
Bachelor Thesis: BSc2 Econometrics & Economics

Erasmus University Rotterdam

Erasmus School of Economics

Predicting South African GDP Growth Rates Using
Factor Models and Machine Learning Techniques

Author:
Lisa-Marie Plag

Student Number:
430040

Supervisor:
Prof. dr. P.H.B.F. Franses

Second Assessor:
dr. A.M. Schnucker

July 7, 2019

Abstract

This paper investigates the usefulness of a combined factor estimation and shrinkage ap-
proach in forecasting South African GDP growth rates one-quarter ahead. For this purpose,
62 quarterly macroeconomic variables from Q1 1996 to Q1 2019 are examined in an empiri-
cal forecasting experiment in addition to a simulation study of the constructed model. It is
found that the hybrid model, combining boosting with principal component analysis, leads
to significantly lower forecast errors than standard autoregressive forecasting methods. How-
ever, this result is heavily dependent on the boosting parameters. Simulations of data with
varying dimensions reveal that the gain in forecasting accuracy achieved by the combination
method is larger when more latent factors exist and that datasets with higher dimensions
increase performance. As an extension, the effectiveness of using a recurrent neural network
with long-short term memory to produce the forecasts is evaluated, giving rise to similar
findings. Hence, it is concluded that machine learning methods are valuable tools to predict
quarterly South African GDP growth rates if the parameters are chosen properly.

The views stated in this thesis are those of the author and not necessarily those of Erasmus School of
Economics or Erasmus University Rotterdam.

Contents

1 Introduction 1

2 Literature Review 3

2.1 Macroeconomic Forecasting with Many Predictors 3

2.2 South African GDP Growth . 6

3 Macroeconomic Data 8

4 Methodology 11

4.1 Model Specification . 11

4.1.1 Diffusion Index Forecasting . 11

4.1.2 Factor Estimation . 12

4.1.3 Boosting . 13

4.2 Model Evaluation . 15

4.2.1 Benchmark Model . 15

4.2.2 Forecast Comparison . 15

4.2.3 Simulation . 16

4.3 Recurrent Neural Networks . 17

4.3.1 Introduction to Neural Networks . 17

4.3.2 Long Short-Term Memory Networks . 18

4.4 Parameter Optimization . 20

5 Results 20

5.1 Simulation Results . 20

5.2 Replication of Kim and Swanson (2018)’s Results 23

5.3 Application to South African Data . 24

5.3.1 Parameter Optimization . 25

5.3.2 Selected Variables and Factors . 26

5.4 Recurrent Neural Network . 28

6 Discussion and Conclusion 29

A Appendix 34

A.1 Data . 34

A.2 Supplementary Results . 37

A.3 Python Code . 41

1 Introduction

Due to advances in technology, today’s economists have access to a vast amount of data across

variables and time for building predictive models. This is a curse and a blessing at the same

time. While it might seem that the increased number of economic figures will improve the

quality of related models, the contrary is often the case as an information overload can occur

(Bai et al., 2008). Therefore, many researchers recently turned to the use of dimension reduction

and shrinkage methods to filter out those variables that add value to their models (Kim and

Swanson, 2014, 2018; Stock and Watson, 2012). This way, better predictions can be obtained

for many economic variables of social relevance.

One variable that is of major interest to researchers and the public is the economic growth of

a country, measured by the change in its gross domestic product (GDP). Economic growth is a

key driver of development, which is particularly important for emerging markets such as African

economies. Forecasting a country’s GDP can help policymakers take appropriate measures to

meet their targets and make their economies thrive. However, the task of producing macroe-

conomic forecasts in the context of the ever growing amount of data has become increasingly

difficult. One of the main problems researchers in this field are facing is how to make use of all

the potentially valuable data that is available to them. Some variables solely add noise to the

model, leading to a negative impact on its performance and should therefore be omitted.

Factor analysis can be used as a way to achieve dimension reduction of a large number of

explanatory time series. More specifically, statistical factor models such as principal component

analysis (PCA) attempt to capture as much variation of the target variable as possible with

the smallest number of estimated factors, where the variable of interest is assumed to have a

linear relationship with the latent factors. This relation can be exploited to produce forecasts of

macroeconomic variables, which can be used by central banks to decide on an economic policy.

Another way to shrink the number of variables considered for a model is by applying an en-

semble learning technique called boosting, which was first proposed by Schapire (1990). Boosting

is a machine learning algorithm that is meant to improve the accuracy of predictive models by

retraining the same model various times, each time predominantly including those observations

with the largest forecast errors. Initially, boosting was only implemented for classification prob-

lems (Freund and Schapire, 1997), however it was soon extended to regression analysis (Ridgeway

et al., 1999). Moreover, boosting can be used in combination with factor models to choose ap-

propriate variables for estimating the factors as suggested by Kim and Swanson (2018). By

pre-screening a large dataset with a boosting method, the predictions of a factor-type model can

potentially be improved (Bai and Ng, 2009). This leads to the following main research question:

1

How can machine learning techniques be used to outperform autoregressive models in predicting

quarterly GDP growth rates of South Africa?

To answer this question, forecast errors of a simple autoregressive model are compared to those

of a diffusion index forecasting model according to a specification type of Kim and Swanson

(2018). The chosen type of model is constructed by first pre-selecting variables with boosting,

then estimating latent factors with PCA, and finally estimating the factor coefficients by again

applying a boosting method. The same methodology has already been applied by Kim and

Swanson (2018) to predict monthly macroeconomic data from the United States. Furthermore,

South African economic growth has been subject to similar studies using factor models and

shrinkage methods (Cepni et al., 2018, 2019). However, the effectiveness of applying boosting

in particular to quarterly South African GDP growth rates remains to be evaluated. Moreover,

it would be interesting to check for robustness of the proposed methodology across different

locations and data frequencies. Therefore, this study analyses if the constructed diffusion index

model performs equally well for American and African data as well as for monthly and quarterly

frequencies, to answer the first sub-question:

1) Is the diffusion index forecasting model robust to different data frequencies and regional

differences between the United States and South Africa?

Additionally, the predictive ability of a recurrent neural network (RNN) is analysed in this con-

text. RNNs are a special type of neural network that is able to learn underlying time dependencies

without explicitly specifying them, which can be beneficial for modelling time series data such

as economic growth. To the best of my knowledge, research on the use of RNNs for forecasting

South African GDP growth does not exist yet. Consequently, another sub-question is:

2) Can forecast accuracy be improved by applying a recurrent neural network for predicting

GDP growth?

After applying the above mentioned models to a large set of economic predictor variables from

the United States and South Africa from January 1960 to May 2009 and Q1 1996 to Q1 2019,

respectively, it was found that the model combining boosting with PCA is effective in predicting

different data. The results of Kim and Swanson (2018) were successfully replicated, proving that

the method indeed leads to a 13% reduction of the mean squared error relative to a standard

autoregressive model when forecasting monthly GDP growth rates from the United States. Fur-

thermore, the model significantly improves forecasts of quarterly South African growth rates by

6.5%. However, these results are highly sensitive to the boosting parameters chosen and the

wrong set of parameters can deteriorate forecasting performance of the model, making it worse

2

than a simple autoregressive model. Furthermore, a simulation study confirmed the usefulness

of the model for predicting time series data based on latent factors. The more underlying factors

are hidden in the explanatory variables, the larger is the gain in forecast accuracy relative to an

autoregressive model. Lastly, a recurrent neural network with ten neurons is able to significantly

outperform the autoregressive model, but not the combination of boosting and PCA.

This report adheres to the following structure. Section 2 provides an overview of econometric

and economic literature on forecasting macroeconomic time series and the South African econ-

omy. Next, Sections 3 and 4 describe the data and methodology used for empirical analysis in

this study. The resulting outcomes are presented and interpreted in Section 5, followed by a final

discussion and conclusion in Section 6.

2 Literature Review

2.1 Macroeconomic Forecasting with Many Predictors

To make better use of high-dimensional datasets in terms of variables and observations for fore-

casting an individual time series, Stock and Watson (2002a) developed the so-called diffusion

index model, which combines the use of factor estimation with linear regression to construct

a more parsimonious forecasting framework. Essentially, diffusion index models consist of two

steps. First, a small number of unobserved common factors, also called indices, is extracted from

a large set of potential predictors by applying PCA or a similar factor estimation technique. Sec-

ond, these latent factors are included in a linear regression of the target variable on some baseline

explanatory variables that are typically used by researchers to produce forecasts of the given tar-

get. The diffusion index method can be used with both, static and dynamic factor models to

produce forecasts. Stock and Watson (2002a) derived several asymptotic properties of principal

components, such as consistency and efficient forecasts and used Monte Carlo simulations to also

validate small sample properties. Furthermore, Stock and Watson (2002a) applied factor models

to predict 12-step-ahead growth rates of industrial production based on 149 monthly macroeco-

nomic time series from January 1959 to December 1998 and found that the out-of-sample forecast

errors of their model combining factors and autoregressive components are substantially lower

than those of the benchmark autoregressive model or a vector autoregression. In another paper,

Stock and Watson (2002b) present further empirical evidence in favour of diffusion indices. The

diffusion index method for forecasting a time series with many predictors is still applied by many

researchers today and represents the basic forecasting framework used throughout this paper.

Nevertheless, it is important to note that Bai and Ng (2009) discovered two major short-

3

comings of the diffusion index methodology. The first problem they pointed out in their work is

that for PCA, factors are ordered in terms of the variance explained by the eigenvectors of the

covariance or correlation matrix of the explanatory variables. Information criteria then select

the first few factors based on this ordering. However, these factors should be used to forecast the

dependent variable, which might actually require a different ordering concerning the importance

of factors. While the chosen factors best capture the variation in the explanatory variables, they

might not be the most important ones to explain the dependent variable. Moreover, Bai and

Ng (2009) argue that another issue with the selection criteria used to construct diffusion indices

results from the fact that when a certain lag order p∗ of the autoregressive terms is chosen, all

previous lags p = 1, . . . , p∗ are incorporated in the model as well. In order to deal with the diffi-

culty of selecting not only the right number but also the appropriate lags and factors in general,

Bai and Ng (2009) adapted a popular machine learning algorithm called boosting to pre-select

variables used for factor estimation in diffusion index models. This way, they developed the

component-wise and block-wise boosting approaches for time series. Boosting was proposed by

Schapire (1990) as a means to achieve a higher predictive accuracy by combining the results

of many ‘weak learners’, such as ordinary least squares (OLS) estimators. More specifically,

a linear combination of many individually estimated weak learners is constructed to form an

opinion (prediction), which is why boosting is also called an ensemble learning technique. This

technique initially only worked for classification problems, where the variable to be predicted

belongs to a finite set of discrete classes. Ridgeway et al. (1999) modified boosting to work for

continuous regression problems, however they did not deal with time dependencies in the data.

Only Bai and Ng (2009) applied the algorithm to time series in combination with factor analy-

sis. While factor analysis compresses the information of a large set of observed variables into a

smaller set of common factors, boosting focuses on filtering out the most informative variables for

predicting one particular variable of interest. Based on simulations of different data generating

processes, Bai and Ng (2009) conclude that the best way of applying boosting with factor models

is highly dependent on the dataset. For example, when the factor structure in the data is strong,

boosting the estimated factors instead of the observed predictors performs better. Moreover, the

performance gap between different ways to apply boosting is large, hence researchers need to

carefully pick the most suitable procedure for their data. In an empirical evaluation, Bai and

Ng (2009) also showed that their boosting methods can improve 12-month-ahead forecasts of

inflation, changes in the Federal Funds rate, the growth rate of industrial production, the growth

rate of employment and the level of the unemployment rate. Consequently, their component-wise

boosting approach is incorporated in my forecasting framework.

4

Kim and Swanson (2018) compared numerous different combinations of factor estimation and

machine learning techniques in terms of their ability to predict 11 monthly U.S. macroeconomic

variables, including unemployment rates, inflation and GDP. They applied PCA, independent

component analysis (ICA) and sparse principal component analysis (SPCA) to estimate factors

and considered multiple machine learning shrinkage methods, such as bagging, boosting and

ridge regression, to more accurately select factors or variables for the estimation thereof. In their

paper, Kim and Swanson (2018) defined four distinct specification types, which differ in how

the factor estimation and shrinkage methods are combined. For models of type 1, factors are

estimated first followed by the machine learning techniques, while for type 2 models, a subset of

the large set of explanatory variables is first constructed using the machine learning techniques

followed by the estimation of factors and their coefficients. In contrast, specification types 3 and

4 solely consist of machine learning methods and do not include any factors in the forecasting

equation. As forecasting framework for all combination models, Kim and Swanson (2018) used

the diffusion index method introduced by Stock and Watson (2002a). By evaluating the forecast

errors of four different types of model specifications relative to several autoregressive benchmark

models, they found that the standard time series methods are often outperformed by factor-type

forecasting models. Models combining factor-based dimension reduction with machine learning

methods performed reasonably well, while pure machine learning or autoregressive models al-

most never achieved the lowest errors. Moreover, applying PCA to estimate factors gave better

results at longer forecast horizons, whereas ICA and SPCA were preferred for one-step ahead

forecasts. Similarly, expanding window estimation beat rolling window forecasts at a one-step

horizon. Regarding GDP growth, forecast errors could be reduced by up to 13% relative to

autoregressive models with lag order selected according to the Schwarz information criterion.

Hence, the specification types of Kim and Swanson (2018) are used to construct an appropriate

combination model for predicting GDP growth rates in the context of this report.

Only recently have Cepni et al. (2019) applied part of the factor estimation and shrinkage

methods combined by Kim and Swanson (2018) to predict GDP growth data from five emerging

markets, including Brazil, Indonesia, Mexico, South Africa and Turkey. Using a dynamic factor

model (Giannone et al., 2008) as general forecasting framework, they compute monthly nowcasts

and forecasts of quarterly GDP growth rates over a period from January 2005 to September

2017. In an empirical analysis, large numbers of monthly predictive variables were considered for

each country, including 110 economic indicators for South Africa. However, Cepni et al. (2019)

only employed SPCA for estimating factors and the elastic net, the least absolute shrinkage

operator and least angle regression to select specific predictors. An autoregressive model and

5

a dynamic factor model without pre-selection of variables were used to compute benchmark

forecasts. These benchmarks were outperformed by models making use of dimension reduction

and machine learning in most cases, which indicates that models similar to those of Kim and

Swanson (2018) also work well for emerging market economies. My research aims to add to the

discussion and evaluation of the effectiveness of combined factor estimation and machine learning

techniques for high-dimensional macroeconomic data from developing countries. To fill a gap in

this literature, boosting combined with PCA is applied to predict quarterly South African GDP

growth based on a large set of predictors similar to the one used by Cepni et al. (2019).

A different approach to handle large amounts of macroeconomic time series involves the

training of an artificial neural network (ANN), a class of machine learning models that is able

to learn any underlying pattern in the data. In a comparison of numerous model selection

criteria, Swanson and White (1997) empirically evaluated the forecasting ability of an adaptive

ANN with up to five hidden neurons selected by the Schwarz information criterion. Using

quarterly macroeconomic data of the U.S. from January 1960 to March 1993, they found that

their neural networks were only slightly better than adaptive autoregressive models, if at all.

Hence, constructing adaptive models with flexible lag and variable selection seems to be more

beneficial than the potential non-linearity of ANNs. Similarly, Tkacz (2001) applied ANNs to

predict Canadian GDP growth rates at one- and four-quarter horizons. The results of this paper

showed that neural networks significantly improve the accuracy of four-quarter GDP growth

forecasts compared to linear models. However, at the one-quarter forecast horizon the neural

network was not able to even outperform a random walk. These results are not very promising,

therefore I do not consider standard neural network models for forecasting GDP growth but a

recurrent neural network (RNN) with long short-term memory (LSTM), which was developed

by Hochreiter and Schmidhuber (1997). RNNs are particularly useful in dealing with time series

data as they take into account previous sequences of input data. However, research on applying

this specific type of neural network to forecast GDP growth remains to be done.

2.2 South African GDP Growth

With a GDP of $349.43 billion U.S. dollars as of 2017 (International Monetary Fund, 2018),

South Africa represents the second largest economy of Africa, following Nigeria. Economic

activity of South Africa has historically been steadily growing for several decades, with only

few exceptions due to local or global crises. However, recently growth has slowed down to less

than 2% a year due to political uncertainty within the country (Toyana, 2019). South African

growth predominantly derives from financial services, the government, wholesale and retail trade

6

and manufacturing (Brand South Africa, 2018). The South African economy has shifted from a

focus on the primary and secondary sectors to the tertiary sector. Moreover, South Africa sells

a large part of its resources to other countries and the value of its exports has increased rapidly

since 1995 (see Figure 1a). As can be seen in Figure 1b, the largest share of South African

exports consists of stones, a category dominated by gold, platinum, and diamonds (Center for

International Development at Harvard University, 2017). In fact, with 14.14% gold was the

single most exported good of South Africa in 2017. Stones are followed by minerals, services,

agriculture and metals. Hence, exports are driven by the mining industry. Overall, South African

GDP growth largely depends on the prices of the resources it has an abundant supply of.

(a) 1995 - 2017 (b) 2017

Figure 1: South African exports by sector (Center for International Development at Harvard
University, 2017)

Just as economic activity, monetary policy of the South African Reserve Bank (SARB),

the central bank of South Africa, has evolved over time (Aron and Muellbauer, 2002). Aron

and Muellbauer (2007) provide a detailed discussion of South African monetary policy from

1994 to 2007. They point out that during the 1990s, monetary policy in South Africa was

opaque, leading to a decreased credibility of the SARB and negative effects on economic growth.

Furthermore, Aron and Muellbauer (2007) argue that the shift to inflation targeting in 2002

has increased effectiveness of the SARB’s policy, which also had a positive impact on GDP

growth. However, an inflation targeting policy requires good macroeconomic forecasting models

to determine appropriate targets (Svensson, 1997).

For this purpose, South Africa’s central bank makes use of a range of models complementing

each other to produce a good macroeconomic outlook and support policy making. The two

main macroeconomic models of the SARB are the so-called ‘Core’ econometric model and the

most recent Quarterly Projection Model (QPM) (Dejager, 2017). The ‘Core’ model is an error

correction model, which is estimated using historical data and assumes a certain trend of the

interest and exchange rate over the forecast horizon. The QPM is a gap model based on general

7

equilibrium theory and was introduced by the SARB in 2007 (Botha et al., 2017). It assumes

that economic agents base decisions on their expectations for the future and that the economy

moves along an equilibrium path, which it occasionally deviates from due to shocks. The large

number of macroeconomic forecasting models used by the SARB highlights the importance of

good frameworks for predicting South African GDP growth.

3 Macroeconomic Data

Kim and Swanson (2018) used quarterly U.S. GDP figures, which they transformed into monthly

data according to the interpolation method of Chow et al. (1971). Moreover, the GDP data is

converted into growth rates by taking logarithmic differences. Additionally, Kim and Swanson

(2018) constructed a set of N = 143 explanatory variables to predict GDP growth, which is

essentially an extended version of the dataset used by Stock and Watson (2012). For the purpose

of verifying my methods, I use the same dataset1 as Kim and Swanson (2018). Non-stationary

time series are transformed to achieve stationarity by taking simple or logarithmic differences as

indicated by the transformation code of each variable that comes with the dataset. The period

they examined is January 1960 to May 2009, leading to a total number of T = 593 observations.

For a full overview of all variables included, see Kim and Swanson (2018).

As the main interest of this research lies in applying selected methods of Kim and Swanson

(2018) to forecast South African GDP growth, a second set of data is required. More specifically,

quarterly real GDP growth rates in annual year-over-year percentages from Q1 1996 to Q1 2019

are considered, resulting in a total of T = 93 observations. To predict growth rates, quarterly

observations of 62 South African economic variables, including year-over-year real GDP growth,

were retrieved from Bloomberg. This is a subset of the monthly dataset created by Cepni et al.

(2018), who analysed 109 variables from January 2003 to June 2018. However, I investigate Q1

1996 to Q1 2019 to allow for sufficiently large values of both T and N with quarterly frequency.

The larger T , and hence the earlier the starting year of the sample, the smaller N since less

explanatory variables are available. Consequently, only N = 61 South African macroeconomic

variables, excluding GDP growth, can be analyzed for the chosen period. The final list of

macroeconomic variables and their Bloomberg tickers can be found in Tables 7 and 8 in Appendix

A.1. Further discussion of this dataset is provided by Cepni et al. (2018). All time series were

tested for non-stationarity by using the augmented Dickey-Fuller test for unit roots. The null

hypothesis of non-stationarity could not be rejected for 53 out of 62 time series at the 10% level.
1The data analyzed by Kim and Swanson (2018) was already used in a previous study (Kim and Swanson,

2014) and can be found on https://sites.google.com/site/khdouble2/research.

8

https://sites.google.com/site/khdouble2/research

Therefore, these series were transformed by taking first differences or logarithmic first differences

for non-negative variables.

Figure 17 in Appendix A.1 gives an overview of correlations between the lagged predictors and

South African GDP growth. It can be seen that several lagged variables have a strong positive

correlation with GDP growth, for instance South Africa Mining SA Constant Prices (SASGMINE

Index), South Africa Real GDP Expenditure on GDP (SADXRGSA Index), South Africa Private

Credit Extension Mortgage Advances (SACEMORT Index) and the Composite Business Cycle

Indicator - Coincident Indicator (SACBCI Index). The strongest negative correlation occurs

with South Africa Current Account SA (SACTLVL Index) but is still relatively weak. More-

over, there seem to be some clusters of variables that are strongly correlated and might contain

similar information. Therefore, factor estimation techniques are expected to be a useful tool to

summarize the informative value in this dataset and build a parsimonious forecasting model.

1960 1970 1980 1990 2000 2010
Year

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

Monthly GDP Growth in Percent

Figure 2: United States (T = 593)

1996 2000 2004 2008 2012 2016 2020
Year

−2

0

2

4

6

Quarterly GDP Growth in Percent

Figure 3: South Africa (T = 92)

A graphical representation of the dependent variables to be predicted can be found in Figures

2 and 3. It can be seen that South African growth is higher than that of the United States, which

is partly a result of the different data frequencies. In contrast to U.S. GDP growth, that of South

Africa consists almost solely of positive growth rates. Especially during the first half of the South

African sample from 1996 to 2008, economic growth is positive. After 2008, growth rates of South

Africa are generally lower, suggesting a structural break in the data. The South African data

is subject to more fluctuations, which can be seen by the higher standard deviation of 1.86

compared to a value of only 0.44 for the U.S. as reported in Table 1. From this Table and the

graphs it can also be concluded that GDP growth rates of South Africa include more extreme

values, ranging from -2.6% in Q2 2009 to 7.1% in Q4 2006, while growth of the U.S. moves

between -1.4% and 2.0% only. Especially the decline in growth of -2.6% does not fit the rest of

the sample, which consists almost exclusively of positive growth rates. This decline is probably

9

a result of the aftermath of the 2008 global financial crisis but could be influential for predictive

models. Therefore, residuals of the forecasting models should be checked for outliers.

Table 1: Descriptive statistics of GDP growth rates in percent

T N Min Max Mean Std. Dev. Skewness Kurtosis

U.S. 593 143 -1.35 2.03 0.26 0.44 -0.22 1.00
S.A. 92 61 -2.60 7.10 2.69 1.86 -0.19 0.03

The data frequency for the U.S. is monthly, while that of South Africa (S.A.) is only quarterly.

Another important feature to be considered when forecasting economic growth is that growth

often persists over time. This is highlighted by Figures 4 and 5, which clearly show a positive

linear relation between GDP growth and its value during the previous period, both in the United

States and South Africa, regardless of the different data frequencies. The relationship is more

pronounced in the South African dataset, as Figure 5 displays an almost perfect 45-degree line

through the origin. Hence, there seems to be significant autocorrelation.

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
y(t-1)

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

y(
t)

Lagged GDP Growth in Percent

Figure 4: United States (T = 593)

−2 0 2 4 6
y(t-1)

−2

0

2

4

6

y(
t)

Lagged GDP Growth in Percent

Figure 5: South Africa (T = 92)

An investigation of further lags of the dependent variables reveals that there indeed is sig-

nificant autocorrelation at lags p = 1, 2 for the U.S. (see Figure 18 in Appendix A.1) and at

lags p = 1, 2, 3 for South Africa (see Figure 6 below). Moreover, for U.S. GDP growth also lags

5 and 6 seem to be significant, which might be explained by the fact that these observations

are monthly and thus lags 5 and 6 roughly correspond to a second quarterly lag. Moreover,

Figure 18 in Appendix A.1 shows that the partial autocorrelation of U.S. GDP growth becomes

insignificant after the first lag, indicating that this series might be an AR(1) process. Generally,

the autocorrelation of the South African growth is stronger with values of close to 0.9 for the first

quarterly lag and 0.7 for the second. Since the autocorrelation function of South African GDP

growth declines towards zero and the partial autocorrelations oscillate but become insignificant

after the second lag, this series is expected to follow an AR(2) process. Consequently, previ-

10

ous observations of the dependent variable are expected to provide a good starting point for

producing forecasts of future values thereof.

Figure 6: Autocorrelation functions of quarterly South African GDP growth

4 Methodology

4.1 Model Specification

In the following, I construct a forecasting model according to specification type 2 (SP2) of Kim

and Swanson (2018) to predict GDP growth rates one step ahead. Out of the four specifications

they investigated, this type was found to perform best for predicting economic growth at forecast

horizon h = 1. Choosing this specification type means that common factors are estimated based

on a subset of the high-dimensional dataset of predictors. This subset is extracted from the full

set of 61 South African macroeconomic variables by using one of the machine learning techniques

suggested by Kim and Swanson (2018). More specifically, a diffusion index forecasting model as

described in Section 4.1.1 is constructed by first reducing the number of variables with boosting

(Section 4.1.3) and then estimating the latent factors of this smaller dataset with principal

component analysis (Section 4.1.2). Finally, boosting is applied again to estimate the factor

coefficients in the diffusion index model.

4.1.1 Diffusion Index Forecasting

Estimating vector autoregressive models to produce predictions based on a large set of explana-

tory variables involves estimating a vast amount of parameters, which might have a negative

impact on the predictive accuracy of the model (Stock and Watson, 2002b). Therefore, the

following linear equation used in similar research (Bai and Ng, 2006; Kim and Swanson, 2018;

Stock and Watson, 2002a,b) will be used to obtain forecasts for GDP growth rates:

Yt+h = WtβW + FtβF + εt+h, (1)

11

where Wt is a small number of observed explanatory variables that should be included (here lags

of Yt), Ft are again the unobservable factors and εt+h is the error term. Moreover, βW and βF

are the coefficients of the observed and unobserved explanatory variables, respectively. Because

Wt is chosen to consist of lags of the dependent variable, WtβW simply represents the right-hand

side of an autoregressive model as further described in section 4.2.1. However, since βW , βF and

Ft are all unknown, estimates for the common factors F̂t first have to be obtained as described in

Section 4.1.2. Only then can their coefficients β̂F be obtained, for example by using least squares

estimation. As in Kim and Swanson (2018), estimates of β̂F are produced by applying boosting

to the estimated factors. Combining Equation (1) with Equation (2) from the next section leads

to the diffusion index model defined by Stock and Watson (2002a).

4.1.2 Factor Estimation

Let Xti be the value of the ith variable at time t = 1, . . . , T from the large matrix of potential

predictors2 X (T × N). To predict GDP growth using this high-dimensional dataset, common

factors will be estimated to reduce the dimension of the data. Hence, for each variable i =

1, . . . , N , the factor representation at time t is given by

Xti = Ftλ
′
i + ηti, (2)

where Ft is a 1 × k vector of latent factors (k � N), λi is a 1 × k vector of factor loadings

(corresponding to the ith row of theN×k loading matrix Λ) and ηit is the idiosyncratic error. The

unobserved factors Ft, also called principal components, can be estimated using a factor model,

such as PCA. PCA finds linear combinations of the variables in Xt that are orthogonal, meaning

they are uncorrelated, and have maximum variance. This helps to decrease the dimensions of

the predictor dataset if it contains correlated variables. To do so, eigenvectors of the variance

covariance matrix of Xt, V̂ are computed to solve the following equation:

V̂ ei = λiei,

where λi is the eigenvalue corresponding to eigenvector ei. Usually, all eigenvectors are normal-

ized to have unit length (e′iei = 1) and are arranged in decreasing order of their corresponding

eigenvalues. The eigenvectors represent the axes of a reduced, k-dimensional subspace of the orig-

inal N -dimensional space of explanatory variables. Moreover, since they are orthogonal, it holds

that e′iej = 0 for all i 6= j. After obtaining ordered eigenvectors, the ith principal component Pti
2All explanatory variables are standardized to have zero mean and unit variance before estimating factors, as

is commonly done for PCA.

12

can be computed as

Pti = e′iXt,

where i = 1, . . . , N . Since the aim is to describe Xti with a limited number of factors, only

the first k̂ principal components are chosen and used as factors in the diffusion index model of

Equation (1). Therefore, the number of factors k̂ to be used for further analysis is chosen based

on the following class of selection criteria proposed by Bai and Ng (2002):

IC(k̂) = log
(
V (k̂, F̂ k̂)

)
+ k̂h(N,T), (3)

where F̂ k̂ are the first k̂ factors, h(·) is a penalty term and V (·) is a function minimizing the

distance between the matrix of original variables X and their factor representation F̂ k̂Λk̂ ′. More

specifically, information criterion ICp2 by Bai and Ng (2002) is used, where the penalty is given

by

h(N,T) =
T +N

T ·N
log (min{N,T}) ,

and V (k̂, F̂ k̂) is the mean residual variance, which can be computed as

V (k̂, F̂ k̂) =
1

N

N∑
i=1

(
1

T

T∑
t=1

(
Xti − F̂ k̂t λk̂i ′

)2)
.

Kim and Swanson (2018) limit the number of factors to a maximum of kmax = 20 in their analysis

of 144 U.S. macroeconomic variables. Since the South African dataset with only 62 variables is

considerably smaller, I set the maximum number of factors that can be selected to kmax = 10.

4.1.3 Boosting

As suggested by Kim and Swanson (2018), I use the component-wise L2 boosting algorithm for

time series, which was introduced by Bai and Ng (2009) for pre-filtering explanatory variables

before estimating factors together with an information criterion to select the optimal stopping

iteration m∗ out of a total of M iterations. This way, only variables that are potentially useful

for predicting the dependent variable are considered in PCA, which can speed up computations

and improve forecast accuracy of the resulting model. Algorithm 1 shows the adjusted version

of Kim and Swanson (2018), who applied a configuration with a maximum of M = 50 iterations

and step size ν = 0.5. For their specific implementation of boosting, the errors Zt = Yt− Ŷ AR(p)
t

are first computed by estimating an autoregressive model of order p as described in Section 4.2.1.

During each iteration m = 1, . . . ,M , N linear regression models are fit to the residual Zt and

one variable from the T ×N matrix X is chosen based on the sum of squared residuals (SSR).

13

The regressions are estimated using OLS and one of the explanatory variables at a time. To

apply boosting to the factors obtained with PCA, X is simply replaced by F̂ and N reduces to

k in Algorithm 1. This way the factor coefficients of the diffusion index model of Equation (1)

can be estimated.

Algorithm 1: Component-wise L2 Boosting

Initialize Φ̂t,0 = Z̄ for every t = 1, . . . , T and β̂i,0 = 0 for every i = 1, . . . , N.
for m = 1, . . . , M do

for t = 1, . . . , T do
Compute the current residual ut = Zt − Φ̂t,m−1.

end
for i = 1, . . . , N do

Regress u (T × 1) on the ith predictor Xi to obtain b̂i. Compute êi = u−Xib̂i and
SSRi = ê′iêi.

end
Choose i∗m to minimize SSR: SSRi∗m = mini∈[1,...,N] SSRi.
for t = 1, . . . , T do

Update Φ̂t,m = Φ̂t,m−1 + νXi∗m b̂i∗m , where 0 < ν ≤ 1 is the step size.
end
for i = 1, . . . , N do

Update β̂i,m = β̂i,m−1 + νb̂i∗m1i∗m , where 1i∗m is an N × 1 standard unit vector with
the i∗mth element equal to 1.

end
end

Stopping the algorithm at iteration m∗ prevents over-fitting. This is done by choosing m∗ to

minimize the following criterion proposed by Bai and Ng (2009):

IC(m) = log(σ̂2m) +
log(T) · dfm

T
,

where σ̂2m =
∑T

t=1(Zt− Φ̂t,m)2 and dfm = trace(Bm) are the degrees of freedom of the algorithm

stopping in round m. Moreover, the matrix Bm is defined recursively as

Bm = Bm−1 + νPm(IT −Bm−1),

with the projection matrix Pm = Xi∗m(X ′i∗mXi∗m)−1X ′i∗m constructed using the i∗mth regressor and

IT being the T ×T identity matrix. Furthermore, the initialization of B is given by B0 = 1
νP0 =

ι′T ιT
T , where ιT is a T × 1 vector of ones. Initially, a boosting step size of ν = 0.5 is used with

a maximum of M = 50 iterations. To prevent these parameters from influencing the results, a

suitable combination of M and ν is chosen as outlined in Section 4.4, with 0 < ν ≤ 1.

14

4.2 Model Evaluation

4.2.1 Benchmark Model

To evaluate the model constructed in this research, benchmark forecasts will be produced using a

simple univariate autoregressive (AR) model with the lag order p being selected according to the

Schwarz Information Criterion (SIC) derived by Schwarz et al. (1978). However, for the sake of

efficiency the maximum lag order is limited to pmax = 4. The AR(p) model is defined as follows

(Franses et al., 2014):

Yt = α+ φ1Yt−1 + · · ·+ φpYt−p + εt,

where α is a constant, φ1 . . . φp are the coefficients of the lagged dependent variables and εt is

a white noise disturbance term. From this specification, forecasts can be obtained as Ŷ AR(p)
t+h =

α̂+ φ̂1Yt+h−1 + · · ·+ φ̂pYt+h−p, with α̂ and φ̂1 . . . φ̂p being the model parameters estimated using

OLS.

4.2.2 Forecast Comparison

Based on the diffusion index and benchmark models, one-period-ahead forecasts of GDP growth

are constructed starting with 13 (R = 156) and almost 17 (R = 67) years of in-sample data for

the U.S. and South Africa, respectively3. For instance, the first diffusion index forecast for U.S.

GDP growth according to Equation (1) is computed as Ŷ157 = W156β̂W + F̂156β̂F , while the first

quarterly forecast for South Africa is given by Ŷ68 = W67β̂W + F̂67β̂F .

Both, the model parameters and the optimal number of lags and factors are re-estimated

before each new point forecast by using an expanding window because this estimation method

produced the best GDP growth predictions in the analysis of Kim and Swanson (2018) for a

forecast horizon of h = 1. The forecasts of the combination model described in Section 4.1 are

then compared to the benchmark forecasts by using the Mean Squared Forecast Error (MSFE),

which is computed as

MSFEh =
1

P

P−h∑
j=0

(
YR+h+j − ŶR+h+j|R+j

)2
=

1

P

P−h∑
j=0

(̂εR+h+j|R+j

)2
,

where R is the number of in-sample observations, P is the number of out-of-sample observations,

Yt is the actual GDP growth at time t and Ŷt|t−h is the corresponding forecast of GDP growth at

time t using information available at time t−h for t = R+h, . . . , R+h+P−1. To summarize the

predictive ability of the diffusion index model of SP2 relative to the AR benchmark, MSFE ratios
3The different conversions from in-sample years to the number of in-sample data points R results from the

different frequencies of the U.S. and South African datasets.

15

are computed as MSFESP2
h /MSFEAR

h . Thus, a lower MSFE ratio indicates a better performance

of the SP2 forecasts.

To test for the significance of differences in forecast accuracy, the Diebold-Mariano (DM) test

statistic can be used (Diebold and Mariano, 1995):

DM =
1

P

P∑
t=1

dt
σ̂dt

=
d̄

σ̂dt/
√
P

d−→ N(0, 1),

where dt =
(̂εAR
t+h|t

)2
−
(̂εSP2
t+h|t

)2
is the loss differential of two predictions to be compared and d̄

is its sample mean. Moreover, σ̂dt is the estimated sample standard deviation of the differential

and ̂εAR
t+h|t and

̂εSP2
t+h|t are the estimated forecast errors of the AR model and the model of SP2.

Hence, if the value of DM is positive, the forecasts of the diffusion index model beat the AR

forecasts and vice versa. The number of predictions P is 422 for the U.S. and 25 for South

Africa, leading to sufficiently large samples for testing statistical significance of any differences

in predictive accuracy found. As the interest of this research is in improving upon the standard

AR model forecasts, the null hypothesis is defined as

H0: The forecast errors of the AR model are smaller than those of the alternative model.

As Kim and Swanson (2018) argue, the DM statistic asymptotically follows a standard normal

distribution for non-nested models. Hence, the null hypothesis of more accurate AR forecasts is

rejected for values that are more extreme than one-sided critical values from the N(0,1) distribu-

tion, which are 2.326, 1.645, and 1.282 for the 1%, 5%, and 10% significance levels, respectively.

4.2.3 Simulation

To further investigate the finite sample behaviour of the factor estimation and diffusion index

forecasting methods, data with different dimensions N and T as well as varying numbers of

underlying factors k is simulated. First, k factors are generated to follow an autoregressive

process of order one. From these latent factors, the observed X variables are constructed. Hence,

the general form of the data generating process (DGP) for t = 1, . . . , T looks as follows:

Xti = Ftλ
′
i +
√
kηti, ηi ∼ N(0, 1), i = 1, . . . , N,

Ftj = αjFt−1j + utj , uj ∼ N(0, 1), j = 1, . . . , k,

where α = (0.8, 0.7, 0.6, 0.5, 0.4)′ is the same for each of 100 iterations and the first k elements of

α are used depending on the true number of factors k = 1, 3, 5 simulated. In contrast, λi (1× k)

the ith row of the N × k matrix of factor loadings Λ with all elements λij ∼ N(0, 1) is re-drawn

16

for each iteration. Success rates of estimating the true number of factors in X are obtained

by applying PCA with the ICp2 information criterion of Equation (3) to the simulated data.

Furthermore, the performance of the SP2 diffusion index method as a whole can be evaluated

by also creating a target series y from the generated factors as

yt+h = FtβF + vt+h, v ∼ N(0, 1),

where βF = (0.8, 0.5, 0.3, 0,−0.3)′ is fixed during the simulation. This is similar to the simulation

setup Bai and Ng (2009) used to evaluate their boosting algorithms. To evaluate forecast accu-

racy, the last 25 observations of the generated data are taken as out-of-sample data, irrespective

of dimension T . The out-of-sample values of y are then predicted using the AR and SP2 models,

and the forecasts are compared as described in Section 4.2.2. For each dimensionality (T,N) of

the DGP, the average MSFE ratio over all iterations and the number of rejected DM tests is

computed to evaluate the effectiveness of the constructed method on simulated data.

4.3 Recurrent Neural Networks

As extension deviating from the models specified by Kim and Swanson (2018), I implement a

recurrent neural network (RNN) with long short-term memory (LSTM) (Hochreiter and Schmid-

huber, 1997) to forecast GDP growth. RNNs are a particularly suitable type of neural network

to forecast time series data as they are able to learn underlying time dependencies. Neural net-

works provide several advantages over standard time series methods, such as the ability to learn

non-linear relations and to deal with noise in the data without manually identifying outliers. A

more detailed explanation of neural networks and the LSTM architecture is provided below.

4.3.1 Introduction to Neural Networks

An artificial neural network (ANN) is a popular supervised learning algorithm that is able to

approximate almost arbitrary complex functions. In general, a standard feed-forward neural

network consists of an input layer, one or more hidden layers and an output layer, each containing

a variable number of computational units called neurons. Each neuron performs a computation

z =

N∑
i=1

wixi + b = w′x+ b, (4)

where x is the N × 1 input vector, w is an N × 1 vector of parameters, also referred to as

weights, and b is called the bias term. Every unit has its own set of weights w applied to the

input in a linear transformation, therefore the output z a neuron produces is simply a weighted

17

sum of its inputs. This sum is then fed into a non-linear activation function g(·). The very

first neuron simply employed a step function as activation (McCulloch and Pitts, 1943). Today,

popular activation functions include the sigmoid and tanh functions, among others. Several

computational units can then be combined to form a layer. Hence, a neural network can be

regarded as a mapping A : X → Y consisting of a total of L layers, where each individual layer

l contains Kl neurons. Each of these layers l is fed a vector of output data from the previous

layer (l − 1) as input, with the size of this vector being the number of neurons in its preceding

layer. Within a given layer l, every neuron k produces a weighted sum of its input as shown in

Equation (4) according to weight vector w(l)
k and bias term b

(l)
k . Next, the result is converted to

the input size required by the subsequent layer by applying activation function g(l), hence the

output of layer l is

Z(l) = g(l)(W (l)Z(l−1) +B(l)),

where uppercase letters denote the layer analogue of the individual neuron variables z(l)k , w(l)
k

and b(l)k . The input layer works similarly, except that it takes the original data X as input, hence

Z(0) = X. Lastly, the output layer L produces a prediction of a given dependent variable Y ,

which is the final result of the network:

Ŷ (X) = W (L)Z(L) +B(L).

The layers between original input X and output Y are hidden layers. Neural networks can

contain one or more hidden layers and their ability to fit complex functions increases with the

number of layers. However, the number of hidden layers depends on the specific data at hand

and adding too many layers can create undesired noise. In general, a parsimonious network

size in terms of hidden layers and neurons per layer should be preferred. This is justified by the

approximation theorem of Hornik et al. (1989), which states that neural networks containing only

one hidden layer can approximate arbitrary continuous functions if their hidden layer includes

enough neurons. In order to obtain parametersW and B that lead to a good fit with the training

data, an algorithm called backpropagation is usually used. Backpropagation pushes the errors

of later layers back through the network, thereby minimizing a chosen loss function such as the

mean squared error (Werbos et al., 1990).

4.3.2 Long Short-Term Memory Networks

Long short-term memory (LSTM) is a special type of RNN architecture, therefore the general

theory of RNNs is explained briefly. RNNs are the standard tool to incorporate lags of the input

18

data in a neural network. Consequently, RNNs are often used for sequential data, such as texts,

or time series data, such as GDP growth. In general, RNNs work similar to the standard ANNs

discussed above. However, in contrast to feed-forward ANNs, RNNs contain loops enabling them

to pass on previous values of the input data to later stages of the network. Figure 7 shows a loop

of an RNN and its unrolled version, where A : X → H is a part of the network mapping input

x to some output, which is denoted by h instead of z in this representation.

Figure 7: RNN representation (Olah, 2015)

A more detailed representation of the mappings performed by a standard RNN can be found

in Figure 8a. The tanh activation function is often used in RNNs as its second derivative

approaches zero only slowly, and is defined as

g(z) = tanh(z) =
exp(z)− exp(−z)
exp(z) + exp(−z)

=
exp(2z)− 1

exp(2z) + 1
.

However, RNNs can suffer from the so-called vanishing gradient problem (Hochreiter, 1998). This

means that during backpropagation, gradients of a simple RNN configuration can vanish or even

explode. The LSTM architecture for RNNs proposed by Hochreiter and Schmidhuber (1997)

solves this issue and is therefore used in this research. Figure 8b displays the more elaborate

structure of the mappings performed by an LSTM model, which includes, among others, so-called

gates for input and output data. For a more detailed explanation of the individual components

of the LSTM architecture, I refer to Hochreiter and Schmidhuber (1997).

(a) RNN (b) LSTM

Figure 8: Network layer representations (Olah, 2015)

19

A recurrent neural network with only lagged dependent variables as input is essentially a non-

linear version of univariate AR models (Kuan and Liu, 1995). Multivariate LSTM networks also

exist but are more time-consuming to estimate. Due to time constraints, I restrict my analysis

of neural networks to univariate LSTM models4, taking pmax = 4 lags of GDP growth as input.

4.4 Parameter Optimization

Machine learning methods are highly dependent on their so-called hyper-parameters. Choosing

the most suitable parameters for a given dataset is therefore crucial for obtaining good results.

This applies to both, boosting and neural networks. Hence, different combinations of the model

parameters are compared using a linear grid search. For boosting, the parameters to be fine-

tuned are the maximum number of iterations M and the step size ν. For neural networks, the

number of hidden neurons n and the epochs E, which represent the number of iterations the

network is trained, are adjusted. Moreover, since each time a neural network is trained the

weights are randomly initialized, the network with the best configuration is trained 10 times to

prevent this randomness from having an influence on the conclusion.

5 Results

5.1 Simulation Results

In the following, the results of applying PCA and the boosted diffusion index forecasting model

to simulated data of varying dimensions are reported. Table 2 verifies that the implemented PCA

algorithm together with the ICp2 selection criterion enables me to recover the true number of

factors in the generated data. For this purpose, the average number of factors estimated during

100 replications of the simulation and the corresponding hit rate, the percentage of replications

in which the number of factors was estimated correctly, are displayed for each combination of

dimensions T and N . It can be seen that when T or N are too small, namely 10, PCA is not

able to estimate the true number of factors at all. Hence, the hit rates are zero in the first rows

and columns for all underlying factors k = 1, 3, 5. Starting from a sample size of T = N = 20,

the correct number of factors is obtained in 96 out of 100 replications. However, this is only

the case for Panel A of Table 2, which corresponds to one underlying factor in the data. For

three factors (Panel B), the hit rate decreases to 0.26 and for five factors (Panel C) even to zero.

When N = 20, the hit rate decreases as T increases for k = 1 and the number of factors is

overestimated. The contrary is the case when k = 3 or k = 5. For these underlying numbers of
4All LSTM-type models were implemented in Python using the Keras module and its predefined LSTM layers.

The code for these and all other models of this research can be found in Appendix A.3.

20

factors, the hit rate increases as T increases for N = 20, even though this only happens starting

from T = 50 when k = 5. For T > 10 and N > 20 in Panel A of Table 2, the number of factors

is always correctly estimated. In Panel B, hit rates are one for larger values T > 20 and N > 20,

hence more observations are required when there are more factors in the data. Furthermore,

for T > 50 and N > 50 hit rates become equal to one in Panel C, even though there are two

other cases when the hit rate is one for N = 50, namely for very large T . In conclusion, PCA

with the chosen selection criterion works well for T > 10, N > 20 when there is one factor,

T > 20, N > 20 when there are three factors and T > 50, N > 50 when there are five factors.

Therefore, the more latent factors are present in the observed data, the more difficult it becomes

to accurately estimate the true number of factors and the more observations and variables are

needed.

Table 2: Estimated number of factors for different dimensions of the data with hit rates in parentheses

T
N 10 20 50 100 200

PANEL A: k = 1

10 9.43 (0.00) 9.02 (0.00) 9.00 (0.00) 9.00 (0.00) 9.00 (0.00)
20 10.00 (0.00) 1.36 (0.96) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)
50 10.00 (0.00) 1.80 (0.88) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)
100 10.00 (0.00) 2.56 (0.81) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)
200 10.00 (0.00) 3.84 (0.68) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)
500 10.00 (0.00) 3.92 (0.67) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)
1000 10.00 (0.00) 4.33 (0.62) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)

PANEL B: k = 3

10 9.29 (0.00) 9.00 (0.00) 9.00 (0.00) 9.00 (0.00) 9.00 (0.00)
20 10.00 (0.00) 2.80 (0.26) 2.62 (0.66) 2.85 (0.86) 2.89 (0.89)
50 10.00 (0.00) 2.96 (0.88) 3.00 (1.00) 3.00 (1.00) 3.00 (1.00)
100 10.00 (0.00) 3.19 (0.94) 3.00 (1.00) 3.00 (1.00) 3.00 (1.00)
200 10.00 (0.00) 3.16 (0.96) 3.00 (1.00) 3.00 (1.00) 3.00 (1.00)
500 10.00 (0.00) 3.22 (0.96) 3.00 (1.00) 3.00 (1.00) 3.00 (1.00)
1000 10.00 (0.00) 3.11 (0.96) 3.00 (1.00) 3.00 (1.00) 3.00 (1.00)

PANEL C: k = 5

10 9.32 (0.00) 9.00 (0.00) 9.00 (0.00) 9.00 (0.00) 9.00 (0.00)
20 10.00 (0.00) 2.37 (0.00) 2.77 (0.05) 3.62 (0.25) 3.78 (0.24)
50 10.00 (0.00) 3.67 (0.21) 4.21 (0.40) 4.89 (0.89) 4.97 (0.97)
100 10.00 (0.00) 4.35 (0.54) 4.95 (0.95) 5.00 (1.00) 5.00 (1.00)
200 10.00 (0.00) 4.77 (0.79) 4.99 (0.99) 5.00 (1.00) 5.00 (1.00)
500 10.00 (0.00) 4.88 (0.81) 5.00 (1.00) 5.00 (1.00) 5.00 (1.00)
1000 10.00 (0.00) 4.83 (0.79) 5.00 (1.00) 5.00 (1.00) 5.00 (1.00)

The values in this Table are averages over 100 simulation replications. Each panel represents a different
number of k underlying factors in the DGP. The estimated number of factors k̂ is selected based on the
ICp2 criterion with kmax = 10 as discussed in Section 4.1.2.

The above simulation findings for PCA are consistent with those of Bai and Ng (2002) and

show that the information criterion ICp2 correctly specifies the number of factors for large enough

21

dimensions of the dataset. Additionally, Table 9 in Appendix A.2 provides simulation results

with 1000 iterations. As these PCA estimation outcomes are highly similar, it can be concluded

that the discussed hit rates are a good representation of the performance on DGPs of this type.

Table 3 contains the results of applying the SP2 method to simulated data with different

dimensions. Since 25 observations are required to form the hold-out sample and evaluate the

predictive ability of the model, T only starts at 50 for this experiment. To compare the forecasting

performance of the SP2 model with that of the AR model based on simulated data, average MSFE

ratios and the corresponding number of iterations for which the DM test of better AR forecasts

was rejected are shown for each dimensionality. On average, all MSFE ratios are smaller than 1,

indicating lower forecast errors of the SP2 model. However, the null hypothesis of smaller AR

forecast errors could never be rejected for all 100 replications of the simulation, as the rejection

numbers are smaller than 100. Naturally, less rejections usually also come with higher MSFE

ratios as the relatively higher forecast errors of the SP2 model make it harder to reject superiority

of AR forecasts. In general, it can be seen that the more factors are present in the data, the

easier it becomes to reject the DM test. This can be explained by the inability of the AR model

to capture the information contained in the factors, which are incorporated in the SP2 model

leading to relatively better forecasts when more factors are underlying the data.

In Panel A of Table 3, no clear pattern is visible at first sight. When k = 1, the lowest MSFE

ratio of 0.671 occurs for data with T = 50 and N = 100. Moreover, the DM test rejected higher

accuracy of AR forecasts 75 out of 100 times at the 10% significance level for these dimensions.

However, the same number of rejections was also found for T = 1000 and N = 10 but with

a larger MSFE ratio of 0.734. The highest relative forecast errors and correspondingly lowest

amount of rejections was found for dimensions T = 50 and N = 20. When both T and N are too

low, factor estimation cannot properly capture underlying patterns in the data as demonstrated

by the PCA simulation results. For this number of factors, it is striking that the SP2 method

performs best relative to the AR model for datasets with either large T and small N or for

small T and large N . This might be due to the AR model performing poorly when only a small

number of observations is available, thus resulting in high MSFEs. These can then easily be

outperformed by the SP2 model because of the additional information contained in the factors,

which can be estimated accurately with a large number of variables N .

For k = 3 factors, a pattern seems to emerge with good forecasts located towards the lower

right half and relatively bad forecasts in the upper left of Panel B. Dimensions T = 1000 and

N = 50 result in the smallest MSFE ratio of 0.690. Datasets with these dimensions also exhibit

a large number of rejections equal to 72, although this is not the largest number reported for this

22

value of k, which is 76 for T = 1000 and N = 20. The worst relative forecasting performance

of the SP2 model is achieved when T = 50 and N = 10, leading to the highest MSFE ratio of

0.838 and the lowest number of DM test rejections for this number of factors.

In Panel C of Table 3 corresponding to five factors, a clear pattern is visible. The larger

both dimensions T and N , the better the predictions of the SP2 model relative to the AR model

as indicated by lower MSFE ratios and more rejections of the DM test. Similarly, the smaller

the dimensions of the dataset, the worse is the relative performance of the SP2 model. Both,

the lowest MSFE ratio of 0.675 and the largest number of rejected DM tests is achieved for the

highest dimensions of T = 1000 and N = 200, while the largest MSFE ratio of 0.905 with the

least rejections is obtained for the smallest dimensions T = 50 and N = 10.

Table 3: MSFE ratios for different dimensions of the data with number of rejected DM tests in
parentheses

T
N 10 20 50 100 200

PANEL A: k = 1

50 0.809 (48) 0.828 (41) 0.720 (57) 0.671 (75) 0.688 (71)
100 0.756 (56) 0.747 (61) 0.795 (47) 0.760 (53) 0.702 (71)
200 0.756 (64) 0.761 (55) 0.769 (58) 0.748 (60) 0.768 (55)
500 0.757 (59) 0.748 (69) 0.732 (73) 0.734 (64) 0.750 (67)
1000 0.734 (75) 0.751 (63) 0.748 (58) 0.742 (61) 0.759 (62)

PANEL B: k = 3

50 0.838 (41) 0.806 (40) 0.755 (61) 0.716 (64) 0.705 (63)
100 0.774 (62) 0.750 (61) 0.752 (54) 0.709 (71) 0.702 (74)
200 0.756 (59) 0.748 (65) 0.727 (62) 0.737 (60) 0.725 (65)
500 0.760 (61) 0.713 (73) 0.720 (71) 0.727 (58) 0.724 (67)
1000 0.774 (58) 0.718 (76) 0.690 (72) 0.702 (71) 0.700 (75)

PANEL C: k = 5

50 0.905 (31) 0.859 (31) 0.791 (52) 0.790 (54) 0.803 (51)
100 0.819 (51) 0.783 (54) 0.738 (62) 0.716 (58) 0.703 (66)
200 0.790 (58) 0.731 (63) 0.734 (60) 0.717 (68) 0.702 (68)
500 0.767 (63) 0.726 (71) 0.710 (70) 0.707 (70) 0.693 (73)
1000 0.771 (65) 0.732 (63) 0.703 (73) 0.672 (74) 0.675 (74)

The values in this Table are averages over 100 simulation replications. Each panel represents a different
number of k underlying factors in the DGP. The estimated number of factors k̂ is selected based on the
ICp2 criterion with kmax = 10 as discussed in Section 4.1.2. The MSFE ratios are based on forecast errors
of the SP2 model relative to the AR model. For the SP2 model, the boosting parameters areM = 50 and
ν = 0.5. The number of rejected Diebold-Mariano (DM) tests is based on the 10% one-sided standard
normal critical value of 1.282. Results at the 5% level can be found in Table 10 in Appendix A.2.

5.2 Replication of Kim and Swanson (2018)’s Results

After verifying the models with simulated data, the results of Kim and Swanson (2018) were

replicated. The same U.S. dataset was used, leading to a MSFE ratio of 0.869 compared to

the ratio of 0.871 reported in Table 3 of their paper. As the difference between these ratios is

23

negligible, I conclude that I successfully implemented their SP2 model. With a test statistic of

DM = 2.628, the null hypothesis of better AR forecasts is rejected at the 1% level, indicating

that the combination model produces better forecasts of U.S. GDP growth. This is in accordance

with the findings of Kim and Swanson (2018). In Figures 9 and 10, the actual values of GDP

growth are plotted against AR and SP2 forecasts, respectively. It can be seen that the AR

forecasts are often more extreme, especially after very large or small previous growth rates, as

they are based solely on lags of the dependent variable. The SP2 forecasts seem less noisy, but

are still not able to capture particularly large or small changes in GDP. When analysing the fitted

models, it could be seen that most of the time, the AR model was estimated with p̂ = 1 lags.

This is in line with the discussion of the data in Section 3. However, it seems that the factors in

the SP2 model add some predictive value and reduce the noise of previous growth rates.

1976 1980 1984 1988 1992 1996 2000 2004 2008
Year

−0.015

−0.010

−0.005

0.000

0.005

0.010

0.015

0.020

Monthly GDP Growth
�	��������

��	���
�

Figure 9: AR(p) Model (MSFE=1.940e-05)

1976 1980 1984 1988 1992 1996 2000 2004 2008
Year

−0.015

−0.010

−0.005

0.000

0.005

0.010

0.015

0.020

Monthly GDP Growth
�	��������

��	���
�

Figure 10: SP2 Model (MSFE=1.685e-05)

5.3 Application to South African Data

Applying the same method with the same parameters (M = 50, ν = 0.5) to the South African

dataset results in an MSFE ratio of 0.964, implying that the SP2 forecasts perform slightly

better than those of the AR model. However, this difference is not significant as shown by the

Diebold-Mariano test statistic of DM = 0.706. While the forecast errors are on average lower for

the SP2 model, the large variation in the loss differential renders this result insignificant. When

looking at graphs of the two forecast series in Figures 11 and 12, it becomes apparent that the

AR and SP2 forecasts do not differ that much.

After further investigation of the estimated models, it was found that the number of lags

chosen for the AR model was p̂ = 2 for all point forecasts made. This corresponds to the

expected number of lags based on the analysis of the autocorrelation and partial autocorrelation

functions in Section 3. Therefore, it can be concluded that the AR model is specified correctly

and its forecasts are as accurate as possible for this type of model. Moreover, the fact that higher

24

AR forecast accuracy could not be rejected for South African GDP growth might arise from the

different characteristics of the dataset. As there are less observations across time and variables

for South Africa, the way boosting is best applied to this data most likely differs from the method

used on the larger American dataset. Hence, the outcomes of optimizing the boosting parameters

are discussed before interpreting any results for South Africa.

2013 2014 2015 2016 2017 2018 2019
Year

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
Quarterly GDP Growth in Percent

�	��������

��	���
�

Figure 11: AR(p) Model (MSFE=0.487)

2013 2014 2015 2016 2017 2018 2019
Year

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
Quarterly GDP Growth in Percent

�	��������

��	���
�

Figure 12: SP2 Model (MSFE=0.470)

5.3.1 Parameter Optimization

Table 4 contains MSFE ratios of the SP2 method relative to AR forecasts for different combina-

tions of boosting iterationsM and step size ν. Most remarkably, the forecast accuracy of the SP2

method varies largely depending on the boosting parameters. If the wrong set of parameters is

chosen the diffusion index forecasts are even outperformed by autoregressive predictions, which

is shown by MSFE ratios above 1. For instance, whenM = 50 and ν = 0.2, the maximum MSFE

ratio of 1.24 is reached indicating that the SP2 forecast errors are notably higher than the AR

ones. In general, it seems that larger values of M and ν are better as the MSFE ratios in the

lower right half of Table 4 are mainly below 1. However, all of the three best results, which were

also the only ones for which the DM test could be rejected, were obtained with ν = 0.6.

Table 4: MSFE ratios for different combinations of boosting parameters M and ν

M
ν 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

30 1.071 1.156 1.202 1.178 1.085 1.017 1.087 0.988 0.962 1.081
40 1.074 1.082 1.145 1.104 1.032 0.950 1.079 0.979 1.038 0.989
50 1.045 1.240 1.148 0.965 0.964 0.942** 1.015 0.973 1.019 0.980
60 1.108 1.085 1.090 0.990 0.954 0.935** 1.002 0.990 1.029 0.969
70 1.181 1.181 1.045 1.034 0.959 0.935** 1.002 0.990 1.026 0.962

The ratios in this Table represent MSFEs of the SP2 model relative to the AR(p) model with pmax = 4.
For entries marked with *, ** and *** the DM test rejected higher accuracy of the AR(p) forecasts at
the 10%, 5% and 1% significance level, respectively.

25

For simplicity, I just pick the parameter configuration with the lowest MSFE ratio and highest

DM test statistic. For ν = 0.6, two values of M yield similar MSFE ratios of about 0.935. But

the DM value for boosting with M = 70, ν = 0.6 is slightly higher than for the parameters

M = 60, ν = 0.6, therefore the forecasts of this configuration are investigated further.

After choosing appropriate boosting parameters for the South African dataset, the forecast

performance measures of the SP2 model became MSFE = 0.935 and DM = 1.955. Figures 13

and 14 again compare the forecasts of the AR model with the SP2 model, but now using boosting

parameters M = 70 and ν = 0.6. The results are similar in that the difference between the two

forecasts is not immediately visible. While some forecasts are almost exactly the same, others

show an improved fit with the SP2 model. Overall, this leads to a significantly lower MSFE of

the optimized SP2 forecasts relative to the AR model.

2013 2014 2015 2016 2017 2018 2019
Year

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
Quarterly GDP Growth in Percent

�	��������

��	���
�

Figure 13: AR(p) Model (MSFE=0.4871)

2013 2014 2015 2016 2017 2018 2019
Year

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
Quarterly GDP Growth in Percent

�	��������

��	���
�

Figure 14: SP2 Model (MSFE=0.4554)

A graphical representation of the in-sample residuals for the last point forecasts and the in-

sample residual skewness and kurtosis for each forecast is given by Figures 19 and 20 in Appendix

A.2. Inspecting these graphs can help to detect outliers that could not be captured by the model

and could potentially deteriorate its forecasting performance. However, the residuals are all

roughly in the same range and there is no observation that stands out. Moreover, skewness and

kurtosis of the residuals have reasonable values, although not normal, over the entire forecasting

period. Therefore, there is no reason to deal with any observations separately.

5.3.2 Selected Variables and Factors

Figures 15 and 16 show the number of variables and factors selected by boosting with M = 70

and ν = 0.6 and PCA, respectively. It can be seen that the number of explanatory variables

is reduced to less than half, as less than 30 predictors are chosen during each estimation of the

model. Sometimes even less than a third of all variables is selected. This shows that boosting

26

successfully reduced the dimension of the large set of predictors. However, when the number

of predictors after boosting is too small, PCA fails to estimate the number of factors correctly.

The spikes in Figure 16 correspond to drops in the number of selected variables in Figure 15.

At these spikes, the number of factors estimated with PCA jumps to 10, which is the maximum

number of factors that can be selected. All other forecasts are made with only one factor, which

seems a reasonable result given the consistency of this number when disregarding the spikes in

the graph. This is in line with the simulation results, as it was found that when N = 20 the hit

rate of the ICp2 selection criterion falls below one and when N = 10 the estimated number of

factors is often equal to kmax = 10 leading to a hit rate that is always 0.

Despite the likely failure of PCA to specify the underlying number of factors correctly when

ten factors were estimated, this does not represent a problem for the SP2 forecasting method

because boosting is applied a second time to obtain the coefficients of the factors in the diffusion

index forecasting equation. As can be seen in Figure 16, boosting reduces the number of factors

to at most four. However, in the cases when PCA estimated ten factors, boosting still estimates

more than one factor with non-zero coefficients. Hence, there indeed seems to be more than one

factor that was relevant for explaining GDP growth rates during these quarters. Therefore, the

SP2 model can produce good forecasts even when the number of factors was overestimated.

2013 2014 2015 2016 2017 2018 2019
Year

10

15

20

25

30
Number of Selected Variables

Figure 15: Boosting the predictors

2013 2014 2015 2016 2017 2018 2019
Year

2

4

6

8

10
Number of Factors

���
����	���

Figure 16: Boosting the factors

Table 5 provides a summary of the most frequently selected variables of the last forecast

made by the SP2 model, excluding GDP growth itself. During the numerous boosting iterations,

one specific variable can be selected more than once depending on its ability to explain GDP

growth. All predictors that were chosen in more than one iteration of boosting are displayed

below. When making the last point forecast for Q1 2019, 23 variables were pre-selected by

boosting. Out of these variables, South Africa Mining Prices were selected most frequently by

the boosting algorithm, namely a total of seven times. This supports the fact that South Africa’s

economy is still highly dependent on its mining industry, which contributes the largest share of

27

its exports. Mining prices are followed by the Lagging Composite Business Cycle Indicator,

suggesting that there is some time dependency between South African GDP growth and its

business cycle. South Africa Wholesale Retail Hotels Prices and South Africa Money Supply M1

were both selected three times. This is consistent with wholesale and retail trade and tourism

being two of South Africa’s most important economic sectors. As money supply is in the short

run expected to positively correlate with GDP according to macroeconomic theory, it could also

be a good predictor thereof. Overall, the variables selected multiple times by boosting all have a

clear connection to South African GDP growth. Additionally, Table 11 in Appendix A.2 displays

the loadings of the single factor estimated for obtaining the last point forecast.

Table 5: Variables that were most frequently selected by boosting

Frequency Bloomberg Ticker Description

7 SASGMINE Index South Africa Mining SA Constant Prices
5 SACBLG Index Composite Business Cycle Indicator - Lagging Indicator
3 SASGWRH Index South Africa Wholesale Retail Hotels SA Constant Prices
3 SAMYM1 Index South Africa Money Supply M1
2 SACTLMI Index South Africa Current Account SA - Less Merchandise Imports
2 SASGCON Index South Africa Construction SA Constant 2000 Prices
2 SACBCI Index Composite Business Cycle Indicator - Coincident Indicator

These are explanatory variables selected in more than one boosting iteration with M = 70 and ν = 0.6
when producing the last forecast. For a full list of all 62 variables, see Tables 7 and 8 in Appendix A.1.

5.4 Recurrent Neural Network

Lastly, the results of predicting South African GDP growth using a univariate RNN with LSTM

architecture are provided in Table 6. The LSTM model was trained for varying numbers of

epochs E with different numbers of neurons n in each configuration. When comparing MSFE

ratios and DM test statistics of the 15 different combinations of network parameters, it becomes

visible in Panel A that a model with n = 100 neurons trained for E = 50 epochs achieves

the lowest MSFE ratio. However, for this configuration with a ratio of 0.750 the DM test fails

to reject the null hypothesis of more accurate AR forecasts as the test statistic is only 0.953.

There are several parameter configurations that lead to a DM value above 1, namely n = 10 and

E = 200, n = 20 and E = 200, or n = 50 and E = 100. The LSTM network with n = 10 neurons

trained E = 200 iterations performed particularly well, as it corresponds to the second lowest

MSFE ratio of 0.802 and the highest test statistic DM = 1.246, which is only slightly below the

10% critical value of 1.282. Consequently, none of the investigated LSTM parameters lead to

significantly better forecasts relative to the AR model. The LSTM results could not significantly

improve upon the SP2 forecasts either, which can be seen in Panel B of Table 6. Table 12 in

Appendix A.2 shows results for more parsimonious models in terms of the number of neurons.

28

Table 6: MSFE ratios for different LSTM parameters with DM test statistics in parentheses

E
n 10 20 50 100 200

PANEL A: LSTM network vs AR model

50 1.319 (-0.725) 1.247 (-0.648) 0.826 (0.613) 0.750 (0.953) 0.868 (0.551)
100 0.968 (0.104) 0.898 (0.388) 0.831 (1.006) 0.845 (0.906) 0.901 (0.583)
200 0.802 (1.246) 0.856 (1.073) 0.893 (0.781) 0.893 (0.708) 0.865 (0.966)

PANEL B: LSTM network vs SP2 model

50 1.411 (-0.802) 1.334 (-0.735) 0.430 (0.340) 0.391 (0.583) 0.928 (0.206)
100 1.036 (-0.088) 0.960 (0.106) 0.433 (0.315) 0.440 (0.268) 0.964 (0.101)
200 0.858 (0.406) 0.915 (0.233) 0.465 (0.122) 0.465 (0.122) 0.925 (0.205)

The ratios reported above are MSFE ratios of univariate RNNs with LSTM architecture relative to the
AR and SP2 model. Each ratio corresponds to an LSTM model with p = 4 input lags and different
numbers of neurons n trained for E epochs. Corresponding DM test statistics for the null hypothesis
of superior benchmark model forecasts are shown in parentheses. Each LSTM configuration was used
to predict the out-of-sample GDP growth rates only once. However, it should be noted that training
a neural network is subject to randomness. Therefore, these results are not fully representative of the
predictive ability of the LSTM models.

However, as discussed in Section 4.4, neural networks are very sensitive to the random ini-

tialization of their weight vectors. Therefore, the inability to reject the DM test for any of the

LSTM configurations above could simply be due to the initial weights. For this reason, the best

configuration is trained and evaluated on its predictions 10 times, leading to an average MSFE

ratio of 0.783. Furthermore, the DM test rejected superior AR forecasts in 60% of the trials at

the 10% significance level while higher accuracy of the SP2 predictions could only be rejected

twice. The individual results for each trial are reported in Table 13 in Appendix A.2. It can

be concluded that there is additional predictive value in non-linear LSTM networks relative to

a linear AR model. Hence, there might be a non-linear relation between South African GDP

growth and its previous values. However, on average the linear diffusion index model still pro-

duces better forecasts than the best univariate LSTM considered in this research. This can be

explained by the additional predictors contained in the diffusion index combination model.

6 Discussion and Conclusion

In this paper, the SP2 combination model by Kim and Swanson (2018) was analysed in detail

and compared to other machine learning and AR models in terms of its predictive power. It was

found that this model, combining factor estimation and boosting, significantly improves forecast

accuracy relative to an AR model not only for monthly U.S. data consistent with Kim and

Swanson (2018), but also for the smaller quarterly South African dataset. A simulation study of

datasets with different dimensions across time and variables supported this finding and showed

29

that the investigated combination model produces on average significantly better forecasts for

data of different sizes. The gain in accuracy and the significance thereof increase with the number

of factors present in the data. Therefore, the first sub-question was answered by concluding that

the constructed forecasting model works properly for different regions and data frequencies.

Additionally, the predictive ability of univariate LSTM networks with different parameter

configurations was compared to the AR benchmark and the SP2 model combining boosting and

PCA. An empirical evaluation based on the South African macroeconomic dataset revealed that

the LSTM model with ten neurons trained for 200 epochs on average leads to significantly better

forecasts of South African GDP growth than the AR model, suggesting a non-linear relation of

GDP growth with its previous values. However, the SP2 model, which includes multiple predictor

series in addition to lagged GDP growth, could not be outperformed significantly. This answers

the second sub-question, since forecast accuracy could be improved only compared to AR models.

However, the parameters of boosting and neural networks strongly influenced the above

findings, as without finding a good configuration neither the SP2 model nor LSTM networks were

able to yield significantly better forecasts than the AR model. Consequently, the general research

question how machine learning techniques can be used to beat autoregressive models in predicting

South African GDP growth could be answered. More specifically, applying boosting together

with PCA and searching for appropriate boosting parameters represents the most suitable way

to employ machine learning techniques to predict GDP growth.

However, one of the limitations of this research is the restricted number of South African

macroeconomic variables available over a long enough time span to fully discover the potential of

the applied methods, especially at quarterly data frequency. Furthermore, appropriate parame-

ters of the machine learning models were found by using a simple linear grid search, which is far

from optimal. In order to evaluate the best versions of each model, a more strategic parameter

optimization routine such as cross-validation is required. Without knowing whether the chosen

parameters lead to the best configuration of a certain method, no final conclusions can be drawn

concerning the question which model provides the most accurate forecasts for a given dataset.

Considering that South Africa depends heavily on its exports, it might be beneficial for

further research to include more global macroeconomic variables in the set of predictors to help

improve forecast accuracy. However, first a larger number of observations over time is needed to

enable adding more variables to the model. Another opportunity for future research comes with

the application of neural networks for time series prediction. In addition to previous values of

GDP growth rates, the LSTM network could take as input either the full set of predictors X or

the factors F , leading to a multivariate network with potentially more predictive power.

30

References

Aron, J. and Muellbauer, J. (2002). Interest rate effects on output: evidence from a gdp fore-

casting model for south africa. IMF Staff papers, 49(1):185–213.

Aron, J. and Muellbauer, J. (2007). Review of monetary policy in south africa since 1994. Journal

of African Economies, 16(5):705–744.

Bai, J. and Ng, S. (2002). Determining the number of factors in approximate factor models.

Econometrica, 70(1):191–221.

Bai, J. and Ng, S. (2006). Confidence intervals for diffusion index forecasts and inference for

factor-augmented regressions. Econometrica, 74(4):1133–1150.

Bai, J. and Ng, S. (2009). Boosting diffusion indices. Journal of Applied Econometrics, 24(4):607–

629.

Bai, J., Ng, S., et al. (2008). Large dimensional factor analysis. Foundations and Trends R© in

Econometrics, 3(2):89–163.

Botha, B., de Jager, S., Ruch, F., and Steinbach, R. (2017). The quarterly projection model of

the sarb. South African Reserve Bank Working Paper WP/17/01.

Brand South Africa (2018). SA’s key economic sectors. Retrieved June 17,

2019, from https://www.brandsouthafrica.com/investments-immigration/business/

investing/economic-sectors-agricultural.

Center for International Development at Harvard University (2017). The atlas of economic

complexity. Retrieved June 5, 2019, from http://atlas.cid.harvard.edu/explore/

?country=246&partner=undefined&product=undefined&productClass=HS&startYear=

undefined&target=Product&year=2017.

Cepni, O., Guney, I., and Swanson, N. R. (2018). Forecasting and Nowcasting Emerging Market

GDP Growth Rates: The Role of Latent Global Economic Policy Uncertainty and Macroe-

conomic Data Surprise Factors. Available at SSRN 3298924.

Cepni, O., Güney, I. E., and Swanson, N. R. (2019). Nowcasting and forecasting GDP in emerging

markets using global financial and macroeconomic diffusion indexes. International Journal

of Forecasting, 35(2):555–572.

Chow, G. C., Lin, A.-l., et al. (1971). Best linear unbiased interpolation, distribution, and

extrapolation of time series by related series. Princeton University.

31

https://www.brandsouthafrica.com/investments-immigration/business/investing/economic-sectors-agricultural
https://www.brandsouthafrica.com/investments-immigration/business/investing/economic-sectors-agricultural
http://atlas.cid.harvard.edu/explore/?country=246&partner=undefined&product=undefined&productClass=HS&startYear=undefined&target=Product&year=2017
http://atlas.cid.harvard.edu/explore/?country=246&partner=undefined&product=undefined&productClass=HS&startYear=undefined&target=Product&year=2017
http://atlas.cid.harvard.edu/explore/?country=246&partner=undefined&product=undefined&productClass=HS&startYear=undefined&target=Product&year=2017

Dejager, S. (2017). Comparing the SARB’s Quarterly Projection Model to the “Core” macro-

econometric model. Occasional Bulletin of Economic Notes 8903, South African Reserve

Bank. Retrieved June 17, 2019, from https://econpapers-repec-org.eur.idm.oclc.

org/RePEc:rbz:oboens:8903.

Diebold, F. X. and Mariano, R. S. (1995). Comparing predictive accuracy. Journal of Business

& Economic Statistics, 13:253–263.

Franses, P. H., Dijk, D. v., and Opschoor, A. (2014). Time Series Models for Business and Eco-

nomic Forecasting. Cambridge University Press, 2 edition. doi:10.1017/CBO9781139049894.

Freund, Y. and Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning

and an application to boosting. Journal of Computer and System Sciences, 55(1):119–139.

Giannone, D., Reichlin, L., and Small, D. (2008). Nowcasting: The real-time informational

content of macroeconomic data. Journal of Monetary Economics, 55(4):665–676.

Hochreiter, S. (1998). The vanishing gradient problem during learning recurrent neural nets and

problem solutions. International Journal of Uncertainty, Fuzziness and Knowledge-Based

Systems, 6(02):107–116.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural Computation,

9(8):1735–1780.

Hornik, K., Stinchcombe, M., and White, H. (1989). Multilayer feedforward networks are uni-

versal approximators. Neural Networks, 2(5):359–366.

International Monetary Fund (2018). World Economic Outlook: Growth Slowdown, Precarious

Recovery. International Monetary Fund.

Kim, H. H. and Swanson, N. R. (2014). Forecasting financial and macroeconomic variables using

data reduction methods: New empirical evidence. Journal of Econometrics, 178:352–367.

Kim, H. H. and Swanson, N. R. (2018). Mining big data using parsimonious factor, machine

learning, variable selection and shrinkage methods. International Journal of Forecasting,

34(2):339–354.

Kuan, C.-M. and Liu, T. (1995). Forecasting exchange rates using feedforward and recurrent

neural networks. Journal of Applied Econometrics, 10(4):347–364.

McCulloch, W. S. and Pitts, W. (1943). A logical calculus of the ideas immanent in nervous

activity. The Bulletin of Mathematical Biophysics, 5(4):115–133.

32

https://econpapers-repec-org.eur.idm.oclc.org/RePEc:rbz:oboens:8903
https://econpapers-repec-org.eur.idm.oclc.org/RePEc:rbz:oboens:8903
10.1017/CBO9781139049894

Olah, C. (2015). Understanding lstm networks. Retrieved June 20, 2019, from http://colah.

github.io/posts/2015-08-Understanding-LSTMs/.

Ridgeway, G., Madigan, D., and Richardson, T. (1999). Boosting methodology for regression

problems. In AISTATS.

Schapire, R. E. (1990). The strength of weak learnability. Machine Learning, 5(2):197–227.

Schwarz, G. et al. (1978). Estimating the dimension of a model. The Annals of Statistics,

6(2):461–464.

Stock, J. H. and Watson, M. W. (2002a). Forecasting using principal components from a large

number of predictors. Journal of the American Statistical Association, 97(460):1167–1179.

Stock, J. H. and Watson, M. W. (2002b). Macroeconomic forecasting using diffusion indexes.

Journal of Business & Economic Statistics, 20(2):147–162.

Stock, J. H. and Watson, M. W. (2012). Generalized shrinkage methods for forecasting using

many predictors. Journal of Business & Economic Statistics, 30(4):481–493.

Svensson, L. E. (1997). Inflation forecast targeting: Implementing and monitoring inflation

targets. European Economic Review, 41(6):1111–1146.

Swanson, N. R. and White, H. (1997). A model selection approach to real-time macroeconomic

forecasting using linear models and artificial neural networks. Review of Economics and

Statistics, 79(4):540–550.

Tkacz, G. (2001). Neural network forecasting of Canadian GDP growth. International Journal

of Forecasting, 17(1):57–69.

Toyana, M. (2019). IMF trims South Africa’s economic growth fore-

cast to 1.2 percent. Reuters. Retrieved June 17, 2019,

from https://www.reuters.com/article/safrica-economy-imf/

imf-trims-south-africas-economic-growth-forecast-to-1-2-percent-idUSL8N21R3TV.

Werbos, P. J. et al. (1990). Backpropagation through time: what it does and how to do it.

Proceedings of the IEEE, 78(10):1550–1560.

33

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://www.reuters.com/article/safrica-economy-imf/imf-trims-south-africas-economic-growth-forecast-to-1-2-percent-idUSL8N21R3TV
https://www.reuters.com/article/safrica-economy-imf/imf-trims-south-africas-economic-growth-forecast-to-1-2-percent-idUSL8N21R3TV

A Appendix

A.1 Data

Table 7: Subset of South African predictors according to Cepni et al. (2019)

Bloomberg Ticker Description

1 SACWC Index South Africa Consumer Confidence
2 SACWE Index South Africa Consumer Confidence Economic Position in Next 12m
3 SACWF Index South Africa Consumer Confidence Financial Position During Next 12m
4 SACTLVL Index South Africa Current Account SA
5 SACTMEX Index South Africa Current Account SA - Merchandise Exports Free on Board
6 SACTGEX Index South Africa Current Account SA - Net Gold Exports
7 SACTLMI Index South Africa Current Account SA - Less Merchandise Imports
8 SACTCTR Index South Africa Current Account SA - Current Transfers Net Receipts
9 SACUI Index South Africa Utilization of Production Capacity
10 SABTHDIQ Index South Africa Household Debt to Disposable Income of Households
11 SAGNDISA Index South Africa Nominal Household Disposable Income SA
12 SADXFCFR Index South Africa Real GDP Gross Fixed Capital Formation SA
13 SASGAGR Index South Africa Agriculture SA Constant Prices
14 SASGMINE Index South Africa Mining SA Constant Prices
15 SASGMANU Index South Africa Manufacturing SA Constant Prices
16 SASGELEC Index South Africa Electricity SA Constant Prices
17 SASGCON Index South Africa Construction SA Constant 2000 prices
18 SASGWRH Index South Africa Wholesale Retail Hotels SA Constant Prices
19 SADXRGSA Index South Africa Real GDP Expenditure on GDP
20 SACSPSTO Index SA Recorded Building Plans Total SA
21 SACSPSRB Index SA Recorded Building Plans Residentual Buildings SA
22 SACSPSNR Index SA Recorded Building Plans Non-Residentual Buildings SA
23 SACSPSAA Index SA Recorded Building Plans Additions and Alterations SA
24 SACSCSTO Index SA Completed Buildings Recorded Total SA
25 SACSCSRB Index SA Completed Buildings Recorded Residentual Buildings SA
26 SACSCSNR Index SA Completed Buildings Recorded Non-Residentual Buildings SA
27 SACSCSAA Index SA Completed Buildings Recorded Additions and Alterations SA
28 ZAR Curncy USDZAR Spot Exchange Rate - Price of 1 USD in ZAR
29 GBPZAR Curncy GBPZAR Spot Exchange Rate - Price of 1 GBP in ZAR
30 JPYZAR Curncy JPYZAR Spot Exchange Rate - Price of 1 JPY in ZAR
31 TRYZAR Curncy TRYZAR Spot Exchange Rate - Price of 1 TRY in ZAR
32 BISBZAR Index South Africa Real Effective Exchange Rate Broad
33 TOP40 Index FTSE/JSE Africa Top40 Tradeable Index
34 JFINX Index FTSE/JSE Africa Financials Index
35 JBIND Index FTSE/JSE Africa Basic Materials Index
36 JGIND Index FTSE/JSE Africa Industrials Index
37 JGOLD Index FTSE/JSE Africa Gold Mining Index
38 JALSH Index FTSE/JSE Africa All Share Index
39 SACEI Index South Africa Private Credit Extension
40 SACEINV Index South Africa Private Credit Extension Investments

34

Table 8: Subset of South African predictors according to Cepni et al. (2019) (continued)

Bloomberg Ticker Description

41 SACEMORT Index South Africa Private Credit Extension Mortgage Advances
42 SACELEAS Index South Africa Private Credit Extension Leasing Finance
43 SACELOAN Index South Africa Private Credit Extension Total Loans and Advances
44 SACESALE Index South Africa Private Credit Extension Installment Sales Credit
45 SACEHOUS Index South Africa Private Credit Extension Of Which To Households
46 SAMYSAM3 Index South Africa Money Supply M3 Seasonally Adjusted
47 SAMYM1 Index South Africa Money Supply M1
48 SAMYM2 Index South Africa Money Supply M2
49 SAMYM0 Index South Africa Money Supply M0
50 199.055 Index IMF South Africa Foreign Exchange Reserves in Millions of USD
51 SACPI Index South Africa CPI 2012=100
52 SACBLI Index Composite Business Cycle Indicator - Leading Indicator
53 SACBLG Index Composite Business Cycle Indicator - Lagging Indicator
54 SACBCI Index Composite Business Cycle Indicator - Coincident Indicator
55 SANOFP$ Index South Africa Net Open Foreign Currency Position
56 SATBAL Index South Africa Trade Balance Incl Oil Arms & Bullion
57 SATBEX Index South Africa Trade Balance Exports Incl Oil Arms & Bullion
58 SATBIM Index South Africa Trade Balance Imports Incl Oil Arms & Bullion
59 SAMSTGSA Index South Africa Mining Sales Total Including Gold SA
60 SAMPGDSY Index South Africa Mining Production Volume Gold SA YoY
61 SAMPTTSY Index South Africa Mining Production Volume Total Inc Gold SA YoY
62 EHGDZA Index South Africa Real GDP (Annual YoY %)

Figure 18: Autocorrelation functions of monthly U.S. GDP growth

35

F
ig

u
re

17
:
H
ea
tm

ap
de
pi
ct
in
g
th
e
co
rr
el
at
io
ns

of
la
gg
ed

pr
ed
ic
to
rs

w
it
h
So

ut
h
A
fr
ic
an

G
D
P

gr
ow

th

36

A.2 Supplementary Results

Table 9: Estimated number of factors for different dimensions of the data with hit rates in parentheses

T
N 10 20 50 100 200

PANEL A: k = 1

10 9.349 (0.000) 9.011 (0.000) 9.002 (0.000) 9.000 (0.000) 9.001 (0.000)
20 10.000 (0.000) 1.198 (0.975) 1.009 (0.999) 1.000 (1.000) 1.000 (1.000)
50 10.000 (0.000) 1.075 (0.990) 1.000 (1.000) 1.000 (1.000) 1.000 (1.000)
100 10.000 (0.000) 1.194 (0.975) 1.000 (1.000) 1.000 (1.000) 1.000 (1.000)
200 10.000 (0.000) 1.263 (0.967) 1.000 (1.000) 1.000 (1.000) 1.000 (1.000)
500 10.000 (0.000) 1.392 (0.954) 1.000 (1.000) 1.000 (1.000) 1.000 (1.000)
1000 10.000 (0.000) 1.373 (0.957) 1.000 (1.000) 1.000 (1.000) 1.000 (1.000)

PANEL B: k = 3

10 9.283 (0.000) 9.004 (0.000) 9.001 (0.000) 9.000 (0.000) 9.000 (0.000)
20 10.000 (0.000) 2.237 (0.246) 2.643 (0.689) 2.833 (0.845) 2.913 (0.914)
50 10.000 (0.000) 2.770 (0.775) 2.976 (0.977) 3.000 (1.000) 3.000 (1.000)
100 10.000 (0.000) 2.952 (0.930) 3.000 (1.000) 3.000 (1.000) 3.000 (1.000)
200 10.000 (0.000) 2.997 (0.971) 3.000 (1.000) 3.000 (1.000) 3.000 (1.000)
500 10.000 (0.000) 3.001 (0.989) 3.000 (1.000) 3.000 (1.000) 3.000 (1.000)
1000 10.000 (0.000) 2.996 (0.988) 3.000 (1.000) 3.000 (1.000) 3.000 (1.000)

PANEL C: k = 5

10 9.264 (0.000) 9.001 (0.000) 9.000 (0.000) 9.000 (0.000) 9.000 (0.000)
20 10.000 (0.000) 2.246 (0.011) 2.732 (0.069) 3.460 (0.176) 3.818 (0.233)
50 10.000 (0.000) 3.179 (0.146) 3.935 (0.308) 4.850 (0.854) 4.981 (0.981)
100 10.000 (0.000) 4.159 (0.444) 4.907 (0.912) 5.000 (1.000) 5.000 (1.000)
200 10.000 (0.000) 4.489 (0.589) 4.997 (0.997) 5.000 (1.000) 5.000 (1.000)
500 10.000 (0.000) 4.651 (0.685) 5.000 (1.000) 5.000 (1.000) 5.000 (1.000)
1000 10.000 (0.000) 4.744 (0.751) 5.000 (1.000) 5.000 (1.000) 5.000 (1.000)

The values in this Table are averages over 1000 simulation replications. Each panel represents a different
number of k underlying factors in the DGP. The estimated number of factors k̂ is selected based on the
ICp2 criterion with kmax = 10 as discussed in Section 4.1.2.

2000 2004 2008 2012 2016 2020
Year

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0
Residuals of SP2 Model

Figure 19: In-sample residuals for last point
forecast

2013 2014 2015 2016 2017 2018 2019
Year

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Descriptive Statistics of SP2 Residuals
��������
�
�	����

Figure 20: In-sample descriptive statistics of
residuals for each point forecast

37

Table 10: MSFE ratios for different dimensions of the data with numbers of rejected DM tests in
parentheses

T
N 10 20 50 100 200

PANEL A: k = 1

50 0.809 (37) 0.828 (26) 0.720 (38) 0.671 (63) 0.688 (52)
100 0.756 (42) 0.747 (41) 0.795 (28) 0.760 (38) 0.702 (49)
200 0.756 (51) 0.761 (40) 0.769 (34) 0.748 (41) 0.768 (39)
500 0.757 (42) 0.748 (41) 0.732 (49) 0.734 (40) 0.750 (38)
1000 0.734 (52) 0.751 (46) 0.748 (41) 0.742 (41) 0.759 (37)

PANEL B: k = 3

50 0.838 (29) 0.806 (24) 0.755 (39) 0.716 (42) 0.705 (47)
100 0.774 (42) 0.750 (44) 0.752 (38) 0.709 (54) 0.702 (49)
200 0.756 (45) 0.748 (47) 0.727 (40) 0.737 (39) 0.725 (41)
500 0.760 (37) 0.713 (48) 0.720 (47) 0.727 (40) 0.724 (44)
1000 0.774 (36) 0.718 (52) 0.690 (51) 0.702 (49) 0.700 (48)

PANEL C: k = 5

50 0.905 (19) 0.859 (21) 0.791 (35) 0.790 (40) 0.803 (29)
100 0.819 (31) 0.783 (36) 0.738 (41) 0.716 (41) 0.703 (50)
200 0.790 (35) 0.731 (50) 0.734 (43) 0.717 (43) 0.702 (52)
500 0.767 (43) 0.726 (52) 0.710 (45) 0.707 (46) 0.693 (49)
1000 0.771 (42) 0.732 (45) 0.703 (54) 0.672 (51) 0.675 (56)

The values in this Table are averages over 100 simulation replications. Each panel represents a different
number of k underlying factors in the DGP. The estimated number of factors k̂ is selected based on the
ICp2 criterion with kmax = 10 as discussed in Section 4.1.2. The MSFE ratios are based on forecast errors
of the SP2 model relative to the AR model. For the SP2 model, the boosting parameters are M = 50
and ν = 0.5. The number of rejected Diebold-Mariano (DM) tests is based on the 5% one-sided standard
normal critical value of 1.645.

38

Table 11: Factor loadings of the chosen factor during the last forecast window

Loading Variable Description

1.874 South Africa Real GDP (Annual YoY %)
1.710 Composite Business Cycle Indicator - Coincident Indicator
1.556 South Africa Mining SA Constant Prices
1.361 South Africa Real GDP Gross Fixed Capital Formation SA
1.306 South Africa Electricity SA Constant Prices
1.258 South Africa Wholesale Retail Hotels SA Constant Prices
1.158 South Africa Construction SA Constant 2000 prices
1.111 South Africa Private Credit Extension Leasing Finance
1.053 South Africa Current Account SA - Less Merchandise Imports
0.964 South Africa Consumer Confidence
0.939 South Africa Private Credit Extension
0.835 South Africa Utilization of Production Capacity
0.744 SA Recorded Building Plans Residentual Buildings SA
0.736 South Africa Money Supply M1
0.718 Composite Business Cycle Indicator - Leading Indicator
0.671 FTSE/JSE Africa Basic Materials Index
0.405 SA Recorded Building Plans Additions and Alterations SA
0.391 South Africa Agriculture SA Constant Prices
0.370 South Africa Consumer Confidence Financial Position During Next 12m
-0.064 South Africa Mining Production Volume Gold SA YoY
-0.246 JPYZAR Spot Exchange Rate - Price of 1 JPY in ZAR
-0.327 Composite Business Cycle Indicator - Lagging Indicator
-0.351 South Africa CPI 2012=100

Table 12: MSFE ratios for different LSTM parameters with DM test statistics in parentheses

E
n 1 3 5

PANEL A: LSTM network vs AR model

50 3.678 (-3.170) 3.261 (-3.215) 1.106 (-0.234)
100 2.831 (-2.572) 1.313 (-0.579) 1.103 (-0.304)
200 1.129 (-0.353) 1.159 (-0.436) 0.891 (0.463)

PANEL B: LSTM network vs SP2 model

50 3.934 (-3.150) 3.488 (-3.329) 1.183 (-0.390)
100 3.028 (-2.689) 1.405 (-0.759) 1.180 (-0.396)
200 1.208 (-0.488) 1.239 (-0.535) 0.953 (0.127)

The ratios reported above are MSFE ratios of univariate RNNs with LSTM architecture relative to the
AR and SP2 model. Each ratio corresponds to an LSTM model with p = 4 input lags and different
numbers of neurons n trained for E epochs. Corresponding DM test statistics for the null hypothesis
of superior benchmark model forecasts are shown in parentheses. Each LSTM configuration was used
to predict the out-of-sample GDP growth rates only once. However, it should be noted that training
a neural network is subject to randomness. Therefore, these results are not fully representative of the
predictive ability of the LSTM models.

39

Table 13: MSFE ratios of LSTM model with DM test statistics in parentheses

Trial 1 2 3 4 5 6 7 8 9 10

LSTM/AR 0.745* 0.856 0.704* 0.790* 0.725* 0.856 0.768** 0.755 0.767** 0.863
(1.420) (0.902) (1.633) (1.284) (1.654) (0.797) (1.775) (1.254) (1.726) (0.818)

LSTM/SP2 0.797 0.916 0.753* 0.845 0.775 0.915 0.821* 0.808 0.821 0.923
(1.082) (0.491) (1.319) (0.906) (1.264) (0.442) (1.302) (0.943) (1.258) (0.428)

This Table shows MSFE ratios of a univariate RNN with LSTM architecture relative to the AR and SP2
model. All ratios correspond to the LSTM model with p = 4 input lags and n = 10 neurons trained for
E = 200 epochs. This LSTM configuration was used to predict the out-of-sample GDP growth rates ten
times with different random weight initialization. Corresponding DM test statistics for the null hypothesis
of superior benchmark model forecasts are shown in parentheses. For entries marked with *, ** and ***
the DM test rejected higher accuracy of the AR or SP2 forecasts at the 10%, 5% and 1% significance
level, respectively.

40

A.3 Python Code

1 # −∗− coding : utf−8 −∗−
2 """
3 Created on Tue May 14 12 : 34 : 41 2019
4

5 @author : p l a g l
6 """
7

8 import os
9 import numpy as np

10 import pandas as pd
11 from pandas . p l o t t i n g import lag_plot
12 from stat smode l s . g raph i c s . t s a p l o t s import plot_acf , p lot_pacf
13 from stat smode l s . t sa . s t a t t o o l s import a d f u l l e r
14 from sc ipy import s t a t s
15 import matp lo t l i b . pyplot as p l t
16 import seaborn as sns
17 myfont = { ’ fontname ’ : ’ S e r i f ’ }
18

19

20

21 de f read_data (f i l ename) :
22 # Get the cur rent l o c a t i o n o f the f i l e
23 scr ipt_path = os . getcwd ()
24 os . chd i r (scr ipt_path)
25 l o c a t i o n = ’ . / data/raw_data/ ’ + f i l ename
26

27 # Load spreadshee t in to dataframe
28 df = pd . read_excel (l o ca t i on , header=0, index_col=0)
29

30 i f ’ Transformation ’ in df . index : # U. S . datase t
31 tcode = df . i l o c [0 , :]
32 df = df . drop (’ Transformation ’ , ax i s=0)
33

34 df . index . names = [’Date ’]
35 df . index = pd . to_datetime (df . index)
36

37 i f f i l ename == ’ south_afr i ca_quarter ly . x l sx ’ :
38 # Reduce sample to l im i t NA va lues f o r South Afr i can data
39 df = df . l o c [’ 1996−03−31 ’ : , :] #(T, N) = (93 , 62)
40 df = df . dropna (ax i s = 1)
41 df = make_stationary (df)
42 df = df . l o c [’ 1996−06−30 ’ : , :]
43 #df . to_csv (’ . / data/raw_data/ south_afr ica_quarter ly_1998 . csv ’)
44 e l s e :
45 # Apply t rans fo rmat ion codes f o r U. S . data
46 df = transform (df , tcode)
47 # Adjust sample to cover the same range as Kim & Swanson
48 df = df . l o c [’ 1960−01−01 ’ : ’ 2009−05−01 ’ , :]
49 re turn df
50

51

52 de f trans form (data , t codes) :
53 # Transforms the data to s t a t i o n a r i t y by d i f f e r e n c i n g or l og d i f f e r e n c i n g
54 # Using the t rans fo rmat ion codes coming with the U. S . datase t
55 transformed_data = data . copy ()
56 f o r i in range (0 , l en (data . columns)) :
57 i f t codes [i] == 2 :
58 transformed_data . i l o c [: , i] = data . i l o c [: , i] . d i f f (p e r i od s=1)
59 e l i f t codes [i] == 3 :
60 transformed_data . i l o c [: , i] = data . i l o c [: , i] . d i f f (p e r i od s=2)
61 e l i f t codes [i] == 4 :

41

62 transformed_data . i l o c [: , i] = np . l og (data . i l o c [: , i])
63 e l i f t codes [i] == 5 :
64 transformed_data . i l o c [: , i] = (np . l og (data . i l o c [: , i])) . d i f f (p e r i od s

=1)
65 e l i f t codes [i] == 6 :
66 transformed_data . i l o c [: , i] = (np . l og (data . i l o c [: , i])) . d i f f (p e r i od s

=1)
67 re turn transformed_data
68

69

70 de f make_stationary (data) :
71 # Tests i f time s e r i e s i s s t a t i ona ry us ing augmented Dickey−Fu l l e r t e s t
72 # I f time s e r i e s i s not s t a t i ona ry i t i s transformed to be s t a t i ona ry
73 X = data . copy ()
74 T, N = X. shape
75 df_test = [1] ∗N
76 p_values = np . ones ((N, 1))
77 tcode = np . ones ((N, 1))
78

79 f o r i in range (0 , N) :
80 x = X. i l o c [: , i]
81 df_test [i] = a d f u l l e r (x , maxlag=12, auto lag=’BIC ’)
82 p_values [i] = df_test [i] [1]
83 i f p_values [i] >0.1 and (x>=0) . a l l () :
84 tcode [i] = 5
85 e l i f p_values [i] >0 .1 :
86 tcode [i] = 2
87

88 X = transform (X, tcode)
89 re turn X
90

91

92 de f compute_descr ipt ives (df) :
93 data = df
94 minimum = data . min ()
95 maximum = data .max()
96 mean = data .mean ()
97 std = data . std ()
98 var iance = data . var ()
99 skewness = data . skew ()

100 ku r t o s i s = data . k u r t o s i s ()
101 jb = s t a t s . jarque_bera (data)
102

103 # Save d e s c t i p t i v e s in dataframe
104 rows = [’Min ’ , ’Max ’ , ’Mean ’ , ’ Std ’ , ’Var ’ , ’ Skew ’ , ’ Kurt ’ , ’JB ’]
105 d e s c r i p t i v e s = pd . DataFrame (index=rows)
106 d e s c r i p t i v e s . l o c [’Min ’] = minimum
107 d e s c r i p t i v e s . l o c [’Max ’] = maximum
108 d e s c r i p t i v e s . l o c [’Mean ’] = mean
109 d e s c r i p t i v e s . l o c [’ Std ’] = std
110 d e s c r i p t i v e s . l o c [’Var ’] = var iance
111 d e s c r i p t i v e s . l o c [’ Skew ’] = skewness
112 d e s c r i p t i v e s . l o c [’ Kurt ’] = ku r t o s i s
113 d e s c r i p t i v e s . l o c [’JB ’] = jb
114

115 pr in t (’Min : ’ , minimum)
116 pr in t (’Max : ’ , maximum)
117 pr in t (’Mean : ’ , mean)
118 pr in t (’ Std : ’ , s td)
119 pr in t (’Var : ’ , va r i ance)
120 pr in t (’ Skew : ’ , skewness)
121 pr in t (’Kurt : ’ , k u r t o s i s)
122 pr in t (’JB : ’ , jb)

42

123 re turn d e s c r i p t i v e s
124

125

126 de f p l o t (data) :
127 # plo t GDP/EHGDZA Index
128 i f ’EHGDZA Index ’ in data . columns :
129 va lue s = data ["EHGDZA Index"]
130 e l s e :
131 va lue s = data [" ’GDP’ "]∗100
132

133 # Simple l i n e graph
134 p l t . f i g u r e (f i g s i z e =(8 ,6))
135 p l t . s t y l e . use ([’ seaborn−whi tegr id ’ , ’ seaborn−notebook ’])
136 p l t . x l ab e l (’ Year ’ , ∗∗myfont , f o n t s i z e =16, fontwe ight=’ bold ’)
137 p l t . t i t l e (’ Quarter ly GDP Growth in Percent ’ , ∗∗myfont , f o n t s i z e =18)
138 p l t . x t i c k s (∗∗myfont , f o n t s i z e =14)
139 p l t . y t i c k s (∗∗myfont , f o n t s i z e =14)
140 p l t . p l o t (va lue s)
141 p l t . s a v e f i g (’ . / f i g u r e s /sa_graph . eps ’ , format=’ eps ’ , dpi=1000)
142 p l t . show ()
143

144 # Scat t e r p l o t o f the l a g s
145 lag_plot (va lue s)
146 p l t . t i t l e (’ Lagged GDP Growth in Percent ’ , ∗∗myfont , f o n t s i z e =18)
147 p l t . x l ab e l (’ y (t−1) ’ , ∗∗myfont , f o n t s i z e =16, fontwe ight=’ bold ’)
148 p l t . y l ab e l (’ y (t) ’ , ∗∗myfont , f o n t s i z e =16, fontwe ight=’ bold ’)
149 p l t . x t i c k s (∗∗myfont , f o n t s i z e =14)
150 p l t . y t i c k s (∗∗myfont , f o n t s i z e =14)
151 p l t . s a v e f i g (’ . / f i g u r e s / sa_scat te r . eps ’ , format=’ eps ’ , dpi=1000)
152 p l t . show ()
153

154 # Autoco r r e l a t i on p l o t
155 plot_acf (values , l a g s =12)
156 p l t . t i t l e (’ Autoco r r e l a t i on o f GDP Growth ’ , ∗∗myfont , f o n t s i z e =18)
157 p l t . x l ab e l (’ Lag ’ , ∗∗myfont , f o n t s i z e =16, fontwe ight=’ bold ’)
158 p l t . x t i c k s (∗∗myfont , f o n t s i z e =14)
159 p l t . y t i c k s (∗∗myfont , f o n t s i z e =14)
160 p l t . show ()
161

162 # Par t i a l a u t o c o r r e l a t i o n p l o t
163 plot_pacf (values , l a g s =12)
164 p l t . t i t l e (’ Pa r t i a l Autoco r r e l a t i on o f GDP Growth ’ , ∗∗myfont , f o n t s i z e =18)
165 p l t . x l ab e l (’ Lag ’ , ∗∗myfont , f o n t s i z e =16, fontwe ight=’ bold ’)
166 p l t . x t i c k s (∗∗myfont , f o n t s i z e =14)
167 p l t . y t i c k s (∗∗myfont , f o n t s i z e =14)
168 p l t . show ()
169

170 re turn va lue s
171

172

173 de f heatmap (data) :
174 # Replace a l l v a r i a b l e s except GDP growth by lagged s e r i e s
175 l a g s = np . r o l l (data . va lue s [: , :−1] , 1 , ax i s=0)
176 lag_data = data . copy ()
177 lag_data . i l o c [: , :−1] = l a g s
178

179 # Create c o r r e l a t i o n heatmap
180 co r r = lag_data . i l o c [1 : , :] . c o r r ()
181 p l t . f i g u r e (f i g s i z e =(50 ,30))
182 sns . heatmap (corr , x t i c k l a b e l s=cor r . columns , y t i c k l a b e l s=cor r . columns , \
183 cmap=sns . d ive rg ing_pa l e t t e (10 , 130 , as_cmap=True))
184 p l t . show ()
185 re turn lag_data

43

186

187

188 # Test ing the f unc t i on s
189 f i l e 1 = ’ un i ted_states . x l sx ’
190 f i l e 2 = ’ south_afr i ca_quarter ly . x l sx ’
191 data = read_data (f i l e 2)
192 array = data . va lue s
193 X = array [: , :−1]
194 y = array [: , −1]
195

196 percentage_growth = p lo t (data)
197 compute_descr ipt ives (percentage_growth)
198 lag_data = heatmap (data)

Listing 1: data.py

1 # −∗− coding : utf−8 −∗−
2 """
3 Created on Tue May 14 12 : 34 : 55 2019
4

5 @author : p l a g l
6 """
7

8 import numpy as np
9 import s ta t smode l s . ap i as sm

10 from math import log , s q r t
11 from stat smode l s . t sa . t s a t o o l s import lagmat
12 from sc ipy . s t a t s import ku r to s i s , skew , jarque_bera
13

14

15

16 de f s tandard i z e (data) :
17 mu = np .mean(data , ax i s=0)
18 sigma = np . std (data , ax i s=0)
19 re turn (data−mu)/sigma
20

21

22 de f DM_test(e1 , e2) :
23 T = len (e1)
24 d i f f e r e n t i a l = e1 ∗∗2 − e2 ∗∗2
25 mean = d i f f e r e n t i a l . mean ()
26 std = d i f f e r e n t i a l . s td ()
27 s t a t i s t i c = mean / (std / sq r t (T))
28 re turn s t a t i s t i c
29

30

31 de f check_res idua l s (e) :
32 # Check f o r o u t l i e r s and skewness o f r e s i d u a l s
33 mean = np .mean(e)
34 var iance = np . var (e)
35 skewness = skew (e)
36 kurtos = ku r t o s i s (e)
37 jb = jarque_bera (e)
38 re turn mean , var iance , skewness , kurtos , jb [1]
39

40

41 de f ar (Y, max_p) :
42 y = Y. copy ()
43 SIC = np . z e r o s ((max_p+1 ,1))
44 y_lags , y_target = lagmat (y , maxlag = max_p, trim=’ forward ’ , o r i g i n a l=’ sep ’)
45 y_lags = sm . add_constant (y_lags) # adding a constant to explanatory vars
46

47 # Cutting o f f the f i r s t max_p obse rva t i on s
48 y_lags = y_lags [max_p : , :]

44

49 y_target = y_target [max_p :]
50

51 f o r p in range (0 , max_p+1) :
52 r e s = sm .OLS(y_target , y_lags [: , : p+1]) . f i t () # f i t OLS model
53 SIC [p] = r e s . b i c
54

55 # Fit AR model with optimal number o f l a g s p_star , which minimizes the SIC
56 p_star = np . argmin (SIC)
57 y_lags = y_lags [: , : p_star+1]
58 r e s u l t = sm .OLS(y_target , y_lags) . f i t ()
59 beta = (r e s u l t . params) . reshape (p_star+1, 1)
60 re turn r e su l t , y_target , y_lags , beta , p_star
61

62

63 de f boost (X_matrix , Z , v , M) :
64 # Dimensions o f X matrix
65 X = X_matrix . copy ()
66 T, N = X. shape
67

68 # Set t ing up some va r i a b l e s
69 sel_x = np . z e r o s ((N,M+1)) # s e l e c t s a subset o f X
70 beta = np . z e ro s ((N,M+1)) # r e g r e s s i o n c o e f f i c i e n t o f s e l e c t e d X
71 B = np . z e ro s ((T,T)) # should be ones acc to paper !
72 IC = np . z e ro s ((M, 1))
73

74 # I n i t i a l i z i n g phi f o r i t e r a t i o n 0
75 z = Z . copy ()
76 z = z . reshape (T, 1)
77 phi = np . ones ((T, 1)) ∗ z .mean ()
78

79 f o r m in range (0 , M) :
80 u = z − phi . reshape (T, 1) # compute the cur rent r e s i d u a l
81 b = np . z e ro s ((N, 1))
82 SSR = np . z e ro s ((N, 1))
83

84 f o r i in range (0 , N) :
85 x = X[: , i] . reshape (T, 1) # get i t h p r ed i c t o r
86 r e s u l t s = sm .OLS(u , x) . f i t () # f i t OLS model
87 b [i] = r e s u l t s . params
88 SSR [i] = r e s u l t s . s s r
89

90 # Updating phi
91 i_star = np . argmin (SSR)
92 x_star = X[: , i_star] . reshape (T, 1)
93 u_hat = (x_star ∗ b [i_star]) . reshape (T, 1)
94 phi = phi + v ∗ u_hat
95

96 # Se l e c t i n g va r i ab l e x_star in t h i s i t e r a t i o n
97 i n d i c a t o r = np . z e r o s ((N, 1))
98 i n d i c a t o r [i_star] = 1
99 sel_x [: , [m+1]] = sel_x [: , [m]] + i nd i c a t o r # us ing double [] to r e t a i n

dimensions
100 beta [: , [m+1]] = beta [: , [m]] + v ∗ b [i_star] ∗ i n d i c a t o r . reshape (N, 1)
101

102 # Computing in fo rmat ion c r i t e r i o n f o r optimal stopping i t e r a t i o n
103 P = x_star @ np . l i n a l g . inv ((x_star .T @ x_star)) @ x_star .T
104 B = B + v ∗ (P @ (np . i d e n t i t y (T) − B))
105 dof = np . t r a c e (B)
106 sigma = (z − phi) .T @ (z − phi)
107 IC [m] = log (sigma) + ((l og (T) ∗ dof) / T)
108

109 # Choosing stopping i t e r a t i o n m_star that minimizes IC
110 m_star = np . argmin (IC)

45

111 beta_star = beta [: , m_star+1]
112 sel_x_star = sel_x [: , m_star+1]
113 re turn sel_x_star , beta_star , IC , m_star+1
114

115

116 de f e s t imate_fac to r s (X_matrix , max_k) :
117 # Sca l e data to have mean 0 and var iance 1
118 X = X_matrix . copy ()
119 X = standard i z e (X)
120

121 # Dimensions o f X matrix
122 T, N = X. shape
123 PC = np . z e ro s ((max_k, 1)) # in fo rmat ion c r i t e r i o n to s e l e c t number o f

components
124

125 # Compute e i g enva lu e s and e i g env e c t o r s o f the covar iance matrix o f X
126 covar i ance = np . cov (X, rowvar=False , b i a s=True)
127 e i g enva l s , e i g envec s = np . l i n a l g . e igh (covar iance , UPLO=’U ’)
128

129 # Test i f a l l e i g env e c t o r s have un i t l ength
130 f o r e in e i g envec s :
131 np . t e s t i n g . assert_array_almost_equal (1 . 0 , np . l i n a l g . norm(e))
132

133 # Sort e i g enva lu e s in dec r ea s ing order
134 i n d i c e s = np . a r g s o r t (e i g enva l s) [: : − 1]
135 e i g enva l s = e i g enva l s [i n d i c e s]
136 # Sort e i g env e c t o r s a c co rd ing ly
137 e i g envec s = e i g envec s [: , i n d i c e s]
138

139 f o r k in range (1 , max_k+1) :
140 # Se l e c t the f i r s t k e i g env e c t o r s as c o e f f i c i e n t s o f the f a c t o r s
141 l o ad ing s = e i g envec s [: , : k] ∗ s q r t (N)
142 # Transform X us ing these e i g env e c t o r s
143 f a c t o r s = (X @ load ing s) / N
144 # Compute s e l e c t i o n c r i t e r i o n
145 r e s i d = X − f a c t o r s @ load ing s .T
146 sigma = np . d iagona l (r e s i d .T @ r e s i d) / T
147 V = np . sum(sigma) / N
148 penal ty = ((f l o a t (T+N) / (T∗N)) ∗ l og (min (T,N)))
149 PC[k−1] = log (V) + k ∗ penal ty
150

151 # Choosing number o f f a c t o r s k_star that minimizes PC
152 k_star = np . argmin (PC)+1
153 l o ad ing s = e i g envec s [: , : k_star] ∗ s q r t (N)
154 f a c t o r s = (X @ load ing s) / N
155 re turn f a c t o r s , l o ad ing s .T, k_star , PC

Listing 2: model.py

1 # −∗− coding : utf−8 −∗−
2 """
3 Created on Tue May 14 12 : 35 : 10 2019
4

5 @author : p l a g l
6 """
7

8 import numpy as np
9 from data import read_data

10 from model import ar , boost , e s t imate_factor s , DM_test , check_res idua l s
11 from sk l ea rn . met r i c s import mean_squared_error
12 import matp lo t l i b . pyplot as p l t
13 myfont = { ’ fontname ’ : ’ S e r i f ’ }
14

15

46

16 de f r e c u r s i v e_ f o r e c a s t s (data , M=50, v=0.5) :
17 # Set t ing up parameters
18 max_factors = 20
19 max_p = 4
20 s = 156
21 h = 12
22

23 # Extract ing X and y va r i a b l e s
24 array = data . va lue s
25 X = array [: , :]
26 T, N = X. shape
27 y = array [: , −1]. reshape (T, 1) # GDP i s l a s t v a r i ab l e
28

29 P = T−s−h−max_p+1
30 y_hat_cbst = np . z e r o s ((P, 1))
31 y_hat_AR = np . z e ro s ((P, 1))
32 y_true = y [s+h+max_p−1 :] . reshape (P, 1)
33

34 k_hat = np . z e ro s ((P, 1))
35 p_hat = np . z e ro s ((P, 1))
36 m_hat = np . z e r o s ((P, 2))
37 n_hat = np . z e ro s ((P, 1))
38 r e s id_desc r = np . z e r o s ((P, 5))
39

40 f o r i in range (0 , P) :
41 pr in t (i)
42 y_in = y [h−1 : i+s+h+max_p−1] . copy ()
43 x_in = X[max_p+h−2 : i+s+h+max_p−1] . copy ()
44

45 # Fit benchmark AR(p) model
46 res , y_target , y_lags , beta_AR , p = ar (y_in , max_p)
47 y_lags_current = np . i n s e r t (y_in [:−p−1:−1] , 0 , 1 . 0) # add constant
48 y_hat_AR[i] = y_lags_current @ beta_AR
49 p_hat [i] = p
50 z_in = y_target − r e s . p r ed i c t (y_lags) . reshape (l en (y_target) , 1)
51

52 # Fit the model o f s p e c i f i c a t i o n type 2
53 # 1) pre−s e l e c t X va r i a b l e s with boost ing
54 sel_X , beta_X , IC1 , m1 = boost (x_in [: − 1 , :] , z_in , v , M) # maybe use z_in

here
55 X_selected = x_in [: , sel_X>0]
56 n_hat [i] = np . s i z e (X_selected , 1)
57 m_hat [i , 0] = m1
58

59 # 2) Only apply PCA i f at l e a s t max_factors X va r i a b l e s were s e l e c t e d
60 i f np . s i z e (X_selected , 1) >= max_factors :
61 f a c t o r s , l oad ings , k , pc = es t imate_fac to r s (X_selected , max_factors)
62 e l i f np . s i z e (X_selected , 1) > 0 :
63 f a c t o r s = X_selected
64 l o ad ing s = 0
65 k = 0
66 e l s e :
67 f a c t o r s , l oad ings , k , pc = es t imate_fac to r s (x_in , max_factors)
68 k_hat [i] = k
69

70 # 3) Use boost ing to es t imate f a c t o r c o e f f i c i e n t beta_F
71 sel_F , beta_F , IC2 , m2 = boost (f a c t o r s [: − 1 , :] , z_in , v , M) # best IC

should −6.3482
72 m_hat [i , 1] = m2
73

74 # Fi t t i n g model to obta in r e s i d u a l s
75 y_f i t = y_lags @ beta_AR + f a c t o r s [: − 1 , :] @ beta_F . reshape (l en (beta_F) ,1)
76 r e s i d = y_target − y_f i t

47

77 r e s id_desc r [[i] , 0] , r e s id_desc r [[i] , 1] , r e s id_desc r [[i] , 2] , r e s id_desc r
[[i] , 3] , r e s id_desc r [[i] , 4] = check_res idua l s (r e s i d)

78

79 # Compute d i f f u s i o n index f o r e c a s t
80 y_hat_cbst [i] = y_lags_current @ beta_AR + f a c t o r s [−1 , :] @ beta_F . reshape (

l en (beta_F) ,1)
81

82

83 # Compute MSE and MSE r a t i o
84 mse_AR = mean_squared_error (y_true , y_hat_AR)
85 mse_cbst = mean_squared_error (y_true , y_hat_cbst)
86 mse_ratio = mse_cbst / mse_AR
87 error_AR = y_true − y_hat_AR
88 error_cbst = y_true − y_hat_cbst
89 dm_stat = DM_test(error_AR , error_cbst)
90 pr in t (dm_stat)
91

92 # Plo t t i ng AR f o r e c a s t s vs t rue va lue s
93 dates = data . index [s+h+max_p−1:]
94 p l t . s t y l e . use ([’ seaborn−whi tegr id ’ , ’ seaborn−notebook ’])
95 p l t . x l ab e l (’ Year ’ , ∗∗myfont , f o n t s i z e =16, fontwe ight=’ bold ’)
96 p l t . t i t l e (’Monthly GDP Growth ’ , ∗∗myfont , f o n t s i z e =18)
97 p l t . x t i c k s (∗∗myfont , f o n t s i z e =14)
98 p l t . y t i c k s (∗∗myfont , f o n t s i z e =14)
99 p l t . p l o t (dates , y_true)

100 p l t . p l o t (dates , y_hat_AR, ’ r ’)
101 p l t . l egend ([’ True Values ’ , ’ Forecas t s ’] , f o n t s i z e =14)
102 p l t . s a v e f i g (’ . / f i g u r e s / us_forecasts_ar . eps ’ , format=’ eps ’ , dpi=1000)
103 p l t . show ()
104 pr in t (mse_AR)
105

106 # Plo t t i ng d i f f u s i o n index f o r e c a s t s vs t rue va lue s
107 p l t . s t y l e . use ([’ seaborn−whi tegr id ’ , ’ seaborn−notebook ’])
108 p l t . x l ab e l (’ Year ’ , ∗∗myfont , f o n t s i z e =16, fontwe ight=’ bold ’)
109 p l t . t i t l e (’Monthly GDP Growth ’ , ∗∗myfont , f o n t s i z e =18)
110 p l t . x t i c k s (∗∗myfont , f o n t s i z e =14)
111 p l t . y t i c k s (∗∗myfont , f o n t s i z e =14)
112 p l t . p l o t (dates , y_true)
113 p l t . p l o t (dates , y_hat_cbst , ’ r ’)
114 p l t . l egend ([’ True Values ’ , ’ Forecas t s ’] , f o n t s i z e =14)
115 p l t . s a v e f i g (’ . / f i g u r e s / us_forecasts_cbst . eps ’ , format=’ eps ’ , dpi=1000)
116 p l t . show ()
117 pr in t (mse_cbst)
118

119 # Plo t t i ng d e s c r i p t i v e s o f r e s i d u a l s
120 p l t . s t y l e . use ([’ seaborn−whi tegr id ’ , ’ seaborn−notebook ’])
121 p l t . x l ab e l (’ Year ’ , ∗∗myfont , f o n t s i z e =16, fontwe ight=’ bold ’)
122 p l t . t i t l e (’ De s c r i p t i v e S t a t i s t i c s o f Res idua l s ’ , ∗∗myfont , f o n t s i z e =18)
123 p l t . x t i c k s (∗∗myfont , f o n t s i z e =14)
124 p l t . y t i c k s (∗∗myfont , f o n t s i z e =14)
125 p l t . p l o t (dates , r e s id_desc r [: , 0])
126 p l t . p l o t (dates , r e s id_desc r [: , 1])
127 p l t . p l o t (dates , r e s id_desc r [: , 2])
128 p l t . p l o t (dates , r e s id_desc r [: , 3])
129 p l t . l egend ([’Mean ’ , ’ Variance ’ , ’ Skew ’ , ’ Kurtos i s ’] , f o n t s i z e =14)
130 p l t . show ()
131

132 re turn mse_ratio , dm_stat , k_hat , p_hat , m_hat , n_hat , f a c t o r s , l o ad ing s
133

134

135

136 f i l e = ’ un i ted_states . x l sx ’
137 data = read_data (f i l e)

48

138 mse_ratio , dm_stat , k_hat , p_hat , m_hat , n_hat , f a c t o r s , l o ad ing s =
r e cu r s i v e_ f o r e c a s t s (data , M=50, v=0.5)

Listing 3: forecast_US.py

1 # −∗− coding : utf−8 −∗−
2 """
3 Created on Tue May 14 12 : 35 : 10 2019
4

5 @author : p l a g l
6 """
7

8 import numpy as np
9 import pandas as pd

10 from sc ipy . s t a t s import ku r to s i s , skew , jarque_bera
11 from data import read_data
12 from math import sq r t
13 from stat smode l s . g raph i c s . t s a p l o t s import p lot_acf
14 from model import ar , boost , e s t imate_factor s , DM_test , check_res idua l s
15 from sk l ea rn . met r i c s import mean_squared_error
16 import matp lo t l i b . pyplot as p l t
17 from sk l ea rn . mode l_se lect ion import ParameterGrid
18 myfont = { ’ fontname ’ : ’ S e r i f ’ }
19

20

21 de f r e c u r s i v e_ f o r e c a s t s (data , M=50, v=0.5) :
22 # Set t ing up f o r e c a s t s
23 max_factors = 10
24 max_p = 4
25 s = 63
26 h = 1
27

28 # Extract ing X and y va r i a b l e s
29 array = data . va lue s
30 X = array [: , :]
31 T, N = X. shape
32 y = array [: , −1]. reshape (T, 1) # GDP i s l a s t v a r i ab l e
33

34

35 P = T−s−h−max_p+1
36 y_hat_cbst = np . z e r o s ((P, 1))
37 y_hat_AR = np . z e ro s ((P, 1))
38 y_true = y[1+ s+h+max_p−2 :] . reshape (P, 1)
39

40 k_hat = np . z e ro s ((P, 1))
41 p_hat = np . z e ro s ((P, 1))
42 m_hat = np . z e r o s ((P, 2))
43 n_hat = np . z e ro s ((P, 1))
44 r e s id_desc r = np . z e r o s ((P, 5))
45 sel_Fs = [0] ∗ P
46 beta_Fs = [0] ∗ P
47

48 f o r i in range (0 , P) :
49 pr in t (i)
50 y_in = y [h−1 : i+s+h+max_p−1] . copy ()
51 x_in = X[max_p+h−2 : i+s+h+max_p−1] . copy ()
52

53 # Fit benchmark AR(p) model
54 res , y_target , y_lags , beta_AR , p = ar (y_in , max_p)
55 y_lags_current = np . i n s e r t (y_in [:−p−1:−1] , 0 , 1 . 0) # add constant
56 y_hat_AR[i] = y_lags_current @ beta_AR
57 p_hat [i] = p
58 z_in = y_target − r e s . p r ed i c t (y_lags) . reshape (l en (y_target) , 1)
59

49

60 # Fit the model o f s p e c i f i c a t i o n type 2
61 # 1) pre−s e l e c t X va r i a b l e s with boost ing
62 sel_X , beta_X , IC1 , m1 = boost (x_in [: − 1 , :] , y_target , v , M) # y_target

b e t t e r than z_in f o r SA
63 X_selected = x_in [: , sel_X>0]
64 n_hat [i] = np . s i z e (X_selected , 1)
65 m_hat [i , 0] = m1
66

67 # 2) Only apply PCA i f at l e a s t max_factors X va r i a b l e s were s e l e c t e d
68 i f np . s i z e (X_selected , 1) >= max_factors :
69 f a c t o r s , l oad ings , k , pc = es t imate_fac to r s (X_selected , max_factors)
70 e l i f np . s i z e (X_selected , 1) > 0 :
71 f a c t o r s = X_selected
72 k = 0
73 e l s e :
74 f a c t o r s , l oad ings , k , pc = es t imate_fac to r s (x_in , max_factors)
75 k_hat [i] = k
76

77 # 3) Use boost ing to es t imate f a c t o r c o e f f i c i e n t beta_F
78 sel_F , beta_F , IC2 , m2 = boost (f a c t o r s [: − 1 , :] , z_in , v , M)
79 m_hat [i , 1] = m2
80 sel_Fs [i] = (sel_F > 0) . sum()
81 beta_Fs [i] = beta_F
82

83 # Fi t t i n g model to obta in r e s i d u a l s
84 y_fit_AR = y_lags @ beta_AR
85 resid_AR = y_target − y_fit_AR
86 y_f i t = y_lags @ beta_AR + f a c t o r s [: − 1 , :] @ beta_F . reshape (l en (beta_F) ,1)
87 r e s i d = y_target − y_f i t
88 r e s id_desc r [[i] , 0] , r e s id_desc r [[i] , 1] , r e s id_desc r [[i] , 2] , r e s id_desc r

[[i] , 3] , r e s id_desc r [[i] , 4] = check_res idua l s (r e s i d)
89

90 # Di f f u s i on index f o r e c a s t
91 y_hat_cbst [i] = y_lags_current @ beta_AR + f a c t o r s [−1 , :] @ beta_F . reshape (

l en (beta_F) ,1)
92

93

94 # Compute MSE and MSE r a t i o
95 mse_AR = mean_squared_error (y_true , y_hat_AR)
96 mse_cbst = mean_squared_error (y_true , y_hat_cbst)
97 mse_ratio = mse_cbst / mse_AR
98 error_AR = y_true − y_hat_AR
99 error_cbst = y_true − y_hat_cbst

100 dm_stat = DM_test(error_AR , error_cbst)
101 pr in t (dm_stat)
102

103 # Plo t t i ng number o f s e l e c t e d v a r i a b l e s
104 dates = data . index [s+h+max_p−1:]
105 p l t . s t y l e . use ([’ seaborn−whi tegr id ’ , ’ seaborn−notebook ’])
106 p l t . x l ab e l (’ Year ’ , ∗∗myfont , f o n t s i z e =16, fontwe ight=’ bold ’)
107 p l t . t i t l e (’Number o f S e l e c t ed Var iab l e s ’ , ∗∗myfont , f o n t s i z e =18)
108 p l t . x t i c k s (∗∗myfont , f o n t s i z e =14)
109 p l t . y t i c k s (∗∗myfont , f o n t s i z e =14)
110 p l t . p l o t (dates , n_hat)
111 p l t . y t i c k s (np . arange (min (n_hat)−2, max(n_hat)+2, 5 . 0))
112 p l t . s a v e f i g (’ . / f i g u r e s /n_hat . eps ’ , format=’ eps ’ , dpi=1000)
113 p l t . show ()
114

115 # Plo t t i ng number o f f a c t o r s est imated by PCA
116 p l t . s t y l e . use ([’ seaborn−whi tegr id ’ , ’ seaborn−notebook ’])
117 p l t . x l ab e l (’ Year ’ , ∗∗myfont , f o n t s i z e =16, fontwe ight=’ bold ’)
118 p l t . t i t l e (’ Estimated Number o f Factors ’ , ∗∗myfont , f o n t s i z e =18)
119 p l t . x t i c k s (∗∗myfont , f o n t s i z e =14)

50

120 p l t . y t i c k s (∗∗myfont , f o n t s i z e =14)
121 p l t . p l o t (dates , k_hat)
122 p l t . show ()
123

124 # Plo t t i ng number o f f a c t o r s s e l e c t e d by boost ing
125 p l t . s t y l e . use ([’ seaborn−whi tegr id ’ , ’ seaborn−notebook ’])
126 p l t . x l ab e l (’ Year ’ , ∗∗myfont , f o n t s i z e =16, fontwe ight=’ bold ’)
127 p l t . t i t l e (’Number o f S e l e c t ed Factors ’ , ∗∗myfont , f o n t s i z e =18)
128 p l t . x t i c k s (∗∗myfont , f o n t s i z e =14)
129 p l t . y t i c k s (∗∗myfont , f o n t s i z e =14)
130 p l t . p l o t (dates , sel_Fs)
131 p l t . y t i c k s (np . arange (min (sel_Fs) , max(sel_Fs)+1, 1 . 0))
132 p l t . show ()
133

134 # Plo t t i ng number o f f a c t o r s est imated by PCA and boost ing
135 p l t . s t y l e . use ([’ seaborn−whi tegr id ’ , ’ seaborn−notebook ’])
136 p l t . x l ab e l (’ Year ’ , ∗∗myfont , f o n t s i z e =16, fontwe ight=’ bold ’)
137 p l t . t i t l e (’Number o f Factors ’ , ∗∗myfont , f o n t s i z e =18)
138 p l t . x t i c k s (∗∗myfont , f o n t s i z e =14)
139 p l t . y t i c k s (∗∗myfont , f o n t s i z e =14)
140 p l t . p l o t (dates , k_hat)
141 p l t . p l o t (dates , sel_Fs , ’ r ’)
142 p l t . l egend ([’PCA’ , ’ Boost ing ’] , f o n t s i z e =14)
143 p l t . s a v e f i g (’ . / f i g u r e s /k_hat . eps ’ , format=’ eps ’ , dpi=1000)
144 p l t . show ()
145

146 # Plo t t i ng AR f o r e c a s t s vs t rue va lue s
147 p l t . s t y l e . use ([’ seaborn−whi tegr id ’ , ’ seaborn−notebook ’])
148 p l t . x l ab e l (’ Year ’ , ∗∗myfont , f o n t s i z e =16, fontwe ight=’ bold ’)
149 p l t . t i t l e (’ Quarter ly GDP Growth in Percent ’ , ∗∗myfont , f o n t s i z e =18)
150 p l t . x t i c k s (∗∗myfont , f o n t s i z e =14)
151 p l t . y t i c k s (∗∗myfont , f o n t s i z e =14)
152 p l t . p l o t (dates , y_true)
153 p l t . p l o t (dates , y_hat_AR, ’ r ’)
154 p l t . l egend ([’ True Values ’ , ’ Forecas t s ’] , f o n t s i z e =14)
155 p l t . s a v e f i g (’ . / f i g u r e s / sa_forecasts_ar_opt . eps ’ , format=’ eps ’ , dpi=1000)
156 p l t . show ()
157 pr in t (mse_AR)
158

159 # Plo t t i ng d i f f u s i o n index f o r e c a s t s vs t rue va lue s
160 p l t . s t y l e . use ([’ seaborn−whi tegr id ’ , ’ seaborn−notebook ’])
161 p l t . x l ab e l (’ Year ’ , ∗∗myfont , f o n t s i z e =16, fontwe ight=’ bold ’)
162 p l t . t i t l e (’ Quarter ly GDP Growth in Percent ’ , ∗∗myfont , f o n t s i z e =18)
163 p l t . x t i c k s (∗∗myfont , f o n t s i z e =14)
164 p l t . y t i c k s (∗∗myfont , f o n t s i z e =14)
165 p l t . p l o t (dates , y_true)
166 p l t . p l o t (dates , y_hat_cbst , ’ r ’)
167 p l t . l egend ([’ True Values ’ , ’ Forecas t s ’] , f o n t s i z e =14)
168 p l t . s a v e f i g (’ . / f i g u r e s / sa_forecasts_cbst_opt . eps ’ , format=’ eps ’ , dpi=1000)
169 p l t . show ()
170 pr in t (mse_cbst)
171

172 # Plo t t i ng AR r e s i d u a l s
173 dates1 = data . index [h+max_p−1 : P+s+h+max_p−2]
174 p l t . s t y l e . use ([’ seaborn−whi tegr id ’ , ’ seaborn−notebook ’])
175 p l t . x l ab e l (’ Year ’ , ∗∗myfont , f o n t s i z e =16, fontwe ight=’ bold ’)
176 p l t . t i t l e (’ Res idua l s o f AR Model ’ , ∗∗myfont , f o n t s i z e =18)
177 p l t . x t i c k s (∗∗myfont , f o n t s i z e =14)
178 p l t . y t i c k s (∗∗myfont , f o n t s i z e =14)
179 p l t . p l o t (dates1 , resid_AR)
180 p l t . s a v e f i g (’ . / f i g u r e s / sa_res ids_ar . eps ’ , format=’ eps ’ , dpi=1000)
181 p l t . show ()
182

51

183 # Plo t t i ng SP2 r e s i d u a l s
184 p l t . s t y l e . use ([’ seaborn−whi tegr id ’ , ’ seaborn−notebook ’])
185 p l t . x l ab e l (’ Year ’ , ∗∗myfont , f o n t s i z e =16, fontwe ight=’ bold ’)
186 p l t . t i t l e (’ Res idua l s o f SP2 Model ’ , ∗∗myfont , f o n t s i z e =18)
187 p l t . x t i c k s (∗∗myfont , f o n t s i z e =14)
188 p l t . y t i c k s (∗∗myfont , f o n t s i z e =14)
189 p l t . p l o t (dates1 , r e s i d)
190 p l t . s a v e f i g (’ . / f i g u r e s / sa_res ids_cbst . eps ’ , format=’ eps ’ , dpi=1000)
191 p l t . show ()
192

193 # Plo t t i ng d e s c r i p t i v e s o f r e s i d u a l s
194 p l t . s t y l e . use ([’ seaborn−whi tegr id ’ , ’ seaborn−notebook ’])
195 p l t . x l ab e l (’ Year ’ , ∗∗myfont , f o n t s i z e =16, fontwe ight=’ bold ’)
196 p l t . t i t l e (’ De s c r i p t i v e S t a t i s t i c s o f SP2 Res idua l s ’ , ∗∗myfont , f o n t s i z e =18)
197 p l t . x t i c k s (∗∗myfont , f o n t s i z e =14)
198 p l t . y t i c k s (∗∗myfont , f o n t s i z e =14)
199 #pl t . p l o t (dates , r e s id_desc r [: , 0])
200 #pl t . p l o t (dates , r e s id_desc r [: , 1])
201 p l t . p l o t (dates , r e s id_desc r [: , 2])
202 p l t . p l o t (dates , r e s id_desc r [: , 3] , ’ r ’)
203 p l t . l egend ([’ Skewness ’ , ’ Kurtos i s ’] , f o n t s i z e =14)
204 p l t . s a v e f i g (’ . / f i g u r e s / sa_res ids_descr . eps ’ , format=’ eps ’ , dpi=1000)
205 p l t . show ()
206

207 re turn mse_ratio , dm_stat , k_hat , p_hat , m_hat , n_hat , X_selected , f a c t o r s ,
l oad ings , beta_Fs , sel_Fs

208

209

210

211 f i l e = ’ south_afr i ca_quarter ly . x l sx ’
212 data = read_data (f i l e)
213 mse_ratio , dm_stat , k_hat , p_hat , m_hat , n_hat , X_selected , f a c t o r s , l oad ings ,

beta_Fs , sel_Fs = r e cu r s i v e_ f o r e c a s t s (data , M=70, v=0.6)

Listing 4: forecast_SA.py

1 # −∗− coding : utf−8 −∗−
2 """
3 Created on Wed May 29 14 : 03 : 07 2019
4

5 @author : p l a g l
6 """
7

8 import numpy as np
9 from data import read_data

10 import pandas as pd
11 from model import ar , boost , e s t imate_factor s , DM_test , check_res idua l s
12 from sk l ea rn . met r i c s import mean_squared_error
13 from sk l ea rn . mode l_se lect ion import ParameterGrid
14

15

16

17 de f r e c u r s i v e_ f o r e c a s t s (array , M=50, v=0.5) :
18 # Set t ing up f o r e c a s t s
19 max_factors = 10
20 max_p = 4
21 s = 63
22 h = 1
23

24 # Extract ing X and y va r i a b l e s
25 array = data . va lue s
26 X = array [: , :]
27 T, N = X. shape
28 y = array [: , −1]. reshape (T, 1) # GDP i s l a s t v a r i ab l e

52

29

30 P = T−s−h−max_p+1
31 y_hat_cbst = np . z e r o s ((P, 1))
32 y_hat_AR = np . z e ro s ((P, 1))
33 y_true = y[1+ s+h+max_p−2 :] . reshape (P, 1)
34

35 f o r i in range (0 , P) :
36 #pr in t (i)
37 y_in = y [h−1 : i+s+h+max_p−1] . copy ()
38 x_in = X[max_p+h−2 : i+max_p+h+s −1] . copy ()
39

40 # Fit benchmark AR(p) model
41 res , y_target , y_lags , beta_AR , p = ar (y_in , max_p)
42 y_lags_current = np . i n s e r t (y_in [:−p−1:−1] , 0 , 1 . 0) # add constant
43 y_hat_AR[i] = y_lags_current @ beta_AR
44 z_in = y_target − r e s . p r ed i c t (y_lags) . reshape (l en (y_target) , 1)
45

46 # Fit the model o f s p e c i f i c a t i o n type 2
47 # 1) pre−s e l e c t X va r i a b l e s with boost ing
48 sel_X , beta_X , IC1 , m1 = boost (x_in [: − 1 , :] , y_target , v , M) # y_target

b e t t e r than z_in f o r SA
49 X_selected = x_in [: , sel_X>0]
50

51 # 2) Only apply PCA i f at l e a s t max_factors X va r i a b l e s were s e l e c t e d
52 i f np . s i z e (X_selected , 1) >= max_factors :
53 f a c t o r s , l oad ings , k , pc = es t imate_fac to r s (X_selected , max_factors)
54 e l i f np . s i z e (X_selected , 1) > 0 :
55 f a c t o r s = X_selected
56 k = 0
57 e l s e :
58 f a c t o r s , l oad ings , k , pc = es t imate_fac to r s (x_in , max_factors)
59

60 # 3) Use boost ing to es t imate f a c t o r c o e f f i c i e n t beta_F
61 sel_F , beta_F , IC2 , m2 = boost (f a c t o r s [: − 1 , :] , z_in , v , M)
62

63 # Di f f u s i on index f o r e c a s t
64 y_hat_cbst [i] = y_lags_current @ beta_AR + f a c t o r s [−1 , :] @ beta_F . reshape (

l en (beta_F) ,1)
65

66

67 # Compute MSE and MSE r a t i o
68 mse_AR = mean_squared_error (y_true , y_hat_AR)
69 mse_cbst = mean_squared_error (y_true , y_hat_cbst)
70 mse_ratio = mse_cbst / mse_AR
71 error_AR = y_true − y_hat_AR
72 error_cbst = y_true − y_hat_cbst
73 dm_stat = DM_test(error_AR , error_cbst)
74

75 pr in t (’MSE r a t i o : ’ , mse_ratio)
76 pr in t (’DM t e s t : ’ , dm_stat)
77

78 re turn error_AR , error_cbst , mse_ratio , dm_stat
79

80

81

82 # Loading data
83 f i l e = ’ south_afr i ca_quarter ly . x l sx ’
84 data = read_data (f i l e)
85 array = data . va lue s
86

87 # Create g r id o f parameters to be eva luated
88 param_grid = { ’ v ’ : [0 . 1 , 0 . 2 , 0 . 3 , 0 . 4 , 0 . 5 , 0 . 6 , 0 . 7 , 0 . 8 , 0 . 9 , 1 . 0] , \
89 ’M’ : [3 0 , 40 , 50 , 60 , 70]}

53

90 g r id = ParameterGrid (param_grid)
91 C = len (l i s t (g r id)) # Number o f parameter combinat ions in g r id
92

93 # Create ar rays to s t o r e r e s u l t s f o r each parameter combination
94 errors_AR = np . z e r o s ((25 , 1 ,C))
95 e r ro r s_cbst = np . z e r o s ((25 , 1 ,C))
96 mse_ratios = np . z e ro s ((C, 1))
97 dm_stats = np . z e r o s ((C, 1))
98

99 c = 0
100 f o r params in g r id :
101 pr in t (c , params)
102 errors_AR [: , : , c] , e r ro r s_cbst [: , : , c] , mse_ratios [c] , dm_stats [c] =

r e cu r s i v e_ f o r e c a s t s (array , params [’M’] , params [’ v ’])
103 c += 1
104

105 # Put MSE r a t i o s and DM s t a t i s t i c s i n to dataframes
106 results_MSE = pd . DataFrame (index=param_grid [’M’] , columns=param_grid [’ v ’])
107 results_DM = pd . DataFrame (index=param_grid [’M’] , columns=param_grid [’ v ’])
108

109 c = 0
110 f o r m in param_grid [’M’] :
111 f o r v in param_grid [’ v ’] :
112 results_MSE . l o c [m, v] = mse_ratios [c] [0]
113 results_DM . l o c [m, v] = dm_stats [c] [0]
114 c += 1
115

116 # Save r e s u l t s to csv f i l e s
117 results_MSE . to_csv (’ . / data/ r e s u l t s /grid_search_SA_MSE_y . csv ’)
118 results_DM . to_csv (’ . / data/ r e s u l t s /grid_search_SA_DM_y . csv ’)
119

120

121 s i g n i f i c a n t = abs (dm_stats) > 1 .65
122 n_s i gn i f i c an t = sum(s i g n i f i c a n t)
123 pr in t (n_s i gn i f i c an t)

Listing 5: parameters_SA.py

1 # −∗− coding : utf−8 −∗−
2 """
3 Created on Mon Jun 10 17 : 43 : 42 2019
4

5 @author : p l a g l
6 """
7

8 import numpy as np
9 import pandas as pd

10 from model import e s t imate_fac to r s
11 from sk l ea rn . mode l_se lect ion import ParameterGrid
12 from stat smode l s . t sa . arima_process import ArmaProcess
13

14

15

16 de f generate_data (T, N, k , alpha , beta) :
17 # fa c t o r l oad ing s f o r gene ra t ing X
18 l o ad ing s = np . random . normal (0 , 1 , (N, k))
19

20 F = np . z e ro s ((T+1,k))
21 X = np . z e ro s ((T+1,N))
22 y = np . z e ro s ((T+1 ,1))
23

24 f o r i in range (0 , k) :
25 ar1 = np . array ([1 , −alpha [i]])
26 ma1 = np . array ([1])

54

27 AR_object = ArmaProcess (ar1 , ma1)
28 F [: , i] = AR_object . generate_sample (nsample=T+1, s c a l e =1)
29 # sc a l e i s standard dev i a t i on o f no i se , by d e f au l t no i s e i s N(0 , 1)
30

31 f o r n in range (0 , N) :
32 X[: , n] = F @ load ing s [n , :] . T + np . sq r t (k) ∗ np . random . normal (0 , 1 , T+1)
33

34 y = np . r o l l (F , 1 , ax i s=0) @ beta .T + np . random . normal (0 , 1 , T+1)
35

36 re turn F [1 : , :] , X[1 : , :] , y [1 :] # cut t i ng o f f f i r s t obse rvat i on due to lag
=1

37

38

39

40 de f s imulate (r e p l i c a t i o n s , k , alpha , beta) :
41 # Create g r id o f DGP dimensions
42 dim_grid = { ’T ’ : [1 0 , 20 , 50 , 100 , 200 , 500 , 1000] , \
43 ’N ’ : [1 0 , 20 , 50 , 100 , 200]}
44 g r id = ParameterGrid (dim_grid)
45 C = len (l i s t (g r id)) # Total number o f dimension combinat ions in g r id
46

47 max_factors=10
48

49 # Create ar rays to s t o r e r e s u l t s f o r each dimension combination
50 h i t s = np . z e ro s ((r e p l i c a t i o n s , 1 ,C))
51 num_factors = np . z e ro s ((r e p l i c a t i o n s , 1 ,C))
52

53 # Put h i t ra te s , est imated number o f f a c t o r s , MSE r a t i o s and DM s t a t i s t i c s
i n to dataframes

54 h i t_rate s = pd . DataFrame (index=dim_grid [’T ’] , columns=dim_grid [’N ’])
55 avg_num_factors = pd . DataFrame (index=dim_grid [’T ’] , columns=dim_grid [’N ’])
56

57 c = 0 # Combination index
58 # I t e r a t e through a l l combinat ions o f dimensions (T,N)
59 f o r dims in g r id :
60 pr in t (c , dims)
61

62 # Simulate a g iven amount o f t imes
63 f o r r in range (0 , r e p l i c a t i o n s) :
64 F, X, y = generate_data (dims [’T ’] , dims [’N ’] , k , alpha , beta)
65 f a c t o r s , l oad ings , k_est , PC = es t imate_fac to r s (X, max_factors)
66 h i t s [r , : , c] = (k_est == k)
67 num_factors [r , : , c] = k_est
68

69 # Compute average o f performance measures
70 h i t_rate s . l o c [dims [’T ’] , dims [’N ’]] = h i t s [: , : , c] . mean ()
71 avg_num_factors . l o c [dims [’T ’] , dims [’N ’]] = num_factors [: , : , c] . mean ()
72 c += 1 # Update combination index
73

74 # Save average r e s u l t s to csv f i l e s
75 h i t_rate s . to_csv (’ . / data/ s imu la t i on s /1000 x_hit_rates_ ’ + s t r (k) + ’ _fixed . csv ’

)
76 avg_num_factors . to_csv (’ . / data/ s imu la t i on s /1000x_avg_num_factors_ ’ + s t r (k) +

’ _fixed . csv ’)
77 re turn [h i t s , num_factors] , [h i t_rates , avg_num_factors]
78

79

80

81 # Star t s imu la t i on with PCA only
82 alpha = np . array ([0 . 8 , 0 . 7 , 0 . 6 , 0 . 5 , 0 . 4]) # f a c t o r AR(1) c o e f f i c i e n t s
83 beta = np . array ([0 . 8 , 0 . 5 , 0 . 3 , 0 , −0.3]) # f a c t o r c o e f f i c i e n t s f o r gene ra t ing y
84 r ep l =1000
85

55

86 # f i x random seed f o r r e p r o d u c i b i l i t y
87 np . random . seed (0)
88 r e s u l t s 1 , averages1 = s imulate (rep l , 1 , alpha [: 1] , beta [: 1])
89 pr in t (’1−− ’)
90

91 # f i x random seed f o r r e p r o d u c i b i l i t y
92 np . random . seed (0)
93 r e s u l t s 3 , averages3 = s imulate (rep l , 3 , alpha [: 3] , beta [: 3])
94 pr in t (’2−− ’)
95

96 # f i x random seed f o r r e p r o d u c i b i l i t y
97 np . random . seed (0)
98 r e s u l t s 5 , averages5 = s imulate (rep l , 5 , alpha [: 5] , beta [: 5])
99

100 pr in t (’3−− ’)
101 pr in t (’−− ’)
102 pr in t (’DONE! ’)

Listing 6: simulation_pca.py

1 # −∗− coding : utf−8 −∗−
2 """
3 Created on Tue Jun 11 15 : 04 : 51 2019
4

5 @author : p l a g l
6 """
7

8

9 import numpy as np
10 import pandas as pd
11 from model import ar , boost , e s t imate_factor s , DM_test , check_res idua l s
12 from sk l ea rn . met r i c s import mean_squared_error
13 from sk l ea rn . mode l_se lect ion import ParameterGrid
14 from stat smode l s . t sa . arima_process import ArmaProcess
15

16

17

18 de f r e c u r s i v e_ f o r e c a s t s (X, y , M=50, v=0.5) :
19 # Set t ing up f o r e c a s t s
20 max_factors=10
21 max_p = 4
22 h = 1
23

24 # Extract ing X and y va r i a b l e s
25 T, N = X. shape
26 y = y . reshape (T, 1) # GDP i s l a s t v a r i ab l e
27

28 s = T − max_p − 25
29 P = T−s−h−max_p+1
30 y_hat_cbst = np . z e r o s ((P, 1))
31 y_hat_AR = np . z e ro s ((P, 1))
32 y_true = y [s+h+max_p−1 :] . reshape (P, 1)
33

34 k_hat = np . z e ro s ((P, 1))
35 p_hat = np . z e ro s ((P, 1))
36 m_hat = np . z e r o s ((P, 2))
37 r e s id_desc r = np . z e r o s ((P, 5))
38

39 f o r i in range (0 , P) :
40 y_in = y [h−1 : i+s+h+max_p−1] . copy ()
41 x_in = X[max_p+h−2 : i+s+h+max_p−1] . copy ()
42

43 # Fit benchmark AR(p) model
44 res , y_target , y_lags , beta_AR , p = ar (y_in , max_p)

56

45 y_lags_current = np . i n s e r t (y_in [:−p−1:−1] , 0 , 1 . 0) # add constant
46 y_hat_AR[i] = y_lags_current @ beta_AR
47 p_hat [i] = p
48 z_in = y_target − r e s . p r ed i c t (y_lags) . reshape (l en (y_target) , 1)
49

50 # Fit the model o f s p e c i f i c a t i o n type 2
51 # 1) pre−s e l e c t X va r i a b l e s with boost ing
52 sel_X , beta_X , IC1 , m1 = boost (x_in [: − 1 , :] , y_target , v , M) # y_target

b e t t e r than z_in f o r SA
53 X_selected = x_in [: , sel_X>0]
54 m_hat [i , 0] = m1
55

56 # 2) Only apply PCA i f at l e a s t max_factors X va r i a b l e s were s e l e c t e d
57 i f np . s i z e (X_selected , 1) >= max_factors :
58 f a c t o r s , l oad ings , k , pc = es t imate_fac to r s (X_selected , max_factors)
59 e l i f np . s i z e (X_selected , 1) > 0 :
60 f a c t o r s = X_selected
61 k = 0
62 e l s e :
63 f a c t o r s , l oad ings , k , pc = es t imate_fac to r s (x_in , max_factors)
64 k_hat [i] = k
65

66 # 3) Use boost ing to es t imate f a c t o r c o e f f i c i e n t beta_F
67 sel_F , beta_F , IC2 , m2 = boost (f a c t o r s [: − 1 , :] , z_in , v , M)
68 m_hat [i , 1] = m2
69

70 # Fi t t i n g model to obta in r e s i d u a l s
71 y_f i t = y_lags @ beta_AR + f a c t o r s [: − 1 , :] @ beta_F . reshape (l en (beta_F) ,1)
72 r e s i d = y_target − y_f i t
73 r e s id_desc r [[i] , 0] , r e s id_desc r [[i] , 1] , r e s id_desc r [[i] , 2] , r e s id_desc r

[[i] , 3] , r e s id_desc r [[i] , 4] = check_res idua l s (r e s i d)
74

75 # Di f f u s i on index f o r e c a s t
76 y_hat_cbst [i] = y_lags_current @ beta_AR + f a c t o r s [−1 , :] @ beta_F . reshape (

l en (beta_F) ,1)
77

78 # Compute MSE and MSE r a t i o
79 mse_AR = mean_squared_error (y_true , y_hat_AR)
80 mse_cbst = mean_squared_error (y_true , y_hat_cbst)
81 mse_ratio = mse_cbst / mse_AR
82 error_AR = y_true − y_hat_AR
83 error_cbst = y_true − y_hat_cbst
84 dm_stat = DM_test(error_AR , error_cbst)
85 p_hat = p_hat . reshape ((25))
86 re turn mse_ratio , dm_stat , p_hat
87

88

89

90 de f generate_data (T, N, k , alpha , beta) :
91 # fa c t o r l oad ing s f o r gene ra t ing X
92 l o ad ing s = np . random . normal (0 , 1 , (N, k))
93

94 F = np . z e ro s ((T+1,k))
95 X = np . z e ro s ((T+1,N))
96 y = np . z e ro s ((T+1 ,1))
97

98 f o r i in range (0 , k) :
99 ar1 = np . array ([1 , −alpha [i]])

100 ma1 = np . array ([1])
101 AR_object = ArmaProcess (ar1 , ma1)
102 F [: , i] = AR_object . generate_sample (nsample=T+1, s c a l e =1)
103 # sc a l e i s standard dev i a t i on o f no i se , by d e f au l t no i s e i s N(0 , 1)
104

57

105 f o r n in range (0 , N) :
106 X[: , n] = F @ load ing s [n , :] . T + np . sq r t (k) ∗ np . random . normal (0 , 1 , T+1)
107

108 y = np . r o l l (F , 1 , ax i s=0) @ beta .T + np . random . normal (0 , 1 , T+1)
109

110 re turn F [1 : , :] , X[1 : , :] , y [1 :] # cut t i ng o f f f i r s t obse rvat i on due to lag
=1

111

112

113

114 de f s imulate (r e p l i c a t i o n s , k , alpha , beta) :
115 # Create g r id o f DGP dimensions
116 dim_grid = { ’T ’ : [5 0 , 100 , 200 , 500 , 1000] , \
117 ’N ’ : [1 0 , 20 , 50 , 100 , 200]}
118 g r id = ParameterGrid (dim_grid)
119 C = len (l i s t (g r id)) # Total number o f dimension combinat ions in g r id
120

121 # Create ar rays to s t o r e r e s u l t s f o r each dimension combination
122 h i t s = np . z e ro s ((r e p l i c a t i o n s , 1 ,C))
123 num_factors = np . z e ro s ((r e p l i c a t i o n s , 1 ,C))
124 mse_ratios = np . z e ro s ((r e p l i c a t i o n s , 1 ,C))
125 dm_stats = np . z e r o s ((r e p l i c a t i o n s , 1 ,C))
126 ar_lags = np . z e ro s ((r e p l i c a t i o n s , 2 5 ,C))
127

128 # Put h i t ra te s , est imated number o f f a c t o r s , MSE r a t i o s and DM s t a t i s t i c s
i n to dataframes

129 h i t_rate s = pd . DataFrame (index=dim_grid [’T ’] , columns=dim_grid [’N ’])
130 avg_num_factors = pd . DataFrame (index=dim_grid [’T ’] , columns=dim_grid [’N ’])
131 avg_mse_ratio = pd . DataFrame (index=dim_grid [’T ’] , columns=dim_grid [’N ’])
132

133 avg_dm_stat = pd . DataFrame (index=dim_grid [’T ’] , columns=dim_grid [’N ’])
134 dm_sig1 = pd . DataFrame (index=dim_grid [’T ’] , columns=dim_grid [’N ’])
135 dm_sig5 = pd . DataFrame (index=dim_grid [’T ’] , columns=dim_grid [’N ’])
136 dm_sig10 = pd . DataFrame (index=dim_grid [’T ’] , columns=dim_grid [’N ’])
137

138 max_factors = 10
139 c = 0 # Combination index
140

141 # I t e r a t e through a l l combinat ions o f dimensions (T,N)
142 f o r dims in g r id :
143 pr in t (c , dims)
144

145 # Simulate a g iven amount o f t imes
146 f o r r in range (0 , r e p l i c a t i o n s) :
147 F, X, y = generate_data (dims [’T ’] , dims [’N ’] , k , alpha , beta)
148 f a c t o r s , l oad ings , k_est , PC = es t imate_fac to r s (X, max_factors)
149 h i t s [r , : , c] = (k_est == k)
150 num_factors [r , : , c] = k_est
151 mse_ratios [r , : , c] , dm_stats [r , : , c] , ar_lags [r , : , c] =

r e cu r s i v e_ f o r e c a s t s (X, y , M=50, v=0.5)
152

153 # Compute average o f performance measures
154 h i t_rate s . l o c [dims [’T ’] , dims [’N ’]] = h i t s [: , : , c] . mean ()
155 avg_num_factors . l o c [dims [’T ’] , dims [’N ’]] = num_factors [: , : , c] . mean ()
156 avg_mse_ratio . l o c [dims [’T ’] , dims [’N ’]] = mse_ratios [: , : , c] . mean ()
157

158 avg_dm_stat . l o c [dims [’T ’] , dims [’N ’]] = dm_stats [: , : , c] . mean ()
159 dm_sig1 . l o c [dims [’T ’] , dims [’N ’]] = (dm_stats [: , : , c] > 2 .326) . sum()
160 dm_sig5 . l o c [dims [’T ’] , dims [’N ’]] = (dm_stats [: , : , c] > 1 .645) . sum()
161 dm_sig10 . l o c [dims [’T ’] , dims [’N ’]] = (dm_stats [: , : , c] > 1 .282) . sum()
162 c += 1 # Update combination index
163

164 # Save average r e s u l t s to csv f i l e s

58

165 h i t_rate s . to_csv (’ . / data/ s imu la t i on s / f ina l_hit_rates_ ’ + s t r (k) + ’ _fixed . csv ’
)

166 avg_num_factors . to_csv (’ . / data/ s imu la t i on s / final_avg_num_factors_ ’ + s t r (k) +
’ _fixed . csv ’)

167 avg_mse_ratio . to_csv (’ . / data/ s imu la t i on s / final_avg_mse_ratio_ ’ + s t r (k) + ’
_fixed . csv ’)

168

169 avg_dm_stat . to_csv (’ . / data/ s imu la t i on s /final_avg_dm_stat_ ’ + s t r (k) + ’ _fixed .
csv ’)

170 dm_sig1 . to_csv (’ . / data/ s imu la t i on s / final_dm_sig1_ ’ + s t r (k) + ’ _fixed . csv ’)
171 dm_sig5 . to_csv (’ . / data/ s imu la t i on s / final_dm_sig5_ ’ + s t r (k) + ’ _fixed . csv ’)
172 dm_sig10 . to_csv (’ . / data/ s imu la t i on s / final_dm_sig10_ ’ + s t r (k) + ’ _fixed . csv ’)
173 re turn [h i t s , num_factors , ar_lags , mse_ratios , dm_stats] , [h i t_rates ,

avg_num_factors , avg_mse_ratio , avg_dm_stat] , [dm_sig1 , dm_sig5 , dm_sig10]
174

175

176

177 # Star t s imu la t i on with SP2
178 alpha = np . array ([0 . 8 , 0 . 7 , 0 . 6 , 0 . 5 , 0 . 4]) # f a c t o r AR(1) c o e f f i c i e n t s
179 beta = np . array ([0 . 8 , 0 . 5 , 0 . 3 , 0 , −0.3]) # f a c t o r c o e f f i c i e n t s f o r gene ra t ing y
180 r ep l=100
181

182 # f i x random seed f o r r e p r o d u c i b i l i t y
183 np . random . seed (0)
184 r e s u l t s 1 , averages1 , s i g_r e su l t s 1 = s imulate (rep l , 1 , alpha [: 1] , beta [: 1])
185 pr in t (’1−− ’)
186

187 # f i x random seed f o r r e p r o d u c i b i l i t y
188 np . random . seed (0)
189 r e s u l t s 3 , averages3 , s i g_r e su l t s 3 = s imulate (rep l , 3 , alpha [: 3] , beta [: 3])
190 pr in t (’2−− ’)
191

192 # f i x random seed f o r r e p r o d u c i b i l i t y
193 np . random . seed (0)
194 r e s u l t s 5 , averages5 , s i g_r e su l t s 5 = s imulate (rep l , 5 , alpha [: 5] , beta [: 5])
195

196 pr in t (’3−− ’)
197 pr in t (’−− ’)
198 pr in t (’DONE! ’)

Listing 7: simulation_sp2.py

1 # −∗− coding : utf−8 −∗−
2 """
3 Created on Tue Jun 18 11 : 59 : 55 2019
4

5 @author : p l a g l
6 """
7

8

9 import numpy as np
10 import pandas as pd
11 from data import read_data
12 from model import ar , boost , e s t imate_factor s , DM_test , check_res idua l s
13 from stat smode l s . t sa . t s a t o o l s import lagmat
14 import matp lo t l i b . pyplot as p l t
15 from sk l ea rn . mode l_se lect ion import ParameterGrid
16 from keras . models import Sequent i a l
17 from keras . l a y e r s import Dense
18 from keras . l a y e r s import LSTM
19 from sk l ea rn . met r i c s import mean_squared_error
20

21

22 de f p l o t_ lo s s (h i s t o r y) :

59

23 # summarize h i s t o r y f o r l o s s
24 p l t . p l o t (h i s t o r y . h i s t o r y [’ l o s s ’])
25 p l t . p l o t (h i s t o r y . h i s t o r y [’ va l_ los s ’])
26 p l t . t i t l e (’Model MSE’)
27 p l t . y l ab e l (’MSE’ , f o n t s i z e =16)
28 p l t . x l ab e l (’ Epoch ’ , f o n t s i z e =16)
29 p l t . l egend ([’ t r a i n ’ , ’ v a l i d a t i o n ’] , l o c=’ upper l e f t ’)
30 p l t . show ()
31 re turn
32

33

34 de f s p l i t_ s e r i e s (data , l a g s) :
35 y_lags , y_target = lagmat (data , lags , tr im=’ forward ’ , o r i g i n a l=’ sep ’)
36 y_lags = y_lags [l a g s : , :]
37 y_target = y_target [l a g s :]
38 y_lags = np . f l i p (y_lags , ax i s=1)
39 re turn y_lags , y_target
40

41

42 de f univariate_LSTM(data , lags , n_neurons , n_epochs) : # S imi l a r to an AR model
43 # Prepare t r a i n i n g data
44 n_var iables = 1
45 y_lags , y = s p l i t_ s e r i e s (data , l a g s)
46 y_lags = y_lags . reshape ((y_lags . shape [0] , y_lags . shape [1] , n_var iab les))
47

48 # Set up the network a r c h i t e c t u r e
49 model = Sequent i a l ()
50 model . add (LSTM(n_neurons , a c t i v a t i o n=’ tanh ’ , input_shape=(lags , n_var iab les)))
51

52 # Output l ay e r
53 model . add (Dense (1))
54 model . compi le (opt imize r=’adam ’ , l o s s=’mean_squared_error ’)
55

56 # Train the model
57 model . f i t (y_lags , y , epochs=n_epochs , verbose=0, s h u f f l e=False)
58

59 # Use t ra in ed LSTM to p r ed i c t next va lue
60 x_test = y[− l a g s :]
61 x_test = x_test . reshape ((1 , lags , 1)) # (1 , n_steps , n_features)
62 y_hat = model . p r ed i c t (x_test , verbose=0)
63 re turn y_hat
64

65

66 de f r e c u r s i v e_ f o r e c a s t s (data , n_neurons , n_epochs) :
67 # Set t ing up f o r e c a s t s
68 s = 63
69 max_p = 4
70 h = 1
71

72 # Extract X and y va r i a b l e s from array
73 array = data . va lue s
74 X = array [: , :−1]
75 T, N = X. shape
76 y = array [: , −1]. reshape (T, 1) # GDP
77

78 # Set t ing up parameters
79 P = T−s−h−max_p+1
80

81 y_hat_AR = np . z e ro s ((P, 1))
82 y_hat_LSTM = np . z e ro s ((P, 1))
83 y_true = y [s+h+max_p−1 :] . reshape (P, 1)
84

85 f o r i in range (0 , P) :

60

86 pr in t (’ Forecast ’ , i)
87 y_in = y [h−1 : i+s+h+max_p−1] . copy ()
88 x_in = X[h−1 : i+s+h+max_p−1] . copy ()
89

90 # Fit benchmark AR(p) model
91 res , y_target , y_lags , beta_AR , p = ar (y_in , max_p)
92 y_lags_current = np . i n s e r t (y_in [:−p−1:−1] , 0 , 1 . 0) # add constant
93 y_hat_AR[i] = y_lags_current @ beta_AR
94 pr in t (’− ’)
95

96 # Train LSTM networks
97 y_hat_LSTM[i] = univariate_LSTM(y_in . copy () , max_p, n_neurons , n_epochs)
98 pr in t (’− ’)
99

100

101 # Compute MSE and MSE r a t i o
102 mse_AR = mean_squared_error (y_true , y_hat_AR)
103 mse_LSTM = mean_squared_error (y_true , y_hat_LSTM)
104 mse_ratio = mse_LSTM / mse_AR
105 pr in t (’MSE r a t i o LSTM/AR: ’ , mse_ratio)
106

107 error_AR = y_true − y_hat_AR
108 error_LSTM = y_true − y_hat_LSTM
109 dm_stat = DM_test(error_AR , error_LSTM)
110 pr in t (’DM s ta t : ’ , dm_stat)
111 error_LSTM = error_LSTM . reshape ((25))
112 re turn error_LSTM , [mse_AR, mse_LSTM] , mse_ratio , dm_stat
113

114

115

116 # f i x random seed f o r r e p r o d u c i b i l i t y
117 np . random . seed (0)
118

119 f i l e = ’ south_afr i ca_quarter ly . x l sx ’
120 data = read_data (f i l e)
121

122 # Create g r id o f parameters to be eva luated
123 param_grid = { ’n ’ : [1 0 , 20 , 50 , 100 , 200] , \
124 ’ e ’ : [5 0 , 100 , 200]}
125 g r id = ParameterGrid (param_grid)
126 C = len (l i s t (g r id)) # Number o f parameter combinat ions in g r id
127

128 r e p l i c a t i o n s = 10
129

130 # Create ar rays to s t o r e r e s u l t s
131 mse = np . z e ro s ((r e p l i c a t i o n s , 2 ,C))
132 e r r o r s = np . z e r o s ((r e p l i c a t i o n s , 2 5 ,C))
133 mse_ratios = np . z e ro s ((r e p l i c a t i o n s , 1 ,C))
134 dm_stats = np . z e r o s ((r e p l i c a t i o n s , 1 ,C))
135

136 mse_ratios1 = pd . DataFrame (index=param_grid [’ e ’] , columns=param_grid [’n ’])
137 dm_stats1 = pd . DataFrame (index=param_grid [’ e ’] , columns=param_grid [’n ’])
138 avg_dm_stat = pd . DataFrame (index=param_grid [’ e ’] , columns=param_grid [’n ’])
139

140

141 c = 0 # Combination index
142 # I t e r a t e through a l l combinat ions o f dimensions (T,N)
143 f o r params in g r id :
144 pr in t (c , params)
145 pr in t ("−−−−−−−−−−−−−−−−−−−")
146

147 f o r r in range (0 , r e p l i c a t i o n s) :
148 pr in t (r)

61

149 e r r o r s [r , : , c] , mses_l ist , mse_ratios [r , : , c] , dm_stats [r , : , c] =
r e cu r s i v e_ f o r e c a s t s (data , params [’n ’] , params [’ e ’])

150 mse [r , 0 , c] , mse [r , 1 , c] = mses_l i s t [0] , mses_l i s t [1]
151

152 mse_ratios1 . l o c [params [’ e ’] , params [’n ’]] = mse_ratios [: , : , c] . mean ()
153 dm_stats1 . l o c [params [’ e ’] , params [’n ’]] = (dm_stats [: , : , c] > 1 .645) . sum()
154 avg_dm_stat . l o c [params [’ e ’] , params [’n ’]] = dm_stats [: , : , c] . mean ()
155 c += 1 # Update combination index
156

157 # Save average r e s u l t s to csv f i l e s
158 mse_ratios1 . to_csv (’ . / data/networks /mse_ratios_univar . csv ’)
159 dm_stats1 . to_csv (’ . / data/networks /dm_stats_univar . csv ’)
160 avg_dm_stat . to_csv (’ . / data/networks /avg_dm_stat_univar . csv ’)

Listing 8: network_SA.py

62

	Introduction
	Literature Review
	Macroeconomic Forecasting with Many Predictors
	South African GDP Growth

	Macroeconomic Data
	Methodology
	Model Specification
	Diffusion Index Forecasting
	Factor Estimation
	Boosting

	Model Evaluation
	Benchmark Model
	Forecast Comparison
	Simulation

	Recurrent Neural Networks
	Introduction to Neural Networks
	Long Short-Term Memory Networks

	Parameter Optimization

	Results
	Simulation Results
	Replication of kim2018mining's Results
	Application to South African Data
	Parameter Optimization
	Selected Variables and Factors

	Recurrent Neural Network

	Discussion and Conclusion
	Appendix
	Data
	Supplementary Results
	Python Code

