelihood_functions contains the log likelihood function of the single-regime models

5. data includes functions to process the raw data of the returns, macroeconomic variables, and

realised variance

6. result_analysis functions used in the analysis of the in-sample results, including testing

and identification

7. forecasting functions used to both forecast and analyse forecasts for the single-regime and

two-regime models

8. GM_estimation implementation of the basinhopping optimisation for the single-regime case

9. GM_analysis implementation of the analysis for the single-regime case (i.e. testing)

10. GM_forecasting implementation of the forecasting process of the single-regime model

11. ema_actual implements the basinhopping optimisation approach for the switching model

12. ema_analysis implements the in-sample analysis and testing of the swtiching model

13. ema_forecasting implements the forecasting and forecast analysis of the switching model

14. RV_fit_comparison implements the in-sample comparison of the single regime and the switch-

ing model
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