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Abstract

The parameters of a model are estimated over a certain dataset. For instance, in the case

a rolling window are the last n datapoints used to estimate the parameters of a model. In

this paper is investigated, whether the dataset to estimate the parameters could be chosen in

such a way that the parameter estimates improve and subsequently provide better forecasts.

It is researched in the context of timeseries, such that two choices for the dataset could

be made. The parameters in a model could be estimated over the same dataset, or each

parameter could be estimated over a different dataset. Secondly, every parameter in a model

could for every time t be estimated over, for instance, the last n datapoints, or it could differ

per time t how many datapoints are used to estimate the parameters. Choosing the right

option could significantly reduce the forecast error, because there could be a different impact

over time of some variables on the dependent variable or there could be for some variables

a long-term and for others a short-term relation with the dependent variable. In this paper

is a chain of formulas developed, to get the best dataset and subsequently better parameter

estimates. A real-life example was used, namely forecasting the Dutch GDP, to determine

whether this approach improves the forecasts. Only estimating the parameters for every time

t over a different dataset has some implications to be better than a simple rolling window.

1The views stated in this thesis are those of the author and not necessarily those of Erasmus School of
Economics or Erasmus University Rotterdam
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1 Introduction

Forecasting is done in a lot of contexts. For instance, the total amount of calls for next week, the

Gross Domestic Product (GDP) of the next quarter or the price for tomorrow of a certain stock

are all examples of forecasting. All these examples have in common that they depend on time,

such that the models need to be estimated over the past. Which past is good for estimation of

the model? The last 10 weeks could provides good estimates of the model, but the last 50 weeks

could provide even better estimates. This timeframe, over which the parameters are estimated,

is called the estimation timeframe.

Consider a model with a linear relation between the dependent variable and the independent

variables. All the parameters in such a model are normally estimated over the same estimation

timeframe. However, the impact of a variable may not be constant over time. Moreover, it could

be that some independent variables show a clear long-term linear relation with the dependent

variable, while others do not. As a result, non-linearity could occur.

Therefore, it could be that estimating some parameters over a different estimation timeframe

than others provides a better forecast. Intuitively this may be very logical. Some independent

Figure 1: Value of an estimated parameter where
the independent variable has a long-term or a
short-term relation with the dependent variable

variables may have a clear long-term linear

relation with the dependent variable. An

estimation timeframe of 100 weeks would

then provide for these parameters approx-

imately the same estimates as an estim-

ation timeframe of 10 weeks, which is il-

lustrated in figure 1. Choosing an estima-

tion timeframe of 100 weeks would provide

better estimates of the parameters as more

data is used. In case of a short-term lin-

ear relation between the dependent vari-

able and the independent variables the es-

timated parameter really depends on which

estimation timeframe is chosen, as also il-

lustrated in figure 1. Here, an estimation

timeframe of 10 weeks would be much bet-

ter than an estimation timeframe of 100 weeks.

Improving the estimation timeframe could have a significant impact on the forecast accuracy.

Therefore, the main research question is: Do the forecasts in a linear model become better if

the parameters are calculated over different estimation timeframes? First is investigated how to

compute the best estimation timeframe. In this section are also some models for the estimation

timeframe proposed. Secondly, a real-life example is used, namely a model forecasting the Dutch

GDP. Finally, the forecasts of the Dutch GDP are evaluated and the different ways to calculate

and forecast the estimation timeframes are compared.
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2 Literature

Clark and McCracken (2009) try to forecast the estimation timeframe. If a structural break

happens, their model is made in such a way that it still produces reasonably good forecasts.

Incorporating the possibility of a structural break nearly always reduces the mean squared er-

ror (MSE ) of the forecast errors. They also combine rolling and recursive forecasts. A rolling

window uses the last n observations to predict the next observation. A recursive window uses

all the observations available until a certain point to predict the next observation. Combining

different models and estimation windows reduces also the MSE.

However, they use only the possibility of one structural change over all variables. It may be

very well possible that some independent variables have a long-term linear relation with the

dependent variable and others have a short-term linear relation with the dependent variable.

In the latter case the parameter estimates need much more structural breaks then in the first case.

Zellner et al. (1991) assumes that the estimators interact with time. Let βt be the estimate for

a parameter in the model. They propose that vt is normally distributed in βt = βt−1 + vt. Here,

vt is normally distributed with mean zero and a certain standard deviation. They also use the

idea of regime switching.

In this paper we are not interested in what the value of vt is or when the regime switching hap-

pens. The parameter βt shall only depend on time in this way that it depends on the estimation

timeframe.

After developing the right method to estimate and forecast the estimation timeframe it is tested

on a real-life problem: forecasting the Dutch GDP. For doing so, the Econometric Institute

Current Indicator Economy (EICIE) model is used, which is made by de Groot and Franses

(2005). It provides two weeks after each quarter a forecast of the Dutch GDP, solely using as

explanatory variable the number of people working at the Randstad company (denoted by St).

As independent variables are taken some quarterly dummy variables, as well as some lags and

transformations of St and GDPt. They do some tests, such as a Johansen cointegration test or a

unit root test, to determine which model is appropriate (Johansen, 1991; Hylleberg et al., 1990).

In their conclusion they propose that modelling non-linearity could provide better forecasts.

Skogholt et al. (2017) added to EICIE some sentiment variables. The above-mentioned senti-

ment variables partially represent the consumer confidence. These variables where used in a

linear model and in a neural network to forecast the Dutch GDP. Using extra variables and

modelling in different ways improved significantly the EICIE model.

Although a neural network is able to model non-linearity, it is not easily and intuitively in-

terpretable. In this paper is researched whether this non-linearity could be modeled in an

understandable linear way. Moreover, it could be that short-term linearity is present, but for

the entire dataset and for all variables together non-linearity is existent. If the length of this

linearity could be estimated and forecasted per variable, than a linear model with a different

estimation timeframes would be adequate.
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3 Estimation timeframe

3.1 General calculation

Consider a linear model consisting of M independent variables:

yt = β1,tX1,t + β2,tX2,t + ...+ βm,tXm,t + εt (3.1)

Here, Xj,t is the independent variable, yt is the dependent variable and εt is the regression

error on time t. The parameters βj,t need to be estimated over a certain estimation timeframe.

For instance, a timeframe of length γ0 uses the last γ0 datapoints until time t-1 to estimate the

parameters βj,t. Subsequently, with these estimated parameters yt could be forecasted. However,

to know which estimation timeframe provides optimal forecasts, this estimation timeframe itself

has to be forecasted as well. The central question in this case is: what is the optimal timeframe

to get the best estimates of the parameters, such that the forecast of yt is as good as possible.

Otherwise stated, could the estimation timeframe be chosen in such a way that it minimizes

the absolute value of the forecast error ε̂t. Minimizing the absolute value of ε̂t produces more

robust estimates of the estimation timeframe than minimizing ε̂2t . The model of the estimation

timeframe, denoted by gj,t(γj,t, yt−1, At), could be specified in various ways. It could be a

constant γ0, as mentioned in the previous example. However, it could also be a linear model in

yt−1 and At. Here, At consists of all variables which could predict the estimation timeframe and

which are available at time t, such as Xt. These and other ways to specify gj,t(γj,t, yt−1, At) are

further explored in section 3.2. To estimate γ, an mixed integer problem (MIP) formulation is

considered.

min
T∑
t=1

ct (3.2)

ε̂t = yt −
M∑
j=1

N∑
i=1

β̂j,i,tXj,t(Ij,i,t − Ij,i+1,t) ∀t (3.3)

Ij,i,t ≤ Ij,i−1,t ∀j, t, i ∈ [2,N+1] (3.4)

Ij,1,t = 1 ∀j, t (3.5)

Ij,N+1,t = 0 ∀j, t (3.6)

ct ≥ ε̂t ∀t (3.7)

ct ≥ −ε̂t ∀t (3.8)

Ij,i,t ∈ B ∀j, i, t (3.9)

Ij,N,tZ − 0, 5 ≤
N∑
i=1

Ij,i,t − gj,t(γj,t, yt−1, At) ≤ 0.5− 1

Z
+ (1− Ij,2,t)Z ∀j, t (3.10)

Minimizing the absolute value of the forecast error ε̂t is achieved by introducing a new variable

ct, which is equal to the maximum of ε̂t and -ε̂t and by subsequently minimizing ct as stated in

equation 3.2, 3.7 and 3.8.

The forecast error itself is calculated in equation 3.3. Here, the index j corresponds to the j’th

independent variable of model 3.1. The index i, which is an integer from 1 to N, corresponds to
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the length of a certain estimation timeframe.2 Time t, is an index from 1 until T. The parameter

βj,i,t is estimated with ordinary least squares (OLS) and uses for the estimation the data from

t minus the length of the estimation timeframe (belonging to i) until t-1. Note that the goal of

this MIP formulation is not to estimate βj,i,t, but γj . Therefore, βj,i,t is already estimated with

OLS and subsequently put as a three-dimensional matrix in this MIP formulation.

There are N estimation timeframes used to estimate βj,t. However, only one β̂j,i,t should be taken

as parameter estimate of βj,t. Consider the case, where an estimation timeframe belonging to

i∗ is taken to estimate βj,t, written as β̂j,i∗,t.

To take only into account β̂j,i∗,t and not β̂j,i,t for i 6= i∗ a new variable Ij,i,t is created. This

binary indicator Ij,i,t is 1 if i is smaller than or equal to i∗ and otherwise zero (restriction 3.4

and 3.9). A typical example of the indicator function Ij,i,t for the first variable (j=1):
I1,1,2 I1,1,3 I1,1,4 I1,1,5

I1,2,2 I1,2,3 I1,2,4 I1,1,5

I1,3,2 I1,3,3 I1,3,4 I1,1,5

I1,4,2 I1,4,3 I1,4,4 I1,1,5

 =


1 1 1 1

1 0 1 1

1 0 1 0

0 0 0 0


In this example an estimation timeframe with i∗ = 3 is used to estimate the first parameter

of the model on t = 2. Note that i∗ =
∑N

i=1 Ij,i,t. Notice also that Ij,i,t − Ij,i+1,t equals one

if i = i∗ and otherwise equals zero. Therefore, multiplying β̂j,i,t with Ij,i,t − Ij,i+1,t takes only

the estimated parameters with an estimation timeframe belonging to i∗ (β̂j,i∗,t), as stated in

equation 3.3. Restrictions 3.5 and 3.6 are imposed to ensure that the parameter βj,t is included

and that it is estimated over at least one estimation timeframe.

Finally constraint 3.10 makes it possible to use a certain model for the estimation timeframe by

using the function gj,t(γj,t, yt−1, At). As stated above this could be a constant or a linear model.

The function gj,t(γj,t, yt−1, At) calculates the length of the estimation timeframe for parameter

j on time t. It is continuous and goes from minus infinity to infinity. However, the estimation

timeframe and its corresponding index i∗, is an integer between 1 and N. As stated before,

i∗ =
∑N

i=1 Ij,i,t. Therefore, the function gj,t(γj,t, yt−1, At) and
∑N

i=1 Ij,i,t should have a maximal

difference of 0.5, as the first is continuous and the latter is an integer. The constant Z is a large

number, for instance, 10000. If the function gj,t(γj,t, yt−1, At) is smaller than 0.5 it forces i∗ to

be equal to one. The opposite is also true. If the function gj,t(γj,t, yt−1, At) is bigger than N+0.5

it forces i∗ to be equal to N. Finally, an MIP cannot model smaller than, but only smaller than

or equal to, so on the right side 1
Z is subtracted.

2The length of the estimation timeframe is equal to i+M-1. As there are M independent variables, the
estimation timeframe should have at least a length of M.
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3.2 Different models for the estimation timeframe

As mentioned in the previous section gj,t(γj,t, yt−1, At) could be specified in different ways. It

could be specified constant or different over time and constant or different between variables.

The goal of gj,t(γj,t, yt−1, At) is to forecast the estimation timeframe, such that the parameters

βj,t are estimated as good as possible and subsequently the forecast error ε̂t is minimized. There-

fore, to make a model for the estimation timeframe and estimate the parameters in this model

the data from t=1 until t=T is used. Subsequently, the estimation timeframe from t=T+1 until

t=T+k is forecasted.

The first case is constant over time and constant between variables (tconvcon):

gj,t(γj,t, yt−1, At) = γ0 ∀j, t ∈ [1, T ] (3.11)

gj,t(yt−1, At|γ̂0) = γ̂0 ∀j, t ∈ [T + 1, T + k] (3.12)

In equation 3.11 is gj,t(γj,t, yt−1, At) specified. γ0 is estimated with the MIP formulation of sec-

tion 3.1. This estimated γ̂0 is used in equation 3.12 to forecast the estimation timeframe from

t=T+1 until t=T+k.

Until now, the same window for every variable was considered. However, some variables may

have a long-term linear relation and other a short-term linear relation with the dependent

variable. Therefore, the second case is constant over time, but different between variables

(tconvdif):

gj,t(γj,t, yt−1, At) = γj ∀j, t ∈ [1, T ] (3.13)

gj,t(yt−1, At|γ̂j) = γ̂j ∀j, t ∈ [T + 1, T + k] (3.14)

The parameters are estimated over different estimation timeframes within model 3.1. Consider

the case where γ̂1 = 5 and γ̂2 = 10. Model 3.1 is then estimated over the last 5 data-points with

OLS and only the estimated parameter β̂1,t is used as estimate of β1,t. Subsequently, model

3.1 is estimated over the last 10 datapoints with OLS and only β̂2,t is used as estimate of β2,t.

To conclude, the parameters in one model are estimated over different estimation timeframes.

Again γj of equation 3.13 is estimated with the above mentioned MIP formulation and this

estimated γ̂j is used to forecast the estimation timeframe (equation 3.14).

It could also be the case that the independent variables depend on a common factor. For

instance, all the variables increase if a shock happens. As a result could they sometimes all have

a long-term linear relation with the dependent variable and at other times all have a short-term

linear relation with the dependent variable. Therefore, the third case is different over time and

constant between variables (tdifvcon). To know which independent variables should be used to
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forecast the estimation window a two-step approach is needed. The first step is shown below:

gj,t(γj,t, yt−1, At) = γt ∀j, t ∈ [1, T ] (3.15)

Vt ⊆ (yt−1 ∪At), |Vt| = q :

γ̂t = θ1Vt,1 + ...+ θqVt,q + µt ∀t ∈ [1, T ] (3.16)

Here, γt is again estimated with the MIP formulation stated in section 3.1. As a result, γ̂t

represents the best estimation timeframe for time t. However, the parameter γt depends on

time, so it cannot be forecasted directly. Therefore, a model is made, where γ̂t is the dependent

variable. The independent variables could be yt−1 and some variables of At, denoted by Vt.

They should be chosen in such a way that it optimizes a criterion when model 3.16 is calculated.

For instance, minimizing the Akaike information criterion (AIC) could be a good method to

chose the best independent variables (Akaike, 1974). Forecasting with the model in 3.16 is

possible. However, the estimates of the model are based on minimizing the residual µ̂t and

not on minimizing the forecast error ε̂t of model 3.1. Therefore, the second step minimizes the

forecast error and uses the independent variables, which are obtained by optimizing a certain

criterion in the first step.

gj,t(θ, Vt) = θ1Vt,1 + ...+ θqVt,q ∀t ∈ [1, T ] (3.17)

gj,t(Vt|θ̂) = θ̂1Vt,1 + ...+ θ̂qVt,q ∀j, t ∈ [T + 1, T + k] (3.18)

In the second step are the parameters of equation 3.17 estimated using the MIP formulation of

section 3.1. The estimated parameters are used to forecast the estimation timeframe (equation

3.18).

The last case combines the latter two cases: different over time and different between parameters

(tdifvdif). It is modeled in nearly the same way as different over time and constant between

parameters. In the first step are the best independent variables obtained by optimizing a certain

criterion.

gj,t(γj,t, yt−1, At) = γj,t ∀j, t ∈ [1, T ] (3.19)

Vj,t ⊆ (yt−1 ∪At), |Vj,t| = qj : ∀j

γ̂j,t = θ0,j + θ1,jV1,j,t + ...+ θqj ,jVqj ,j,t + µj,t ∀j, t ∈ [1, T ] (3.20)

Again, γj,t in equation 3.19 is estimated by using the MIP formulation. It finds for every

parameter on every time t, the best estimation timeframe. The estimates γ̂j,t could be seen

as a time series for every variable j. Therefore, γ̂j,t is regressed on some variables using OLS

(equation 3.20). For every j should a criterion be optimized, such as the AIC, in order to obtain

the best independent variables. The parameters of these independent variables are estimated in
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step two.

gj,t(θj , Vt) = θ0,j + θ1,jV1,j,t + ...+ θqj ,jVqj ,j,t ∀t ∈ [1, T ] (3.21)

gj,t(Vt|θ̂j) = θ̂0,j + θ1,jV1,j,t + ...+ θ̂qj ,jVqj ,j,t ∀j, t ∈ [T + 1, T + k] (3.22)

In the second step is for every variable j a model for its timeframe is estimated. Two approaches

could be done to estimate the parameters. The first approach is minimizing the forecast error

ε̂t of model 3.1. The parameters of equation 3.21 could than be estimated by using the MIP

formulation stated in section 3.1. Solving this MIP formulation may be computationally ex-

pensive. Therefore, coordinate descent (Tseng, 2001) could be applied, where the parameters

are iteratively optimized.

The second approach is estimating the parameters of equation 3.20 using OLS. It minimizes

the residuals of the best estimation timeframes (µ̂t). This approach could be useful, if the MIP

approach is too computationally expensive and does not give reasonable results. With both

approaches could the estimated parameters be used to forecast the estimation timeframe, as

presented in equation 3.22.
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4 Short-term forecast of Dutch GDP

To explore whether forecasting the estimation timeframe reduces the forecast error, a real-life

example is used, namely the EICIE model. The EICIE model provides a short-term forecast of

the Dutch GDP and is developed by de Groot and Franses (2005). As independent variables are

used a constant, some seasonal dummies and some lags of people working at Randstad (St) and

Dutch GDP (GDPt). The data of the GDPt and St are also provided in the paper of de Groot

and Franses (2005) and are available until 2003. They built their model with the entire dataset.

In this paper, the model is built with the data until 1998. From 1999 until 2003 is the Dutch

GDP forecasted and subsequently evaluated. The latter is necessary in order to compare the

different methods of section 3.2. The model of de Groot and Franses (2005) cannot be used

directly, as in this paper a different part of the dataset is used to built the model. However, all

their tests are also done in this paper in order to construct an appropriate model.

The natural logarithm, denoted by ln(.), is taken of GDPt and St. For each of these variables

the entire dataset until 1998 is analyzed to research deterministic trends and seasonality. To

research whether there are unit roots the HEGY test is applied (Hylleberg et al., 1990). Let

the log of GDPt be denoted by yt. yt − yt−4 is regressed on a intercept, seasonal dummies, a

trend, some lags of yt − yt−4, (1 + L)(1 + L2)yt, −(1 − L)(1 + L2)yt, −(1 − L)(1 + L)yt and

−(L)(1−L)(1+L)yt. The last four element are tested on their significance, to determine whether

there are unit roots. If one of these is insignificant, then a unit root is present. There unit roots

are respectively, 1, -1, and the pair i, -i. The number of lags of yt− yt−4 is chosen in such a way

that the Aike Information Criterion (AIC) is minimized (Akaike, 1974). For GDPt and for St

provided two lags the lowest AIC. All the statistics of the HEGY test with their corresponding

significance levels are in table 1.

Both variables seem to have a nonseasonal unit root (unit root 1). The variable GDP may have

Table 1: Statistics of the HEGY test

Null hypothesis GDP St
Nonseasonal unit root (no cycle) -1.489 -3.42*
Seasonal unit root (2 quarter per cycle) -2.786* -3.16**
Seasonal unit root (4 quarter per cycle) 8.02** 6.731**

Note: * p < 0.1, ** p < 0.05, *** p < 0.01.

unit root -1, but this is not very clear. Therefore, only root 1 is considered and all variables are

first-differenced. To determine whether they have a stochastic trend in common, the Johansen

cointegration test is considered (Johansen, 1991). The variable ln(GDPt) has a significant

deterministic trend and a significant intercept. The cointegration relation could be with or

without trend With these assumptions the Johansen cointegration test is done. The vector

error correction model (VECM) with a lag order minimizing the AIC is selected (Johansen and

Juselius, 1990). It resulted in a best lag order of 5.

It is clearly visible in table 2 that it does not really matter which assumption is taken. There is

according to the Johansen cointegration test one cointegration relation between GDPt and St.
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Table 2: number of cointegration relations based on maximum-eigenvalue of Johansen cointeg-
ration test

Data trend None None Linear Linear
In cointegration relation No intercept Intercept Intercept Intercept

No trend No trend No trend Trend

GDPt and St 1 1 1 1

Therefore, a VECM model is considered. The dependent variable is the first difference between

the log of the GDPt at time t: ln(GDPt)− ln(GDPt−1). Variables which possibly come in the

model are seasonal dummies, the log of St and the log of GDPt−1. The first difference of the log

of the GDP, namely ln(GDPt1) − ln(GDPt−2) and all its lags could also be added. The same

holds for the staffing data of Randstad company, such that ln(St) − ln(St−1) and all its lags

can be added. The model is built from specific to general. It begins with just a constant. The

depended variable is regressed on a constant and iteratively over every possible variable. The

variable with the lowest AIC is added if it reduces the AIC and if it is significant with a five

percent significance. Once there is no variable reducing the AIC or the variable with the lowest

AIC is not significant the procedure is stopped. We end up with the following model:

(ln(GDPt)− ln(GDPt−1)) =β1 + β2Q1,t + β3(ln(GDPt−1)− ln(GDPt−2))+

β4(ln(GDPt−4)− ln(GDPt−5)) + β5(ln(St)− ln(St−1))+ (4.1)

β6(ln(St−1)− ln(St−2)) + β7(ln(St−2)− ln(St−3)) + εt.

The Bai-Perron test determines the number of significant structural breaks in the data (Bai

and Perron, 1998). A significant structural break leads to different parameter estimates before

and after the structural break. The results are presented in the appendix section 8.1 table 7.

There are according to the Bai-Perron test two significant structural breaks, namely in the third

quarter of 1981 and the last quarter of 1987.

The Breusch-Pagan-Godfrey test determines whether heteroskedasticity is present (Breusch and

Pagan, 1979). With a 5-percent significance there is no heteroskedasticity, as stated in table 8

in the appendix section 8.1. The Breusch-Godfrey serial correlation LM test investigates the

presence of serial correlation (Breusch, 1978). For the entire dataset there is with a 5-percent

significance serial correlation, which is presented in the appendix section 8.1 table 9. However, if

the dataset after the last structural break is taken (from 1988 until 1998), then there is no serial

correlation. To conclude, these statistics are not very good for the whole dataset until 1998.

However, the statistics are much better if the parameters are estimated over a better dataset.

Therefore, could the approach of using a different estimation timeframes per time t and also

between the variables be very effective.
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5 Results

The Dutch GDP is forecasted quarterly over the period from 1999 until 2003. Before every

forecast of a certain quarter is model 4.1 estimated. The parameters in the aforementioned

model are estimated over a certain estimation timeframe, as stated in section 3.2. There are 7

independent variables and the constant N is set equal to 20. Therefore, the timeframe has a

minimal length of 7 and a maximal length of 26.

Table 3: Statistics of forecast errors for different window computations

Window computation average standard deviation MAE MSE

tconvcon -0.00298 0.00868 0.006732 0.00008
tconvdif -0.00236 0.014769 0.011878 0.000213
tdifvcon -0.00222 0.008174 0.007044 0.000068
tdifvdif using MIP -0.00272 0.014798 0.01132 0.000215
tdifvdif using OLS -0.01001 0.035016 0.024763 0.001265

The first case was constant over time and constant between variables. The estimated parameter

γ̂0 is equal to 13. All the parameters of model 4.1 are estimated over a timeframe with a length

corresponding to γ̂0 = 13. With these estimated parameters is the Dutch GDP forecasted for

every quarter from 1999 until 2003. In table 3 are some statistics of the forecast error given.

The average is a little bit below zero. The standard deviation as well as the mean absolute error

(MAE) and mean squared error (MSE) are also given. In figure 2 are the forecast errors plotted.

Figure 2: Forecast errors of different methods for modelling estim-
ation timeframes

The second case is con-

stant over time and dif-

ferent between variables.

The estimates for the time-

frames are given in the ap-

pendix, section 8.2 table

10. The estimated γj ’s are

used to forecast the estim-

ation timeframe and sub-

sequently also forecast the

Dutch GDP. The forecasts

seem to be less accurate

(table 3). The standard

deviation, MAE and MSE

are higher than if the case

of constant over time and

between variables. The av-

erage is the only statistic

which is a little bit bet-

ter.
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The third case is different over time and constant between variables. The independent vari-

ables selected to forecast the estimation timeframe where a constant, log(St−3 − St−4) and

log(GDPt−5 − GDPt−6). These were selected by minimizing the AIC criterion. Subsequently

were the parameters for these variables estimated with the MIP formulation of section 3.1. These

estimates are respectively 19.23, 67.997 and 94.664. With these estimates are the estimation

timeframes of the parameters of model 4.1 forecasted. Subsequently, are the parameters of model

4.1 repeatedly estimated to forecast the Dutch GDP for the period from 1999 until 2003. The

statistics of the forecast errors are given in table 3 and seem to be better than the previous two

methods, except for the MAE of constant over time and constant between the parameters.

The last case is different over time and between variables. Again the relevant variables to

forecast the estimation timeframe of each parameter of model 4.1 are presented in table 4.

With variable 1, 2, 3 and 4 is the estimation timeframe of parameter j of model 4.1 predicted.

Subsequently is the parameter βj estimated over this predicted estimation timeframe. The

Table 4: Variables selected for prediction of estimation timeframe

Parameters
to estimate

variable 1 variable 2 variable 3 variable 4

β1 c ln(St−1)− ln(St−2) ln(St−2)− ln(St−3) ln(St−3)− ln(St−4)
β2 c ln(St) ln(St−2)− ln(St−3) ln(GDPt−2)− ln(GDPt−3)
β3 c ln(St−1)− ln(St−2) ln(St−2)− ln(St−3) ln(GDPt−1)
β4 c ln(St−5)− ln(St−6) ln(GDPt−2)− ln(GDPt−3) ln(GDPt−3)− ln(GDPt−4)
β5 c ln(St) ln(GDPt−3)− ln(GDPt−4) ln(GDPt−6)− ln(GDPt−7)
β6 c ln(St)− ln(St−1) ln(St−1)− ln(St−2) ln(GDPt−5)− ln(GDPt−6)
β7 c ln(St)− ln(St−1) ln(GDPt−1) ln(GDPt−2)− ln(GDPt−3)

parameters of variable 1, 2, 3 and 4 are estimated in two ways. The first approach is using the

MIP formulation to estimate these variables. The estimates of the estimated parameters are

presented in the appendix, section 8.2 table 11.

With these estimated parameters is the estimation timeframe repeatedly forecasted and the

parameters of model 4.1 estimated, such that the Dutch GDP could be forecasted. The statistics

of the forecast errors are given in table 3. The statistics are all worse than tconvcon and tdifvcon.

Compared to tconvdif are the standard deviation and MSE better and the average and MAE

worse.

The second approach uses OLS to estimate the parameters of variable 1, 2, 3 and 4 of table 4.

The estimates are presented in the appendix, section 8.2 table 12. The statistics of the forecast

error are also given in table 3 and are all far worse then the other methods.

This is also quite logical. The parameter estimates for predicting the estimation timeframe are

obtained by minimizing the residual µ̂t. This residual only minimizes the distance to the best

estimation timeframe. However, is does not minimize the forecast error εt. All the statistics are

based on minimizing the forecast error, so therefore is this method worse than the other methods.

To know whether these forecast methods provide unbiased forecasts, is a Mincer-Zarnowitz

13



Table 5: Mincer-Zarnowitz regression to evaluate unbiasedness

Window computation F-statistic

tconvcon 2.185754
tconvdif 1.390089
tdifvcon 0.759566
tdifvdif using MIP 2.128296
tdifvdif using OLS 8.94384***

Note: * p < 0.1, ** p < 0.05, *** p < 0.01.

regression done (Mincer and Zarnowitz, 1969). The results are in table 5. All the methods

provide unbiased forecasts except for tdifvdif using OLS.

Finally, are the forecasts compared with the Diebold-Mariano test (Diebold and Mariano, 2002).

The results are provided in table 6. All statistics are significant, so all the different methods

have a significantly different forecast accuracy. Therefore, we can order the window computation

methods. The best method and the second-best method seems to be different over time and

constant over all parameters or constant over time and constant over all parameters. These two

differ according to the Diebold-Mariano test significantly. However, it is not clear which method

is better. The average and MSE are better of the first and the MAE is better of the latter.

The first, which differs over time, may be better, as more statistics are in favour of tdifvcon then

tconvcon. After that, it is again not very clear whether constant over time and different per

parameter or different over time and different per parameter using MIP is the best, due to the

same reasons. Worst method is different over time and different between parameters using least

squares.

Table 6: Diebold-Mariano statistics which compare the forecast accuracy of different methods

estimation method tconvcon tconvdif tdifvcon tdifvdif with MIP tdifvdif with OLS

tconvcon - -5.303*** -4.526*** -4.096*** -3.981***
tconvdif -5.303*** - -5.03*** -4.919*** -4.369***
tdifvcon -4.526*** -5.03*** - -5.078*** -4.326***
tdifvdif using MIP -4.096*** -4.919*** -5.078*** - -4.172***
tdifvdif using OLS -3.981*** -4.369*** -4.326*** -4.172*** -

Note: * p < 0.1, ** p < 0.05, *** p < 0.01.
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6 Conclusion

This paper investigated the research question whether the forecasts become better if the para-

meters in a model are estimated over a different estimation timeframe. First, was a method

developed to estimate a model for the estimation timeframe. Subsequently, were four models

proposed, as the timeframe could be constant or different over time and constant or different

between variables.

These models were tested on a real-life problem, namely forecasting the Dutch GDP. As a

baseline was taken the EICIE model of de Groot and Franses (2005). Unfortunately, this model

was made with the entire dataset. The models for the estimation timeframe could only be com-

pared, if a part of the dataset is forecasted. Therefore, was the model built from 1977 until 1998,

following the same procedure as de Groot and Franses (2005) in order to forecast quarterly from

1999 until 2003.

The forecast errors of the different models of the estimation timeframe were compared. The best

method to calculate the estimation timeframe is different over time and constant between vari-

ables or constant over time and constant between variables. The estimation timeframe which

is constant over time but different between variables and the estimation timeframe which is

different over time and different between variables provided both a bit worse forecasts for the

GDP. The worst forecasts were with the timeframe different over time and different between

variables using OLS. In all cases resulted differencing the timeframe between variables in bad

statistics about the forecast error.

For further research it could be investigated, whether differencing the timeframe between vari-

ables could be done in another way. When differencing the timeframe between the variables in

this paper, the estimates mostly provided unbiased forecast errors, but the standard deviation

and the mean absolute error increased enormously. It may be that the procedure in this paper

is not optimal in reducing the mean absolute error. Therefore, it should be researched whether

it is possible to develop a mathematical formula which provides unbiased forecasts and provably

minimizes the mean absolute error.
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8 Appendix

8.1 General tests for the model which forecasts the Dutch GDP

Table 7: Bai-Perron test for number of structural breaks

Number of breaks Scaled F-staticstic Critical Value**

0 vs. 1 27.16305 21.87
1 vs. 2 26.54531 24.17
2 vs. 3 11.57291 25.13

Note: ** p < 0.05.

Table 8: Breusch-Pagan-Godfrey test for heteroskedasticity

F-statistic 2.016683*

Note: * p < 0.1, ** p < 0.05, *** p < 0.01.

Table 9: Breusch-Godfrey serial correlation LM test

Data F-statistic

1977 until 1998 5.2533***
1988 until 1998 1.5177

Note: * p < 0.1, ** p < 0.05, *** p < 0.01.
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8.2 Estimates for an optimal timeframe

Table 10: Estimates of the estimation timeframe, which is different per variable

γ̂ per variable estimation timeframe

γ̂1 19
γ̂2 16
γ̂3 13
γ̂4 13
γ̂5 13
γ̂6 13
γ̂7 9

Table 11: The estimates of the variables of table 4 for an optimal estimation window using MIP

Variables of model 4.1 for which the parameters
should be estimated over a certain timeframe

variable 1 variable 2 variable 3 variable 4

Constant 19,055 -5,123 0,000 -8,962
Q1,t 16,000 0,147 0,000 31,240
ln(GDPt−1)− ln(GDPt−2) 13,000 -5,071 -0,603 0,000
ln(GDPt−4)− ln(GDPt−5) 13,000 -5,425 5,781 0,000
ln(St)− ln(St−1) 13,000 -0,047 -13,198 6,084
ln(St−1)− ln(St−2) 12,475 -7,512 18,711 -0,858
ln(St−2)− ln(St−3) 8,984 23,600 -0,001 0,353

Table 12: The estimates of the variables of table 4, obtained by OLS, to predict the estimation
timeframe of the parameters of model 4.1

Variables of model 4.1 for which the parameters
should be estimated over a certain timeframe

variable 1 variable 2 variable 3 variable 4

Constant 8.032*** -21.827* 13.495 -29.782
Q1,t -32.709** 3.253** 14.639* 8.006
ln(GDPt−1)− ln(GDPt−2) -120.85 8.658 7.8 11.318
ln(GDPt−4)− ln(GDPt−5) 4.846*** 15.688* 16.155 23.083
ln(St)− ln(St−1) -18.212 2.327 47.693 40.556
ln(St−1)− ln(St−2) 6.48*** -7.607 25.98*** 31.112
ln(St−2)− ln(St−3) -129.411* -1.427 12.11* 7.21

Note: * p < 0.1, ** p < 0.05, *** p < 0.01.
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