
ERASMUS UNIVERSITY ROTTERDAM

Erasmus School of Economics

Bachelor Thesis in Econometrics and Operations Research

Drone-assisted parcel delivery
The flying sidekick travelling salesman problem with
payload-dependent flight endurance and warm starts

Ryan de Reus (457818)

Supervisor: Y.N. Hoogendoorn

Second Assessor: D. Huisman

23 June, 2019

Abstract

Parcel delivery is becoming more and more popular as people buy a lot of products online.

Innovative companies are therefore looking into other ways for their last-mile deliveries. In

this paper we looked into the flying sidekick travelling salesman problem, where a drone can

deliver parcels to customers apart from the truck. To give a more realistic approach, we

incorporated the parcel weight into the flight endurance of the drone. This papers provides

exact and heuristic approaches to solve the mixed integer linear programming (MILP) for-

mulation of our problem. Furthermore, we will combine these two approaches to come up

with a Warm Start Algorithm that gives us better solutions. Overall, we see that the use of

drones is a valuable contribution to a delivery process, with an average reduction of 10.3%.

The views stated in this thesis are those of the author and not necessarily those of Erasmus School of

Economics or Erasmus University Rotterdam.

Contents

1 Introduction 1

2 Related Literature 2

3 The Flying Sidekick Travelling Salesman Problem 4

4 Heuristic 8

5 Payload-Dependent Flight Endurance 13

6 Warm Start 14

7 Results 15

7.1 Instances . 15

7.2 Flying Sidekick Travelling Salesman Problem . 16

7.3 Payload-dependent flight endurance . 16

7.4 FSTSP with Warm Starts . 17

7.5 Comparison of the results . 17

8 Conclusion 19

Appendix A Travelling Salesman Problem 21

A.1 IP Formulation . 21

Appendix B Code 21

B.1 MATLAB Code for Ordinary Least Square . 21

Appendix C Results 22

C.1 MILP-formulation and heuristic . 22

C.2 Payload-dependent flight endurance . 24

C.3 Warm Start Algorithm . 26

C.4 Optimal solution compared to other methods . 27

Appendix D Weights 29

Appendix E Programs and Files 30

1 Introduction

In the last decade, the number of online purchases has risen across the entire world (Clement,

2019). International companies are therefore trying to optimise their delivery processes. In

2013, Amazon introduced its Prime Air parcel-delivery drone, which could deliver packages up

to 5 lbs (approximately 2.3 kg) within 30 minutes. Although lots of people thought it was a

huge publicity stunt (Carlson, 2013), Amazon began testing their Prime Air in the UK in 2016

(Perlow, 2016). Figure 1 shows a picture of such a delivery drone.

Figure 1: Amazon’s Prime

Air (source: amazon.com)

Another company with a delivery drone is DHL, which started a

test phase in 2013 in which their ‘Parcelcopter’ crossed the Rhine

to deliver medicines. One year later, it became the first company

that uses commercial drones to deliver packages by transporting

medicines from the German mainland to an island in the North

Sea (Hern, 2014). Two years after that, in 2016, the company

took a more challenging step and delivered in the Alps, a moun-

tainous region with geographical and meteorological challenges.

Last year, DHL made a new development by transporting medicines to an island in Lake Victoria

(East Africa). This new ‘Parcelcopter’ flew a distance of 65 km, with a payload up to 4 kg and

an airspeed of 130 km/h (Deutsche Post AG, 2019). One of the most remarkable achievements

came from New Zealand, where Domino’s (a pizza company) managed to offer a drone-delivery

service for customers in the town Whangaparaoa (Murhpy, 2016).

Nevertheless, there are still some barriers to overcome. Each drone, also known as an unmanned

aerial vehicle (UAV), has a flight endurance which is affected by the flight speed, payload and

battery capacity. Since the UAVs are quite small, the battery capacity of this small vehicle is

also limited. So companies have to decide which characteristics (speed, payload, size etc.) they

want to prioritise (Murray and Chu, 2015). For the sake of safety, the drone might need some

redundant systems (sensors, localisation software, etc.), which also have an impact on battery

life (Jeong et al., 2019).

If companies are going to use drones for their last-mile deliveries, we need to optimise the entire

delivery process. Therefore, this paper will look into solving some of these delivery problems.

The main idea of delivery is that a truck departs from the central depot, visits all the customers

and returns to the depot. The mathematical formulation of such a problem is known as the

Travelling Salesman Problem (TSP). The origins of the TSP are not very clear, but we know

that around 1930 it was first considered mathematically (Lawler, 1985). The TSP is one of the

most intensively studied problems in optimisation and is very useful as a benchmark in optimi-

sation methods. In this paper, we incorporate UAVs in the delivery process, where they may

1

be launched from the truck, deliver the package to the customer and return to the truck. This

problem is known as the Flying Sidekick Travelling Salesman Problem (FSTSP), as introduced

by Murray and Chu (2015).

In this paper, we will solve the FSTSP. We will do this in two different ways. First, we use

a mathematical formulation for a mixed integer linear programming (MILP) model based on

Murray and Chu (2015), which we will solve using an exact method. Earlier research (men-

tioned in Section 2) showed that we can only find an exact solution if we keep our instances

small enough. Therefore, we will also solve this problem using heuristic methods as proposed

by Murray and Chu (2015). Furthermore, we will change the assumption of the constant flight

endurance to a flight endurance depending on the specifications of the UAV and its package.

Therefore this paper will contribute to a shorter total delivery time (compared to truck-only

deliveries), a more realistic model of the FSTSP by incorporating a variable flight endurance

and a clear comparison between the heuristic and exact solving method on smaller instances.

The remainder of this paper is structured as follows. In Section 2, we will provide some literature

related to this problem. After that, in Section 3, we will give a formal definition and the MILP

model to solve this FSTSP using exact methods. In Section 4, we will present a global overview

of the heuristics we will use to solve instances. Section 5 will introduce the payload-dependent

flight endurance and explain the changes required for its implementation. In Section 6, we

present our Warm Start Algorithm. Section 7 gives us the results of the methods proposed

earlier sections. Finally, Section 8 will give a conclusion based on our results.

2 Related Literature

The problem we want to solve in this paper is an extension of the basic Travelling Salesman

Problem (TSP). Similar to this is the Vehicle Routing Problem (VRP), where they use multiple

vehicles to visit the customers. Although lots of literature can be found on all kinds of VRPs

and TSPs, almost none of them is directly applicable to our FSTSP. According to Drexl (2012),

the FSTSP belongs to the category movement synchronisation en route. This is because the

UAV may join or separate from the truck while it is on its route.

If we look at earlier articles where drones are not involved yet, the work presented by Lin (2011)

might be the closest related to ours. It presents a pickup and delivery problem in which heavy

resources (e.g. trucks or vans) may transport both deliverables and other lighter vehicles (here

they refer to scooters and foot couriers). However, there are some differences. First of all, they

use a VRP, which means that there are multiple trucks, where we use a TSP with only one truck.

Furthermore, we use a UAV as the ‘light vehicle’, where they used foot couriers and scooters.

Also, the UAV is restricted to visit only one customer, where the foot couriers and scooters

2

could visit multiple customers. The drone may also join/separate from the truck multiple times,

where in Lin (2011) this was limited to only one time. Due to constraints on the payload the

drone, some packages may be too heavy and have to be transported by the truck. Lastly, our

UAV has a limited flight endurance, which we have to respect.

Murray and Chu (2015) are the first involving UAVs in the optimisation of a delivery process.

It is also the basis for many other works, including this paper. Ferrandez et al. (2016), for

example, investigated the same problem and created some heuristics based on k-means and a

genetic algorithm. Ponza (2016) wrote a master thesis based on the work of Murray and Chu

and solved the problem for different types of drones using Simulated Annealing, a metaheuristic

which is good in real-world applications. De Freitas and Penna (2018) used Variable Neighbour-

hood Search to come up with a good heuristic for the FSTSP.

A slightly different problem is the Travelling Salesman Problem with Drones (TSP-D), where

the launching and recovering point of the UAV are allowed to be the same, and the drones follow

the same road network as the truck. Agatz et al. (2018) created an integer linear programming

model for the TSP-D and used a route-first cluster-second heuristic based on local search and

dynamic programming. Bouman et al. (2018) proposed an exact method based on dynamic pro-

gramming which can solve larger instances (with 20 nodes) than any exact methods presented

earlier. Ha et al. (2018) used a MILP-formulation like the one in the FSTSP, but used it on the

TSP-D, where they developed two heuristic algorithms (cluster first route second and a route

first cluster second) for instances of 10, 50 and 100 customers.

More recently, Schermer et al. (2019) proposes an extension of the VRP, where they implement

drones and en route operations (VRPDERO). Here, the drones may not only be launched and

recovered at customer locations but also at discrete points in-between two customers. For solving

large-scale instances, they use the concepts of Variable Neighbourhood Search (VNS) together

with Tabu Search. Karak and Abdelghany (2019) presented a hybrid vehicle-drone routing

problem (HVDRP) for pickup and delivery services, which minimises the total routing costs,

respecting the constraints for the UAV flight range and weight capacity. They benchmarked

the performance of their heuristic against a vehicle-driven routing heuristic and a drone-driven

routing heuristic. Lastly, Jeong et al. (2019) proposed another MILP model for the FSTSP

whereby energy consumption and time-dependent no-fly zones are incorporated. This gives

us a more realistic view, especially since no-fly zones (e.g. for weather conditions or sensitive

facilities) is a crucial regulation set by the Federal Aviation Administration (FAA).

3

3 The Flying Sidekick Travelling Salesman Problem

In this section, we will give the formal definition and mathematical formulation of our FSTSP.

The model is based on Murray and Chu (2015). In the FSTSP one truck and one UAV travel

from the depot to serve all customers and return to the depot while minimising this last arrival

time. Customers should be visited exactly once, and neither the drone or the truck may revisit

any customers. At each stop (either a customer or the depot), the UAV can be launched or

recovered, where the launching and retrieving points are not the same. The UAV is restricted

to serve only one customer at a time. After a sortie, we will replace the battery of the UAV

(which we incorporate in the launch/recover service time). The flight endurance may not be

exceeded and is assumed to be constant (this will be revised in Section 5). First, we introduce

the notation we will use in our formulations.

Sets

C = {1, ..., c} The set of customers

C ′ ⊆ C Customers eligible for UAV-service

N = {0, 1, ..., c+ 1} The set of all nodes, where 0 and c+ 1 are the depot

Nd = {0, 1, ..., c} ⊆ N The set of departing nodes

Na = {1, 2, ..., c+ 1} ⊆ N The set of arriving nodes

P The set of tuples, where a tuple is denoted as 〈i, j, k〉 with the

condition that i ∈ Nd is the launch point, j ∈ {C ′ : j 6= i} the

UAV-eligible customer that will be delivered by the drone and

k ∈ {Na : k 6= i, k 6= j, τ ′ij + τ ′jk ≤ e} the rendezvous point

Parameters

τij Travel time from i ∈ Nd to j ∈ Na by truck

τ ′ij Travel time from i ∈ Nd to j ∈ Na by UAV

sL Time needed to launch the UAV from the truck

sR Time needed to recover the UAV back on the truck

e Flight endurance of the UAV

M Very large positive constant

Variables

xij ∈ {0, 1} Equal to one if the truck travels from i ∈ Nd to j ∈ {Na : i 6= j}
yijk ∈ {0, 1} Equal to one if the UAV is launched at i ∈ Nd, delivers a package

at customer j ∈ {C ′ : j 6= i}, and returns to the truck at

k ∈ {Na : 〈i, j, k〉 ∈ P, k 6= i, k 6= j}
tj Time when the truck arrives at j ∈ Na

t′j Time when the UAV arrives at j ∈ Na

pij Equal to one if the truck visits i ∈ C before j ∈ C, where i 6= j

ui Position of i ∈ Na in the truck’s path

4

With the notation introduces above, we will formulate a mixed integer linear program (MILP)

formulation to model our flying sidekick travelling salesman problem using (1) - (32).

min tc+1 (1)

s.t.
∑
j∈Na

x0j = 1 (2)

∑
i∈Nd

xi,c+1 = 1 (3)

∑
i∈Nd
i 6=j

xij +
∑
i∈Nd
i 6=j

∑
k∈Na

〈i,j,k〉∈P

yijk = 1

∀j ∈ C (4)∑
i∈Nd
i 6=j

xij =
∑
k∈Na
k 6=j

xjk

∀j ∈ C (5)

ui − uj + 1 ≤ (c+ 2)(1− xij)

∀i ∈ C, j ∈ {Na : j 6= i} (6)

uk − ui ≥ 1− (c+ 2)

1−
∑
j∈C

〈i,j,k〉∈P

yijk


∀i ∈ C, k ∈ {Na : k 6= i} (7)∑

j∈C
j 6=i

∑
k∈Na

〈i,j,k〉∈P

yijk ≤ 1

∀i ∈ Nd (8)∑
i∈Nd
i 6=k

∑
j∈C

〈i,j,k〉∈P

yijk ≤ 1

∀k ∈ Na (9)

2yijk ≤
∑
h∈Nd
h6=i

xhi +
∑
l∈C
l 6=k

xlk

∀i ∈ C, j ∈ {C : j 6= i}, k ∈ {Na : 〈i, j, k〉 ∈ P} (10)

y0jk ≤
∑
h∈Nd
h6=k

xhk

∀j ∈ C, k ∈ {Na : 〈0, j, k〉 ∈ P} (11)

5

t′i ≥ ti −M

1−
∑
j∈C
j 6=i

∑
k∈Na

〈i,j,k〉∈P

yijk


∀i ∈ C (12)

t′i ≤ ti +M

1−
∑
j∈C
j 6=i

∑
k∈Na

〈i,j,k〉∈P

yijk


∀i ∈ C (13)

t′k ≥ tk −M

1−
∑
i∈Nd
i 6=k

∑
j∈C

〈i,j,k∈P 〉

yijk


∀k ∈ Na (14)

t′k ≤ tk +M

1−
∑
i∈Nd
i 6=k

∑
j∈C

〈i,j,k∈P 〉

yijk


∀k ∈ Na (15)

tk ≥ th + τhk + sL

∑
l∈C
l 6=k

∑
m∈Na

〈k,l,m〉∈P

yklm

+ sR

∑
i∈Nd
i 6=k

∑
j∈C

〈i,j,k〉∈P

yijk

−M (1− xhk)

∀h ∈ Nd, k ∈ {Na : k 6= h} (16)

t′j ≥ t′i + τ ′ij + sL −M

1−
∑
k∈Na

〈i,j,k〉∈P

yijk


∀j ∈ C ′, i ∈ {Nd : i 6= j} (17)

t′k ≥ t′j + τ ′jk + sR −M

1−
∑
i∈Nd

〈i,j,k〉∈P

yijk


∀j ∈ C ′, k ∈ {Na : k 6= j} (18)

t′k −
(
t′j − τ ′ij

)
≤ e+M (1− yijk)

∀k ∈ Na, j ∈ {C : j 6= k}, i ∈ {Nd : 〈i, j, k〉 ∈ P} (19)

ui − uj ≥ 1− (c+ 2)pij

∀i ∈ C, j ∈ {C : j 6= i} (20)

ui − uj ≤ −1 + (c+ 2) (1− pij)

6

∀i ∈ C, j ∈ {C : j 6= i} (21)

pij + pji = 1

∀i ∈ C, j ∈ {C : j 6= i} (22)

p0j = 1

∀j ∈ C (23)

t′l ≥ t′k −M


3−

∑
j∈C

〈i,j,k〉∈P
j 6=l

yijk −
∑
m∈C
m 6=i
m 6=k
m6=l

∑
n∈Na

〈l,m,n〉∈P
n6=i
n6=k

ylmn − pil



∀i ∈ Nd, k ∈ {Na : k 6= i} , l ∈ {C : l 6= i, l 6= k} (24)

to = 0 (25)

t′0 = 0 (26)

xij ∈ {0, 1}

∀i ∈ Nd, j ∈ {Na : j 6= i} (27)

yijk ∈ {0, 1}

∀i ∈ Nd, j ∈ {C : j 6= i}, k ∈ {Na : 〈i, j, k〉 ∈ P} (28)

1 ≤ ui ≤ c+ 2

∀i ∈ Na (29)

ti ≥ 0

∀i ∈ N (30)

t′i ≥ 0

∀i ∈ N (31)

pij ∈ {0, 1}

∀i ∈ Nd, j ∈ {C : j 6= i} (32)

The objective function (1) minimises the latest arrival time at the depot. The first Constraints

(2) and (3) make sure that at the depot exactly one truck departs and returns respectively.

Constraint (4) ensures that each customer is visited exactly once by either the truck or the UAV.

If the truck arrives at a customer, Constraint (5) makes sure it also departs from it. Constraints

(6) and (7) eliminate any subtours for the truck and drone respectively. Constraints (8) and (9)

ensure that the UAV may launch/recover at each departing/arriving node respectively, and that

this operation will happen at most once per node. If the drone is launched at i and retrieved

at k, then Constraint (10) makes sure that the truck is assigned to both i and k. In case the

7

launching node is the depot, we will use Constraint (11) instead.

Constraints (12) and (13) ensure that the truck and drone are arrive at the same time for

the launch at customer i. In a similar way, Constraints (14) and (15) will do this for the

rendezvous at arriving node k. Constraints (12) - (15) make the assumption that the launching

and retrieving point cannot be the same and a launch/rendezvous may only happen once per

node. Constraint (16) calculates the effective arrival time of the truck, including the the travel

time and launch/recover service times (if applicable). Similarly, Constraint (17) will calculate

the arrival time of the UAV at customer j, incorporating the UAV’s travel time to this customer.

Constraint (18) makes sure that time required for the recovery of the UAV cannot be started

earlier than the rendezvous of the truck and drone.

Furthermore, the UAV cannot fly to a customer and back to another node if this tour exceeds

the battery capacity of the UAV. Therefore we have Constraint (19) that checks the flight

endurance for this tour. Constraints (20) - (23) ensure the right order in the sequence of nodes.

For example, a truck can only travel to customers that are not visited yet. Constraint (24)

prevents the drone from launching at a departure node when the drone is already flying to

another customer. Constraints (25) and (26) initialise the departure time of the truck and

drone at the depot to 0. Finally, our last Constraints (27) - (32) specify the definition of the

decision variables and their boundaries.

4 Heuristic

The exact model as described in Section 3 will solve the FSTSP to optimality. However, as

Murray and Chu (2015) shows, the optimal value of the exact model for instances with only

ten customers cannot be found within 30 minutes. It may take several hours to come up with a

provable optimal solution (Jeong et al., 2019). Therefore, we clearly need heuristic approaches

to solve (large-scale) instances in a time-efficient way. The heuristic we use is based on Murray

and Chu (2015). The general idea is a local search and saving heuristic. With this, we will route

the customers first and then reassign them to the UAV or in other places in the truck route.

These procedures will then continue until we can found no further improvement. Our heuristic

method consists of multiple algorithms.

For each algorithm, we provide the pseudocode and explain what we will do in this algorithm.

First we start with our main function, which is Algorithm 1. Since our problem is an extension

of the travelling salesman problem (TSP), we will use this to initialise our heuristic. Appendix

A.1 contains the mathematical formulation of our basic TSP model. We will use solveTSP(C)

to call the sequence of nodes visited by the truck and the arrival time of each of these nodes

from the TSP results. As we start our mode, we will set the maximum savings to 0, and create

the set Cprime, which is a copy of all UAV-eligible customers.

8

Algorithm 1 Main

1: Initialise:

Cprime←− C’ % Make a copy of the set of UAV-eligible customers

[truckRoute, t]←− solveTSP(C)

truckSubRoutes←− {truckRoute}
maxSavings←− 0

2: repeat

3: for all j ∈ Cprime do

4: Calculate calcSavings(j, t)

5: for all subroute in truckSubRoutes do

6: if subroute has an UAV-sortie then

7: Calculate calcCostTruck(j, t, subroute)

8: else

9: Calculate calcCostUAV(j, t, subroute)

10: end if

11: end for

12: end for

13: if maxSavings > 0 then

14: Call performUpdate

15: maxSavings←− 0

16: else

17: STOP

18: end if

19: until Stop

For each customer, we will calculate the savings of removing it from the truck route in line 4. We

will do this using the calcSavings function in Algorithm 2. Each subroute in our heuristic is a

sequence of nodes that is part of the bigger truck route. For example, if we have a UAV sortie,

then a subroute includes the launch and rendezvous point and all the truck nodes in-between

them. For each subroute, we will check in line 7 if it is already using the drone for delivery. If so,

we will try to insert the removed customer into this subroute, where it will be delivered by the

truck. The cost of this operation will be determined by the calcCostTruck function (Algorithm

3). If the drone is not used in this subroute, we will try to deliver the removed customer by

drone. The cost for this operation is calculated by the calcCostUAV function (Algorithm 4).

If our savings are more than our costs, we will update the solution using performUpdate in

Algorithm 5. After this update, we will reset the maximum savings in line 15 en repeat the

procedure until we cannot find any further improvement.

In Algorithm 2 we will start by finding the nodes directly before and after customer j (the node

9

Algorithm 2 calcSavings

Require: j(customer assigned to the truck) and t(truck’s arrival time at each node)

1: Find i, the node visited directly before j in the truck’s route

2: Find k the node visited directly after j in the truck’s route

3: savings←− τij + τjk − τik
4: Find subroute in truckSubRoutes which contains customer j

5: if subroute has an UAV-sortie then

6: Find a, the first node in subroute (launching point)

7: Find c, the last node in subroute (rendezvous point)

8: Find b, the customer visited by the UAV that launches at a and returns to b

9: Calculate t?c , the truck’s arrival time at c if j is removed from the truck’s route

10: savings←− min{savings, t?c − (ta + τ ′ab + τ ′bc + sR)}
11: end if

that we try to reassign), we will call them node i and k respectively. Then, we will calculate

the savings of removing customer j, using the formula in line 3. After that, we will check if the

subroute which contains customer j has a UAV-sortie. If it has not, this algorithm is finished.

Otherwise, we will find the first and last node in this subroute and the customer visited by the

drone (line 6-8). We will call these nodes a and c and b respectively. Then we will calculate t?c ,

the arrival time at c if we remove customer j. The total savings will be the minimum of the one

found before and the difference between the old and new arrival time at c (as can be seen in line

10).

Focusing on Algorithm 3, we try to insert customer j at another place in the truck’s route and

calculate the costs for this operation. We look for all adjacent nodes in the subroute and calcu-

late the cost of inserting customer j between these two adjacent nodes (line 4). If the costs are

less than the savings, we will check in line 6 whether the drone’s flight assigned to the subroute

is still feasible. If this is true and the savings minus the costs are greater than the maximum

saving thus far, we will save this change as lines 8-10 show.

Instead of inserting customer j at another place in the route, Algorithm 4 will calculate the

costs associated with serving this customer by UAV. We will look at each pair of nodes in the

subroutes (line 1) and check if an UAV-sortie to customer j does not exceed the flight endurance

(restriction in line 2). If it does, there will be no change and the algorithm ends. Otherwise,

we continue and calculate the truck’s arrival time if j is removed from the truck’s route to the

UAV (line 3). Then we can calculate the cost of this operation using the formula in line 4. If the

savings minus the costs are higher than the maximum savings thus far and the effective flight

endurance of the drone (including service and wait times) is not exceeded (line 5), line 6-8 will

save the change.

10

Algorithm 3 calcCostTruck

Require: j, t, subroute

1: Find a, the first node in subroute

2: Find c, the last node in subroute

3: for all adjacent i and k in subroute do

4: cost←− τij + τjk − τik
5: if cost < savings then

6: if tc − ta + cost ≤ e then

7: if savings− cost > maxSavings then

8: servedByUAV ←− false
9: i? ←− i

j? ←− j
k? ←− k

10: maxSavings←− savings− cost
11: end if

12: end if

13: end if

14: end for

Algorithm 4 calcCostUAV

Require: j, t, subroute

1: for all i and k in subroute, where i is visited before k do

2: if τ ′ij + τ ′jk + sL + sR ≤ e then

3: Calculate t?k, the truck’s arrival time at k if j is removed from the truck’s route

4: cost←− max
{

0,max
{

(t?k − ti) + sL + sR, τ
′
ij + τ ′jk + sL + sR

}
− (t?k − ti)

}
5: if savings− cost > maxSavings and t?k − ti + sL + sR ≤ e then

6: servedByUAV ←− true
7: i? ←− i

j? ←− j
k? ←− k

8: maxSavings←− savings− cost
9: end if

10: end if

11: end for

11

Algorithm 5 performUpdate

Require: servedByUAV, i?, j?, k?

1: if servedByUAV == true then

2: Assign the UAV to i? −→ j? −→ k?

3: Remove j? from truckRoute and all subroutes in truckSubRoutes

4: Create a new truck subroute that starts at i? and end at k? and add it to truckSubRoutes

5: Remove i?, j? and k? from Cprime

6: Update t, the vector of truck arrival times to each node

7: else

8: Remove j? from its current truck subroute

9: Insert j? between i? and k? in the new truck subroute

10: Update truckRoute to reflect the new sequence of nodes visited

11: Update t

12: end if

Algorithm 5 is the final part of our heuristic. Here we will perform the update suggested by the

calcSavings and calcCostUAV/calcCostTruck functions. Boolean servedByUAV and nodes

i?, j?, k? are assumed to be the results of Algorithm 1 - 4. We consider two procedures. First, we

look at the case were servedByUAV was set to true, which means that Algorithm 4 caused the

change with the least costs. We will start by assigning the UAV to the new sortie (i? −→ j? −→ k?).

After that, we will remove UAV-served customer j? from the truck’s route and all its subroutes.

We then create a new subroute from i? to k? with the UAV-sortie to j?. Nodes i?, j?, k? need

to be removed from Cprime as they cannot be delivered by UAV anymore. Finally, we update

the arrival time for each node. In the second procedure, the least-cost change was a reorder in

the truck’s route by Algorithm 3. Here we start with removing customer j? from its current

subroute and inserting it between i? and k?. We then update the truck’s route and the arrival

times for each node.

Figure 2 is an example that gives a clear view of what Algorithms 1 - 5 will do. Initially, we

start with the TSP solution, where all customers are assigned to the truck, as can be seen in

2a. Figure 2b shows us the situation after we executed calcCostUAV, where we assigned a UAV

sortie to i? = 0, j? = 4, k? = 5. Since node 4 is served by the drone, and node 5 is a rendezvous

point, we cannot assign these nodes to a UAV anymore. Therefore, we update Cprime. We

also see that the list of subroutes is partitioned because of the UAV-sortie. Lastly, we apply

calcCostTruck function, which brings us to the situation in Figure 2c. Customer j? = 3 has

been removed from its original position and is now inserted between i? = 2 and k? = 5.

12

(a) TSP solution, before the

heuristic, all the customers are

assigned to the truck

(b) FSTSP solution after

calcCostUAV, customer 4 is

assigned to the UAV now

(c) FSTSP solution after

calcCostTruck, customer 3 has

been moved in the truck’s route

Figure 2: An example to demonstrate the FSTSP heuristic. The red nodes (0 and 7) represent the

depot. The boxed (light blue) nodes are UAV-eligible customers and the circular (darker blue) nodes

are UAV-ineligible customers

5 Payload-Dependent Flight Endurance

In Section 3 and 4 we assumed that our flight endurance was constant. In this section we will

make the flight endurance variable by incorporating the power consumption of the drone. If a

package is heavy it will take more power than a package that is light. According to Dorling

et al. (2016) the power P (in Watts) of a drone can be calculated with Equation (33), where we

use the frame weight W (in kg), parcel weight w (in kg), gravity g (in Newton), fluid density of

air ρ (in kg/m3), the area of the proppeler ς (in m2) and the number of rotors n.

P = (W + w)3/2

√
g3

2ρςn
(33)

If we look at Figure 3a, we see that there exists a near-linear relation between the parcel weight

and the required energy. Therefore we apply Ordinary Least Squares (OLS) to Equation (33)

(source code can be found in Appendix B.1). OLS estimates the parameters in linear Equation

(34). The maximum flight time (in minutes) will then be calculated using Equation (35), where

η, C, Vn and P are the energy conversion efficiency, battery capacity (in mAh), nominal battery

voltage (in Volts) with n rotors and power consumption (in Watts), respectively. We assume the

energy conversion efficiency η to be 70%. The data we use is based on an ‘MK8-3500 standard’

drone, which can carry parcels up to 3500g. Its specifications can be found in MikroKopter

(2019). In Figure 3b, we can see that our theoretical formulas (the trendline) match the data

retrieved from some real flight experiments with this ‘MK8-3500’ drone.

p(wj) = αwj + β (34)

flightT ime =
ηCVn
P

(35)

13

(a) OLS regression on Eq. (33) (b) Theoretical and experimental flight time

Figure 3: OLS regression and flight times

We can now implement equation (34) in our exact MILP-model because of its linearity. The

new constraint will be as follows:

p(wj)
(
t′j − t′i

)
+ p(0)

(
t′k − t′j

)
≤ ηE +M (1− yijk)

∀i ∈ Nd, j ∈ {C ′ : j 6= i}, k ∈ {Na : j 6= k, 〈i, j, k〉 ∈ P} (36)

In the heuristic we will create a function called power(wj , i, j, k) which will check the constraint

above. However, as the arrival time will be calculated later than this check, we will use that

t′j = ti + τ ′ij + sL for launching point i and UAV-eligible customer j.

6 Warm Start

As an extension of our flying sidekick travelling salesman problem, we will develop a method that

uses warm starts. In our algorithm we choose to combine the MILP-formulation from (1)-(32)

and the heuristic in Algorithm 1 - 5. We will first start with solving our heuristic and save the

results we found. After that, we will switch to the exact method and load the results we just

saved into the solver. The solver will see this as a warm start, which means that the solution

will be no worse than the one found in the heuristic. As we solve our MILP-formulation with

the same conditions as we did in Section 3, it will guarantee us to get a solution that is better

than or equal to the current best solution (either the MILP-formulation or the heuristic). The

pseudocode for our warm start algorithm can be found below in Algorithm 6.

14

Algorithm 6 Warm Start Algorithm

1: Create a new FSTSP in CPLEX, we will call this fstsp1

2: Load the data from the instance

3: Call Main (Algorithm 1)

4: for all x- and y-variables in the heuristic solution equal to 1 do

5: Create a new constraint in fstsp1 which set the lowerbound of the variable to 1

6: end for

7: Solve fstsp1

8: Save the results as a MIP-start

9: Create another FSTSP in CPLEX, which we call fstsp2

10: Load the MIP-start into the solver

11: Solve fstsp2

7 Results

7.1 Instances

For the evaluation of our performance, we have generated 72 instances. This generation is

based on the procedure described by Murray and Chu (2015). All these instances consist of 10

customers and a depot uniformly randomly distributed over an 8 by 8 miles square. For each

customer, we have the x- and y-coordinates and whether this customer is UAV-eligible (which

is between 80% and 90%). For the formulation (1) - (32), the heuristic (Algorithm 1 - 5) and

the warm start approach as described in Section 6, we choose a fixed flight endurance of 20

minutes. The truck and UAV speed were assumed to be both 25 miles/hour. The travel time

of the truck (τij , in minutes) between node i and j is calculated using Equation (37), where

we use the Manhattan metric distance. The drone’s travel time (τ ′ij , also in minutes) uses the

Euclidean distance and can be calculated using Equation (38). The launch and retrieve service

times were both set to 1 minute. For the exact MILP-formulation, we set a time limit of 30

minutes per instance.

τij =
|Xi −Xj |+ |Yi − Yj |

speedTruck
· 60 ∀i, j ∈ N (37)

τ ′ij =

√
(Xi −Xj)

2 + (Yi − Yj)2

speedUAV
· 60 ∀i, j ∈ N (38)

The MILP-formulation in (1) - (32) and (33) was solved via CPLEX 12.9. Both the MILP-

formulation and the heuristics were programmed in Java Version 8 Update 211. For instance 1

to 36 the computation was performed on a MacBook Pro with a 2.9 GHz Intel Core i5-6267U

15

processor and 8GB RAM. The computation of instance 37 to 72 was performed on an Acer

TC710 with a 2.7 GHz Intel Core i5-6400 processor and 8GB RAM.

7.2 Flying Sidekick Travelling Salesman Problem

We start by discussing the results of the Mixed Integer Linear Programming formulation (1)-(32)

in Section 3. In Table 2 (FSTSP-MILP), we can see that the average objective value has been

improved by 7.2628 minutes (9.91%) when we use drones in the parcel delivery process. It also

shows us that the best reduction was about 23%. There was only one instance that we could not

improve; the use of drones did not lead to a reduction in the total delivery time for this specific

set of customers. Note that for each instance, CPLEX required the full 30 minutes limit, which

means that we cannot prove that our solutions are optimal. Moreover, we got a lower bound

of 0 for all 72 instances. This is because our LP-relaxation is very weak. This relaxation will

first visit all the solutions where node 0 and 11 (both the depot) are connected since there is no

travel time between these nodes and this is the cheapest solution for the LP-relaxation. If the

truck’s first node is the depot itself, the arrival time at node 11 will be zero, which causes the

objective value to be 0 as well. Nevertheless, will we use these solutions as a benchmark when

we evaluate the other methods.

As it may take several hours to solve our MILP-formulation, we created a heuristic method in

Algorithm 1 - 5. All instances had a computational time of less than a second, which is a huge

improvement compared to the exact approach. As we can see in Table 2, the heuristic (FSTSP-

Heuristic) also leads to solutions with a higher objective value than the MILP. On average, a

delivery process took 2.4577 minutes extra, which is an increase of 3.89%. However, there are

four instances in which the heuristic solution was better than the exact solution (due to the

30-min limit). In another fifteen instances, the solutions were equal. Altogether, this means the

heuristic performs quite well. The results of each instance can be found in Table 3 in Appendix

C.1.

7.3 Payload-dependent flight endurance

As an extension on the flying sidekick travelling salesman problem we decided to change fixed

flight endurance to a variable payload-dependent flight endurance. Section 5 mentions that we

use Ordinary Least Squares (OLS) to derive Equation (34). In this equation, α is the power

consumption per kilogram of parcel weight (in Watts per kg) and β is the power we need to

keep the UAV-frame in the air (in Watts). Applying OLS shows us that α̂ = 39.9982, with a

standard error of σα = 0.06584 and β̂ = 129.0528, with a standard error of σβ = 0.13314. The

weights of the packages are uniformly randomly distributed between 0 and 3.5 kg. Table 7 in

Appendix D contains the weights we used for each node in each instance.

16

Figure 4: Relation between the average parcel

weight (horizontal axis) and the reduction

compared to the FSTSP with fixed flight endurance

(vertical axis)

For this extension, we use both the MILP-

formulation and the heuristic algorithms with

the extra constraints mentioned in Section 5.

In Table 2 we see that the average objec-

tive value (FSTSP-PF-MILP and FSTSP-PF-

Heuristic) is lower than the solutions from Sec-

tion 7.2. This is not a surprise since the mean

parcel weight of 1.75 kg leads to a maximum

flight endurance of 26:12 minutes, which is

higher than the fixed 20 minutes we set in Sec-

tion 3. These better solutions are not caused

by better solution methods, since we use the

same MILP-formulation and heuristics, and

the flight endurance is the only change we made. We also see that in most instances the

customers delivered by the UAV are the ones with lighter packages, and thus with a greater

flight endurance. Figure 4 shows that a lower average parcel weight does not always lead to a

greater reduction. This means the reduction is most probably caused by the choice of customers

delivered by UAV (lighter parcels, less waiting time at rendezvous, etc.) and the routing. If

we look closer at the results, we also see that the average number of customers served by UAV

increases (from 2.06 to 2.26) when we use payload-dependent flight endurance.

7.4 FSTSP with Warm Starts

In our paper, we use the solutions of our heuristic method as a warm start in the MIP-solver.

This means the solutions of our Warm Start Algorithm will be, in any way, no worse than our

heuristic solutions. As the solver keeps everything (except the warm start) the same as in Section

3, we will not get any result worse than the ones of the MILP-formulation. Table 2 can show this,

since the results are better than those in Section 7.2. Our Warm Start Algorithm gave better

solutions for nine instances, with reductions up to 6.5% compared to our best solution thus far.

Besides, some of the instances even got a lower bound, where the lower bounds from Section 7.2

were all 0. The results for all the instances individually can be found in Table 5 in Appendix C.3.

7.5 Comparison of the results

We also want to get a closer look at the results themselves. Therefore, Figure 5 gives a visual

representation of instance 52, with the solutions of the TSP, FSTSP-MILP, FSTSP-Heuristic

and FSTSP-Warm Start. The red node represents the depot, the blue line is the truck route,

and the green lines represent the UAV-sorties. Figure 5a shows us the basic TSP, where all

customers are assigned to the truck, and the drone is not used. Figure 5b is the result of our

17

MILP-formulation after 30 minutes, which is a good reduction of the total travel time. In Figure

5c, we can see the solution of the heuristic, which also a good reduction, but not as good as

the exact method. Finally, Figure 5d is the best solution, which is the result of our Warm

Start Algorithm that combines the solutions of Figure 5b and 5c. The visual representation also

explains one of the reasons why the heuristic does not always lead to the same solutions as the

MILP-formulation. Moreover, the heuristic is based on a TSP solution, where crossovers (like

figure 5b and 5d) are not allowed. Therefore, the heuristic ignores all solutions with crossovers.

Lastly, we decided to run the Warm Start Algorithm one more time, but without the restricted

time limit. This means that we solve the instances to optimality, where we have no gap between

the lower and upper bound. The mean solving time was 3 hours and 20 minutes. The exact

results can be found in Table 6 in Appendix C.4, Table 2 gives the averages for this ‘FSTSP-

Optimal’ method.

(a) TSP solution

(57.4869 min)

(b) FSTSP with MILP-formulation, solution after

30 minutes (46.8147 min)

(c) FSTSP heuristic solution

(48.1359 min)

(d) FSTSP solution with warm start algorithm

(44.6444 min)

Figure 5: Visual representation of the different solution approaches applied on instance 52

18

Table 2: Comparison of our solutions with the travelling salesman problem without drones

Solution Approach
Objective Value Gap TSP (%)

Average Average Min Max

TSP (A.1) 73.4731

FSTSP-MILP (7.2) 66.2103 -9.91 -23.42 0.00

FSTSP-Heuristic (7.2) 68.6680 -6.55 -21.94 0.00

FSTSP-PF-MILP (7.3) 63.8651 -13.01 -31.55 -0.21

FSTSP-PF-Heuristic (7.3) 66.1905 -10.00 -25.33 0.00

FSTSP-Warm Start (7.4) 65.9473 -10.29 -23.42 0.00

FSTSP-Optimal (7.5) 65.7948 -10.40 -23.42 0.00

8 Conclusion

International companies like Amazon, DHL and many others are developing and testing the

usage of these drones, which have shown their potential. In this thesis, we analysed the Flying

Sidekick Travelling Salesman Problem (FSTSP), where a truck can carry a UAV for their last-

mile delivery. As we know, drones have some weakness in their limited flight time and payload.

Therefore, we incorporated the payload-dependent flight endurance, where a lighter package

means that the drone can cover a greater distance. Also, we sought to provide a new Warm Start

Algorithm that combines the heuristic and exact approaches. We introduced formal definitions

and mathematical formulations to optimise this kind of operations in the logistics sector. Because

our FSTSP is very time-consuming to solve, only smaller instances can be solved to optimality.

In our results, we found that the average solving time, for an instance of only ten customers and

a depot, is already 3 hours and 20 minutes. Therefore, we came up with a heuristic method that

solves the same instance is just one second. Although most objective values were higher than

the MILP-formulation, there were still 19 instances (26.4%) that had an objective value equal to

or even lower than the exact method. On average, there was an increase of 2:30 minutes (only

3.89%). The results from Murray and Chu (2015) have an average gap of 8.33%/4:48 minutes,

which is similar to ours. The difference might be the fact that we used different instances.

Besides, the Warm Start Algorithm we use gives better solutions than the MILP-formulation

alone.

The change from a fixed to a payload-dependent flight endurance led to a better average ob-

jective value, and also increased the average number of customers served by UAV. After our

MILP-formulation and heuristic algorithms, we introduced a Warm Start Algorithm. This al-

gorithm was designed such that none of the solutions could be worse than the ones we found

in the heuristic or exact methods. The implementation of this Warm Start Algorithm led to

further reductions up to 6.5% compared to our best solution thus far. Jeong et al. (2019) pointed

out that solving their instances (also ten customers and a depot, distributed across an 8 by 8

miles square) to optimality took over 8 hours on average. This paper reduced this mean solving

19

time to 3 hours and 20 minutes, mainly because of our Warm Start Algorithm. For all our

solution approaches, there is one thing very clear, the use of drones in a parcel delivery process

is very helpful. We got significant decreases (10.3% on average) in the total delivery time, with

reductions going up to 23%, compared to the standard Travelling Salesman Problem without

any drones.

Although our models give satisfying results, we still have some limitations. For instance, we

limited our instances to 10 customers, and real-world problems such as traffic jams and one-way

streets can still influence the truck’s travel time. Battery replacement times are also assumed to

be constant. For the UAV’s battery consumption, we used the specifications of the ‘MK8-3500’

delivery drone, while there are many drones on the market with other specifications that can

also represent our problem. The heuristic we use is a local search and savings heuristic and,

once it has assigned the UAV to the launch, delivery and rendezvous node, these nodes will not

be checked for any other savings later on. Future research can be done in many aspects. This

can range from simply testing larger instances to extending the problem itself (for example,

considering multiple trucks or UAVs). Charging the battery en route, instead of replacing a

new one can lead to different results that might be more realistic. We have also limited our

problem to launching and retrieving the drone at customer nodes, while in the future we can

also investigate any point in-between customers. Some companies might want to reduce the

total travelling costs instead of the delivery time. Therefore, we can also change the objective

goal in future research.

20

Appendix A Travelling Salesman Problem

A.1 IP Formulation

min
∑
i∈Nd

∑
j∈Na
j 6=i

τijxij (39)

s.t.
∑
i∈Nd
i 6=j

xij = 1 ∀j ∈ Na (40)

∑
j∈Na
j 6=i

xij = 1 ∀i ∈ Nd (41)

ui − uj + (n− 1)xij = n− 2 ∀i ∈ Na, j ∈ {Na : j 6= i} (42)

Appendix B Code

B.1 MATLAB Code for Ordinary Least Square

1 %% Load data

2 W = 1 . 5 0 0 ;

3 w = [0 : 0 . 0 1 : 3 . 5] ’ ;

4 g = 9 . 8 1 ;

5 rho = 1 . 2 0 4 ;

6 sigma = 0 . 2 ;

7 n = 6 ;

8 l = length (w) ;

9 X = [w ones (l , 1)] ;

10 m = 2 ;

11

12 %% Formula f o r the power

13 P = (W+w) . ˆ (3 / 2) ∗ s q r t (g ˆ3/(2∗ rho∗ sigma∗n)) ;

14

15 %% OLS est imator

16 beta = (X’∗X) \X’∗P;

17

18 %% S t a t i s t i c s f o r the r e g r e s s i o n

19 e = P − X∗beta ; % Disturbances

20 s s e = e ’∗ e ; % Sum of Square Errors (SSE)

21 s2 = s s e /(l − m) ; % Sigmaˆ2 es t imate

22 var = inv (X’∗X) ∗ s2 ; % Variance o f the OLS est imate

23 se = s q r t (diag (var)) ; % Standard Error (SE) o f the e s t imate s

21

Appendix C Results

C.1 MILP-formulation and heuristic

Table 3: FSTSP and Heuristic Results

Instance TSP FSTSP-MILP Heuristic

Objective

Value

Objective

Value

Gap

TSP (%)

Objective

Value

Gap

TSP (%)

Gap

FSTSP (%)

1 67.256 57.166 -15.00 57.166 -15.00 0.00

2 79.374 73.132 -7.86 74.375 -6.30 1.70

3 73.426 63.001 -14.20 62.339 -15.10 -1.05

4 72.640 62.974 -13.31 63.752 -12.24 1.24

5 85.585 75.578 -11.69 78.922 -7.79 4.42

6 63.828 52.284 -18.09 57.330 -10.18 9.65

7 81.195 70.188 -13.56 77.192 -4.93 9.98

8 62.749 57.037 -9.10 58.239 -7.19 2.11

9 77.773 71.230 -8.41 73.234 -5.84 2.81

10 74.587 73.045 -2.07 73.677 -1.22 0.87

11 78.749 73.308 -6.91 73.308 -6.91 0.00

12 68.587 65.714 -4.19 68.587 0.00 4.37

13 77.115 67.418 -12.58 69.512 -9.86 3.11

14 72.601 65.843 -9.31 65.843 -9.31 0.00

15 67.476 61.167 -9.35 64.373 -4.60 5.24

16 70.486 65.817 -6.62 66.966 -4.99 1.75

17 76.784 62.536 -18.56 69.170 -9.92 10.61

18 82.726 74.556 -9.88 75.133 -9.18 0.77

19 55.533 53.780 -3.16 52.781 -4.96 -1.86

20 85.826 82.488 -3.89 81.722 -4.78 -0.93

21 68.896 58.870 -14.55 67.734 -1.69 15.06

22 70.414 64.128 -8.93 64.986 -7.71 1.34

23 75.590 72.007 -4.74 72.007 -4.74 0.00

24 74.672 67.725 -9.30 67.725 -9.30 0.00

25 53.690 45.395 -15.45 53.571 -0.22 18.01

26 74.314 59.489 -19.95 67.951 -8.56 14.22

27 75.104 73.969 -1.51 74.803 -0.40 1.13

28 76.284 65.287 -14.42 67.417 -11.62 3.26

29 56.455 48.263 -14.51 48.263 -14.51 0.00

30 58.285 49.390 -15.26 54.614 -6.30 10.58

31 74.898 74.898 0.00 74.898 0.00 0.00

32 70.073 53.664 -23.42 61.979 -11.55 15.50

33 66.354 64.552 -2.71 64.552 -2.71 0.00

34 69.211 57.674 -16.67 63.903 -7.67 10.80

35 81.598 75.528 -7.44 80.536 -1.30 6.63

36 81.402 70.986 -12.80 74.663 -8.28 5.18

22

37 77.854 69.971 -10.13 73.033 -6.19 4.38

38 78.980 70.897 -10.23 75.869 -3.94 7.01

39 62.796 58.694 -6.53 58.694 -6.53 0.00

40 75.922 70.747 -6.82 71.702 -5.56 1.35

41 72.505 63.048 -13.04 71.574 -1.28 13.52

42 67.689 66.406 -1.90 66.823 -1.28 0.63

43 53.501 50.613 -5.40 50.613 -5.40 0.00

44 66.616 65.296 -1.98 66.571 -0.07 1.95

45 74.174 65.613 -11.54 68.343 -7.86 4.16

46 66.464 61.424 -7.58 61.424 -7.58 0.00

47 69.184 60.113 -13.11 63.010 -8.92 4.82

48 64.800 55.299 -14.66 59.373 -8.37 7.37

49 76.152 72.667 -4.58 73.142 -3.95 0.65

50 92.591 80.734 -12.81 82.752 -10.63 2.50

51 65.181 64.983 -0.30 64.983 -0.30 0.00

52 57.487 46.815 -18.56 48.136 -16.27 2.82

53 75.558 68.292 -9.62 72.089 -4.59 5.56

54 71.500 64.743 -9.45 66.106 -7.54 2.10

55 81.120 68.417 -15.66 75.356 -7.11 10.14

56 79.733 72.908 -8.56 72.908 -8.56 0.00

57 69.661 56.956 -18.24 54.377 -21.94 -4.53

58 60.622 54.950 -9.36 59.979 -1.06 9.15

59 80.961 74.964 -7.41 74.964 -7.41 0.00

60 88.617 74.977 -15.39 77.123 -12.97 2.86

61 80.528 74.398 -7.61 76.491 -5.01 2.81

62 77.120 71.633 -7.11 75.204 -2.48 4.98

63 76.443 72.678 -4.93 73.500 -3.85 1.13

64 77.713 69.435 -10.65 72.738 -6.40 4.76

65 77.965 74.940 -3.88 74.940 -3.88 0.00

66 77.910 73.340 -5.87 74.247 -4.70 1.24

67 77.737 71.421 -8.12 72.418 -6.84 1.40

68 84.609 80.325 -5.06 81.009 -4.25 0.85

69 88.411 77.999 -11.78 83.254 -5.83 6.74

70 74.253 67.266 -9.41 67.266 -9.41 0.00

71 89.876 79.926 -11.07 88.543 -1.48 10.78

72 76.294 64.163 -15.90 72.317 -5.21 12.71

Average 73.473 66.210 -9.91 68.668 -6.55 3.89

23

C.2 Payload-dependent flight endurance

Table 4: Results with payload-dependent flight endurance

Instance Variable Flight Endurance (MILP) Variable Flight Endurance (Heuristic)

Objective

Value

Gap

TSP (%)

Gap

FSTSP (%)

Objective

Value

Gap

TSP (%)

Gap

MILP (%)

1 55.529 -17.44 -2.86 59.901 -10.94 7.87

2 61.395 -22.65 -16.05 68.811 -13.31 12.08

3 59.821 -18.53 -5.05 60.399 -17.74 0.97

4 59.580 -17.98 -5.39 65.877 -9.31 10.57

5 73.180 -14.49 -3.17 78.922 -7.79 7.85

6 52.837 -17.22 1.06 57.330 -10.18 8.50

7 71.481 -11.96 1.84 72.843 -10.29 1.90

8 56.695 -9.65 -0.60 60.444 -3.67 6.61

9 69.670 -10.42 -2.19 69.670 -10.42 0.00

10 71.661 -3.92 -1.90 71.661 -3.92 0.00

11 72.733 -7.64 -0.78 71.843 -8.77 -1.22

12 65.714 -4.19 0.00 68.587 0.00 4.37

13 66.096 -14.29 -1.96 67.736 -12.16 2.48

14 65.598 -9.65 -0.37 63.732 -12.22 -2.84

15 59.003 -12.56 -3.54 59.003 -12.56 0.00

16 65.321 -7.33 -0.75 63.954 -9.27 -2.09

17 62.632 -18.43 0.15 71.282 -7.17 13.81

18 74.556 -9.88 0.00 78.128 -5.56 4.79

19 52.102 -6.18 -3.12 52.781 -4.96 1.30

20 68.365 -20.35 -17.12 71.251 -16.98 4.22

21 64.078 -6.99 8.85 63.797 -7.40 -0.44

22 60.104 -14.64 -6.28 60.639 -13.88 0.89

23 64.140 -15.15 -10.93 64.140 -15.15 0.00

24 63.394 -15.10 -6.39 71.361 -4.43 12.57

25 45.858 -14.59 1.02 44.516 -17.09 -2.93

26 50.866 -31.55 -14.50 55.490 -25.33 9.09

27 73.484 -2.16 -0.66 74.803 -0.40 1.79

28 65.988 -13.50 1.07 67.316 -11.76 2.01

29 48.263 -14.51 0.00 48.263 -14.51 0.00

30 45.704 -21.59 -7.46 48.278 -17.17 5.63

31 69.594 -7.08 -7.08 74.898 0.00 7.62

32 53.664 -23.42 0.00 61.346 -12.45 14.32

33 59.788 -9.89 -7.38 55.017 -17.09 -7.98

34 55.012 -20.52 -4.62 62.897 -9.12 14.33

35 75.759 -7.16 0.31 77.402 -5.14 2.17

36 72.665 -10.73 2.36 68.712 -15.59 -5.44

37 64.434 -17.24 -7.91 65.024 -16.48 0.92

38 61.275 -22.42 -13.57 72.891 -7.71 18.96

24

39 58.694 -6.53 0.00 58.694 -6.53 0.00

40 70.039 -7.75 -1.00 68.747 -9.45 -1.84

41 64.263 -11.37 1.93 67.351 -7.11 4.81

42 66.406 -1.90 0.00 66.823 -1.28 0.63

43 50.613 -5.40 0.00 50.613 -5.40 0.00

44 64.030 -3.88 -1.94 66.571 -0.07 3.97

45 62.032 -16.37 -5.46 62.513 -15.72 0.78

46 60.313 -9.25 -1.81 61.424 -7.58 1.84

47 61.497 -11.11 2.30 59.030 -14.68 -4.01

48 54.589 -15.76 -1.28 53.048 -18.14 -2.82

49 68.847 -9.59 -5.26 68.847 -9.59 0.00

50 76.682 -17.18 -5.02 88.863 -4.03 15.88

51 65.045 -0.21 0.10 65.045 -0.21 0.00

52 42.000 -26.94 -10.28 43.415 -24.48 3.37

53 70.843 -6.24 3.74 67.720 -10.37 -4.41

54 59.717 -16.48 -7.76 59.717 -16.48 0.00

55 64.592 -20.38 -5.59 70.016 -13.69 8.40

56 67.832 -14.93 -6.96 75.524 -5.28 11.34

57 49.079 -29.55 -13.83 55.129 -20.86 12.33

58 55.236 -8.89 0.52 52.950 -12.66 -4.14

59 73.882 -8.74 -1.44 76.756 -5.19 3.89

60 71.543 -19.27 -4.58 77.103 -12.99 7.77

61 70.194 -12.83 -5.65 73.608 -8.59 4.86

62 69.149 -10.34 -3.47 70.408 -8.70 1.82

63 72.678 -4.93 0.00 73.500 -3.85 1.13

64 65.494 -15.72 -5.68 72.139 -7.17 10.15

65 71.952 -7.71 -3.99 74.940 -3.88 4.15

66 63.586 -18.38 -13.30 65.491 -15.94 3.00

67 69.070 -11.15 -3.29 72.418 -6.84 4.85

68 80.325 -5.06 0.00 81.009 -4.25 0.85

69 76.784 -13.15 -1.56 81.416 -7.91 6.03

70 67.305 -9.36 0.06 67.305 -9.36 0.00

71 79.926 -11.07 0.00 79.926 -11.07 0.00

72 56.012 -26.58 -12.70 66.717 -12.55 19.11

Average 63.865 -13.01 -3.45 66.191 -10.00 3.73

25

C.3 Warm Start Algorithm

Table 5: Results of the Warm Start Algorithm

Instance Warm Start Algorithm

Objective

Value

Gap

TSP (%)

Gap

Best(%)
LB

Objective

Value

Gap

TSP(%)

Gap

Best(%)
LB

1 57.166 -15.00 0.00 0 37 69.971 -10.13 0.00 0

2 73.132 -7.86 0.00 0 38 70.897 -10.23 0.00 0

3 62.339 -15.10 0.00 0 39 58.694 -6.53 0.00 0

4 62.570 -13.86 -0.64 0 40 70.747 -6.82 0.00 0

5 75.578 -11.69 0.00 0 41 63.048 -13.04 0.00 0

6 52.284 -18.09 0.00 0 42 66.406 -1.90 0.00 0

7 70.188 -13.56 0.00 0 43 50.613 -5.40 0.00 0

8 56.695 -9.65 -0.60 0 44 65.296 -1.98 0.00 0

9 71.230 -8.41 0.00 0 45 65.613 -11.54 0.00 0

10 73.045 -2.07 0.00 0 46 61.424 -7.58 0.00 0

11 73.308 -6.91 0.00 0 47 59.824 -13.53 -0.48 0

12 65.714 -4.19 0.00 1.917 48 53.048 -18.14 -4.07 0

13 67.418 -13.32 -0.86 0 49 72.667 -4.58 0.00 0

14 65.843 -9.31 0.00 0 50 80.734 -12.81 0.00 0

15 61.167 -9.35 0.00 0 51 64.983 -0.30 0.00 0

16 65.817 -6.62 0.00 0 52 44.644 -22.34 -4.64 0

17 62.536 -18.56 0.00 0 53 68.292 -9.62 0.00 0

18 74.556 -9.88 0.00 0 54 64.743 -9.45 0.00 6.221

19 51.547 -7.18 -2.34 0 55 68.413 -15.66 -0.01 0

20 76.397 -10.99 -6.52 0 56 72.908 -8.56 0.00 7.625

21 58.870 -14.55 0.00 0 57 54.377 -21.94 0.00 0

22 63.526 -9.78 -0.94 0 58 54.950 -9.36 0.00 0

23 72.007 -4.74 0.00 0 59 74.964 -7.41 0.00 0

24 67.725 -9.30 0.00 0 60 74.977 -15.39 0.00 0

25 45.395 -15.45 0.00 0 61 74.398 -7.61 0.00 20.646

26 59.489 -19.95 0.00 0 62 71.633 -7.11 0.00 4.675

27 73.969 -1.51 0.00 0 63 72.678 -4.93 0.00 0

28 65.287 -14.42 0.00 0 64 69.435 -10.65 0.00 0

29 48.263 -14.51 0.00 0 65 74.940 -3.88 0.00 0

30 49.390 -15.26 0.00 0 66 73.340 -5.87 0.00 0

31 74.898 0.00 0.00 0 67 70.117 -9.80 -1.83 0

32 53.664 -23.42 0.00 0 68 80.325 -5.06 0.00 0

33 64.552 -2.72 0.00 0 69 77.999 -11.78 0.00 6.708

34 57.674 -16.67 0.00 0 70 67.266 -9.41 0.00 0

35 75.528 -7.44 0.00 0 71 79.926 -11.07 0.00 0

36 70.986 -12.80 0.00 0 72 64.163 -15.90 0.00 0

Average 65.947 -10.29 -0.31 0.664

26

C.4 Optimal solution compared to other methods

Table 6: Optimal Solutions from the Warm Start Algorithm without time limit, compared to the other

solutions methods. Solving time is given in hours

Instance
Objective

Value

Gap

TSP(%)

Gap

FSTSP(%)

Gap

Heuristic (%)

Gap Warm

Start Alg. (%)

Solving

Time

1 57.166 -15.00 0.00 0.00 0.00 02:22

2 73.132 -7.86 0.00 -1.67 0.00 01:48

3 62.339 -15.10 -1.05 0.00 0.00 02:42

4 61.668 -15.10 -2.07 -3.27 -1.44 02:50

5 75.578 -11.69 0.00 -4.24 0.00 02:54

6 51.345 -19.56 -1.80 -10.44 -1.80 05:39

7 70.188 -13.56 0.00 -9.07 0.00 02:23

8 56.695 -9.65 -0.60 -2.65 0.00 02:26

9 71.230 -8.41 0.00 -2.74 0.00 02:55

10 73.045 -2.07 0.00 -0.86 0.00 02:13

11 73.039 -7.25 -0.37 -0.37 -0.37 04:26

12 65.714 -4.19 0.00 -4.19 0.00 03:49

13 67.418 -12.58 0.00 -3.01 0.00 03:12

14 65.843 -9.31 0.00 0.00 0.00 01:38

15 61.167 -9.35 0.00 -4.98 0.00 04:11

16 65.817 -6.62 0.00 -1.72 0.00 03:38

17 62.536 -18.56 0.00 -9.59 0.00 02:25

18 74.556 -9.88 0.00 -0.77 0.00 02:15

19 51.547 -7.18 -4.15 -2.34 0.00 03:36

20 76.397 -10.99 -7.38 -6.52 0.00 02:03

21 58.870 -14.55 0.00 -13.09 0.00 02:04

22 63.515 -9.80 -0.96 -2.26 -0.02 01:46

23 72.007 -4.74 0.00 0.00 0.00 02:59

24 67.725 -9.30 0.00 0.00 0.00 03:38

25 45.395 -15.45 0.00 -15.26 0.00 03:45

26 57.056 -23.22 -4.09 -16.03 -4.09 03:36

27 73.969 -1.51 0.00 -1.12 0.00 02:22

28 65.287 -14.42 0.00 -3.16 0.00 03:37

29 48.263 -14.51 0.00 0.00 0.00 07:10

30 49.390 -15.26 0.00 -9.57 0.00 03:18

31 74.898 0.00 0.00 0.00 0.00 04:24

32 53.664 -23.42 0.00 -13.42 0.00 09:59

33 64.552 -2.72 0.00 0.00 0.00 03:50

34 57.674 -16.67 0.00 -9.75 0.00 02:06

35 75.528 -7.44 0.00 -6.22 0.00 01:50

36 70.986 -12.80 0.00 -4.93 0.00 02:26

37 69.971 -10.13 0.00 -4.19 0.00 03:02

38 70.032 -11.33 -1.22 -7.69 -1.22 08:58

27

39 58.694 -6.53 0.00 0.00 0.00 05:29

40 70.747 -6.82 0.00 -1.33 0.00 02:10

41 63.048 -13.04 0.00 -11.91 0.00 03:23

42 66.406 -1.90 0.00 -0.62 0.00 09:48

43 50.613 -5.40 0.00 0.00 0.00 04:09

44 65.296 -1.98 0.00 -1.92 0.00 02:30

45 65.613 -11.54 0.00 -3.99 0.00 03:47

46 61.424 -7.58 0.00 0.00 0.00 02:53

47 59.824 -13.53 -0.48 -5.06 0.00 04:06

48 53.048 -18.14 -4.07 -10.65 0.00 03:39

49 72.667 -4.58 0.00 -0.65 0.00 01:53

50 80.734 -12.81 0.00 -2.44 0.00 02:46

51 64.983 -0.30 0.00 0.00 0.00 03:25

52 43.244 -24.78 -7.63 -10.16 -3.14 03:58

53 68.292 -9.62 0.00 -5.27 0.00 01:39

54 64.743 -9.45 0.00 -2.06 0.00 03:51

55 68.413 -15.66 -0.01 -9.21 0.00 04:36

56 72.908 -8.56 0.00 0.00 0.00 01:56

57 54.377 -21.94 -4.53 0.00 0.00 02:42

58 54.950 -9.36 0.00 -8.38 0.00 02:50

59 74.964 -7.41 0.00 0.00 0.00 01:59

60 74.977 -15.39 0.00 -2.78 0.00 02:53

61 74.398 -7.61 0.00 -2.74 0.00 00:49

62 71.633 -7.11 0.00 -4.75 0.00 01:28

63 72.678 -4.93 0.00 -1.12 0.00 03:32

64 69.435 -10.65 0.00 -4.54 0.00 03:57

65 74.940 -3.88 0.00 0.00 0.00 03:36

66 73.338 -5.87 0.00 -1.22 0.00 03:27

67 70.117 -9.80 -1.83 -3.18 0.00 04:11

68 80.325 -5.06 0.00 -0.84 0.00 01:22

69 76.784 -13.15 -1.56 -7.77 -1.56 04:01

70 67.266 -9.41 0.00 0.00 0.00 01:45

71 79.926 -11.07 0.00 -9.73 0.00 01:59

72 63.647 -16.58 -0.80 -11.99 -0.80 03:45

Average 65.829 -10.40 -0.58 -4.14 -0.18 03:20

28

Appendix D Weights

Table 7: Weights (kg) assigned to the packages

Instance Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7 Node 8 Node 9 Node 10 Average

1 3.308 0.499 1.126 0.534 1.809 2.445 0.814 2.797 2.308 2.888 1.853

2 1.239 1.291 0.612 2.022 0.486 2.763 0.812 1.573 0.923 1.251 1.297

3 0.745 0.708 3.259 2.309 0.704 3.400 1.206 3.346 2.522 0.871 1.907

4 2.833 1.556 2.902 2.751 2.682 3.333 2.132 0.957 2.180 0.105 2.143

5 2.785 2.508 0.988 1.300 3.089 0.096 2.409 1.125 1.755 2.435 1.849

6 0.017 0.344 0.814 3.485 2.096 1.818 2.155 1.352 0.151 0.161 1.239

7 1.394 1.598 1.557 0.861 1.033 0.472 1.705 2.458 3.218 2.472 1.677

8 2.912 0.645 2.870 2.542 2.510 3.354 2.451 3.488 1.623 1.325 2.372

9 1.389 2.278 0.441 3.440 1.718 3.142 3.026 2.595 2.954 3.275 2.426

10 2.090 3.308 3.065 1.761 3.260 1.163 0.610 3.006 3.360 0.700 2.232

11 1.784 2.251 0.739 3.448 0.216 1.408 1.405 1.986 2.190 2.520 1.795

12 0.979 1.180 1.025 2.049 1.074 1.925 3.197 2.911 0.953 3.100 1.839

13 1.627 1.593 2.241 0.395 2.959 0.633 1.259 1.583 1.505 2.735 1.653

14 0.179 1.495 2.105 2.299 1.103 3.252 2.817 0.042 3.494 3.016 1.980

15 1.059 0.331 1.967 1.607 2.063 1.275 0.400 0.071 2.379 1.120 1.227

16 1.124 0.690 0.837 1.111 0.692 1.000 0.722 3.417 0.009 0.499 1.010

17 1.468 1.063 1.855 0.399 1.573 1.594 0.882 1.665 2.700 0.679 1.388

18 1.488 1.422 1.599 1.657 1.575 0.814 3.324 2.917 2.565 0.570 1.793

19 0.483 0.724 0.458 1.021 1.363 1.316 1.609 2.103 2.249 0.201 1.153

20 2.521 0.473 2.351 0.920 2.145 0.023 0.139 3.133 0.262 1.568 1.354

21 1.331 1.966 0.925 3.340 3.199 3.467 1.335 0.543 2.356 2.957 2.142

22 2.454 1.303 1.817 1.231 0.645 2.546 0.504 0.009 3.143 3.027 1.668

23 1.251 1.334 3.006 1.750 3.486 1.045 0.253 2.666 2.376 1.703 1.887

24 3.444 1.823 2.265 3.195 0.825 1.821 2.496 0.633 2.064 0.288 1.885

25 0.063 2.679 1.747 2.862 0.920 2.693 0.201 2.325 2.806 0.266 1.656

26 3.112 0.716 1.918 2.687 0.753 0.555 1.776 0.464 0.756 2.604 1.534

27 3.073 1.217 0.641 1.178 0.547 3.094 2.404 1.176 0.050 2.743 1.612

28 2.616 1.049 0.039 2.944 2.139 0.939 1.150 0.889 3.399 3.472 1.864

29 3.497 1.313 0.110 1.128 1.080 3.160 1.815 2.262 3.051 2.005 1.942

30 0.253 3.185 3.050 0.902 0.884 1.532 3.286 1.744 0.141 0.581 1.556

31 2.107 0.949 2.073 1.488 0.690 0.938 0.865 1.612 1.671 2.037 1.443

32 3.256 2.662 0.318 2.496 1.985 2.249 2.976 2.602 1.229 0.497 2.027

33 0.347 1.499 0.521 0.461 0.159 0.360 2.326 2.771 2.816 0.322 1.158

34 0.748 3.227 0.059 3.397 2.291 0.791 0.013 0.740 3.210 3.498 1.797

35 3.235 0.224 1.558 2.721 0.244 2.912 2.748 0.392 0.023 0.217 1.427

36 3.153 1.139 2.818 0.906 3.279 1.373 2.387 3.408 1.938 0.185 2.059

37 1.319 2.784 1.698 2.533 2.412 3.379 3.420 0.563 3.056 0.229 2.139

38 2.944 3.041 3.406 0.145 1.965 2.244 3.494 2.077 1.720 0.237 2.127

39 0.834 3.016 1.995 3.147 1.285 0.999 1.656 1.979 1.563 1.081 1.756

40 2.206 0.091 1.600 2.325 2.420 1.175 2.592 1.424 3.259 1.057 1.815

41 1.620 1.510 0.149 0.472 0.420 3.477 2.121 2.507 1.681 2.101 1.606

42 2.474 0.545 0.269 2.156 3.126 2.914 2.953 1.451 0.666 0.662 1.722

29

Instance Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7 Node 8 Node 9 Node 10 Average

43 1.307 3.391 1.367 3.021 3.402 1.368 2.160 2.656 0.434 1.072 2.018

44 3.454 2.648 0.507 3.460 2.489 0.667 3.306 0.269 2.089 0.610 1.950

45 2.561 1.461 2.127 1.783 1.792 1.144 3.412 0.929 3.220 0.239 1.867

46 1.427 3.441 1.729 1.724 0.308 1.236 1.226 2.014 1.229 1.014 1.535

47 3.377 2.369 3.318 0.807 2.717 1.207 2.785 3.088 2.995 0.349 2.301

48 0.630 2.798 0.460 3.489 1.809 2.943 0.289 1.744 3.182 0.981 1.833

49 2.814 3.366 2.438 2.982 0.525 3.293 1.543 3.147 1.647 2.890 2.465

50 2.170 0.065 1.302 1.101 1.877 1.027 1.228 0.916 1.460 2.418 1.357

51 0.104 1.876 2.161 2.659 1.788 2.611 0.559 2.780 0.883 0.561 1.598

52 0.877 0.793 1.714 0.923 0.549 1.104 1.476 0.704 2.783 1.808 1.273

53 2.681 2.377 0.001 2.347 1.234 0.892 0.159 3.498 1.640 1.971 1.680

54 2.290 0.219 2.341 0.930 1.849 2.965 0.792 0.773 0.061 0.222 1.244

55 0.101 2.894 1.416 1.559 1.303 0.407 2.678 3.487 2.761 1.340 1.795

56 1.702 1.149 2.161 1.445 0.305 3.209 2.118 1.791 1.759 3.250 1.889

57 0.321 1.110 1.851 2.174 0.223 2.346 0.577 0.668 1.113 1.666 1.205

58 1.370 3.185 1.411 2.379 1.535 2.788 0.946 2.130 1.003 2.389 1.914

59 1.898 0.529 3.319 0.734 1.204 1.430 2.591 2.564 1.116 2.181 1.757

60 0.805 0.204 0.709 2.459 0.242 1.650 2.549 1.656 2.045 2.999 1.532

61 0.345 0.079 3.269 3.369 2.618 2.564 2.136 3.129 1.277 2.896 2.168

62 0.844 1.679 2.955 0.983 2.225 0.091 3.038 2.858 0.709 2.132 1.751

63 0.386 0.582 2.532 3.017 3.251 2.276 3.117 3.193 2.924 2.067 2.334

64 0.029 1.286 3.004 1.855 1.762 2.786 0.349 2.574 0.939 1.008 1.559

65 0.099 2.222 2.694 1.950 1.519 2.262 0.253 2.437 2.093 1.382 1.691

66 3.127 1.551 1.506 3.332 1.248 2.713 2.980 0.703 2.150 3.409 2.272

67 3.149 3.335 0.777 0.398 0.960 1.729 3.413 1.396 0.034 2.000 1.719

68 2.469 2.867 1.144 1.131 1.043 0.466 3.336 1.339 2.769 2.709 1.927

69 3.108 2.771 2.647 0.681 2.140 2.602 2.450 1.002 0.769 0.228 1.840

70 1.201 1.323 0.730 0.998 0.086 3.443 1.179 0.084 0.334 1.609 1.099

71 2.180 1.166 2.488 3.448 0.351 3.173 0.479 0.094 2.823 0.262 1.647

72 0.217 1.483 2.845 3.064 3.466 1.418 0.092 1.633 0.415 2.867 1.750

Average 1.720 1.631 1.691 1.939 1.593 1.899 1.793 1.834 1.818 1.580 1.750

Appendix E Programs and Files

Folder File Description

/src/FSTSP Source files for the MILP-formulation

Graph.java Graph that keeps track of all nodes

Main.java Main class to read/write files and start the solver

Node.java Represents a node in our problem with its properties

TSP.java MILP model and CPLEX solver

/src/VarFlightE
Source files for the MILP-formulation with

payload-dependent flight endurance

Main2.java Main class to read/write files and start the solver

TSP2.java MILP model and CPLEX solver

30

/src/HeurVarFlightE
Source files for the heuristic with payload-dependent

flight endurance

Main.java Main method with all the heuristic algorithms

OnlyResults.java Main.java, with only the objective value as output

/src/HeurFSTSP Source files for the heuristic of the FSTSP

Main.java Main method with all the heuristic algorithms

OnlyResults.java Main.java, with only the objective value as output

/src/TSP Source files for the TSP IP-formulation (without drones)

Main3.java
Main class to read/write files and start the solver for a

single instance

TSP.java
IP model and CPLEX solver for the TSP for a single

instance

All Instances.java
Main class to read/write files and start the solver

for all instances

TSP All.java IP model and CPLEX solver for the TSP for all instances

/src/WSA Source files for the Warm Start Algorithm of the FSTSP

Main WSA
Solver for Warm Start Algoritm for reading/writing files

and solving the heuristc

Main Windows.java
Main WSA class, with some minor changes so it can run

on Windows systems

TSP.java MILP model and CPLEX solver

/instances Data for the instances (coordinates, uav-eligible)

/lib CPLEX files required for the solver

/solutionFSTSP Solutions of the FSTSP with MILP-formulation

/solutionFSTSPheur Solutions of heuristic of the FSTSP

/solutionFSTSPext
Solutions of the FSTSP with payload-dependent flight

endurance

/FSTSPheur
Solutions of the heuristic with payload-dependent flight

endurance

/weights Weights used for the payload-dependent flight endurance

/solutionTSP Solutions of the TSP without drones

/WarmStart Solutions of the Warm Start Algorithm

/noTimeLimit
Optimal solutions of the Warm Start Algorithm without

time limit

References

Agatz, N., Bouman, P., and Schmidt, M. (2018). Optimization approaches for the traveling

salesman problem with drone. Transportation Science, 52(4):965–981.

Bouman, P., Agatz, N., and Schmidt, M. (2018). Dynamic programming approaches for the

traveling salesman problem with drone. Networks, 72(4):528–542.

31

Carlson, N. (2013). The real reason amazon announced delivery drones last night: $3

million in free advertising on cyber monday. https://www.businessinsider.com/

why-amazon-announced-delivery-drones-2013-12?international=true&r=US&IR=T.

[Online; accessed 15-May-2019].

Clement, J. (2019). Statista: E-commerce worldwide - statistics & facts. https://www.

statista.com/topics/871/online-shopping/. [Online; accessed 4-July-2019].

De Freitas, J. C. and Penna, P. H. V. (2018). A randomized variable neighborhood descent

heuristic to solve the flying sidekick traveling salesman problem. Electronic Notes in Discrete

Mathematics, 66:95–102.

Deutsche Post AG (2019). Deutsche Post DHL Group — DHL Parcelcopter. https://www.

dpdhl.com/en/media-relations/specials/dhl-parcelcopter.html. [Online; accessed 14-

May-2019].

Dorling, K., Heinrichs, J., Messier, G. G., and Magierowski, S. (2016). Vehicle routing problems

for drone delivery. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 47(1):70–

85.

Drexl, M. (2012). Synchronization in vehicle routing—a survey of vrps with multiple synchro-

nization constraints. Transportation Science, 46(3):297–316.

Federal Aviation Administration (2019). Unmanned aircraft systems (uas). https://www.faa.

gov/uas/. [Online; accessed 15-May-2019].

Ferrandez, S. M., Harbison, T., Weber, T., Sturges, R., and Rich, R. (2016). Optimization of

a truck-drone in tandem delivery network using k-means and genetic algorithm. Journal of

Industrial Engineering and Management (JIEM), 9(2):374–388.

Ha, Q. M., Deville, Y., Pham, Q. D., and Hà, M. H. (2018). On the min-cost traveling salesman

problem with drone. Transportation Research Part C: Emerging Technologies, 86:597–621.

Hern, A. (2014). DHL launches first commercial drone ’parcelcopter’ de-

livery service. https://www.theguardian.com/technology/2014/sep/25/

german-dhl-launches-first-commercial-drone-delivery-service. [Online; accessed

15-May-2019].

Jeong, H. Y., Song, B. D., and Lee, S. (2019). Truck-drone hybrid delivery routing: Payload-

energy dependency and no-fly zones. International Journal of Production Economics, 214:220

– 233.

Karak, A. and Abdelghany, K. (2019). The hybrid vehicle-drone routing problem for pick-up

and delivery services. Transportation Research Part C: Emerging Technologies, 102:427 – 449.

32

Lawler, E. (1985). The Travelling Salesman Problem: A Guided Tour of Combinatorial Opti-

mization. Wiley-Interscience series in discrete mathematics and optimization. John Wiley &

Sons.

Lin, C. (2011). A vehicle routing problem with pickup and delivery time windows, and coordi-

nation of transportable resources. Computers & Operations Research, 38(11):1596–1609.

MikroKopter (2019). MikroKopter - Technical Specifications. http://www.mikrokopter.de/

en/products/nmk8stden/nmk8techdaten. [Online; accessed 22-June-2019].

Murhpy, M. (2016). The future is here: Drones are deliv-

ering domino’s pizzas to customers. https://qz.com/838254/

dominos-is-delivering-pizza-with-autonomous-drones-to-customers-in-new-zealand/.

[Online; accessed 15-May-2019].

Murray, C. C. and Chu, A. G. (2015). The flying sidekick traveling salesman problem: Optimiza-

tion of drone-assisted parcel delivery. Transportation Research Part C: Emerging Technologies,

54:86–109.

Perlow, B. (2016). Amazon completes 1st drone delivery. https://abcnews.go.com/US/

amazon-completes-drone-delivery/story?id=44185981. [Online; accessed 1-July-2019].

Ponza, A. (2016). Optimization of drone-assisted parcel delivery.

Schermer, D., Moeini, M., and Wendt, O. (2019). A hybrid VNS/Tabu Search algorithm for solv-

ing the vehicle routing problem with drones and en route operations. Computers & Operations

Research.

33

