
Erasmus School of Economics

Bachelor Thesis Econometrie en Operationele Research

Quantitative Logistics and Operational Research

Investigating the performance of various PSO variants
on VRPPD and VRPSPD

Abstract

This study considers different PSO variants, that have been previously studied in literature, to

solve the vehicle routing problem with pickup and delivery and its simultaneous variant. We

consider two PSO frameworks: GLN-PSO, and opposition based GLN-PSO. We combine these

main algorithms with four existing solution representations SR-1, SR-1*, SR-2 and SR-P. Three

of which use vehicle orientation points to construct feasible routes and one uses probabilities to

construct feasible routes. Additionally, we propose a new solution representation SR-C, based

on customer priorities and radii, and investigate its competitiveness. As opposed to previous

research, we compare solution representations under similar PSO frameworks and local improve-

ment procedures, resulting in a fair comparison. In this comparison there exists an important

trade-off between computation time and solution quality. We conclude from the behaviour of

the PSO methods that SR-2 and SR-1* are, generally, the best PSO methods depending on the

specifics of the data instance. Additionally, the proposed SR-C is not competitive to the other

solution representations.

Author:

Veroniek Visser

Supervisor:

MSc Y.N. Hoogendoorn

Second assessor:

Dr. K.S. Postek

July 7, 2019

The views stated in this thesis are those of the author and not necessarily those of Erasmus School of Economics
or Erasmus University Rotterdam.

Contents

1 Introduction 1

2 PSO framework 3

2.1 GLN-PSO . 3

2.2 GLNO-PSO . 5

3 Solution representations and decoding methods 5

3.1 SR-1 and SR-1* . 6

3.1.1 Appropriate number of vehicles . 6

3.2 SR-2 . 7

3.3 SR-C . 8

3.4 SR-P . 9

3.4.1 Solution representation description . 9

3.4.2 Adaptations to the PSO framework to use SR-P 9

4 Solution improvement methods 11

5 Data 12

6 Results 13

6.1 Comparison to AI results of SR-1 . 14

6.2 Performance analysis . 15

6.3 Behaviour analysis . 16

6.4 Analysis of SR-P performance . 19

7 Conclusion 20

References 21

A Table AI VRPPD 22

B Table AI VRPSPD 23

C Table compare VRPPD 24

D Table compare VRPSPD 25

E Behavioural figures SNU VRPPD 26

F Behavioural figures LNU VRPSPD 27

G Behavioural figures SDU VRPPD 28

H Behavioural figures LDU VRPPD 29

I Behavioural figures SC VRPPD 30

J Behavioural figures LC VRPPD 31

K Behavioural figures SNU VRPSPD 32

L Behavioural figures LNU VRPSPD 33

M Behavioural figures SDU VRPSPD 34

N Behavioural figures LDU VRPSPD 35

O Behavioural figures SC VRPSPD 36

P Behavioural figures LC VRPSPD 37

Q Decision tree VRPSPD 38

R Information of included code 39

1 Introduction

The vehicle routing problem (VRP) is an extensively studied problem within the operations re-

search field since its introduction by Dantzig and Ramser (1959). The standard VRP is defined as

the construction of various routes, starting and ending at a single depot, for a homogeneous fleet

of vehicles that must visit a group of customers. The objective of the problem can differ based

on the needs of the solution. The VRP minimizes the number of vehicles with fixed cost f and

travelled distance with variable cost g. In addition, many extensions of the standard VRP have

been mathematically formulated.

In the capacitated VRP (CVRP), first introduced in Dantzig and Ramser (1959), trucks have

a limited load capacity. Various mathematical formulations for this problem have been presented,

such as the three index vehicle flow formulation in Golden, Magnanti, and Nguyen (1977). A two

index flow formulation is presented in Laporte, Nobert, and Desrochers (1985). Additionally, a set

partitioning formulation was proposed by Balinski and Quandt (1964). The advantage of the set

partitioning formulation is its applicability to many of the extensions of the CVRP such as the ones

defined below.

In the VRP with pickup and delivery (VRPPD) capacitated vehicles that can pickup and de-

liver goods from/to customers are considered. Some customers only have a pickup demand, which

should be picked up by a truck at the customer and delivered to the depot. Other customers only

have a delivery demand, that should be loaded at the depot and delivered to the customer. In

the simultaneous VRPPD (VRPSPD), customers can have both a pickup and delivery demand. In

Ai and Kachitvichyanukul (2009b), a three index mathematical flow formulation is provided which

represents both the VRPPD and the VRPSPD.

Finding solutions for these problems is essential, as many large distribution companies deal with

these problems every day. To indicate the size of the Dutch transportation industry: over 80% of

Dutch domestic goods is transported by trucks and more than 100 million tonnes of Dutch goods

are exported by trucks. As transportation by trucks has a tremendous influence on global warming

through CO2 emissions, it is necessary to reduce the number of trucks and traveled distance of the

used trucks as much as possible. Additionally, a decrease in traveling distance to transport goods

enhances the profit of companies, as their costs decrease. Thus, it is of great importance to find

good solutions for these problems.

An overview of exact methods to solve the VRP and its extensions is provided in Cordeau, La-

porte, Savelsbergh, and Vigo (2007), but the problems have proven to be NP-Hard, as stated by Ai

and Kachitvichyanukul (2009a). Literature has been focusing on developing heuristic approaches in

the last decades. Heuristic methods for the VRP can be divided into two main categories: classical

heuristics and meta-heuristics. Classical heuristics were the first to be developed in the period

1960-1990, whereas meta-heuristics have been proposed in the last decade and are still extensively

investigated.

Meta-heuristics are partitioned into three subgroups as done in Cordeau et al. (2007): local

search, population based and learning mechanisms. Population based algorithms, such as Wang

1

and Chen (2012), generate a population of solutions for the VRP which are then manipulated into

a new generation of solutions. The idea is that the solutions improve in each generation converging

to good VRP solutions. Learning mechanisms, such as particle swarm optimization (PSO), pre-

sented in Kennedy and Eberhart (1995), use several learning structures to generate better solutions

in each iteration.

PSO is a relatively new algorithm among the meta-heuristics for VRP, therefore little research

has been done into its performance on VRP and especially its extensions. PSO considers particles

with certain positions, which can be converted into VRP solutions based on the solution repre-

sentation. This conversion is done with a decoding method, which often have local improvement

heuristics incorporated. A PSO method is defined by its general algorithm (framework) and its

solution representation. In literature various PSO frameworks have been defined to solve optimiza-

tion problems in general, such as GLN-PSO Kachitvichyanukul, Purintrapiban, and Utayopas (n.d.)

and opposition based PSO Rahnamayan, Tizhoosh, and Salama (2008). There are three solution

representations proposed to solve the CVRP in Kim and Son (2012) and Ai and Kachitvichyanukul

(2009a). In these papers, comparisons were made of the different solution representations, but dif-

ferent PSO frameworks and local improvement procedures where used in these methods. This may

have resulted in unfair comparisons, such that we cannot conclude which PSO method performs best,

based on previous research. Furthermore, extensive analysis of the performance of these variants

compared to each other on the VRPPD and VRPSPD are missing from existing literature, as only

one PSO method has been tested on VRPPD and VRPSPD instances by Ai and Kachitvichyanukul

(2009b). Ai and Kachitvichyanukul (2009b) show that their PSO method is competitive compared

to best known solutions to solve these problems. Thus, our research concentrates on the following

research question:

How do different solution representation perform compared to each other when solving the VRPPD

and VRPSPD in the GLN-PSO framework?

To answer this main research question, we have defined the following sub questions:

• Are the results presented in Ai and Kachitvichyanukul (2009b) replicable?

• How do various solution representations perform, when considering the same local improve-

ment procedures?

• Can we enhance the PSO algorithms by implementing an opposition based initialization?

In Section 2, we provide a more extensive description of the PSO algorithm. Furthermore, in Section

3 we provide a detailed description of the solution representations that we consider in the different

PSO methods. In Section 4, we describe the local improvement procedures that are used in the

decoding methods. In Section 5, we describe the VRPPD and VRPSPD data used to compute the

results, which are presented in Section 6. At last, we present our conclusions in Section 7.

2

2 PSO framework

In this section, we consider the particle swarm algorithm framework that we use to solve the VRP

variants. The PSO framework itself does not obtain VRP solutions, but aims to optimize particle

solutions, making it useful for optimization problems in general. The PSO framework is always

used in combination with a certain solution representation, which is tailored for the optimization

problem - in our case the VRP variants. In this study, we consider two variants of PSO:

GLN-PSO and opposition based GNL-PSO. In Section 2.1, we provide a description of the GLN-

PSO, after which we describe the opposition based GLNO-PSO (GLNO-PSO) variant in Section 2.2.

2.1 GLN-PSO

PSO is a evolutionary optimization method, which attempts to mimic the movements of swarm

individuals to overcome obstacles and was first introduced by Kennedy and Eberhart (1995). In

this study, we consider a variant of the standard PSO, namely the GLN-PSO. The GLN-PSO,

proposed by Kachitvichyanukul et al. (n.d.), which incorporates more swarm effectiveness than the

standard PSO.

In PSO, we consider a swarm of L particles, that by means of both social and cognitive learning

behaviour, move within the search space of a problem towards a (local) optimum. This search space

has a limited range, consisting of minimal positions (Θmin ∈ RH) and maximal positions (Θmax ∈
RH). Each particle has an associated position within the search space (Θl ∈ RH) and velocity

(Ωl ∈ RH). Each particle position can be decoded into a solution of the optimization problem,

with a properly defined solution representation and decoding method. The solution representations

we adopt and the corresponding decoding algorithms are discussed in Section 3. When a particles

position is decoded, its corresponding fitness value (Z(Θl) can be calculated. This fitness value

differs depending on the solution representation, but generally corresponds with the objective value

of the VRP solution. Since VRP is a minimization problem, PSO aims to find particles with the

lowest fitness value, implicating that a better particle has a lower fitness value.

As the velocity determines the movement of a particle, it influences the quality of solutions of

the next iteration. Therefore, updating the velocity is dependent on the following three evolutionary

(learning) factors.

1. Inertia: forces a particle to move in the same direction as the previous iteration, its weight

(w) controls the impact of the current particles’ velocity on the new particles’ velocity.

2. Cognitive learning: forces a particle to move in the direction of its personal best position

(ΨP
l), defined as best position an individual particle has found so far.

3. Social learning: forces a particle to move in the direction of the global best (Ψg), the best

position that the swarm has found so far, in the case of the standard PSO. When considering

the GLN-PSO, the social term additionally forces a particle in the direction of the local best

(ΨL
l) the best ΨP

l among K neighbours of a particle and the near neighbour best (ΨN
l). An

3

Figure 1: Neighbours of the first particle

interpretation of the latter two best positions is discussed below.

In the GLN-PSO, as described by Kachitvichyanukul et al. (n.d.), the K neighbours that are used

to establish the ΨL
l , are determined using particle indices. The particles are structured in a ring

shape, after which the neighbouring particles are determined. This concept of neighbourhood is

displayed in Figure 1, with indications of the neighbours of the particle with index 1. Although

this neighbourhood topology performs well, it does not include any spatial information from the

particles. This, along with the fitness of the particles, is incorporated in the FDR topology that is

used for generating ΨN
l . The near neighbour best position can be described as the position that

maximizes the FDR as defined in (1) for each dimension.

FDR =
Z(Θl)− Z(Ψo)

|θlh − ψoh|
with l 6= o (1)

As PSO is an evolutionary algorithm, swarm diversity is an important factor, as noted by Shi

and Eberhart (2008), some randomness is also incorporated in the particles velocities. This ran-

domness is incorporated via random numbers up, ug, ul, un which are all random uniform numbers

in the interval [0, 1]. However, it is not clearly specified by Ai and Kachitvichyanukul(2009b) or

Kachitvichyanukul et al. (n.d.) whether these random numbers should be regenerated for each par-

ticle and/or dimension. We choose to regenerate the random numbers for each dimension and for

each particle. Additionally, acceleration factors cp, cg, cl, cn are included in order to give different

importance to different learning mechanisms.

A detailed GLN-PSO algorithm is provided in Algorithm 1. In this paragraph we explain the

algorithm with references to the algorithm steps within brackets. We iterate T times, and in

each iteration (τ) the particles move towards a new position based on their velocity. Then for

each iteration, we evaluate the performance of a particles position Z(Θl) (5) and update the best

positions accordingly (6-11). Based on the best positions and the current positions, the velocity of

a particle is updated (13), via Equation (2) and then the new position of a particle is calculated

(14). Finally, we must ensure that the new particles positions are within range (15-16).

4

ωlh(τ + 1) = w(τ)ωlh(τ) + cpup(ψ
P
lh − θlh(τ)) + cgug(ψ

G
h − θlh(τ))

+ clul(ψ
L
lh − θlh(τ)) + cnun(ψNlh − θlh(τ)) (2)

In the following subsections we provide more information on procedures in the PSO that are adapted

when considering other frameworks or solution representations.

Algorithm 1 General PSO algorithm

1: Initialize a swarm of L particles with random positions and all velocities equal to zero.
2: Ψl ← Θl for each particle l
3: for τ = 1 . . . T do
4: for l = 1 . . . L do
5: Decode the position into a VRP solution Rl and compute its corresponding fitness Z(Θl)
6: if Z(Θl) ≤ Z(Ψl) then Ψl ← Θl

7: if Z(Ψl) ≤ Z(Ψg) then Ψg ← Ψl

8: Set ΨLl to lowest personal best among K neighbours

9: for l = 1 . . . L do
10: for h = 1 . . . H do
11: ψNlh ← ψoh for the particle o = 1 . . . L that maximizes the FDR in Equation (1)

12: w(τ) = w(T) + τ−T
1−T (w(1)− w(T))

13: Update ωhl according to Equation (2)
14: θlh(τ + 1) = θlh(τ) + ωlh(τ + 1)
15: if θlh(τ + 1) ≥ θmax then θlh(τ + 1) = θmax and ωlh(τ + 1) = 0

16: if θlh(τ + 1) ≤ θmin then θlh(τ + 1) = θmin and ωlh(τ + 1) = 0

2.2 GLNO-PSO

In opposition based GLN-PSO (GLNO-PSO), an extra step is included when initializing the particle

swarm, the remainder of the algorithm remains the same as the GLN-PSO. After initialization of

the particles l = 1 . . . L, we construct the opposite positions of these particles through Equation

(3). When these extra particles are constructed and the fitness values of all particles in the swarm

(that has size 2L) are computed, we chose the L particles that have the lowest fitness value. This

extra initialization step has been studied on the standard PSO by Rahnamayan et al. (2008). They

have shown that it can enhance the optimization procedure of the standard PSO, considering the

convergence rate and the solution quality. To our knowledge, opposition based initialization has

never been used together with GLN-PSO in optimization problems.

θol = θmin + θmax − θl (3)

3 Solution representations and decoding methods

As mentioned in the previous section, the solution representation is an important element of the

PSO, after all the particle position only becomes a solution to the optimization problem after

decoding it. In this section, five solution representations and corresponding decoding methods are

discussed: SR-1, SR-1*, SR-2, SR-C and SR-P. In order to improve the solutions generated by the

5

decoding method, three solution improvement methods are described.

3.1 SR-1 and SR-1*

SR-1 was first used to solve the VRPSPD by Ai and Kachitvichyanukul (2009b) and it has shown

to be competitive to best known solutions. It was introduced using only one local improvement

technique in the decoding procedure. For comparison purpose, we also introduce SR-1*, which is

the same as SR-1, but uses all three local optimization procedures as described in Section 4 in

the decoding method. As SR-1* uses more local optimization techniques than SR-1, we know that

SR-1* should always perform at least as good as SR-1 or even better.

In SR-1, a particle consists of 2n+m dimensions. Here each of the first n dimensions is assigned

to an individual customer. Then, the value of the dimension represents the routing priority of the

customer, where a lower value indicated a higher priority to insert a customer into a route. Thus,

from this first n dimensions, we can construct the customer priority list U . The other 2m dimensions

are used to construct m vehicle orientation points. Here, the x-coordinate of the point in the service

map is represented by a dimension and the y-coordinate is represented by another dimension. In

Figure 2a, a visual representation of a particle with its dimensions is displayed. A vehicle orientation

(a) Particle dimensions in the SR-1 Representation (b) Particle dimensions in the SR-2 Representation

Figure 2: Particle dimensions visualizations

point indicates the area where the vehicle will most likely serve its customers. Therefore a vehicles

route will aggregate around its orientation point. In the left part of Figure 3, this idea is visualized.

The thickness of the dashed lines indicate the priority of that customer for that vehicle. Using the

vehicle orientation point, the vehicle preferences of customers can be computed in a vehicle priority

matrix W . A customer prefers vehicle a over vehicle b, if the Euclidean distance from the customer

to vehicle a is smaller than the distance of that customer to vehicle b. This ensures that customers

that are close to each other on the service map, are included in the same route. Using both U and

W , we can compute a VRP-solution. The detailed description of the decoding method is included

in Algorithm 2. Using this algorithm, it may happen that a customer is not inserted. Therefore

we compute the fitness value of a particle as the objective value plus a large penalty, based on the

number of uninserted customers.

3.1.1 Appropriate number of vehicles

Solution representations SR-1 and SR-2 are based on a fixed number of vehicles, also in the decoding

methods the number of vehicles m is not subject to change. Therefore Ai and Kachitvichyanukul

6

Figure 3: Vehicle routes with vehicle priority and service area. The customers are represented as
white circles whereas the vehicle orientation points are diamond shaped.

Algorithm 2 Decoding method SR-1 or SR-1*

1: Construct the priority list of customers
2: Construct the vehicle priority matrix W by using the Euclidean distance from each customer to the vehicle orientation points
3: procedure Construct vehicle routes
4: Set k ← 1
5: repeat to add customers one by one to a route
6: Set c← Uk, and b← 1
7: repeat to make a candidate for a new route
8: Set j ←Wcb

9: Insert c to route Rlj via cheapest insertion heuristic
10: if Rlj is feasible then Re-optimize with 2-opt method and b← m
11: else b← b+ 1

12: until b = m
13: l← k + 1
14: until k = n
15: Only SR-1*: improve the routes by using 1-1 exchange and 1-0 exchange

(2009b) propose a method to search for an appropriate number of vehicles to be used by the particles

of the PSO algorithm. The algorithm that they propose is included in Algorithm 3.

Algorithm 3 Set number of vehicles

1: Generate a random particle of n+2m dimensions and set v=m
2: Decode the particle using Algorithm 2 and compute the fitness value Z
3: Remove the dimensions of the vehicle that serves the least number of customers from the particles position
4: set v=v-1
5: Decode the particle using Algorithm 2 and compute the fitness value Z’
6: if Z′ < Z then
7: Go back to Step 3
8: elseAdd back the dimensions last removed and set m=v+1

3.2 SR-2

This second solution representation was first proposed by Ai and Kachitvichyanukul (2009a) and

was applied to the CVRP. In this paper, SR-1 and SR-2 were both tested on the same CVRP

instances. Results showed that SR-2 computed better VRP solutions, when only taking travelled

distance into account. However, the computational time of the SR-2 representation was higher. SR-

2 uses all local optimization procedures, as described in Section 4, which is an advantage compared

to SR-1. This may also have resulted in more computational time.

The SR-2 representation is an extended version of the SR-1 representation and exploits the

7

idea of customer proximity in routes further. In this representation, the particles are formed with

3m dimensions. Here, the first 2m dimensions form the vehicle orientation points, like the last 2m

dimensions in the SR-1 representation. The last m dimensions represent the vehicle coverage radius.

The vehicle coverage area is the circle with as center the vehicle orientation point and as radius the

corresponding vehicle coverage radius. This is visualized in the right part of Firgure 3, where the

orange and green circles represent vehicle coverage areas. In Algorithm 4, the decoding method is

described in detail.

Algorithm 4 Decoding method for SR-2

1: for j = 1 . . .m do
2: xrefj ← θi,3j−2 and yrefj ← θi,3j−1

3: rj ← θi,3j

4: for each customer do
5: Insert the customer in the route of the nearest vehicle orientation point with cheapest insertion
6: Check feasibility of the route, taking into account that a customer should be in the vehicle coverage area of the vehicle

7: Optimize the constructed routes by using 2-opt, 1-1 exchange and 1-0 exchange
8: for Any remaining customers do
9: Insert customer located furthest away from the depot
10: Insert the customer to the closest vehicle that has not been tried before
11: if Constructed route is infeasible then
12: Remove customer and go back to 10

13: Optimize the constructed routes by using 2-opt, 1-1 exchange and 1-0 exchange

3.3 SR-C

In this section, we introduce a new solution representation which is inspired by SR-1 and SR-2. SR-

C extends the idea of the customer priority list from SR-1, but it additionally considers customer

radii. The particles consist of 2n dimensions, of which the first n are the same as in SR-1. The

second n dimensions represent the customer radii. Addition areas around each customer can be

constructed as circles around the customers coordinate with the radius that corresponds to the

customer. With the addition areas and the customer coordinates, we can construct the addition

area matrix. For each customer c, we define a row vector of customers whose coordinates lie within

c’s addition area.

The description of the SR-C decoding method is presented in Algorithm 5. As in SR-1, we insert

customers one-by-one based on their priority. In SR-C, a customers priority is not only based on

the first n dimensions of the particle, but also on the customer radius. A customer is only added to

a route if it lies within the addition area of any other customer that has already been inserted (into

any route). If this does not result in any feasible routes, we try to insert the customer to a route of

which any customer lies within his addition area. If this also does not result in a feasible route, we

open a new route and add the customer to it. The advantage of SR-C over SR-1 and SR-2 is that it

does not set the number of vehicles in the first iteration, but the number of vehicles in the solution

is determined in the decoding method. On the other hand, this may even well be a disadvantage

as it may lead to the use of many vehicles.

8

Algorithm 5 Decoding method for SR-C

1: for j = 1 . . .m do
2: pj ← θi,j and rj ← θi,2n+j

3: Sort the customers based on their value of pj ∗ rj in list L
4: Construct the addition area matrix A
5: for each customer c in L do
6: currentroute = A[c][b]
7: repeat Insert customer into currentroute through cheapest insertion
8: if Route is feasible then Maintain route and perform 2-opt
9: else Remove customer from currentroute and b← b+ 1

10: until Feasible route is found or b exceeds the size of A
11: currentroute = A[b][c]
12: repeatInsert customer into current route through cheapest insertion
13: if Route is feasible then Maintain route and perform 2-opt
14: elseRemove customer from currentroute and b← b+ 1

15: until Feasible route is found or b exceeds the size of A
16: Optimize the constructed routes by using 2-opt, 1-1 exchange and 1-0 exchange

3.4 SR-P

In this section, we provide a description of the probability based solution representation SR-P. As

this solution representation is probability based, there are some extra restrictions we have to take

into account. Therefore, we also introduce some adaptations that are made to the PSO framework

in Section 3.4.2.

3.4.1 Solution representation description

SR-P is proposed by Kim and Son (2012) in combination with standard PSO to solve the CVRP

and uses particles of (n + 1) × (n + 1) dimensions. They have implemented this solution repre-

sentation using an extra local improvement procedure, which for comparison purposes we do not

implement. SR-P has shown to be competitive compared to SR-1 and SR-2 (Kim & Son, 2012).

The first dimension represents the depot and the other n dimensions, portray the customers. Each

particles’ position represents a probability matrix with entries pij , which indicate the probabilities

of connecting node i to node j in the decoding method. As we deal with a probability matrix, the

following conditions should hold for the matrix entries:

n∑
j=1

pij = 1 for i = 1 . . . n+ 1, (4)

pij ∈ [0, 1] for i = 1 . . . n+ 1 and j = 1 . . . n+ 1.

When decoding a particle from the probability matrix to a VRP solution, we consider Algorithm

0 developed by Kim and Son (2012).

3.4.2 Adaptations to the PSO framework to use SR-P

The initialization of the optimization method is not performed randomly, as this does not result

in particles satisfying conditions from Equation (4). We rather perform multiple sweep heuristics

9

Algorithm 6 Decoding algorithm for SR-P

1: repeat
2: Set the depot as start of the route
3: Select the next customer on the route based on the probabilities of the previous node
4: Add this customer to the route by adding it to the previous node
5: if Route is feasible then
6: Maintain the route
7: Remove customer from probability matrix and normalize the new matrix
8: else Return to the route from step 3
9: And connect last customer to the depot node

10: until All customers are added to a route
11: Perform 2-opt, 1-0 exchange and 1-1 exchange to the solution

to obtain a set of L feasible VRPPD or VRPSPD solutions. We use the sweep algorithm adapted

from Clarke and Wright (1964), that is also implemented by Kim and Son (2012).

Algorithm 7 Sweep algorithm

1: Sort the customers in a counter clockwise manner based on their polar angle with the depot in list L
2: Chose a random index of L and rearrange L starting at this index
3: repeat
4: Start a new route
5: Assign the first unrouted customer from the list to the route.
6: Select the nearest customer from the current route. Continue to assign such nearest customers to construct the route

while the sum of customer demands does not exceed the capacity of the route
7: until All customers have been asigned a route
8: Perform 2-opt, 1-0 exchange and 1-1 exchange to solution

After the sweep algorithm is performed, we encode the VRP solutions to particles positions. In

the encoding method, we consider one node at a time k and determine the set of arcs C that

are connected to it, independent of the direction of the arc, in the solution. We construct the

probabilities to another node r as Pkr = Ir
|C| , where Ir is an indicator function that is value one if

r is in the set of connected arcs to k, C and zero otherwise. From Figure 3, we can construct the

following particle using the encoding method

0 0.25 0 0.25 0.25 0 0 0.25

0.5 0 0.5 0 0 0 0 0

0 0.5 0 0.5 0 0 0 0

0.5 0 0.5 0 0 0 0 0

0.5 0 0 0 0 0.5 0 0

0 0 0 0 0.5 0 0.5 0

0 0 0 0 0 0.5 0 0.5

0.5 0 0 0 0 0 0.5 0


Furthermore, Kim and Son (2012) propose to update the particles position only through random

weights and not depending on velocities, as this lead to better results. Thus, the following formula

is used to determine a vehicles next position

Θl(τ + 1) = w1(τ)Θl(τ) + w2(τ)ΨP
l (τ) + w3(τ)ΨG(τ) + w4(τ)ΨL

l (τ) + w5(τ)ΨN
l (τ). (5)

We chose the coefficients w2 . . . w5 randomly such that their sum equals 1, as this ensures that the

new position satisfies (4) if all best position matrices also satisfy these constraints. By construction,

only the near neighbour best position does not necessarily satisfy the constraints, therefore it should

10

be normalized such that the constraints are satisfied. The first coefficient is as normal the predefined

inertia weight, the other weights are randomly chosen. We choose w2 . . . w5 in the following manner.

First, we chose w2 as a random number in the range [0, 1 − w1]. Then we select w3 randomly

from the interval [0, 1 − w1 − w2] and w4 from the interval [0, 1 − w1 − w2 − w3]. Finally, we set

w5 = 1− w1 − w2 − w3 − w4.

We choose to implement the near neighbour best, optimizing the FDR for each column of the

particles dimension. As we cannot calculate the absolute value of two vectors in the denominator,

we use the Euclidean distance instead.

4 Solution improvement methods

As the decoding methods are heuristic methods to construct routes from the dimensional particles,

they may be further improved with local improvement methods. These methods make small ad-

justments, such as interchanging two customers in a route, in order to optimize the constructed

solution. In the decoding phases, three of such methods are used: 2-opt, 1-0 exchange and 1-1

exchange. The 2-opt method aims to improve routes by only considering changes within a single

route, whereas the exchange methods take two routes to look for improvement. In Algorithms 8 and

9, the algorithms for these methods are provided and in Figures 5, 4a and 4b visual representations

of the methods are shown.

Algorithm 8 1-1 exchange or 1-0 exchange

1: Set n= number of customers in first route and m =number of customers in second route
2: for i = 1 . . . n and j = 1 . . .m do
3: Modify route by interchanging two customers, as in Figure 4b for 1-1 exchange or as in Figure 4b for 1-0 exchange
4: if New route is feasible and has lower costs then
5: Maintain modified route
6: else Undo changes made in 3

(a) Illustration of a 1-1 exchange procedure (b) Illustration of a 1-0 exchange procedure

Figure 4: Illustrations of local optimization procedures

Algorithm 9 2-Opt procedure

1: Set n = number of customers in the route
2: for i = 1 . . . n− 2 and j = i+ 2 . . . n do
3: Change route as in Figure 5
4: if New route is feasible and has lower costs then
5: Maintain modified route
6: else Undo changes made in 3

Figure 5: Illustration of a 2-opt procedure

11

5 Data

In this section we describe the data instances that we use to compute our results. We use the

data that was first introduced by Nagy and Salhi (2005) and consist of five problem sets: CMTH,

CMTT, CMTQ, CMTX and CMTY. The data sets, consisting of 14 instances each, provide us with

customer indices, pickup demand, delivery demand, vehicle capacity and the Cartesian coordinates

of the depot and customers. Additionally some instances (6-10 and 13, 14) consider a duration

limit and service times at customers. For these instances, the total travelled distance of the routes

together with the total service times cannot exceed this duration limit.

The data sets are based on the Christofides data instances CMT1-CMT14, the pickup and

delivery demands were adapted following the methods of Nagy and Salhi (2005). We note in the

coordinates of the data sets that in CMT instances 11 through 14 the customers are clustered in

the map, as is shown in Figure 6b. We expect that SR-1* and SR-2 perform better than SR-P and

SR-C, because the vehicle orientation points suit these clustered instances best.

In data sets CMTH, CMTT and CMTQ the customers only have a pickup demand or delivery

demand, thus we use these instances as VRPPD instances. In set T, only 10% of the customers

have a pickup demand and in sets Q and H this is respectively 25% and 50%. When constructing

these data sets, we take the CMT instances and change every tenth, fourth and second customers

delivery demand into a pickup demand. In instances X and Y, customers have a pickup and delivery

demand, making these instance suitable for the VRPSPD problem.

Based on these instance characteristics, we divide each data set (CMTT, CMTH, CMTQ, CMTX

and CMTY) into six subgroups

• SNU: (1-3) instances with at most 100 unclustered customers, which have no duration limit;

• LNU: (6-8) instances with more than 100 unclustered customers, which have no duration limit;

• SDU: (4-5) instances with at most 100 unclustered customers, which have a duration limit;

• LDU: (9-10) instances with more than 100 unclustered customers, which have a duration limit;

• SC: (12, 14) clustered customer instances with at most 100 customers;

• LC: (11, 13) clustered customer instances with more than 100 customers.

(a) Instance CMT1 (b) Instance CMT14

Figure 6: Coordinate grid of customers in two instances. On the right, clustering is clearly visible.1

1From: http://vrp.galgos.inf.puc-rio.br/index.php/en/

12

6 Results

We have described a multitude of PSO methods that we perform on the VRPPD, VRPSPD and

VRPSDPTW problems, therefore we have summarized the proposed PSO algorithms and solution

representations, together with how they are referenced in the main text, in Table 1.

SR PSO variant Method reference

SR-1 GLN SR-1
SR-1* GLN SR-1*
SR-2 GLN SR-2
SR-P GLN SR-P
SR-C GLN SR-C
SR-1* GLNO obSR-1*
SR-2 GLNO obSR-2
SR-C GLNO obSR-C

Table 1: Overview of the different PSO methods and
their references in text

Parameter Value New value

Number of particles 50 50
Number of iterations 1000 1000
Number of neighbours 5 5
Inertia weight at first iteration 0.9 0.9
Inertia weight at last iteration 0.4 0.4
cp 1 0.5
cg 0 0.5
cl 1 0
cn 2 1.5

Table 2: Overview of the PSO original PSO param-
eters and the addapted PSO parameters

As was done in Ai and Kachitvichyanukul (2009b), we do not minimize the number of vehicles in

the solutions, setting the fixed costs for the vehicles to be 0 and the variable cost g equal to 1.

Thus, the objective value of the solutions equals the total travelled distance. Furthermore, for the

instances that take a duration limit into account, we set the time to travel from one customer to

another to equal the distance between these customers.

In order to compute the results, we set the parameters for the PSO algorithm as presented in Ta-

ble 2, which are the same as used by Ai and Kachitvichyanukul (2009b). Although the performance

of PSO algorithms is dependent on the exact parameter settings, choosing the best performing pa-

rameters, taking the current problem types into account, would be a study on its own and has not

been studied in literature. Ai and Kachitvichyanukul (2009a), also compare SR-1 and SR-2 for the

CVRP, using the same parameter settings for both solution representations. Therefore, we choose

to use the same parameters for each method. However, it is important to note that these parameter

settings could be optimized in order to better compare the solution representations. After running

preliminary experiments, we found that the solution representations do not perform as expected

which is described in detail in Section 6.1. We decided to compute the results of SR-1*, SR-2, SR-P

and SR-C with the parameter settings shown in Table 2.

For SR-1 and SR-2, we need to define a certain number of vehicles at the start. As done by Ai

and Kachitvichyanukul (2009b), we set the number of vehicles m equal to the number of vehicles

used in the best found solution until now. As no complete overview of the best found solutions of

these instances is provided in literature, we consider the best found solutions as provided by Ai and

Kachitvichyanukul (2009b).

We implement the described algorithms using Java in Eclipse. We used a computer with proces-

sor AMD PRO A4-8350B R5, 16 GB RAM and 3.5 GHz clock rate. For each method, we replicate

the procedure ten times.

13

6.1 Comparison to AI results of SR-1

To ensure that we have implemented a competitive PSO algorithm, we first compare our results

to the results found in Ai and Kachitvichyanukul (2009b). In Table 3 we report our average costs

for the CMTT, CMTH, CMTQ, data sets together with the average results of computed by Ai

and Kachitvichyanukul (2009b). Additionally, we include the deviation of the results compared

to the results of Ai and Kachitvichyanukul (2009b) in %. We compute this deviation as follows:

Deviation = Computed costs−Costs AK
Costs AK × 100%.

We include our results per instance in Appendix A for the VRPPD instances and in Appendix

B for the VRPSPD instances.

Data instance Costs (e) AK Costs (e) SR-1 Deviation Costs (e) SR-10 Deviation (%)

CMTH 908.5 1022.2 12.5 940.2 3.5
CMTT 950.3 1013.8 6.7 957.5 0.8
CMTQ 984.9 1048 6.4 995 1
CMTX 934.5 1000.6 7.1 945.5 1.2
CMTY 933.4 963.7 3.2 908.2 -2.7

Table 3: Average results for VRPPD and VRPSPD instances

We observe that the costs obtained by Ai and Kachitvichyanukul (2009b) are on average lower than

our results. This difference may be caused by different parameter settings. As mentioned in Section

2.1, Ai and Kachitvichyanukul (2009b) did not specify whether the random numbers, used to update

the velocity in Equation 2, should be different for each particle and/or dimension. Therefore, we

varied the moment of random number generation in preliminary experiments, but this did not yield

any improvements. Furthermore, Ai and Kachitvichyanukul (2009b) did not provide a detailed

description on how to obtain the local best of a particle. It may be possible that we implemented

this learning structure differently, using the implementation described in Kachitvichyanukul et al.

(n.d.). Therefore, we varied the parameter settings in preliminary runs, setting them equal to the

new values from Table 1. We refer to SR-1 with these parameter implementation as SR-10. In

Table 3, we report the average best costs over ten runs of this PSO method. We observe that the

SR-10 results are more similar to the results from Ai and Kachitvichyanukul (2009b). In Table 4,

the results of some individual data instances are reported from AI, SR-1 and SR-10.

Data instance Costs (e) AI Costs (e) SR-1 Deviation (%) Costs (e) SR-10 Deviation (%)

CMT1Q 490 494.2 0.9 489.7 -0.1
CMT3H 701 785.4 12.0 769.7 9.8
CMT6H 557 567.6 1.9 558.7 0.3
CMT14T 846 911.1 7.7 839.7 -0.7
CMT2X 710 740.5 4.3 707.5 -0.4
CMT3Y 740 748.1 1.1 723.7 -2.2
CMT8Y 902 971.9 7.7 904.2 0.2
CMT11X 895 940.1 5.0 927.1 3.6

Table 4: Representative solutions

We see that for most instances, the SR-10 costs deviate less than 1% from the results presented by

14

Ai and Kachitvichyanukul (2009b).

6.2 Performance analysis

In Appendix C (D), we include the best results over ten runs for the VRPPD (VRPSPD) instances,

obtained by the various PSO methods. We present the average costs of the data sets in Table 5.

Costs (e)

Data instance SR-1* obSR-1* SR-2 obSR-2 SR-C obSR-C SR-P

CMTH 920.3 918.4 913 907.1 1033.3 996.2 972.2
CMTT 985 985.3 977.7 979.1 1098.3 1103.8 1030.6
CMTQ 956 951.9 943 943.4 1035.8 1064.5 998.6
CMTX 932.7 932 920.7 926.1 1046.1 1037.6 999.4
CMTY 902.4 901.2 897 896.2 971 987.2 961.2

Table 5: The average best results of the various PSO methods for the VRPPD and VRPSPD instances

We observe that on average SR-2 with opposition based GLN-PSO and SR-2 with GLN-PSO perform

best. obSR-1* and SR-1* follow the performance of SR-2 closely, but SR-P and (ob)SR-C do not

present competitive results at all. Furthermore, we do not observe a clear difference between

the GLN-PSO implementation and the GLNO-PSO implementation, when considering the same

solution representation. This may suggest that there exists little to no influence of the opposition

based initialization on the PSO methods.

To analyze the individual performance of the PSO methods, we provide some representative

individual results in Table 6.

Costs (e)

Data instance SR-1* obSR-1* SR-2 obSR-2 SR-C obSR-C SR-P

CMT1H 465.1 465.3 465.9 466.5 465.1 465.3 533
CMT9T 1230 1224.3 1212.5 1210.3 1658.1 1443.5 1297.5
CMT3X 737.3 740.1 740.3 739.4 783.1 765.4 754.5
CMT8Q 876.8 871 865.5 869.9 914.1 969.5 917.6
CMT14Y 825.9 835.3 822.2 823.4 824.9 825.1 834.5
CMT10X 1491.2 1491.4 1460.6 1470.1 2062.2 2213.5 1670.1
CMT13Q 1564.1 1560.6 1549.8 1556.9 1693.5 1621.8 1583.6

Table 6: Some representative best results of the various PSO methods for the VRPPD and VRPSPD
instances

We note from Table 6. that SR-2 and obSR-2 perform best on the individual instances. Further-

more. we see that SR-C does provide reasonably well results for smaller customer instances, but is

outperformed on the larger customer instances. Also, we observe that SR-P is not competitive to

SR-1* or SR-2 on individual instances, which seems contradictory to previous results presented by

Kim and Son (2012). We analyze these in more detail in Section 6.4.

In addition to the best found solution, the computational time of a method is also an impor-

tant performance indicator. In Figure 7a, we present the average running times of the GLN-PSO

15

methods for the VRPSPD instances. In Figure 7b, we present the average running times of the

GLNO-PSO methods for the VRPSPD instances.

50 50 75 75 100 100 100 100 120 120 150 150 199 199

Number of customers

0

500

1000

1500

2000

2500

3000

A
v
e

ra
g

e
 c

o
m

p
u

ta
ti
o

n
a

l
ti
m

e
 (

s
)

Average running times VRPSPD instances

SR-1*

SR-P

SR-C

SR-2

(a) Average running time of the PSO methods

50 50 75 75 100 100 100 100 120 120 150 150 199 199

Number of customers

0

500

1000

1500

2000

2500

3000

A
v
e

ra
g

e
 c

o
m

p
u

ta
ti
o

n
a

l
ti
m

e
 (

s
)

Average running times VRPPD instances

obSR-1*

obSR-C

obSR-2

(b) Average running time of the PSO methods

We observe that the average running times are increasing for the number of customers considered.

Furthermore, we observe that the running times of GLN-PSO and GLNO-PSO hardly differ from

each other. This is expected, as one extra step in the initialization is made when performing GLNO-

PSO compared to GLN-PSO. Additionally, we clearly observe that for large customer instances SR-2

and SR-P are much slower compared to SR-1*. This is an important feature of an optimization

method, as in the real world solutions have to be provided within reasonable amount of time. SR-2,

SR-P and SR-C seem to have an quadratic or exponential relation with instance size. In Ai and

Kachitvichyanukul (2009b), it is noted that the running time for the SR-1 solution representation

is linear. When considering SR-1*, we observe that the relation of the computational time and

instance size resembles more a quadratic function. This implies that the addition of the extra local

improvement procedures have decreased the computational speed.

6.3 Behaviour analysis

To extend the performance analysis, we look at the performance of the algorithm within its 1000

iterations. We refer to this as the behaviour of a PSO method. We perform this analysis on

subgroups of the data sets, which were previously defined in Section 5.

For each of the groups, we aggregate the optimality gap to our best computed solution, at every

iteration, for each run of a PSO method. We compute figures with quantiles of the optimality gaps

at every iteration.

In preliminary runs, we did not observe behavioural differences between the three (two) different

VRPPD (VRPSPD) instances. Therefore, we chose to aggregate the VRPPD (VRPSPD) subgroups

with each other. With these figures, we can compare the different methods in the average case, but

also the worst and best case scenarios can be compared. In Figure 8, we included the behavioural

plots of the SNU subgroup for the different PSO methods.

16

0 100 200 300 400 500 600 700 800 900 1000

Iterations

0

2

4

6

8

10

12

14

16

18

20
O

p
ti
m

a
lit

y
 g

a
p

 (
%

)
VRPSPD 1-3 SR2ob

50%

10 minutes

2 minutes

40% / 60%

25% / 75%

10% / 90%

(a) obSR-2

0 100 200 300 400 500 600 700 800 900 1000

Iterations

0

2

4

6

8

10

12

14

16

18

20

O
p

ti
m

a
lit

y
 g

a
p

 (
%

)

VRPSPD 1-3 SR2

50%

10 minutes

2 minutes

40% / 60%

25% / 75%

10% / 90%

(b) SR-2

0 100 200 300 400 500 600 700 800 900 1000

Iterations

0

2

4

6

8

10

12

14

16

18

20

O
p

ti
m

a
lit

y
 g

a
p

 (
%

)

VRPSPD 1-3 SRC

50%

10 minutes

2 minutes

40% / 60%

25% / 75%

10% / 90%

(c) obSR-C

0 100 200 300 400 500 600 700 800 900 1000

Iterations

0

2

4

6

8

10

12

14

16

18

20

O
p

ti
m

a
lit

y
 g

a
p

 (
%

)

VRPSPD 1-3 SRC

50%

10 minutes

2 minutes

40% / 60%

25% / 75%

10% / 90%

(d) SR-C

0 100 200 300 400 500 600 700 800 900 1000

Iterations

0

2

4

6

8

10

12

14

16

18

20

O
p

ti
m

a
lit

y
 g

a
p

 (
%

)

VRPSPD 1-3 SRi

50%

10 minutes

2 minutes

40% / 60%

25% / 75%

10% / 90%

(e) SR-1*

0 100 200 300 400 500 600 700 800 900 1000

Iterations

0

2

4

6

8

10

12

14

16

18

20
O

p
ti
m

a
lit

y
 g

a
p

 (
%

)

VRPSPD 1-3 SRiob

50%

10 minutes

2 minutes

40% / 60%

25% / 75%

10% / 90%

(f) obSR-1*

0 100 200 300 400 500 600 700 800 900 1000

Iterations

0

2

4

6

8

10

12

14

16

18

20

O
p

ti
m

a
lit

y
 g

a
p

 (
%

)

VRPSPD 1-3 SRP

50%

10 minutes

2 minutes

40% / 60%

25% / 75%

10% / 90%

(g) SR-P

Figure 8: Development of optimality gap during 100 iterations, where all runs of the instances 1-3
of CMTQ, CMTT and CMTH (SNU) are aggregated. For each method in each figure separately,
the quantiles of the results regarding the optimality gap after each iteration are given. The iteration
corresponding to a certain time limit is marked with a verticle line.

In Figure 8, we clearly observe different patterns for the different solution representations. SR-P

converges quickly (within less than 100 iterations) to its best solutions, which is a good quality

of a method. However, its best solutions are worse compared to those of other methods, as we

saw in Table 6. Furthermore, we note that SR-C needs more iterations to get close to the best

known solution, but has a steep descend. This suggests that this solution representation may

perform better, if the initialization would be improved. Additionally, there is no clear difference in

behaviour between the opposition based implementation and the standard implementation, when

considering the same solution representation. Therefore, we chose to aggregate the GLN-PSO and

GLNO-PSO results with each other and create new figures, not differentiating between obSR-1*

and SR-1*.

As the computational times differ per solution representation, we identify three time limits for

which we chose the best solution representation.

• The 1000 iterations limit: this limit is not based on time but rather on the number of iterations.

We assume in this case that the 1000 iterations represent the long run behaviour of the method,

which is a strong assumption.

• The 2 minutes limit: this limit is representative for situations where time is of the essence. In

this case, it is unlikely that one is able to perform a PSO method 10 times.

• The 10 minutes limit: this limit is representative for situations where there is a reasonable

amount of time to perform the PSO algorithm, but not an unlimited amount of time.

When determining the best solution representation for each group, we have certain characteristics

that we prefer in the behaviour of the methods.

17

• We aim for small optimality gaps;

• The quantile points should be relatively close to each other, as this indicates stable perfor-

mance over the various runs;

• Good performance for the 10% quantile. This criterion is most important when considering

the 1000 iterations and the 10 minutes limit, as for these time limits it is reasonably assumed

that more runs can be performed;

• Good performance for the 90% quantile. This criterion is most important when considering

the 2 minutes limit, because for these limits we reasonably assume that there is not enough

time to perform multiple runs.

• Stable performance in the iterations relatively close before the time limit expires, as we could

otherwise have based the decision on coincidence. This criterion is most relevant when con-

sidering the 2 and the 10 minutes limits.

We include the behavioural figures for each subgroup of VRPPD in Appendix E-J and for each

subgroup of VRPSPD in Appendices K-P. In these figures a vertical lines represent the time limits.

As an example, we present the behavioural plots of the SDU subgroup of the VRPPD for the

different PSO methods in Figure 9.

0 100 200 300 400 500 600 700 800 900 1000

Iterations

0

2

4

6

8

10

12

14

16

18

20

O
p

ti
m

a
lit

y
 g

a
p

 (
%

)

VRPPD 4-5 SR2

50%

10 minutes

2 minutes

40% / 60%

25% / 75%

10% / 90%

(a) SR-2

0 100 200 300 400 500 600 700 800 900 1000

Iterations

0

2

4

6

8

10

12

14

16

18

20

O
p

ti
m

a
lit

y
 g

a
p

 (
%

)

VRPPD 4-5 SRC

50%

10 minutes

2 minutes

40% / 60%

25% / 75%

10% / 90%

(b) SR-C

0 100 200 300 400 500 600 700 800 900 1000

Iterations

0

2

4

6

8

10

12

14

16

18

20

O
p

ti
m

a
lit

y
 g

a
p

 (
%

)

VRPPD 4-5 SRi

50%

10 minutes

2 minutes

40% / 60%

25% / 75%

10% / 90%

(c) SR-1*

0 100 200 300 400 500 600 700 800 900 1000

Iterations

0

2

4

6

8

10

12

14

16

18

20

O
p

ti
m

a
lit

y
 g

a
p

 (
%

)

VRPPD 4-5 SRP

50%

10 minutes

2 minutes

40% / 60%

25% / 75%

10% / 90%

(d) SR-P

Figure 9: Development of optimality gap during 1000 iterations, where all runs of the instances 4-5
of CMTQ, CMTT and CMTH (SDU) are aggregated. For each method in each figure separately,
the quantiles of the results regarding the optimality gap after each iteration are given. The iteration
corresponding to a certain time limit is marked with a verticle line.

From Figure 9, we conclude that considering the

• 2 minutes limit: SR-P, as this has the best optimality gap for each of the quantiles that are

displayed in the figures;

• 10 minutes limit: SR-2, as this has the best optimality gap for each of the quantiles that are

displayed in the figures;

• Long-run: SR-2, as this has the best optimality gap for each of the quantiles that are displayed

in the figures.

We make this analysis for each of the subgroups of the VRPPD and VRPSPD instances, and present

the resulting decision tree in Figure 10 for VRPPD instances and in Figure 23 for the VRPSPD (to

be found in Appendix Q).

18

Figure 10: Decision tree with regards to the solution representation method in the VRPPD in-
stances. Here, the left (pink aligned), middle (green aligned) and right (grey aligned) represent the
best solution representation methods in the long-run, the 10 minutes time limit and the 2 minutes
time limit cases respectively. All SR-i chosen cases represent SR-1*.

We clearly observe that SR-2 and SR-1* are the best performing methods. We see that the SR-C

solution representation is never the best choice, making it the worst performing solution represen-

tation in any investigated scenario. Considering large customer instances, for the 2 minutes time

limit, SR-P is preferred in half of the cases. As we showed in Figure 9, this is because of its fast

convergence to its best computed solution. As there is no big difference with the decision three for

the VRPSPD instances, we have included it in Appendix Q. We see that a clear pattern which has

emerged in the VRPPD decision tree, is not present in the VRPSPD tree. For example, for the

VRPPD instances, it is always preferred to use SR-1* for smaller data instances and SR-2 for the

larger data instances with less restrained time limits.

6.4 Analysis of SR-P performance

We clearly observe that SR-P does not provide competitive results, which seems contradictory to

the results found in Kim and Son (2012). This could be a result of the fact that this solution

representation was tested on CVRP and not VRPPD or VRPSPD. However, we have seen that

the problem type has not influenced the performance of the other solution representations. SR-

1 and SR-2 results are competitive in this study and were competitive for the CVRP in Ai and

Kachitvichyanukul (2009a). Additionally after performing SR-P on small CVRP instances, as was

done by Kim and Son (2012), we see that SR-P does not yield competitive results either. Thus, it

does not seem plausible that the differences in performance are primarily explained by the problem

type.

As noted in Section 3.4, the SR-P was originally implemented using standard PSO instead

of GLN-PSO, and implements an extra local optimization method. As we have suggested when

analyzing the results in Section 6.1, PSO parameters and social learning structures can influence

19

the performance of a solution representation.

Furthermore, the extra improvement heuristic, OR-Opt, that is used in the implementation

by Kim and Son (2012), may influence the performance of SR-P. However, Babin, Deneault, and

Laporte (2007) show that for arbitrary symmetric traveling salesman problems, which is the same

as one VRP route, OR-Opt performs worse compared to 2-opt, when they are both implemented

individually. Contrary to Babin et al. (2007), we implement several local improvement methods

among which OR-Opt.

In conclusion, we think that the PSO framework, PSO parameters and the lack of OR-Opt may

have contributed to the non-competitive performance of SR-P.

7 Conclusion

In this study, we have analyzed the performance of four existing solution representations on VRPPD

and VRPSPD instances. Additionally, we presented a customer radius based solution representa-

tion, which we also tested on the VRPPD and VRPSPD instances. There exists an important

trade-off between solution quality and computational time, when chosing the best PSO method.

Based on the behaviour of the methods within one thousand iterations, we were able to select the

best performing method considering various computational needs. In general we conclude that SR-2

and SR-1* present the best performances, taking into account computational times. Furthermore,

we do not observe a significant difference in performance and behaviour when implementing the

solution representations in opposition based PSO. However, we place several limitations to our re-

search.

In the first place, we choose to use the same PSO parameters in our study. However, it may

be possible that, when selecting the best parameters for each PSO method, the results would be

different. Research into optimal parameter selection should be done for each of these methods in

order to make a better comparison of the methods.

Furthermore, we observed that the SR-P method does not perform as presented in earlier re-

search. SR-P converges to its best solution within less than 100 iterations, which is unlike the other

solution representations that we studied. This makes it an attractive method. Further research

could be focussed on comparing the solution representations, considering normal PSO and imple-

menting OR-Opt, which ensured better performance, as presented in Kim and Son (2012).

At last, we have presented a new solution representation SR-C. This method does not per-

form well, especially for large customer instances. Further research, could focus on improving this

solution representation, especially the initialization procedure of the decoding algorithm.

20

References

Ai, T. J., & Kachitvichyanukul, V. (2009a). Particle swarm optimization and two solution rep-

resentations for solving the capacitated vehicle routing problem. Computers & Industrial

Engineering , 56 (1), 380–387.

Ai, T. J., & Kachitvichyanukul, V. (2009b). A particle swarm optimization for the vehicle routing

problem with simultaneous pickup and delivery. Computers & Operations Research, 36 (5),

1693–1702.

Babin, G., Deneault, S., & Laporte, G. (2007). Improvements to the or-opt heuristic for the

symmetric travelling salesman problem. Journal of the Operational Research Society , 58 (3),

402–407.

Balinski, M. L., & Quandt, R. E. (1964). On an integer program for a delivery problem. Operations

Research, 12 (2), 300–304.

Clarke, G., & Wright, J. W. (1964). Scheduling of vehicles from a central depot to a number of

delivery points. Operations research, 12 (4), 568–581.

Cordeau, J.-F., Laporte, G., Savelsbergh, M. W., & Vigo, D. (2007). Vehicle routing. Handbooks

in operations research and management science, 14 , 367–428.

Dantzig, G., & Ramser, J. (1959). The truck dispatching problem. management science.. 6: 80-91.

Golden, B. L., Magnanti, T. L., & Nguyen, H. Q. (1977). Implementing vehicle routing algorithms.

Networks, 7 (2), 113–148.

Kachitvichyanukul, V., Purintrapiban, U., & Utayopas, P. (n.d.). A non-homogenous particle swarm

optimization with multiple social structures.

Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In Proceedings of ieee interna-

tional conference on neural networks (Vol. 4, pp. 1942–1948).

Kim, B.-I., & Son, S.-J. (2012). A probability matrix based particle swarm optimization for the

capacitated vehicle routing problem. Journal of Intelligent Manufacturing , 23 (4), 1119–1126.

Laporte, G., Nobert, Y., & Desrochers, M. (1985). Optimal routing under capacity and distance

restrictions. Operations research, 33 (5), 1050–1073.

Nagy, G., & Salhi, S. (2005). Heuristic algorithms for single and multiple depot vehicle routing

problems with pickups and deliveries. European journal of operational research, 162 (1), 126–

141.

Rahnamayan, S., Tizhoosh, H. R., & Salama, M. M. (2008). Opposition-based differential evolution.

IEEE Transactions on Evolutionary computation, 12 (1), 64–79.

Shi, Y., & Eberhart, R. C. (2008). Population diversity of particle swarms. In 2008 ieee congress

on evolutionary computation (ieee world congress on computational intelligence) (pp. 1063–

1067).

Wang, H.-F., & Chen, Y.-Y. (2012). A genetic algorithm for the simultaneous delivery and pickup

problems with time window. Computers & Industrial Engineering , 62 (1), 84–95.

21

A Table AI VRPPD

Data instance Costs (e) AK SR-1 Deviation SR-10 Deviation

CMT1H 464 469.2 1.1 465.7 0.4
CMT2H 668 721 7.9 692.3 3.6
CMT3H 701 785.4 12.0 769.7 9.8
CMT4H 883 1057.7 19.8 1031.2 16.8
CMT5H 1044 1246.9 19.4 1191.1 14.1
CMT6H 557 567.6 1.9 558.7 0.3
CMT7H 943 1003.9 6.5 938.6 -0.5
CMT8H 899 956.3 6.4 875.5 -2.6
CMT9H 1207 - - 1211.1 0.3
CMT10H 1499 1636.3 9.2 1509.3 0.7
CMT11H 830 864.7 4.2 846 1.9
CMT12H 635 703.5 10.8 653 2.8
CMT13H 1565 1649.3 5.4 1577.7 0.8
CMT14H 824 885.5 7.5 843 2.3

CMTH 908.5 1022.2 12.5 940.2 3.5

CMT1T 520 524.1 0.8 520.1 0
CMT2T 810 850.3 5 815.5 0.7
CMT3T 827 863.7 4.4 812 -1.8
CMT4T 1014 1132.3 11.7 1029.6 1.5
CMT5T 1297 1469.1 13.3 1295 -0.2
CMT6T 555 568.6 2.5 556.7 0.3
CMT7T 942 1030.8 9.4 951.6 1
CMT8T 904 946 4.6 918.1 1.6
CMT9T 1206 1201.3 -0.4 infeasible -
CMT10T 1501 1661.6 10.7 1580.8 5.3
CMT11T 1026 1062.7 3.6 1033.3 0.7
CMT12T 792 829.5 4.7 795.1 0.4
CMT13T 1548 1621 4.7 1580.8 2.1
CMT14T 846 911.1 7.7 839.7 -0.7

CMTT 950.3 1013.8 6.7 957.5 0.8

CMT1Q 490 494.2 0.9 489.7 -0.1
CMT2Q 739 774.8 4.8 751.3 1.7
CMT3Q 768 797.8 3.9 752.3 -2
CMT4Q 938 1055 12.5 935.8 -0.2
CMT5Q 1174 1308.4 11.4 1200.1 2.2
CMT6Q 557 567.5 1.9 556.7 -0.1
CMT7Q 933 1005 7.7 943.8 1.2
CMT8Q 890 931.8 4.7 871.3 -2.1
CMT9Q 1214 1375.4 13.3 1260.1 3.8
CMT10Q 1509 infeasible - 1500.8 -0.5
CMT11Q 964 1003.6 4.1 968 0.4
CMT12Q 733 837.3 14.2 752.8 2.7
CMT13Q 1570 1637 4.3 1590.6 1.3
CMT14Q 825 896.8 8.7 831.3 0.8

CMTQ 984.9 1048 6.4 995 1

Table 7: A comparison of VRPPD results, where the column of results (AK) represent the results
as stated in Ai & Kachitvichyanakul (2009).

22

B Table AI VRPSPD

Data instance Costs (e) AK Costs (e) SR-1 Deviation (%) Costs (e) SR-10 Deviation (%)

CMT1X 467 475.2 1.8 472.4 1.2
CMT2X 710 740.5 4.3 707.5 -0.4
CMT3X 738 754.5 2.2 740.3 0.3
CMT4X 912 1037 13.7 1018.6 11.7
CMT5X 1167 1315.8 12.8 1166.2 -0.1
CMT6X 557 565.2 1.5 558.7 0.3
CMT7X 919 infeasible - 917.3 -0.2
CMT8X 896 953.1 6.4 909.2 1.5
CMT9X 1225 1354.9 10.6 1232.7 0.6
CMT10X 1520 1689.1 11.1 1518.3 -0.1
CMT11X 895 940.1 5.0 927.1 3.6
CMT12X 691 706.9 2.3 682.7 -1.2
CMT13X 1560 1646.6 5.6 1564.2 0.3
CMT14X 826 910.3 10.2 822.2 -0.5

CMTX 934.5 1000.6 7.1 945.5 1.2

CMT1Y 467 463.476 -0.8 461.241 -1.2
CMT2Y 710 684.5157 -3.6 662.386 -6.7
CMT3Y 740 748.1214 1.1 723.7468 -2.2
CMT4Y 913 918.6827 0.6 839.2346 -8.1
CMT5Y 1142 1177.015 3.1 1027.528 -10
CMT6Y 557 569.665 2.3 556.6791 -0.1
CMT7Y 934 infeasible - 910.1357 -2.6
CMT8Y 902 971.8643 7.7 904.1619 0.2
CMT9Y 1230 1347.641 9.6 1241.137 0.9
CMT10Y 1485 1653.935 11.4 1545.153 4.1
CMT11Y 900 806.917 -10.3 784.9185 -12.8
CMT12Y 697 675.3429 -3.1 653.6322 -6.2
CMT13Y 1568 1654.399 5.5 1565.065 -0.2
CMT14Y 823 885.6713 7.6 839.5881 2

CMTY 933.4 963.7 3.2 908.2 -2.7

Table 8: Comparison AI results VRPSPD

23

C Table compare VRPPD

Costs (e)

Data instance SR-imp obSR-imp SR-2 obSR-2 SR-C obSR-C SR-P

CMT1H 465.1 465.3 465.9 466.5 465.1 465.3 533
CMT2H 670.6 669.7 674 676.7 691.3 684 777.4
CMT3H 751.4 761.4 745.3 754 735.7 747.7 797.6
CMT4H 1003.3 953.7 942.8 895.6 979.6 929.8 992.7
CMT5H 1098.4 1093.3 1047.2 1046.4 1216.1 1245.4 1178.6
CMT6H 558.7 558.7 559.1 558.9 569.7 559.8 581.8
CMT7H 905.1 924.5 926.7 923.7 975.3 994.6 974
CMT8H 874 872.4 871.8 867.6 946.4 986.5 930.4
CMT9H - 1211.3 1209.2 1198.2 1661.7 1464.4 1297.4
CMT10H 1485.7 1484.8 1470.8 1460.4 2219.6 1867.4 1541.9
CMT11H 835.1 835.3 842.1 835.5 843.2 853.6 900.7
CMT12H 639.9 638.4 651.6 643.7 663.9 672.4 695.8
CMT13H 1563.4 1562.9 1552.3 1550.6 1672.9 1650.7 1577.5
CMT14H 822.8 826 823.6 822.2 826 825.1 832.5

CMTH 920.3 918.4 913 907.1 1033.3 996.2 972.2

CMT1T 520 520 520 520.2 520.4 523.8 558.3
CMT2T 804 807.7 794.6 792.7 835.1 817 864.3
CMT3T 811.8 811.3 808.1 811.9 935.8 844.7 877.6
CMT4T 1021.9 1018.3 1024.5 1013.8 1111.4 1122.8 1103.4
CMT5T 1285.3 1301.7 1287.9 1282.4 1516.4 1579.3 1373.4
CMT6T 556.7 559 558.8 558 566.2 578.7 588.8
CMT7T 942.5 945.1 930.1 951.7 994 1014.3 983.9
CMT8T 886.2 882.2 867.1 871.9 1070.6 986 924.6
CMT9T 1230 1224.3 1212.5 1210.3 1658.1 1443.5 1297.5
CMT10T 1502.1 1493.2 1485.4 1483.7 1821.9 2207.5 1551.3
CMT11T 1019 1018.9 1011.7 1013.6 1021.4 1018.5 1052.9
CMT12T 795.5 792.4 803.7 801.2 810.7 808 817.8
CMT13T 1561.2 1570.2 1550.8 1547.5 1673.1 1661.6 1581
CMT14T 853.3 849.2 832.7 848.8 841.7 847.6 854

CMTT 985 985.3 977.7 979.1 1098.3 1103.8 1030.6

CMT1Q 490.5 490.5 490.8 490.5 489.7 489.7 529.4
CMT2Q 746.7 747.4 745.5 744.1 767.1 755.2 798.9
CMT3Q 765.4 760.8 762.6 762.2 779.9 810.7 825.6
CMT4Q 938.1 949.1 937.3 939.1 1007.7 1025.1 1018.4
CMT5Q 1236.3 1204.2 1190.1 1184.6 1290.2 1346.5 1277.9
CMT6Q 558.7 558.7 559.3 558.9 562.3 571.1 589
CMT7Q 936.3 924.9 911 912.9 999.8 1033.3 976.5
CMT8Q 876.8 871 865.5 869.9 914.1 969.5 917.6
CMT9Q 1225.3 1222.4 1218.3 1198.9 1633 1442.3 1286.2
CMT10Q 1508.7 1500.8 1461.9 1469.9 1814.1 2278.4 1558.6
CMT11Q 967.4 965.1 955.1 964.7 969.3 975.5 1001.9
CMT12Q 742.6 741.9 732.6 732.6 756.7 757.9 784.8
CMT13Q 1564.1 1560.6 1549.8 1556.9 1693.5 1621.8 1583.6
CMT14Q 827.5 829 822.8 822 824.1 826.8 832.3

CMTQ 956 951.9 943 943.4 1035.8 1064.5 998.6

Table 9: VRPPD results for different PSO methods

24

D Table compare VRPSPD

Costs (e)

Data instance SR-imp obSR-imp SR-2 obSR-2 SR-C obSR-C SR-P

CMT1X 472.4 472.4 472.4 472.4 472.4 472.6 476.8
CMT2X 713.1 713.3 711.7 712.6 736.6 737.3 740.5
CMT3X 737.3 740.1 740.3 739.4 783.1 765.4 754.5
CMT4X 954.7 948.8 930.8 968.5 1018.9 985.1 1037
CMT5X 1166.4 1153.4 1115.7 1131.9 1361.1 1306.4 1315.8
CMT6X 558.7 558.7 558.9 559 559.3 568.1 565.5
CMT7X 910.5 912.9 903.6 901.8 1006.1 978.6 917.4
CMT8X 874.8 874.5 875.5 874.9 955.4 989.1 953.1
CMT9X 1220.5 1218.9 1210.6 1214.2 1611 1444.2 1354.9
CMT10X 1491.2 1491.4 1460.6 1470.1 2062.2 2213.5 1670.1
CMT11X 897.7 903.2 861.4 865.3 916.1 886.9 940.1
CMT12X 674.2 673.3 676 680.9 686.9 694.5 706.9
CMT13X 1563.5 1564.9 1550.7 1550.5 1651.9 1660.8 1646.6
CMT14X 822.3 822.8 822.2 823.4 824.1 824.4 912.2

CMTX 932.7 932 920.7 926.1 1046.1 1037.6 999.4

CMT1Y 461.2 461.2 461.9 462.8 462.2 461.2 520.2
CMT2Y 662.4 660.4 668.7 663 673 685.4 731.4
CMT3Y 721.1 721.5 729.7 726.9 736.6 745.3 787.6
CMT4Y 839.4 841.2 855.9 846 957.5 908 955
CMT5Y 1046.7 1038.5 1037.4 1040 1169.6 1155.8 1143.2
CMT6Y 558.7 558.7 559.3 559.1 559.3 556.7 591
CMT7Y 917.9 901.2 910.2 902.1 984.9 1001.9 967.3
CMT8Y 880.2 875.9 878.5 877.2 961.2 985.6 923
CMT9Y 1228.4 1221.8 1187.7 1217.4 1385.3 1485.2 1296.4
CMT10Y 1511.8 1518.9 1474.9 1446.7 1752.8 1868 1546.2
CMT11Y 782.3 785.4 789.4 795.5 785.3 814.3 879.6
CMT12Y 633.4 633.4 632.5 632.2 658.5 658 708.7
CMT13Y 1563.8 1563 1550 1554.9 1682.7 1670.5 1572.4
CMT14Y 825.9 835.3 822.2 823.4 824.9 825.1 834.5

CMTY 902.4 901.2 897 896.2 971 987.2 961.2

Table 10: Different methods applied to different problems

25

E Behavioural figures SNU VRPPD

0 100 200 300 400 500 600 700 800 900 1000

Iterations

0

2

4

6

8

10

12

14

16

18

20

O
p
ti
m

a
lit

y
 g

a
p
 (

%
)

VRPPD 1-3 SR2

50%

10 minutes

2 minutes

40% / 60%

25% / 75%

10% / 90%

(a) SR-2

0 100 200 300 400 500 600 700 800 900 1000

Iterations

0

2

4

6

8

10

12

14

16

18

20

O
p
ti
m

a
lit

y
 g

a
p
 (

%
)

VRPPD 1-3 SRC

50%

10 minutes

2 minutes

40% / 60%

25% / 75%

10% / 90%

(b) SR-C

0 100 200 300 400 500 600 700 800 900 1000

Iterations

0

2

4

6

8

10

12

14

16

18

20

O
p
ti
m

a
lit

y
 g

a
p
 (

%
)

VRPPD 1-3 SRi

50%

10 minutes

2 minutes

40% / 60%

25% / 75%

10% / 90%

(c) SR-1*

0 100 200 300 400 500 600 700 800 900 1000

Iterations

0

2

4

6

8

10

12

14

16

18

20

O
p
ti
m

a
lit

y
 g

a
p
 (

%
)

VRPPD 1-3 SRP

50%

10 minutes

2 minutes

40% / 60%

25% / 75%

10% / 90%

(d) SR-P

Figure 11: Development of optimality gap during 100 iterations, where all runs of the instances 1-3
of CMTQ, CMTT and CMTH (SNU) are aggregated. For each method in each figure separately,
the quantiles of the results regarding the optimality gap after each iteration are given. The iteration
corresponding to a certain time limit is marked with a verticle line.

26

F Behavioural figures LNU VRPSPD

0 100 200 300 400 500 600 700 800 900 1000

Iterations

0

2

4

6

8

10

12

14

16

18

20

O
p
ti
m

a
lit

y
 g

a
p
 (

%
)

VRPPD 6-8 SR2

50%

10 minutes

2 minutes

40% / 60%

25% / 75%

10% / 90%

(a) SR-2

0 100 200 300 400 500 600 700 800 900 1000

Iterations

0

2

4

6

8

10

12

14

16

18

20

O
p
ti
m

a
lit

y
 g

a
p
 (

%
)

VRPPD 6-8 SRC

50%

10 minutes

2 minutes

40% / 60%

25% / 75%

10% / 90%

(b) SR-C

0 100 200 300 400 500 600 700 800 900 1000

Iterations

0

2

4

6

8

10

12

14

16

18

20

O
p
ti
m

a
lit

y
 g

a
p
 (

%
)

VRPPD 6-8 SRi

50%

10 minutes

2 minutes

40% / 60%

25% / 75%

10% / 90%

(c) SR-1*

0 100 200 300 400 500 600 700 800 900 1000

Iterations

0

2

4

6

8

10

12

14

16

18

20

O
p
ti
m

a
lit

y
 g

a
p
 (

%
)

VRPPD 6-8 SRP

50%

10 minutes

2 minutes

40% / 60%

25% / 75%

10% / 90%

(d) SR-P

Figure 12: Development of optimality gap during 100 iterations, where all runs of the instances 6-8
of CMTQ, CMTT and CMTH (LNU) are aggregated. For each method in each figure separately,
the quantiles of the results regarding the optimality gap after each iteration are given. The iteration
corresponding to a certain time limit is marked with a verticle line.

27

G Behavioural figures SDU VRPPD

0 100 200 300 400 500 600 700 800 900 1000

Iterations

0

2

4

6

8

10

12

14

16

18

20

O
p
ti
m

a
lit

y
 g

a
p
 (

%
)

VRPPD 4-5 SR2

50%

10 minutes

2 minutes

40% / 60%

25% / 75%

10% / 90%

(a) SR-2

0 100 200 300 400 500 600 700 800 900 1000

Iterations

0

2

4

6

8

10

12

14

16

18

20

O
p
ti
m

a
lit

y
 g

a
p
 (

%
)

VRPPD 4-5 SRC

50%

10 minutes

2 minutes

40% / 60%

25% / 75%

10% / 90%

(b) SR-C

0 100 200 300 400 500 600 700 800 900 1000

Iterations

0

2

4

6

8

10

12

14

16

18

20

O
p
ti
m

a
lit

y
 g

a
p
 (

%
)

VRPPD 4-5 SRi

50%

10 minutes

2 minutes

40% / 60%

25% / 75%

10% / 90%

(c) SR-1*

0 100 200 300 400 500 600 700 800 900 1000

Iterations

0

2

4

6

8

10

12

14

16

18

20

O
p
ti
m

a
lit

y
 g

a
p
 (

%
)

VRPPD 4-5 SRP

50%

10 minutes

2 minutes

40% / 60%

25% / 75%

10% / 90%

(d) SR-P

Figure 13: Development of optimality gap during 100 iterations, where all runs of the instances 4-5
of CMTQ, CMTT and CMTH (SDU) are aggregated. For each method in each figure separately,
the quantiles of the results regarding the optimality gap after each iteration are given. The iteration
corresponding to a certain time limit is marked with a verticle line.

28

H Behavioural figures LDU VRPPD

0 100 200 300 400 500 600 700 800 900 1000

Iterations

0

2

4

6

8

10

12

14

16

18

20

O
p
ti
m

a
lit

y
 g

a
p
 (

%
)

VRPPD 9-10 SR2

50%

10 minutes

2 minutes

40% / 60%

25% / 75%

10% / 90%

(a) SR-2

0 100 200 300 400 500 600 700 800 900 1000

Iterations

0

2

4

6

8

10

12

14

16

18

20

O
p
ti
m

a
lit

y
 g

a
p
 (

%
)

VRPPD 9-10 SRC

50%

10 minutes

2 minutes

40% / 60%

25% / 75%

10% / 90%

(b) SR-C

0 100 200 300 400 500 600 700 800 900 1000

Iterations

0

2

4

6

8

10

12

14

16

18

20

O
p
ti
m

a
lit

y
 g

a
p
 (

%
)

VRPPD 9-10 SRi

50%

10 minutes

2 minutes

40% / 60%

25% / 75%

10% / 90%

(c) SR-1*

0 100 200 300 400 500 600 700 800 900 1000

Iterations

0

2

4

6

8

10

12

14

16

18

20

O
p
ti
m

a
lit

y
 g

a
p
 (

%
)

VRPPD 9-10 SRP

50%

10 minutes

2 minutes

40% / 60%

25% / 75%

10% / 90%

(d) SR-P

Figure 14: Development of optimality gap during 100 iterations, where all runs of the instances 9-10
of CMTQ, CMTT and CMTH (LDU) are aggregated. For each method in each figure separately,
the quantiles of the results regarding the optimality gap after each iteration are given. The iteration
corresponding to a certain time limit is marked with a verticle line.

29

I Behavioural figures SC VRPPD

0 100 200 300 400 500 600 700 800 900 1000

Iterations

0

2

4

6

8

10

12

14

16

18

20

O
p
ti
m

a
lit

y
 g

a
p
 (

%
)

VRPPD 12,14 SR2

50%

10 minutes

2 minutes

40% / 60%

25% / 75%

10% / 90%

(a) SR-2

0 100 200 300 400 500 600 700 800 900 1000

Iterations

0

2

4

6

8

10

12

14

16

18

20

O
p
ti
m

a
lit

y
 g

a
p
 (

%
)

VRPPD 12,14 SRC

50%

10 minutes

2 minutes

40% / 60%

25% / 75%

10% / 90%

(b) SR-C

0 100 200 300 400 500 600 700 800 900 1000

Iterations

0

2

4

6

8

10

12

14

16

18

20

O
p
ti
m

a
lit

y
 g

a
p
 (

%
)

VRPPD 12,14 SRi

50%

10 minutes

2 minutes

40% / 60%

25% / 75%

10% / 90%

(c) SR-1*

0 100 200 300 400 500 600 700 800 900 1000

Iterations

0

2

4

6

8

10

12

14

16

18

20

O
p
ti
m

a
lit

y
 g

a
p
 (

%
)

VRPPD 12,14 SRP

50%

10 minutes

2 minutes

40% / 60%

25% / 75%

10% / 90%

(d) SR-P

Figure 15: Development of optimality gap during 100 iterations, where all runs of the instances 12,
14 of CMTQ, CMTT and CMTH (SC) are aggregated. For each method in each figure separately,
the quantiles of the results regarding the optimality gap after each iteration are given. The iteration
corresponding to a certain time limit is marked with a verticle line.

30

J Behavioural figures LC VRPPD

0 100 200 300 400 500 600 700 800 900 1000

Iterations

0

2

4

6

8

10

12

14

16

18

20

O
p
ti
m

a
lit

y
 g

a
p
 (

%
)

VRPPD 11,13 SR2

50%

10 minutes

2 minutes

40% / 60%

25% / 75%

10% / 90%

(a) SR-2

0 100 200 300 400 500 600 700 800 900 1000

Iterations

0

2

4

6

8

10

12

14

16

18

20

O
p
ti
m

a
lit

y
 g

a
p
 (

%
)

VRPPD 11,13 SRC

50%

10 minutes

2 minutes

40% / 60%

25% / 75%

10% / 90%

(b) SR-C

0 100 200 300 400 500 600 700 800 900 1000

Iterations

0

2

4

6

8

10

12

14

16

18

20

O
p
ti
m

a
lit

y
 g

a
p
 (

%
)

VRPPD 11,13 SRi

50%

10 minutes

2 minutes

40% / 60%

25% / 75%

10% / 90%

(c) SR-1*

0 100 200 300 400 500 600 700 800 900 1000

Iterations

0

2

4

6

8

10

12

14

16

18

20

O
p
ti
m

a
lit

y
 g

a
p
 (

%
)

VRPPD 11,13 SRP

50%

10 minutes

2 minutes

40% / 60%

25% / 75%

10% / 90%

(d) SR-P

Figure 16: Development of optimality gap during 100 iterations, where all runs of the instances 11,
13 of CMTQ, CMTT and CMTH (LC) are aggregated. For each method in each figure separately,
the quantiles of the results regarding the optimality gap after each iteration are given. The iteration
corresponding to a certain time limit is marked with a verticle line.

31

K Behavioural figures SNU VRPSPD

0 100 200 300 400 500 600 700 800 900 1000

Iterations

0

2

4

6

8

10

12

14

16

18

20

O
p
ti
m

a
lit

y
 g

a
p
 (

%
)

VRPSPD 1-3 SR2

50%

10 minutes

2 minutes

40% / 60%

25% / 75%

10% / 90%

(a) SR-2

0 100 200 300 400 500 600 700 800 900 1000

Iterations

0

2

4

6

8

10

12

14

16

18

20

O
p
ti
m

a
lit

y
 g

a
p
 (

%
)

VRPSPD 1-3 SRC

50%

10 minutes

2 minutes

40% / 60%

25% / 75%

10% / 90%

(b) SR-C

0 100 200 300 400 500 600 700 800 900 1000

Iterations

0

2

4

6

8

10

12

14

16

18

20

O
p
ti
m

a
lit

y
 g

a
p
 (

%
)

VRPSPD 1-3 SRC

50%

10 minutes

2 minutes

40% / 60%

25% / 75%

10% / 90%

(c) SR-1*

0 100 200 300 400 500 600 700 800 900 1000

Iterations

0

2

4

6

8

10

12

14

16

18

20

O
p
ti
m

a
lit

y
 g

a
p
 (

%
)

VRPSPD 1-3 SRP

50%

10 minutes

2 minutes

40% / 60%

25% / 75%

10% / 90%

(d) SR-P

Figure 17: Development of optimality gap during 100 iterations, where all runs of the instances
1-3 of CMTX and CMTY (SNU) are aggregated. For each method in each figure separately, the
quantiles of the results regarding the optimality gap after each iteration are given. The iteration
corresponding to a certain time limit is marked with a verticle line.

32

L Behavioural figures LNU VRPSPD

0 100 200 300 400 500 600 700 800 900 1000

Iterations

0

2

4

6

8

10

12

14

16

18

20

O
p
ti
m

a
lit

y
 g

a
p
 (

%
)

VRPSPD 6-8 SR2

50%

10 minutes

2 minutes

40% / 60%

25% / 75%

10% / 90%

(a) SR-2

0 100 200 300 400 500 600 700 800 900 1000

Iterations

0

2

4

6

8

10

12

14

16

18

20

O
p
ti
m

a
lit

y
 g

a
p
 (

%
)

VRPSPD 6-8 SRC

50%

10 minutes

2 minutes

40% / 60%

25% / 75%

10% / 90%

(b) SR-C

0 100 200 300 400 500 600 700 800 900 1000

Iterations

0

2

4

6

8

10

12

14

16

18

20

O
p
ti
m

a
lit

y
 g

a
p
 (

%
)

VRPSPD 6-8 SRi

50%

10 minutes

2 minutes

40% / 60%

25% / 75%

10% / 90%

(c) SR-1*

0 100 200 300 400 500 600 700 800 900 1000

Iterations

0

2

4

6

8

10

12

14

16

18

20

O
p
ti
m

a
lit

y
 g

a
p
 (

%
)

VRPSPD 6-8 SRP

50%

10 minutes

2 minutes

40% / 60%

25% / 75%

10% / 90%

(d) SR-P

Figure 18: Development of optimality gap during 100 iterations, where all runs of the instances
6-8 of CMTX and CMTY (LNU) are aggregated. For each method in each figure separately, the
quantiles of the results regarding the optimality gap after each iteration are given. The iteration
corresponding to a certain time limit is marked with a verticle line.

33

M Behavioural figures SDU VRPSPD

0 100 200 300 400 500 600 700 800 900 1000

Iterations

0

2

4

6

8

10

12

14

16

18

20

O
p
ti
m

a
lit

y
 g

a
p
 (

%
)

VRPSPD 4-5 SR2

50%

10 minutes

2 minutes

40% / 60%

25% / 75%

10% / 90%

(a) SR-2

0 100 200 300 400 500 600 700 800 900 1000

Iterations

0

2

4

6

8

10

12

14

16

18

20

O
p
ti
m

a
lit

y
 g

a
p
 (

%
)

VRPSPD 4-5 SRC

50%

10 minutes

2 minutes

40% / 60%

25% / 75%

10% / 90%

(b) SR-C

0 100 200 300 400 500 600 700 800 900 1000

Iterations

0

2

4

6

8

10

12

14

16

18

20

O
p
ti
m

a
lit

y
 g

a
p
 (

%
)

VRPSPD 4-5 SRi

50%

10 minutes

2 minutes

40% / 60%

25% / 75%

10% / 90%

(c) SR-1*

0 100 200 300 400 500 600 700 800 900 1000

Iterations

0

2

4

6

8

10

12

14

16

18

20

O
p
ti
m

a
lit

y
 g

a
p
 (

%
)

VRPSPD 4-5 SRP

50%

10 minutes

2 minutes

40% / 60%

25% / 75%

10% / 90%

(d) SR-P

Figure 19: Development of optimality gap during 100 iterations, where all runs of the instances
4-5 of CMTX and CMTY (SDU) are aggregated. For each method in each figure separately, the
quantiles of the results regarding the optimality gap after each iteration are given. The iteration
corresponding to a certain time limit is marked with a verticle line.

34

N Behavioural figures LDU VRPSPD

0 100 200 300 400 500 600 700 800 900 1000

Iterations

0

2

4

6

8

10

12

14

16

18

20

O
p
ti
m

a
lit

y
 g

a
p
 (

%
)

VRPSPD 9-10 SR2

50%

10 minutes

2 minutes

40% / 60%

25% / 75%

10% / 90%

(a) SR-2

0 100 200 300 400 500 600 700 800 900 1000

Iterations

0

2

4

6

8

10

12

14

16

18

20

O
p
ti
m

a
lit

y
 g

a
p
 (

%
)

VRPSPD 9-10 SRC

50%

10 minutes

2 minutes

40% / 60%

25% / 75%

10% / 90%

(b) SR-C

0 100 200 300 400 500 600 700 800 900 1000

Iterations

0

2

4

6

8

10

12

14

16

18

20

O
p
ti
m

a
lit

y
 g

a
p
 (

%
)

VRPSPD 9-10 SRi

50%

10 minutes

2 minutes

40% / 60%

25% / 75%

10% / 90%

(c) SR-1*

0 100 200 300 400 500 600 700 800 900 1000

Iterations

0

2

4

6

8

10

12

14

16

18

20

O
p
ti
m

a
lit

y
 g

a
p
 (

%
)

VRPSPD 9-10 SRP

50%

10 minutes

2 minutes

40% / 60%

25% / 75%

10% / 90%

(d) SR-P

Figure 20: Development of optimality gap during 100 iterations, where all runs of the instances
9-10 of CMTX and CMTY (LDU) are aggregated. For each method in each figure separately, the
quantiles of the results regarding the optimality gap after each iteration are given. The iteration
corresponding to a certain time limit is marked with a verticle line.

35

O Behavioural figures SC VRPSPD

0 100 200 300 400 500 600 700 800 900 1000

Iterations

0

2

4

6

8

10

12

14

16

18

20

O
p
ti
m

a
lit

y
 g

a
p
 (

%
)

VRPSPD 12,14 SR2

50%

10 minutes

2 minutes

40% / 60%

25% / 75%

10% / 90%

(a) SR-2

0 100 200 300 400 500 600 700 800 900 1000

Iterations

0

2

4

6

8

10

12

14

16

18

20

O
p
ti
m

a
lit

y
 g

a
p
 (

%
)

VRPSPD 12,14 SRC

50%

10 minutes

2 minutes

40% / 60%

25% / 75%

10% / 90%

(b) SR-C

0 100 200 300 400 500 600 700 800 900 1000

Iterations

0

2

4

6

8

10

12

14

16

18

20

O
p
ti
m

a
lit

y
 g

a
p
 (

%
)

VRPSPD 12,14 SRi

50%

10 minutes

2 minutes

40% / 60%

25% / 75%

10% / 90%

(c) SR-1*

0 100 200 300 400 500 600 700 800 900 1000

Iterations

0

2

4

6

8

10

12

14

16

18

20

O
p
ti
m

a
lit

y
 g

a
p
 (

%
)

VRPSPD 12,14 SRP

50%

10 minutes

2 minutes

40% / 60%

25% / 75%

10% / 90%

(d) SR-P

Figure 21: Development of optimality gap during 100 iterations, where all runs of the instances
12, 14 of CMTX and CMTY (SC) are aggregated. For each method in each figure separately, the
quantiles of the results regarding the optimality gap after each iteration are given. The iteration
corresponding to a certain time limit is marked with a verticle line.

36

P Behavioural figures LC VRPSPD

0 100 200 300 400 500 600 700 800 900 1000

Iterations

0

2

4

6

8

10

12

14

16

18

20

O
p
ti
m

a
lit

y
 g

a
p
 (

%
)

VRPSPD 11,13 SR2

50%

10 minutes

2 minutes

40% / 60%

25% / 75%

10% / 90%

(a) SR-2

0 100 200 300 400 500 600 700 800 900 1000

Iterations

0

2

4

6

8

10

12

14

16

18

20

O
p
ti
m

a
lit

y
 g

a
p
 (

%
)

VRPSPD 11,13 SRC

50%

10 minutes

2 minutes

40% / 60%

25% / 75%

10% / 90%

(b) SR-C

0 100 200 300 400 500 600 700 800 900 1000

Iterations

0

2

4

6

8

10

12

14

16

18

20

O
p
ti
m

a
lit

y
 g

a
p
 (

%
)

VRPSPD 11,13 SRi

50%

10 minutes

2 minutes

40% / 60%

25% / 75%

10% / 90%

(c) SR-1*

0 100 200 300 400 500 600 700 800 900 1000

Iterations

0

2

4

6

8

10

12

14

16

18

20

O
p
ti
m

a
lit

y
 g

a
p
 (

%
)

VRPSPD 11,13 SRP

50%

10 minutes

2 minutes

40% / 60%

25% / 75%

10% / 90%

(d) SR-P

Figure 22: Development of optimality gap during 100 iterations, where all runs of the instances
11, 13 of CMTX and CMTY (LC) are aggregated. For each method in each figure separately, the
quantiles of the results regarding the optimality gap after each iteration are given. The iteration
corresponding to a certain time limit is marked with a verticle line.

37

Q Decision tree VRPSPD

Figure 23: Decision tree with regards to the solution representation method in the VRPSPD in-
stances. Here, the left (pink aligned), middle (green aligned) and right (grey aligned) represent the
best solution representation methods in the long-run, the 10 minutes time limit and the 2 minutes
time limit cases respectively. All SR-i chosen methods represent SR-1*.

38

R Information of included code

In this Appendix, information on the included classes is provided.

• ExcelReader reads an Excel file from input to an array (acquired externally based on APACHE

POI package for Java users)

• ExcelWriter writes an ArrayList to an Excel file (acquired externally based on APACHE POI

package for Java users)

• PSOGeneral performs GLN-PSO with SR-1

• PSOImproved performs GLN-PSO with SR-1*

• PSOSR2 performs GLN-PSO with SR-2

• SRP performs GLN-PSO with SR-2

• SRV performs GLN-PSO with SR-C

• runnen enables us to run the PSO algorithms and reads the outcomes to an excel file

39

