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Abstract

Environmental concerns have led to rapid developments regarding the flow-refueling location problem (FRLP),

the problem of positioning refueling stations in a road network as to maximise the volume of traffic that is

able to successfully complete its trip. Though several stochastic versions of the FRLP have been proposed,

increasing model realism by accounting for a variable driving range, so far no probabilistic models with ca-

pacitated stations exist. In this paper we argue why ordinary capacity constraints are overly restrictive in a

stochastic setting, and derive a novel set of constraints that overcomes this issue by modelling the expected

traffic volume that refuels at each station. As the resulting model is highly complex, an intuitive heuristic

approach is presented. Numerical experiments on random networks suggest that using stochastic capacity

constraints as compared to deterministic ones alters the optimal location choice and leads to substantial gains

in covered traffic volume. The heuristic is shown to achieve near-optimal solutions in reduced time on small

instances, whilst slightly outperforming the exact solution approach on large instances.

The views stated in this thesis are those of the author and not necessarily those of Erasmus School of

Economics or Erasmus University Rotterdam.
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1. Introduction

Concerns regarding energy security, fuel economy, and environmental impact have led to the increased

popularity of alternative-fuel vehicles (AFVs), i.e. vehicles that do not run on traditional petroleum fuels but

on other sources of energy, such as hydrogen, natural gas, or electricity. While there are rapid developments in

this area, most of these AFVs still offer a limited driving range and thus require to be refueled at alternative-

fuel stations (AFSs), perhaps multiple times during a trip. To this day, however, the limited number of such

stations leads to range anxiety among drivers and poses a main barrier to the widespread adoption of AFVs

(World Economic Forum, 2018).

To overcome this issue, the construction of a carefully designed network of refueling facilities is required,

allowing drivers to reach their destinations without running out of fuel. Since current investment in these

facilities is still scarce, AFSs can only be built at a small number of locations out of a large candidate set.

Since an optimal positioning of facilities requires coordination, non-sequential decision-making is preferred

over the sequential positioning of facilities. In the case when multiple stakeholders are involved, for example,

a joint location procedure is needed to prevent cannibalization of demand or inferior outcomes due to path-

dependency.

One of the first mathematical formulations of this problem is the flow-refueling location model (FRLM)

developed by Kuby & Lim (2005), aimed at locating p refueling facilities in a road network as to maximise the

total volume of traffic that is able to successfully complete their round trip. This traffic is then represented

by a set of flows between origin-destination (O-D) pairs, each flow moving along the shortest path connecting

the O-D nodes and having a specific flow volume. This problem has received considerable attention in recent

years (see Ko et al. (2017) for an overview), and model realism has been significantly improved, e.g. by the

incorporation of capacitated facilities and by allowing drivers to deviate from their predefined shortest paths

in order to pass by additional refueling stations.

Relatively little attention has been paid, however, to the stochastic nature of the vehicle driving range.

It is well known that the driving range of AFVs is highly variable, as it depends on uncertain factors as the

weather, the driving style of the driver, the level of road congestion, and the temperature (Ehsani et al.,

2018). Two recently proposed models, the expected flow-refueling location problem and chance-constrainted

flow-refueling location problem proposed by de Vries & Duijzer (2017) and later reformulated by Boujelben

& Gicquel (2019), do successfully incorporate this uncertainty, yet do not include any of the aforementioned

model developments. One of the goals of this paper is therefore to bridge this gap in literature by incorporating

capacitated facilities in these existing stochastic models. Moreover, we will show how the capacity constraints

commonly used in literature yield an overly restricted model when working in a stochastic setting, and solve

this issue by introducing the notion of stochastic capacity and embedding it into a novel set of constraints. As

the resulting model is highly complex, an efficient two-stage heuristic approach to this model is presented, its

first stage focusing on positioning facilities and its second stage aiming to attribute traffic to these stations.

In extensive computational experiments we find that replacing the restrictive deterministic constraints
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by their stochastic counterparts yield significant gains in terms of flow volume covered, gains which partly

arise due to a different positioning of facilities. Moreover, due to its efficient distribution of running time, the

heuristic is able to find near-optimal solutions in reduced running time on small instances, and outperform

an exact solution approach on larger ones. Finally, we find that relaxing one of the key assumptions behind

our capacitated model does not have major consequences.

The remainder of this paper is structured as follows. Section 2 presents a comprehensive literature

review on the FRLM and discusses the contributions of this paper. Section 3 formally states the flow-

refueling location problem and presents the deterministic flow-refueling location problem. In Section 4 the

expected flow-refueling location problem and chance-constrained flow-refueling location problem are intro-

duced, whereas Section 5 presents alternative formulations of these models that are more appropriate when

incorporating capacity constraints. The notion of stochastic capacity and a corresponding novel set of con-

straints is discussed in Section 6. All models are extensively evaluated in numerical experiments in Section

7. Section 8 concludes and presents directions for future work.

2. Literature Review

2.1. The FRLM and its Extensions

The literature stream on flow-refueling location models originated in the early 90s, when Hodgson (1990)

and Berman et al. (1992) proposed the first flow-capturing location models (FCLM). As compared to set

covering location models, which assume that demand in a network is located at its nodes, they realised that

demand is sometimes exerted by traffic flows. A significant fraction of customers of discretionary service

facilities, such as convenience stores, gasoline stations, or billboards, consumes this service on an otherwise

pre-planned trip, e.g. the daily commute to and from work. The goal of the FCLM is to maximise the flow

between a set of OD pairs that is captured or intercepted by facilities located at nodes.

Kuby & Lim (2005) extended this logic to the problem of refueling alternative-fuel vehicles along their

trips, and were the first to formulate the flow-refueling location problem. Solving this FRLM required pre-

generating all possible combinations of locations capable of serving each round trip, limiting its application

to small instances. To overcome this issue, Kuby et al. (2009) proposed a greedy heuristic and a genetic

algorithm that did not require this pre-processing, and solved the FRLM for the large Florida state-wide

road network.

Capar & Kuby (2012) proposed a reformulation of the FRLM that directly incorporates the logic of

combinations of locations refuelling a trip, thereby eliminating the costly pre-generation of these combinations.

The arc cover-path cover formulation of Capar et al. (2013) uses the idea that a round trip is feasible when each

of its arcs is within driving range of a refueling station preceding it, and that there is a set of locations capable

of refueling each single arc. This model is even more compact and allows for solving the large aforementioned

Florida instance to optimality within a minute. Another alternative formulation was proposed by MirHassani
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& Ebrazi (2012), who employ mass balance constraints to model the flow from origin to destination, and

show that this also leads to a huge reduction in solution time.

Whereas the FRLM does not allow drivers to deviate from their pre-defined paths in order to refuel, the

deviation-flow refueling location model (DFRLM) does incorporate this flexibility. It was initially proposed

by Kim & Kuby (2012), who imposed a maximum deviation distance from the shortest path and penalised

the flow volume of deviation routes to ensure that trips without deviation are preferred. The symmetric

deviation routes were then generated using the k-shortest path (k-SP) algorithm by Hoffman & Pavley

(1959), including routes that contain loops since those might pass by an additional refueling station and

thereby enable feasibility of a round trip. As the huge number of possible deviation routes led to large

solution times even on small networks, Kim & Kuby (2013) developed a network transformation heuristic for

the DFRLM. The heuristic selects station in a greedy fashion, iteratively adding the ASS capable of refueling

the highest additional flow volume. This volume is determined by finding the shortest feasible paths on

the network of OD nodes and refueling stations, thereby allowing for deviation routing without explicitly

pre-generating all possible deviation routes.

The FRLM has also been extended to include capacitated facilities. The capacitated flow-refueling

location model (CFRLM) initially proposed by Upchurch et al. (2009) relaxes the assumption of unlimited

refueling capacity, and limits the vehicle volume that can be refueled by a single station. To this extent, the

binary trip variables in the formulation of Kuby et al. (2009) are modified to continuous ones, allowing OD

trips to be partially covered. Deviation routing can also be included in the CFRLM, leading to the capacitated

deviation-flow refueling location model (CDFRLM) (Hosseini et al., 2017; Hosseini & MirHassani, 2017).

Finally, several authors have attempted to incorporate stochasticity in the FRLM, either by including

uncertainty in traffic flow volume or by assuming variability in the driving range. Hosseini & MirHassani

(2015) propose a two-stage model which first locates permanent facilities based on uncertain flow forecasts,

and subsequently locates portable stations to tune to realised demand. Wu & Sioshansi (2017) develop

the stochastic flow-capturing location model (SFCLM), which aims to maximise the expected flow volume

covered. Yıldız et al. (2019) formulate a model with capacitated facilities and stochastic demand, and solve

this using a tailored branch and cut algorithm. Lee & Han (2017) assume a probabilistic travel range and

locate stations such that the expected number of electric vehicles successfully reaching their destination is

maximised. Since the resulting objective function is nonlinear and non-convex, a Benders decomposition with

column generation techniques is used as solution approach. de Vries & Duijzer (2017) resolve this problem

by making several assumptions on the driving range distributions, and propose the expected flow-refueling

location problem (EFRLP) and chance-constrained flow-refueling location problem (CCFRLP). The former

aims to maximise expected flow volume covered, whereas the goal of the latter is to maximise flow volume

when a flow is only considered covered if the probability of successfully completing the round trip is above

a certain threshold. Boujelben & Gicquel (2019) build on their work by reformulating the EFRLP and

CCFRLP in a more efficient manner, using the arc cover-path cover idea by Capar et al. (2013), and propose
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a fast tabu-search heuristic. As we wish to incorporate capacity constraints in models with stochastic driving

range, the aforementioned EFRLP and CCFRLP will form the starting point of this paper.

The large number of possible deviation paths or capacity constraints in the extensions of the FRLM lead

to large computation times when using commercial solvers. Limiting this solution approach to small- and

medium-sized instances, it has led to the development of several heuristic algorithms. Greedy heuristics are

the most popular choice, of which versions with and without neighbourhood searches exist (Lim & Kuby,

2010; Li & Huang, 2014; You & Hsieh, 2014; Kuby et al., 2009). Genetic algorithms are also widespread,

often outperforming greedy approaches (Lim & Kuby, 2010; You & Hsieh, 2014; Kuby et al., 2009). It is

unclear, however, how these methods can be applied to capacitated models. An alternative approach uses an

LP relaxation of the FRLM to find a promising set of facility locations, after which facility nodes are selected

from this set in an iterative fashion. This idea has been applied to the ordinary FRLM (Tran et al., 2018),

as well as the CDFRLM (Hosseini et al., 2017; Hosseini & MirHassani, 2017).

While the ideas underlying the above methods are relatively straightforward, more sophisticated tech-

niques exist. Both Arslan & Karaşan (2016) and Lee & Han (2017) employ a Benders decomposition approach,

yet have not extended its application beyond the regular FRLM. Finally, the branch-and-price algorithm de-

veloped by Yıldız et al. (2016) is able to find near-optimal solutions for the DFRLM in reasonable time.

2.2. Contributions

The existing models with stochastic driving range, as proposed by de Vries & Duijzer (2017) and re-

formulated by Boujelben & Gicquel (2019), rely on the assumption of uncapacitated facilities. The first

contribution of this paper is therefore to formulate ordinary capacity constraints for these models, limiting

the vehicle volume that can recharge at each facility. Second, we argue how such ordinary capacity con-

straints are overly restrictive when applied in a stochastic setting. To overcome this issue, we introduce the

notion of stochastic capacity and propose a novel set of constraints that incorporate this stochastic capacity

in the flow-refueling location problem. Third, as these constraints significantly increase model complexity,

we present a heuristic approach that is able to quickly find efficient solutions. Finally, we investigate the

impact of the single-path assumption, i.e. the assumption that each vehicle along a given flow follows the

same refuelling pattern, which is commonly used in capacitated models.

3. Problem Definition and Formulation

We consider a road network G = (L,E), consisting of a set of locations L and a set of edges E. The

set of locations L is defined as the union of the set of potential facility locations K, the set of origins O,

and the set of destinations D. A collection of drivers wishes to repeatedly perform symmetric round trips on

this network, and we define a flow to be the subset of drivers that travels from the same origin to the same

destination. The set F denotes all such flows, and we use Of and Df to refer to the origin and destination

of flow f ∈ F , respectively. Since our focus is on capacity constraints, for simplicity we assume that there is
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no deviation routing and that drivers thus travel along the shortest path connecting origin and destination.

Drivers travelling along flow f traverse an ordered sequence of edges e ∈ E, connecting the start location Of ,

an ordered set of potential facility locations Kf ⊆ K, and the end location Df , and then pass these edges in

opposite order on the way back. The union of all nodes traversed along flow f is denoted by Lf . Moreover,

vf denotes the volume of this flow, i.e. the number of drivers wishing to perform this round trip. As common

in literature, we assume drivers start at the origin with half a tank, and that a full tank offers a finite driving

range R. Since round trips are repeatedly performed, drivers thus need to recharge or refuel at a charging

facility at least once during their trip. More specifically, drivers are only able to complete their trip when the

distance between two subsequent facilities along their round trip does not exceed the vehicle range R, and

when the facility first passed on the trip is located within a a radius of R/2 from the origin. We say flow f

is covered when drivers along f can travel from their origin to their destination and back without running

out of fuel. The goal of the FRLP is then to locate p charging stations in K such that the total volume of

all covered flows is maximised.

Since we assume that drivers perform round trips, we can equivalently see each trip as a cycle connecting

the origin and destination. Moreover, each cycle can be said to consist of one or more cycle segments, where

a cycle segment is defined as a part of the round trip that a driver traverses without being able to refuel

his vehicle, and that cannot be contained in a larger cycle segment. In case no charging stations are located

along flow f , the cycle corresponding to f contains only one cycle segment, its distance equalling that of the

full round trip. Each additional charging station located on k ∈ Kf then breaks up one or more existing cycle

segments into smaller sub-segments. The positioning of charging stations in the road network can therefore

be seen as the partitioning of all cycles into cycle segments such that the volume of flows where no cycle

segment has a distance larger than R is maximised. In other words, the use of cycle segments allows us to

explicitly incorporate the driving range into a formulation of the FRLP and will subsequently enable the

inclusion of a stochastic driving range.

O A B C D
100 75 150 75

(a)

O A B C D
200

225

150

(b)

Figure 1: Illustration of cycle segments.

Let us illustrate the concept of cycle segments using the simple single flow depicted in Figure 1a. This

flow starts at the origin O, passes by potential facility locations A, B, and C, and reaches destination D.
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The distance between each pair of successive nodes is noted on the edge connecting them. We now consider

the case where charging facilities are located at both A and C. The arrows in Figure 1b show the cycle

segments originating in this situation. These double arrows reflect the fact that each segment is passed in

both directions along a trip, once passing from O to A, and vice versa. The segment defined by O and A

has length 200, twice the distance between these nodes since a vehicle is unable to recharge at O and we

assume that it starts at O with only half a tank. The same logic holds for the segment connecting C and D,

whereas the distance of the segment linking A and C is simply the distance of the (shortest) path between

them. Since no facility is assigned to B and it is neither an origin nor a destination, there is no cycle segment

defined by B. Clearly, B is still passed twice on each round trip.

To formalise the idea of cycle segments, let us first recall that each round trip is symmetric, i.e. the

same locations are passed in reverse order when travelling from origin to destination as when travelling from

destination to origin. This fact allows us to characterise a cycle segment of flow f by two nodes k and l in

Lf , where k is defined to be the starting node of the segment and l to be the node closest to Df along this

cycle segment. Note that by definition k ∈ Of ∪ Kf , whereas l ∈ Kf ∪ Df . The distance tkl of the cycle

segment defined by k and l follows directly from this simple characterisation: it is the distance of the shortest

path from k to l. Since round trips are symmetric and cycle segments are defined as parts of the cycle where

a vehicle cannot recharge, this distance is multiplied by two in case the segment starts or ends at the origin

or destination, respectively, and equal to M � R in case it directly connects origin and destination. As this

latter value largely exceeds the driving range, a vehicle in a covered flow will never be able to travel directly

from origin and destination, and is therefore required to recharge at least once along its path. Moreover,

note that the multiplication by two enforces the half-tank assumption mentioned earlier, and that as a result

drivers return to their starting point with at least half a tank, enabling them to repeatedly preform their

round trip.

Using the above notion of cycle segments, a novel formulation of the FRLP can be stated that explicitly

incorporates the driving range. To this extent we define the binary variable xk, which equals one if a facility

is placed at potential location k, and zero otherwise. Moreover, the binary variable yf indicates whether flow

f is covered, equalling one if this is the case, and zero otherwise. Finally, the binary variable iklf equals one

when k and l identify a cycle segment in f , and zero otherwise. Defining Akf to be the set of locations passed

when travelling from k to Df , the FRLP can be formulated as the following mixed integer linear program
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(MILP):

max
∑
f∈F

vfyf (1)

s.t.
∑
k∈K

xk = p (2)

∑
l∈Lf

iklf tkl − (1− yf )M ≤ R ∀f ∈ F, k ∈ {Of ∪Kf} (3)

∑
l∈Lf

iklf = xk ∀f ∈ F, k ∈ Kf (4)

∑
l∈Lf

iklf = 1 ∀f ∈ F, k ∈ Of (5)

∑
k∈Lf

iklf = xk ∀f ∈ F, l ∈ Kf (6)

∑
k∈Lf

iklf = 1 ∀f ∈ F, l ∈ Df (7)

iklf ∈ [0, 1] ∀f ∈ F, k ∈ Lf , l ∈ Akf (8)

xk ∈ B k ∈ K (9)

yf ∈ B ∀f ∈ F (10)

The objective function (1) maximises total covered flow volume, whereas constraint (2) ensures that

exactly p facilities are built. The range constraints in (3) guarantee that a flow is only covered when none

of its cycle segments exceed the driving range R. Constraints (4) - (7) enforce the partitioning of the flow

cycle into segments according to the positioning of facilities. Note that the domain of these cycle segments

is continuous in (8), yet de Vries et al. (2014) prove that constraints (4) - (7) ensure that iklf = 1 if and only

if locations k and l identify a cycle segment of flow f and that iklf = 0 otherwise. Since the driving range in

(1) - (10) is assumed to be deterministic, we will refer to the above model as the deterministic flow-refueling

location problem (DFRLP).

4. Stochastic Models

Whereas so far we have treated the driving range to be deterministic, in reality the distance a vehicle

can travel on a single tank depends on a collection of random factors. The weather, driving style of the

driver, level of road congestion, and temperature may all affect the actual range (Ehsani et al., 2018). In

the following, we provide a formal setting to model this stochasticity, and in Section 4.1 and Section 4.2 we

extend this approach to present two new formulations of the FRLP as proposed by de Vries & Duijzer (2017).

Without loss of generality, the driving range of a vehicle can be said to be a function R(ω) of a random

variable ω, which represents the aggregated effect of all factors influencing the driving range. We make the

following two assumptions regarding R(ω):
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Assumption 1. Given a realisation ω, the driving range R(ω) is the same at each cycle segment traversed

by a vehicle in flow f .

Assumption 2. R(ω) is randomly distributed with cumulative density function (CDF) G : R+ 7→ [0, 1].

Assumption 1 is a rather strong assumption, yet as we will see later on it allows us to avoid non-linearities

when formulating the stochastic versions of the FRLP. Moreover, it can be justified by arguing that many

factors affecting the driving range, such as temperature and driving style, do not vary strongly along a flow.

Assumption 2 has a purely notational purpose. More specifically, it allows us to compute the probability

gkl = G(tkl) that a vehicle runs out of fuel when travelling along the cycle segment connecting k and l.

As a consequence of the variable driving range, the notion of flow coverage now becomes a probabilistic

one. A driver can be said to be able to complete his round trip only with a certain probability, depending

on the interaction between the distance of the cycle segments he traverses and the distribution of the range

G. In this setting, the binary representation of coverage used in the DFRLP becomes flawed, and hence we

propose two alternatives that do take into account the stochastic nature of the driving range. In Section 4.1

we model the problem of maximising the expected flow volume covered, whereas in Section 4.2 we formulate a

model where a flow is considered covered only if the probability of running out of fuel along the corresponding

round trip is below a certain threshold.

4.1. Expected Flow-Refueling Location Problem (EFRLP)

In this stochastic setting, it is natural to consider the problem of maximising the expected flow volume

that is covered. To this extent, let us denote by zf the probability that a vehicle along flow f can complete its

round trip. Under Assumption 1, this probability is equal to the probability that the driving range exceeds

the distance of the largest cycle segment of flow f . More formally, we have:

zf = 1− max
(k∈Lf , l∈Akf )

{iklfG(tkl)} (11)

Note that G(tOfDf
) ≈ 1 as we set tOfDf

equal to a very large positive value M . We thus obtain the

desired result that zf equals zero when no charging stations are located along a flow and the cycle segment

connecting origin and destination is activated. The objective function of expected flow volume is now obtained

by multiplying the volume of each flow with its respective coverage probability, i.e. it is equal to
∑
f∈F

vfzf .

Substituting the new objective function and range constraints into the DFRLP then yields the following

model:

max
∑
f∈F

vfzf (12)

s.t. (2), (4)− (9)

zf ≤ 1−
∑
l∈Lf

iklfgkl ∀f ∈ F, k ∈ {Of ∪Kf} (13)

zf ≥ 0 ∀f ∈ F (14)
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where constraint (13) enforces (11). We will refer to model (12) - (14) as the expected flow-refueling

location problem (EFRLP).

4.2. Chance-Constrained Flow-Refueling Location Problem

Whereas the EFRLP does incorporate a stochastic driving range, it may lead to solutions where the

probability of being able to complete a round trip is below acceptable levels for certain flows. In practice,

however, drivers are unlikely to undertake a trip when it is uncertain whether they will reach their destination.

Therefore, we now consider the problem of maximising covered flow volume when the probability of running

out of fuel on a covered flow must be below a certain threshold α. This condition can be stated as follows:

max
(k∈Lf , l∈Akf )

{iklfG(tkl)} ≤

α, if yf = 1

1, otherwise

(15)

Adapting the DFRLP using the above condition yields the following formulation:

max
∑
f∈F

vfyf (16)

s.t. (2), (4)− (10)∑
l∈Lf

iklfgkl ≤ α+ (1− yf ) ∀f ∈ F, k ∈ {Of ∪Kf} (17)

where the constraints in (17) guarantee that a flow is only considered covered when the probabilistic

threshold is not exceeded by any of its cycle segments and thereby enforce (15). We will refer to the above

model as the chance-constrained flow-refueling location problem (CCFRLP).

5. Alternative Formulations for the DFRLP, EFRLP, and CCFRLP

The aim of this paper is to incorporate stochastic capacity constraints in the EFRLP and CCFRLP.

Clearly, modelling any type of capacity constraint requires the allocation of facilities to flows, i.e. we want

to be able to retrieve the vehicle volume that a certain facility covers. In the current formulation, such an

assignment is not made. Facilities are not attributed to specific flows, as a result of which cycle segments

may be unnecessarily short and vehicles may recharge more often than is desirable in a capacitated set-up.

Put differently, it might be impossible to attain the optimal distribution of facility capacity to flows. To

overcome this problem, we now present the alternative formulations of the DFRLP, EFRLP, and CCFRLP

as proposed by Boujelben & Gicquel (2019) that do allow for such an assignment. Since their formulation

is more efficient, we obtain the additional benefit of reduced solution times, as the numerical experiments in

Section 7.2 will confirm.

The novel formulations by Boujelben & Gicquel (2019) rely on the node cover-path cover principle, i.e.

the observation that a flow is covered if and only if each node along its path is within driving range of a

charging facility located on one of the nodes preceding it. In this sense, they very closely resemble the highly
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efficient arc cover-path cover formulation first proposed by Capar et al. (2013). Since in this model the

location of a facility along a flow does not necessarily imply a node of this flow being assigned to this facility,

it is well suited to our goal of incorporating capacity constraints.

To gain some intuition behind this new approach, let us reconsider the example flow of Figure 1. Assuming

that facilities are located at nodes A and C, the arrows in Figure 2 show a feasible assignment of nodes to

stations preceding them. Though A is assigned to the origin, this simply implies that a driver recharges at

A after leaving O. B and C are both assigned to A, indicating that these are within driving range of A and

are reached with the tank that is recharged at A. Finally, as D is assigned to C, a driver recharges at C

before proceeding to D. Note that the inter-node distances are identical to the ones used in the cycle segment

formulation, once again in order to enforce the half-tank assumption.

O A B C D
200 75

225

150

Figure 2: Illustration of the node cover-path cover principle.

Building on the previously used nomenclature, let Blf be the set of locations passed before l when

traversing along flow f . Moreover, we introduce the binary variable wklf , which is equal to one if node l

along flow f is assigned to a facility located at k, and zero otherwise. The DFRLP can then be reformulated

as follows:

max
∑
f∈F

vfyf (18)

s.t.
∑
k∈K

xk = p (19)

∑
k∈Blf

wklf = yf ∀f ∈ F, l ∈ Lf \ {Of} (20)

wklf ≤ xk ∀f ∈ F, k ∈ Lf \ {Of , Df} (21)∑
k∈Blf

wklf tkl ≤ R ∀f ∈ F, l ∈ Lf \ {Of} (22)

wklf ∈ B ∀f ∈ F, l ∈ Lf \ {Of}, k ∈ Blf (23)

xk ∈ B ∀k ∈ K (24)

yf ∈ B ∀f ∈ F (25)

The objective in (18) maximises flow volume covered, and constraint (19) ensures exactly p facilities are

located. The constraints in (20) guarantee that each node along a covered flow is assigned to exactly one

preceding facility, while those in (21) make sure this is only done when the corresponding facility is actually

activated. The range constraints in (22) limit the distance between a node and its assigned facility to the driv-
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ing range R, and the remaining constraints define the domain of the binary variables. To distinguish between

the new formulation and the previously shown DFRLP, we will refer to this model as the CoverDFRLP.

In a similar fashion, the following model represent the CoverEFRLP:

max
∑
f∈F

vfzf (26)

s.t. (19), (21), (23)− (24)

zf ≤
∑
k∈Blf

wklf ∀f ∈ F, l ∈ Lf \ {Of} (27)

zf ≤ 1−
∑
k∈Blf

wklfgkl ∀f ∈ F, l ∈ Lf \ {Of} (28)

zf ∈ [0, 1] f ∈ F (29)

Finally, the CoverCCFRLP is given by the model below:

max
∑
f∈F

vfyf (30)

s.t. (19)− (21), (23)− (25)∑
k∈Blf

wklfgkl ≤ α ∀f ∈ F, l ∈ Lf \ {Of} (31)

As indicated before, Boujelben & Gicquel (2019) find that the CoverDFRLP, -EFRLP, and -CCFRLP are

solved much more efficiently by the commercial solver CPLEX than their cycle segment-based counterparts.

In case of the deterministic model, they attribute this speed-up to the removal of the big-M constraints in

(3). Leading to a tighter linear relaxation, the integrality gap is reduced and less branch-and-bound nodes

need to be explored. In case of the stochastic models, the authors argue that the additional constraints

linking flow coverage variables and assignment variables, i.e. (27) in case of the CoverEFRLP and (21) in

case of the CoverCCFRLP, are responsible for the tighter formulation.

6. Stochastic Capacity

6.1. Stochastic Capacity Constraints

Before we introduce the concept of stochastic capacity, it is helpful to consider how ordinary capacity

constraints can be modelled. Capacitated versions of the FRLP are plentiful (Upchurch et al., 2009; Kuby

et al., 2009; Hosseini et al., 2017; Hosseini & MirHassani, 2017), and incorporating capacity constraints in the

node cover-path cover formulations introduced above is straightforward. If we let C be the vehicle volume

that a single facility can cover, and akf denote the location directly succeeding k along the flow f path, this

can be done by including the following set of constraints:∑
f∈F

wkakffvf ≤ xkC ∀k ∈ K (32)
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It is not restricting to assume that, if a facility is used along a covered flow, the successor node is assigned

to recharge at this facility. More specifically, assigning the successor node to recharge at this facility will not

reduce leftover capacity, since it was already a charging station along this flow, and can only increase the

coverage probability, since it is the station closest to its successor. As a result, the objective function cannot

decrease and the assumption is not limiting. This implies that it is valid to say wkakff = 1 when facility k

is used to recharge vehicles on flow f , and hence we use this variable to measure demanded capacity at each

station.

Moreover, it is now clear why the cycle segment formulations, i.e. the DFRLP, EFRLP, and CCFRLP, are

not suitable when modelling capacitated stations. Since constraints (4) and (6) imply that vehicles recharge

at each activated station they pass along their path, stations are more likely to reach their maximum capacity,

and as a result only a fraction of the optimal flow volume might be covered. In contrast, the possibility to

assign stations to specific flows in the cover formulations yields the required flexibility. Note, however, that

the cover formulations still make use of the single-path assumption, i.e. the assumption that all drivers

along a single flow have the same charging pattern. As this can lead to sub-optimal outcomes in capacitated

models, we investigate a relaxation of this assumption in Section 7.4.

While this approach is sufficient when working with a deterministic driving range, it is overly strict when

assuming a stochastic driving range. If we allow for vehicles not to complete their round trip with a certain

probability, this implies that there is a chance they might not reach one or several of their allocated charging

stations. The capacity constraints in (32), however, implicitly assume that each charging station along the

flow is actually reached and used. This leads to an overestimation of required capacity, an overrestrictive

model, and possibly erroneous location decisions. Though the overestimation rate is bound by α and may

thereby be limited in the CCFRLP, it could be quite substantial in the EFRLP.

Our aim is thus to refine the ordinary capacity constraints above, and account for the fact that a pro-

portion of vehicles may not arrive at their assigned charging locations. In other words, we aim to switch

from deterministic capacity to the notion of stochastic capacity, i.e. the realisation that the traffic volume

refueling at a facility is the result of a stochastic process and should therefore be modelled as such. To this

extent, let us define dkf to be the expected fraction of drivers along flow f that recharges at facility location

k on their trip from Of to Df , and similarly let ekf be the expected fraction of drivers along flow f recharing

at facility location k on the trip back from Df to Of . Though there are no stations located at either the

origin or destination, we will see that it is necessary for their arrival probabilities to be well-defined, and

hence dkf and ekf exist for all k ∈ Lf .

Before proceeding to the formulas governing these probabilities, let us gain some insight into the mechanics

of stochastic capacities by reconsidering the example of Figure 2. Once again assuming that facilities are

located at A and C, Figure 3 shows the same cover assignment as before, the arrows indicating to which

facility nodes are assigned. Moreover, we assume that the probabilities of running out of fuel on the four

trajectories of length 200, 75, 225, and 150 are given by 0.15, 0.00, 0.25, and 0.05, respectively.
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We can now retrieve the probability dk of recharging at node k on the way from O to D, omitting

the subscript f for simplicity. As a vehicle cannot run out of fuel before arriving at the origin, dO equals

one. The probability of arriving at A is equal to the probability that the driving range exceeds 200, i.e.

dA = 1− 0.15 = 0.85. Since no station is present at B, dB = 0. The case of station C is more elaborate, as a

vehicle could be stranded before arriving at C if i) it never reached the station preceding C, or ii) it ran out

of fuel on the way from the station preceding C to C. Under Assumption 1, however, we find that dC equals

the minimum of these two odds. In other words, since there is a single realisation ω, the relevant probability

is the one corresponding to running out of fuel on the longest distance travelled so far. We thus have that

dC = min{dA, 1 − 0.25} = 0.75. Extending this logic to D and observing that the distance from C to D is

shorter than the longest distance travelled so far, we find that dD = dC = 0.75.

O A B C D

{1, 0.75} {0.85, 0.75} {0, 0} {0.75, 0.75} {0.75, 0.75}

200 75

225

150

Figure 3: Illustration of stochastic capacity, {dk, ek} indicated below each location.

Computing the probability ek of refuelling at station k on the way fromD toO is trivial due to Assumption

1: since the trips are symmetric, a vehicle will not run out of fuel on the way back if it has not done so yet.

So if a station at k was used along the trip to the destination, we find ek = dD. If this station is not active

along this particular flow, or there is no station located at k, we have ek = 0. These cases are summarised by

the final expression ek = min{dk, dD}, using the fact that dk is only smaller than dD when it equals zero. We

see that this yields eB = 0 as it should, since no station is located at B, whereas values of 0.75 are attained

at all other nodes. Moreover, it is now clear that arrival probabilities for origin and destination nodes were

defined in order to facilitate the recursive relations described above.

The main conclusion from the example in Figure 3 is that dkf should equal the minimum of the probability

of reaching the station preceding k, and the probability of crossing the segment connecting this station with

k. Special cases are the origin Of , which is always reached, and nodes that have no stations that are

assigned nodes of flow f , for which the probability ought to be zero. The following expression formalises

these conditions:

dkf =


0, if wkakff = 0

1, if k = Of

min
{l:wlkf=1}

{dlf , 1− glk}, otherwise

∀f ∈ F, k ∈ Lf (33)

Note that we use the condition wlkf = 1 to identify the station l to which k is assigned. As seen in the
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example of Figure 3, computing the value of ekf can be done in the following straightforward manner:

ekf = min{dkf , dDff} ∀f ∈ F, k ∈ Lf (34)

Equation (34) reflects the fact that a driver will not recharge at k on the way back to Of if he did not do

so way on his way to Df , and that no more drivers will run out of fuel on their way back. The following set of

constraints can then be used to incorporate the above expressions for stochastic capacity in the CoverEFRLP

and -CCFRLP:

dkf ≥ dlf − qklf − (1− wkafkf ) ∀f ∈ F, k ∈ Lf \ {Of}, l ∈ Bkf (35)

dkf ≥ 1− wlkfglk − (1− qklf )− (1− wkafkf ) ∀f ∈ F, k ∈ Lf \ {Of}, l ∈ Bkf (36)

ekf ≥ dkf − rklf ∀f ∈ F, k ∈ Lf (37)

ekf ≥ dDff − (1− rklf ) ∀f ∈ F, k ∈ Lf (38)∑
f∈F

(dkf + ekf )vf ≤ xkC ∀k ∈ K (39)

dOff = 1 ∀f ∈ F (40)

dkf , ekf ∈ [0, 1] ∀f ∈ F, k ∈ Lf (41)

qklf , rklf ∈ B ∀f ∈ F, k ∈ Lf , l ∈ Bkf (42)

Note that (33) and (34) are represented by constraints (35) - (36) and (37) - (38), respectively. In both

cases we use auxiliary binary variables to model the minimum function. Since our objective is to maximise

covered flow volume and capacity is a limiting factor, these constraints ensure that indeed the minimum

value is attained in case capacity is scarce. Since the station l to which node k is assigned is not known in

advance, in (35) - (36) we are forced to apply the last condition of (33) to all preceding nodes, using the

term 1 − wkafkf to activate them when necessary. The constraints in (39) then enforce the actual capacity

constraints.

As mentioned before, the benefits of considering stochastic capacity as opposed to ordinary capacity are

especially relevant in the context of maximising expected flow volume. In the chance-constrained FRLP,

the benefits are bounded by the threshold parameter α, which is why we will focus on the EFRLP. We will

refer to the CoverEFRLP in combination with constraints (35) - (35) as the stochastically-capacitated cover

expected flow-refueling location problem (SC-CoverEFRLP). Moreover, we will refer to the CoverEFRLP in

combination with constraint (32) as the deterministically-capacitated cover flow-refueling location problem

(DC-CoverEFRLP).

6.2. A Heuristic Approach to the SC-CoverEFRLP

The large number of binary variables in the SC-CoverEFRLP, in combination with the pairwise constraints

modelling the minimum functions, leads to a model that cannot be solved efficiently by commercial solvers.

To overcome this issue, we now propose a simple two-stage heuristic that is able to find near-optimal solutions
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to the SC-CoverEFRLP in reasonable time. The rationale behind the heuristic is that stochastic capacity

constraints increase the flow volume that charging stations can handle. Since the coverage levels zf are well

below one for most flows, the use of stochastic capacity leads to a more efficient use of refuelling capacity.

Alternatively, one could say it virtually increases the capacity C of each station. This implies that the

facilities activated in the optimal solution to the SC-CoverEFRLP might deviate from those in the optimal

solution to the DC-CoverEFRLP solved for the same level of C, yet are less likely to deviate from those in

the solution to the DC-CoverEFRLP solved for a (slightly) augmented capacity level.

We make use of this idea by, in the first stage of the heuristic, solving a regular capacited CoverEFRLP,

i.e. the CoverEFRLP in combination with the deterministic capacity constraints of (32), for a capacity of

(1 + δ)C, where δ is a non-negative parameter indicating the virtual increase. This yields a set of selected

facilities K∗δ , whose objective value in the SC-CoverEFRLP we evaluate in the second stage of the heuristic.

The idea is that, by selecting a suitable value of δ, this set of facilities is close to the optimal solution to the

SC-CoverEFRLP yet is obtained in a more efficient manner. Since finding the optimal assignment of flows to

the facilities in K∗δ is still computationally demanding, the stage-two running time might need to be limited

in practice. Note that the set of flows obtained in the first stage cannot be used to provide a warm start in

the second stage, since the factor δ might be an overestimate of the actual gains due to stochastic capacity.

7. Numerical Experiments

In this section we perform numerical experiments to analyse the performance of all models presented

above. Section 7.1 provides a description of the problem instances and test settings that are used. Section

7.2 investigates the impact of incorporating stochasticity in the FRLP by comparing the DFRLP, EFRLP,

and CCFRLP. Moreover, it evaluates the computational advantage of the cover formulations. Section 7.3 then

analyses the effect of using stochastic capacity as compared to deterministic capacity in the SC-CoverEFRLP,

and evaluates the performance of our heuristic. Finally, Section 7.4 considers the impact of the single-path

assumption in capacitated models. All problem instances were solved on a computer with two 2.2 GHz cores

and 8 GB memory, using CPLEX 12.6.1 as the solver engine.

7.1. Test Instances

In line with de Vries & Duijzer (2017), all tests are run on instances that are randomly generated using an

adapted version of the method used by Capar & Kuby (2012). Section A of the Appendix provides a detailed

description of this procedure. We refer to a randomly generated network with X potential facility locations

and Y origin-destination nodes as sXwY . See Table 1 for an overview of all four generated instances. The

parameter settings are as follows. We use a deterministic driving range R of 250, while in all stochastic

models we assume R(ω) ∼ Γ(50, 5), such that Eω[R(ω)] = 250 in accordance with Capar & Kuby (2012).

The coverage threshold of the chance-constrained problem is set to α = 0.05.
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Table 1: Characteristics of the random test instances.

Instance name |K| |F | T V

s100w50 100 1200 748 106

s80w40 80 756 627 106

s60w30 60 420 827 106

s40w20 40 185 691 106

Note: T is the average travel distance from origin to destination,

V the total vehicle volume

7.2. Impact of Stochasticity in the FRLP

We now analyse the impact of incorporating stochasticity in the flow-refueling location problem. To

measure the benefit of using a stochastic model, we use the so-called value of the stochastic solution (V SS):

the gain obtained by using the optimal solution to a stochastic model over using the optimal deterministic

allocation. The V SS is then defined as the difference in objective value when evaluating both sets of facilities

in a stochastic setting. This value will be zero when the deterministic facility allocation performs as well as

the optimal stochastic solution, and above zero when it is outperformed by this stochastic solution. Likewise,

the value of the stochastic solution can be seen as the error made when omitting stochasticity from the

location problem. In addition to the V SS, we also make a comparison between the EFRLP and CCFRLP

solutions.

Table 2: V SS and optimality gaps in terms of expected and chance-constrained flow volume covered for the EFRLP,

CCFRLP, and DFRLP solutions.

Opt. gap in terms of expected flow volume covered (%) Opt. gap in terms of chance constr. flow volume covered (%)

Instance EFRLP solution CCFRLP solution DFRLP solution EFRLP solution CCFRLP solution DFRLP solution V SS

s100w50 0.00 22.08 6.22 37.76 0.00 47.76 42,940

s80w40 0.00 16.92 3.50 43.11 0.00 62.80 61,399

s60w30 0.00 32.46 4.22 38.88 0.00 46.28 50,930

s40w20 0.00 16.79 1.42 3.96 0.00 9.06 25,226

Table 2 shows the optimality gaps, averaged over all values of p ∈ {1, 2, 3, 4, 5, 10, 15, 20, 25}, in terms of

expected and chance-constrained flow volume covered of the EFRLP, CCFRLP, and DFRLP solutions, as

well as V SS averaged over the two stochastic objectives. When evaluating expected flow volume covered,

clearly we find that the optimality gap of the EFRLP solution equals zero. The DFRLP solution performs

reasonably well, which might be explained by the fact that the range constraint in (3) limits the cycle segment

distance and thereby the coverage probability. In contrast, the optimality gaps of the CCFRLP solution are

relatively large. Apparently, the strict threshold parameter α implies that facilities be located to enable high

coverage levels on a selected set of flows, yet this conservative approach is far from optimal in a setting where
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flows with low coverage levels also contribute to the objective function.

A different story is portrayed when considering the chance-constrained flow volume covered. Clearly, the

CCFRLP solution attains the optimal solution, yet now we find that both the EFRLP and DFRLP solutions

perform poorly. The latter two did not apply strict coverage criteria when positioning facilities, and hence

cover only a small fraction of flows in the chance-constrained manner. The EFRLP solution performs slightly

better than the DFRLP, indicating that it is better to take into account some form of stochasticity than none

at all. Moreover, flows that attain coverage of over 1− α also contribute significantly to the objective of the

EFRLP, and hence we can expect more of such flows to be present in the EFRLP solution. Finally, for all four

instances we find considerable levels of the V SS, showing that, averaged over all levels of p, as much as 61,399

additional flow volume, i.e. 6.1% of the maximum coverage, can be covered when considering stochasticity in

the decision-making process. The value of the stochastic solution is largely driven by the chance-constrained

problem, since the optimality gaps of the DFRLP are especially large in terms of chance-constrained flow

volume.

The results for instance s80w40 displayed in Figure 4 confirm the observations above, as the difference

between the three solutions is larger in terms of chance-constrained flow volume than in terms of expected flow

volume. In addition, we find that the objective in the CCFRLP is generally lower than that in the EFRLP,

which can be attributed to the tighter constraints on covered flows. Moreover, we find that the EFRLP

and DFRLP solutions cover (nearly) no chance-constrained flow when only a small number of facilities is to

be located. In other words, incorporating stochasticity in the location problem is especially relevant when

resources are scarce.

(a) Expected flow volume covered (b) Chance-constrained flow volume covered

Figure 4: Expected and chance-constrained flow volume covered for the DFRLP, EFRLP, and CCFRLP solutions to

the instance s80w40.

As indicated before, the rationale behind switching to the cover formulations is that they i) are more
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appropriate when modelling capacitated facilities and ii) are significantly more efficient. To support the

latter statement, Table 3 displays the computation times of both formulations for all three location problems

on the instance s80w40. The cover formulations outperform the cycle segment formulations in all three

models, though the largest differences in performance are observed in the DFRLP and CCFRLP. Moreover,

the solution times of the cover formulations seem to be less sensitive to increases in problem size, as measured

by p, as are the cycle segment formulations.

Table 3: CPU times (s) on instance s80w40.

DFRLP EFRLP CCFRLP

p Segment Cover Segment Cover Segment Cover

1 6 1 4 15 5 1

2 55 1 34 51 14 1

3 177 1 66 54 28 1

4 246 1 126 78 80 1

5 341 1 176 70 102 1

10 517 3 264 79 135 1

15 380 2 225 79 139 2

20 279 2 230 107 131 2

25 273 2 172 61 159 2

Average 253 2 144 66 88 1

7.3. Impact of Stochastic Capacity

In order to analyse the impact of stochastic capacity, we now solve the DC-CoverEFRLP and SC-

CoverEFRLP on instance s40w20 for various capacity levels C ∈ {50, 100, 150, 200, 250} × 1, 000. Moreover,

we test the heuristic solution approach to the SC-CoverEFRLP presented in Section 6.2 using a range of pa-

rameters δ ∈ {0, 0.125, 0.250}. To enable a wide range of analysis and investigate the practical relevance of

our models, we limit all solution times to one hour. As experience suggests that solving the DC-CoverEFRLP

is more efficient than finding the optimal set of flows for a given set of facilities in the SC-CoverEFRLP, we

attribute fifteen minutes of computation time to the first stage of the heuristic and fifteen minutes to the

second. The total solution time of the heuristic thus never exceeds one hour, yielding a fair comparison

between the exact and heuristic approach. Finally, we provide the facilities selected in the DC-CoverEFRLP

as a warm start to the exact SC-CoverEFRLP solver. Complete results of this experiment are given in Table

B.5 - Table B.9 of the Appendix.

Before turning to the gains of stochastic capacity, we consider solutions of the deterministically capaci-
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tated model in more detail to get an idea of the role of capacity in the EFRLP. Figure 5 shows the expected

flow volume covered for a range of values of p and three capacity levels. As covered flow volume increases

significantly more when increasing C from 50,000 to 150,000 than when increasing capacity by an additional

100,000, we find that capacity is a limiting factor especially for lower values. Furthermore, we find evidence

that capacity constraints mainly act on certain key nodes in the network. Firstly, increasing p from 20 to 25

barely affects covered flow volume. Secondly, the objective function never attains that of the uncapacitated

EFRLP (see Table B.4). These observations suggest that capacity constraints limit the role of certain key

nodes in the network, nodes that would normally facilitate a majority of the covered flows. Given the tree-like

structure of the network (see Section A), this is not surprising.

Figure 5: Expected flow volume covered in the DC-CoverEFRLP on instance s40w20 for various levels of C.

We now consider the gains in terms of expected flow volume covered when adhering to stochastic rather

than deterministic capacity constraints. The first conclusion that can be drawn based on Table B.5 - Table

B.9 is that the SC-CoverEFRLP is indeed a large model that cannot be solved efficiently by commercial

solvers. As a result, an optimal solution is often not attained within the time limit of an hour, especially

for the larger instances where p ≥ 10. On problem instances where this is the case, we find that optimality

gaps above 1% are not uncommon. So despite the fact that the SC-CoverEFRLP is a relaxed version of

the DC-CoverEFRLP, we thus find that the objective function of the former does not always exceed that of

the latter. In other words, the results for p ≤ 5 are valid and shed a light on the gains of using stochastic

capacity constraints. The results for p ≥ 10 cannot be used to argue that these gains are non-existent for

larger facility numbers, but merely show the huge difference in effiency between the SC-CoverEFRLP and

DC-CoverEFRLP.

Figure 6a shows the gains in terms of expected flow volume covered of stochastic capacity as compared to

deterministic capacity for various values of p, averaged over all tested capacity levels. The above conclusion

is supported, as we find substantial gains of the order of 2.5% when only a few facilities are located, whereas
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these gains decrease and even turn negative when more facilities are placed and optimal solutions are not

attained anymore. Special attention need be paid to the case where p = 1, as here we find no benefits. This

is not surprising, as one expects shorter routes to be selected when only a single facility is placed, and the

odds of vehicles running out of fuel along such shorter routes are unlikely to be significant. Nonetheless,

when facilities are relatively scarce we find that using stochastic capacity constraints can strongly boost the

covered flow volume.

(a) Gains for various facility numbers, averaged over

capacity levels

(b) Gains for various capacity levels, averaged over fa-

cility numbers

Figure 6: Gains in terms of expected flow volume covered of using stochastic as compared to deterministic capacity

constraints on instance s40w20.

Similarly, Figure 6b shows the shows the gains in terms of expected flow volume covered for various

capacity levels, averaged over all values of p. Firstly, as these values are the averages of both small and

large problem instances, we find they are slightly less striking and never exceed 1.5%. Second, we spot a

clear trend in the capacity levels, the gains in objective value flattening off as facilities are able to handle

larger volumes. This is in accordance with the evidence of Figure 6a, and shows that the gains of stochastic

capacity are bigger when capacity is a scarce factor.

We now turn to the performance of the heuristic presented in Section 6.2, which has been tested on the

same instances as the exact solution approaches for values of δ ∈ {0, 0.125, 0.250}. Once again, Figure

7 displays the gains of these solutions in terms of expected flow volume covered as compared to the DC-

CoverEFRLP solution. The general pattern of Figure 6 is repeated as i) for large values of p, no improvements

upon the deterministic case can be found within the time limit, and ii) the gains become less pronounced as

the capacity increases. A new insight is revealed, however, when comparing the heuristic results for δ = 0

with those of the exact solution approach. Looking at the volume increases for p ≤ 5, values for which both

methods achieve their optimal solutions within the time limits, we find that the exact approach outperforms
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the heuristic one. Since the facilities selected by the heuristic for δ = 0 correspond to those of the optimal

DC-CoverEFRLP solution, this implies that stations are located at different nodes under stochastic capacity

constraints than under deterministic ones. In other words, the gains from adhering to stochastic capacity

do not purely arise because the covered flows are re-optimised, but originate partly in alternative location

choices.

(a) Gains for various facility numbers, averaged over

capacity levels

(b) Gains for various capacity levels, averaged over fa-

cility numbers

Figure 7: Gains in terms of expected flow volume covered of using stochastic as compared to deterministic capacity

constraints on instance s40w20 when using heuristic solutions.

Continuing the comparison of the exact and heuristic approach, we find that for p ≤ 5 the heuristic

performance closely tracks that of the exact approach. So despite being a simplification, the idea of virtual

capacity underlying the heuristic provides a fruitful basis for tackling the SC-CoverEFRLP. This is even more

apparent when analysing the result for larger problem sizes, as we find the exact approach being outperformed

by the heuristic multiple times when p ≥ 10. For p = 25, for example, the heuristic with δ = 0 is equal

to find an increase upon the deterministic model, whereas the exact approach fails to do so. Clearly, the

heuristic provides an efficient distribution of running time between finding facilities and attributing flows

to these facilities, whereas the exact solution method attempts the extremely complex task of solving both

simultaneously. In case the exact approach would not have been supplied with a warm start, the above

analysis would have been even more in favour of our heuristic. The role of the parameter δ in the heuristic

performance remains unclear. Whereas δ = 0 seems to provide the best overall results, the difference with

δ = 0.125 are of such small magnitude that additional research is desired. Perhaps an intermediate value is

most capable of capturing the gains of stochastic capacity in critical scenarios, whilst avoiding to provide an

overoptimistic estimate of its benefits.

We conclude the section on stochastic capacity by comparing the solution times of the exact solution
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approach with those of the heuristic. Figure 8a displays the solution times of each approach for various levels

of p, averaged over all capacity levels. The solution time of the exact approach seems to grow exponentially

until it reaches its one hour time limit when p ≥ 10, in line with the earlier observation of negative increases

in flow volume covered when no optimal solution was found. It is not surprising that the CPU time grows so

rapidly, given that there are
(40
10)

(40
5 )
≈ 1, 288 times more possible facility combinations for p = 10 than for p = 5,

and that the set of flows which can then be covered grows as well. Based on Figure 8a, we can also note that

the performance gains of the heuristic are two-fold. First of all, for p ≤ 10 we see that the solution times of

the heuristic are but a fraction of those of the exact approach, while we have seen before that the solution

quality barely differed between the two. This holds for all tested values of δ. Second, for p ≥ 15 we find that

the reduction in solution time is minimal, yet that the heuristic was able to outperform the exact solution

approach in terms of flow volume covered. We should note that, since the solution times of the heuristic for

p ≥ 15 hover around forty-five minutes yet never reach one hour, it is likely that the time limit of the second

stage was a limiting factor and that performance can be further improved by shifting computation time from

stage one to stage two. Analysing the effect of capacity on solution time in Figure 8b, we find a discernible

trend among the exact nor heuristic approaches, indicating that the facility capacity is not an indicator of

the toughness of a problem.

(a) CPU times for various facility numbers, averaged

over capacity levels

(b) CPU times for various capacity levels, averaged

over facility numbers

Figure 8: CPU times of various solution approaches to the SC-CoverEFRLP on instance s40w20.

7.4. Sensitivity to the Simple-Path Assumption

As indicated in Section 6.1, throughout this paper we assume that all vehicles along a given flow have

identical charging patterns. This need not be optimal, as coverage in capacitated models might increase when

assigning different stations to vehicles along a single flow. As the single-path assumption, in combination
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with Assumption 1, enables a stochastic model without non-linearities, we cannot relax this assumption by

altering the model. We can, however, obtain the same result by slightly adjusting the set of flows F . If we

were to split up each flow f into q identical copies, each having a flow volume that is equal to a fraction 1
q of

the original, we allow drivers along each flow to follow at most q different charging patterns. Doing this for

sufficiently large flow-split factors q is equivalent to relaxing the single-path assumption.

We now solve the DC-CoverEFRLP for all factors q ∈ {2, 5, 10} and a capacity C = 150 × 1, 000 on

instance s40w20. Figure 9 shows the result of this analyis, displaying the gains in covered flow volume as

compared to the case q = 1. While there is a large gap at p = 2, this is likely to be specific to the tested

instance, as this magnitude is not observed for any other number of facilities. In contrast, for all other

levels of p these gains do not exceed 1%, and increasing q from 5 to 10 barely affects this. The single-path

assumption thus does not seem to have much impact on the results of capacitated models. We can, however,

expect that the benefits of stochastic capacity are larger when the assumption is relaxed, as small capacity

gains are more likely to be exploited.

Figure 9: Percentual increase in expected flow volume covered due to flow split factors in the DC-CoverEFRLP on

instance s40w20 for C = 150, 000.

8. Conclusions

Existing models on the flow-refueling location problem with variable driving range, such as the EFRLP

and CCFRLP, are built on the assumption of uncapacitated refueling stations. In this paper, we propose

extended formulations of these models that incorporate capacitated facilities, and show that doing so is only

possible when using the arc cover-path cover formulations proposed by Boujelben & Gicquel (2019). An

additional benefit of using their formulation is its high efficiency. Building on the probabilistic nature of

the problem, we argue that ordinary capacity constraints yield an overly restricted problem, and propose

a novel set of stochastic capacity constraints that limit the expected number of vehicles that can recharge

23



at a given facility. As the resulting SC-CoverEFRLP cannot be solved efficiently, we propose a two-stage

heuristic solution approach which relies on the insight that stochastic capacity constraints are a relaxed form

of deterministic ones, and thereby virtually increase the maximum capacity of a facility.

In extensive numerical experiments we confirm the relevance of stochastic models, showing that a large

additional flow volume is covered when using stochastic solutions rather than deterministic ones. The efficient

arc cover-path cover formulation is used to explore the role of capacity in the EFRLP, suggesting the that

capacity constraints mainly act by limiting the functioning of several key nodes in the network, nodes that

would regularly facilitate the majority of vehicle flows. When investigating the effect of stochastic capacity

constraints, we focus on the EFRLP as we expect their role to be limited in the chance-constrained problem.

We find that significant increases in objective value arise when modelling capacity constraints in a stochastic

rather than deterministic manner. These gains are not merely due to a re-optimisation of covered flows, as

the facility location decision is altered after adding the new layer of stochasticity. The notion of stochastic

capacity is shown to be especially relevant in case capacity is scarce, i.e. when a small number of facilities is

to be located or the capacity of each facility is small. Though further tuning of the parameter δ is required,

the heuristic is able to closely track the exact approach on small instances while using only a fraction of its

solution time. When a larger set of facilities is to be located, these computational advantages lessen, yet

due to a more efficient distribution of running time the heuristic slightly outperforms the exact approach.

Relaxing the simple-path assumption yields negligible changes to the objective value under deterministic

capacity constraints, though we expect these changes to be more pronounced in the fully stochastic model.

The current experiments are still limited by the complexity of the SC-CoverEFRLP, as in a majority of

cases no optimal solution could be obtained within the time limits. This asks for a more efficient solution

approach, either in the form of a more sophisticated heuristic, or possibly a Benders decomposition as

in Arslan & Karaşan (2016) or Lee & Han (2017). It may also be worthwhile to explore how the tabu-

search of Boujelben & Gicquel (2019) can be adapted to capacitated models, since this is currently the

only solution approach tailored to the EFRLP and CCFRLP. Another direction for future research could

be to investigate the interaction between stochastic capacity and deviation routing, as the positive effect

of deviation on coverage is likely to be strengthened under stochastic capacity constraints (and vice versa).

When considering capacitated facilities, it is also natural to model the resulting queues at charging stations,

as done by Jung et al. (2014). Since both of the above extensions significantly increase model complexity,

a feasible implementation strongly relies on the development of a tailored novel solution approach. Similar

computational concerns limit the feasibility of incorporating stochastic capacity constraints in the nonlinear

model of Lee & Han (2017) where Assumption 1 is relaxed, though we can expect the gains of these constraints

to be even more pronounced in such a setting.
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A. Instance Generation

The random networks are generated as follows. First, the location of s nodes is drawn from a uniform

distribution in the plane [0, 1000] × [0, 1000]. These nodes form the set K of potential facility locations.

Subsequently, Prim’s algorithm is used to create the minimum spanning tree for the complete graph containing

these nodes, where we assume a Eucledian distance measure. We then add s edges connecting the s closest

node pairs that were previously unconnected. The resulting graph G = (K,E) thus contains |K| = s nodes

and |E| = 2s− 1 edges. In order to construct flows on this network, w out of s nodes are duplicated to form

the Origin-Destination (O-D) nodes, defining w(w− 1)/2 O-D pairs. For a given path f , the two O-D nodes

are denoted by Of and Df . We use the Floyd-Warshall algorithm to find the shortest path connecting each

O-D pair, from which follow the set Kf of potential facility locations along this path and the distance tkl

between any pair of nodes. Note that, for each flow, both a potential facility node as well as an O-D node

are located at both origin and destination.

The vehicle volumes vf are generated by first assigning to each of the w O-D nodes a number drawn from

a standard uniform distribution U(0, 1). Let eOf and eDf denote these numbers for the origin and destination,

respectively, and let Tf be the travel distance of the shortest path between Of and Df . The non-normalized

vehicle volume v∗f is then computed as follows:

v∗f =
eOf e

D
f

Tf
1Tf≥100 (A.1)

Note that paths of length below one hundred are excluded, in order to limit the impact of short routes

on location decisions. Finally, vehicle volumes vf are obtained by normalizing v∗f such that the total volume

adds up to 106.
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B. Full Results

Table B.1: Expected volume covered and chance-constrained flow volume covered in the DFRLP, EFRLP, and

CCFRLP solutions to instance s100w50.

Expected flow volume covered Chance-constrained flow volume covered

p EFRLP solution CCFRLP solution DFRLP solution EFRLP solution CCFRLP solution DFRLP solution V SS

1 17,761 10,723 17,224 0 7,696 4,664 1,785

2 39,141 21,934 32,713 0 19,784 8,306 8,953

3 57,225 48,828 50,344 10,222 38,941 8,306 18,757

4 77,377 71,438 71,854 48,402 58,512 8,306 27,864

5 102,095 85,828 97,725 69,247 73,865 52,045 13,095

10 237,976 179,509 224,513 111,614 163,478 111,614 32,664

15 351,543 285,588 348,149 121,835 259,695 128,609 67,240

20 479,211 393,292 450,028 271,116 380,112 162,133 123,581

25 594,830 501,930 592,328 338,419 476,964 294,419 92,524

Table B.2: Expected volume covered and chance-constrained flow volume covered in the DFRLP, EFRLP, and

CCFRLP solutions to instance s80w40.

Expected flow volume covered Chance-constrained flow volume covered

p EFRLP solution CCFRLP solution DFRLP solution EFRLP solution CCFRLP solution DFRLP solution V SS

1 24,038 21,059 24,038 0 10,076 0 5,038

2 51,842 51,842 46,127 34,731 34,731 0 20,223

3 83,027 69,761 83,027 10,076 53,012 10,076 21,468

4 104,638 74,601 104,507 10,076 72,248 10,076 31,151

5 133,900 11,2271 126,118 19,125 88,208 10,076 42,957

10 289,238 189,046 275,248 91,805 185,784 65,778 66,998

15 464,075 375,037 445,543 262,940 346,243 138,066 113,354

20 600,466 528,250 594,616 281,105 488,281 272,060 111,036

25 733,642 637,087 699,179 452,049 607,170 360,903 140,365

Table B.3: Expected volume covered and chance-constrained flow volume covered in the DFRLP, EFRLP, and

CCFRLP solutions to instance s60w30.

Expected flow volume covered Chance-constrained flow volume covered

p EFRLP solution CCFRLP solution DFRLP solution EFRLP solution CCFRLP solution DFRLP solution V SS

1 48,068 0 48,068 0 0 0 0

2 93,070 58,203 66,597 0 31,630 0 29,051

3 132,140 69,159 132,140 31,630 68,660 31,630 18,515

4 172,348 83,930 172,348 31,630 81,477 31,630 24,923

5 209,999 151,548 209,999 68,660 114,936 68,660 23,138

10 312,481 278,177 312,458 150,137 277,506 150,137 63,696

15 419,316 405,592 403,271 315,948 390,015 182,337 111,861

20 560,135 502,572 534,090 419,152 497,155 278,561 122,319

25 706,483 683,096 699,229 583,067 677,773 555,287 64,870
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Table B.4: Expected volume covered and chance-constrained flow volume covered in the DFRLP, EFRLP, and

CCFRLP solutions to instance s40w20.

Expected flow volume covered Chance-constrained flow volume covered

p EFRLP solution CCFRLP solution DFRLP solution EFRLP solution CCFRLP solution DFRLP solution V SS

1 52,166 0 52,166 0 0 0 0

2 101,913 101,913 101,913 66,590 66,590 66,590 0

3 153,346 153,346 153,346 116,952 116,952 116,952 0

4 178,880 157,688 169,582 129,830 143,874 116,952 18,109

5 214,501 166,789 214,501 164,096 166,734 164,096 1,319

10 429,023 394,127 405,283 384,467 395,459 292,578 63,311

15 662,298 611,476 662,298 515,134 613,137 515,134 49,001

20 871,545 861,246 859,168 817,047 864,494 748,106 64,382

25 963,753 963,753 957,940 962,631 962,631 906,628 30,909

Table B.5: Expected flow volume covered in the DC-CoverEFRLP, SC-CoverEFRLP, and heuristic solutions to

instance s40w20 with C = 50, 000.

Exact Heuristic

p DC-CoverEFRLP SC-CoverEFRLP δ = 0 δ = 0.125 δ = 0.250

1 39,321 39,321 39,321 39,321 39,321

2 55,142 57,686 55,557 55,557 55,873

3 82,630 83,307 83,306 83,306 83,306

4 98,451 99,543 99,543 99,543 99,543

5 109,585 116,313 111,146 116,313 116,313

10 163,393 165,5891 165,5891 149,917 149,917

15 197,988 199,8421 199,381 199,2831 199,2831

20 217,365 214,5081 219,4661 214,5311 219,6331

25 232,574 233,7741 236,4151 235,4701 234,2201

1 No optimal solution was attained within the time limit
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Table B.6: Expected flow volume covered in the DC-CoverEFRLP, SC-CoverEFRLP, and heuristic solutions to

instance s40w20 with C = 100, 000.

Exact Heuristic

p DC-CoverEFRLP SC-CoverEFRLP δ = 0 δ = 0.125 δ = 0.250

1 52,166 52,166 52,166 52,166 52,166

2 74,717 79,831 79,831 79,831 79,831

3 95,455 100,159 95,455 98,196 100,159

4 120,432 125,651 124,976 125,651 125,651

5 147,104 148,956 148,956 148,956 148,956

10 248,952 250,8901 250,803 248,726 248,726

15 332,992 336,0441 335,4441 335,4441 335,4441

20 394,601 395,7881 394,321 394,9581 394,2741

25 412,421 405,0001 414,8781 412,1861 408,9671

1 No optimal solution was attained within the time limit

Table B.7: Expected flow volume covered in the DC-CoverEFRLP, SC-CoverEFRLP, and heuristic solutions to

instance s40w20 with C = 150, 000.

Exact Heuristic

p DC-CoverEFRLP SC-CoverEFRLP δ = 0 δ = 0.125 δ = 0.250

1 52,166 52,166 52,166 52,166 52,166

2 80,602 81,720 81,720 81,720 81,720

3 115,786 119,255 119,255 119,255 119,255

4 135,474 138,900 138,900 137,621 138,900

5 161,902 165,338 165,338 165,338 156,084

10 291,997 295,7411 295,741 292,798 292,798

15 410,315 410,4041 412,085 412,085 397,8011

20 509,659 508,4421 508,2601 508,2601 508,4151

25 541,059 537,9691 539,7431 538,5961 538,2701

1 No optimal solution was attained within the time limit
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Table B.8: Expected flow volume covered in the DC-CoverEFRLP, SC-CoverEFRLP, and heuristic solutions to

instance s40w20 with C = 200, 000.

Exact Heuristic

p DC-CoverEFRLP SC-CoverEFRLP δ = 0 δ = 0.125 δ = 0.250

1 52,166 52,166 52,166 52,166 52,166

2 99,898 101,615 101,615 101,615 101,615

3 127,622 131,930 131,930 131,930 131,930

4 146,970 150,920 150,918 150,918 150,918

5 174,264 179,246 175,979 179,246 178,055

10 325,178 325,2081 325,208 325,208 325,208

15 451,848 453,5351 453,5351 453,5351 453,5351

20 576,333 573,7901 575,5971 575,5971 575,331

25 610,074 606,0851 608,0171 604,4001 604,8141

1 No optimal solution was attained within the time limit

Table B.9: Expected flow volume covered in the DC-CoverEFRLP, SC-CoverEFRLP, and heuristic solutions to

instance s40w20 with C = 250, 000.

Exact Heuristic

p DC-CoverEFRLP SC-CoverEFRLP δ = 0 δ = 0.125 δ = 0.250

1 52,166 52,166 52,166 52,166 52,166

2 101,117 101,913 101,913 101,913 101,913

3 139,842 142,233 142,233 142,233 142,233

4 158,808 162,234 162,234 160,598 160,598

5 185,955 190,359 187,911 190,359 190,359

10 349,842 349,9081 349,908 349,908 346,325

15 493,213 493,5551 494,0061 491,8171 491,8171

20 627,078 625,5561 625,4631 624,6361 624,9441

25 663,889 662,5741 663,0081 662,8551 663,1321

1 No optimal solution was attained within the time limit
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C. List of Files Contained in Code Attachment

The following programs are present in the code attachment:

• graph folder:

– Dijkstra.java: Implementation of the Dijkstra algorithm

– FloydWarshall.java: Implementation of the Floyd-Warshall algorithm

– PathFind.java: Implementation of a k-SP algorithm

– Prim.java: Implementation of Prim’s algorithm for minimum spanning trees

– Test.java: Test class for all tree methods

– Tree.java: Models a tree

– UndirectedGraph.java: Models an undirected graph

• instance folder:

– CycleSegment.java: Models a cycle segment

– Flow.java: Models a flow

– Instance.java: Representation of a problem instance

– Location.java: Models a node in the road network

– Main.java: Main class for DFRLP, EFRLP, and CCFRLP experiments

– MainCover.java: Main class for CoverDFRLP, -EFRLP, and -CCFRLP experiments

– MainHeuristic.java: Main class for heuristic experiments

– Route.java: Models a route from origin to destination

• models folder:

– CCFRLP.java: CCFRLP implementation in CPLEX

– CoverCCFRLP.java: CoverCCFRLP implementation in CPLEX, extends CoverFRLP

– CoverDFRLP.java: CoverDFRLP implementation in CPLEX, extends CoverFRLP

– CoverEFRLP.java: CoverEFRLP implementation in CPLEX, extends CoverFRLP

– CoverFRLP.java: Abstract class implementing various FRLPs in CPLEX

– DFRLP.java: DFRLP implementation in CPLEX

– EFRLP.java: EFRLP implementation in CPLEX

– SCCoverEFRLP.java: SCCoverEFRLP implementation in CPLEX, extends CoverEFRLP

• utils folder:

– Timer.java: Used to track CPU times
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