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Abstract

I investigate similarities in the occurrences of earthquakes and financial market

crashes, specifically their self-exciting behavior. This paper revolves around the Hawkes

process, as it accounts for this behavior. Residual analysis of the maximum likelihood

estimated model for an S&P 500 dataset shows the self-enforcing characteristic of fi-

nancial market crashes, leading to the conclusion that financial market crashes follow a

Hawkes process. Furthermore, I confirm that this model is suitable for the investigation

of earthquake occurrences by estimating it for a dataset consisting of data about earth-

quakes in the vicinity of Japan. Evaluation of simulated data series that are created

using the estimated Hawkes process, is inconclusive in determining whether the data

contains the characteristics of the original datasets because of an error in the simulation

procedure.

The views stated in this thesis are those of the author and not necessarily those of Erasmus School of
Economics or Erasmus University Rotterdam.
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Modeling market crashes by assuming similarities with earthquakes in occurrence behavior

1 Introduction

Being able to predict a market crash in the medium-term future is beneficial for a number

of different people. Practically every person that has a connection to financial markets has

a lot to gain from knowing when large negative price movements will occur, from traders to

monetary policymakers at a central bank.

To be able to predict certain market crashes, one first has to understand what causes them.

Sornette (2003) lists five main reasons for crashes: computer trading, derivative securities

because they increase the risk in the US market even though they did not yet exist during

previous market crashes, illiquidity, trade, and budget deficits and overvaluation. The latter

does not seem to trigger market crashes every time. The most important reason that Sornette

(2003) listed, however, is the herding behavior of investors. This occurs when investors follow

others instead of thinking for themselves. The result is that market crashes can be considered

self-enforcing. There exist similarities between market crashes and earthquakes, in the sense

that once they happened, the chance exists that there will be aftershocks. Therefore, the use

of a model that allows for aftershocks can be beneficial in the modeling of market crashes.

Hence, for the modeling of the crashes, I will use the Epidemic-Type Aftershock Sequence

model (ETAS), which is developed by Ogata (1988). This model is widely used to investigate

earthquakes and their aftershock occurrences. In the ETAS model, the Hawkes process is

traditionally used to model the occurrences of earthquakes, and will now be used to model

the occurrences of market crashes. After a shock in the Hawkes model, the change of a new

shock increases, after which it slowly starts declining over time, thus mimicking the after-

shock behavior. This brings me to my research question:

Do the occurrences of financial market crashes follow a Hawkes process?

The ETAS model served many purposes besides modeling earthquakes. Balderama et al.

(2012), for example, used it to study the spread of the red banana plant, whose population

was increasing drastically in Costa Rica. Mohler et al. (2011) modeled crime using the ETAS

model. It has however also been exploited in the financial sector. It is used by Aı̈t-Sahalia et

al. (2015), Embrechts et al. (2011) and Grothe et al. (2014) to model the returns on indices,

while Bauwens and Hautsch (2009) used the Hawkes model to study the duration between

trades.

I investigate the fit of the Hawkes model for two types of data. The first of the two datasets

I use is the ”Catalog of Large Earthquakes in the Region of Japan From 1885 Through 1980”
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published by Utsu (1982). This includes every earthquake in the vicinity of Japan with a

magnitude greater or equal to 6. I use this dataset in order to confirm the suitability of the

Hawkes model for earthquake occurrences.

The second dataset is the set of historical prices of the S&P 500 index over the period January

2, 1957, to September 1, 2008. Analyzing the modeling performance of the Hawkes process

for this data answers the research question.

In order to get the best information with regards to market crashes, I only model the extreme

values of the returns, as proposed by Aı̈t-Sahalia et al. (2015).

Following Gresnigt et al. (2015), I perform the test for the goodness-of-fit for the estimated

models with the use of the residual analysis technique of Ogata (1988). To test whether

the residual process follows a Poisson distribution with intensity equal to 1, I apply the

Kolmogorov-Smirnov test. Furthermore, I perform a simulation study using the estimation

results in order to research whether simulated data shows the characteristics of the original

earthquake and market crash data.

The residual analyses confirm that the Hawkes model is a good fit for the earthquakes.

On top of that, I find out that the occurrences of financial market crashes can be described

by the Hawkes process. This fact confirms the self-exciting behavior of the crashes. These

results pave the way for the prediction of financial market crashes.

Due to an incorrect simulation procedure, I cannot provide any conclusions on whether the

data simulated with the use of the estimated Hawkes model possesses the same features as

the original data.

My paper is structured as follows. In Section 2, I describe the Hawkes process and the

applied techniques. The results are listed and discussed in Section 3, after which Section 4

concludes and proposes directions for further research.

2 Methodology

2.1 Self-excitement

A counting process is a form of point process. It counts the number of events over time. The

counting process N(t) denotes the number of events that occurred in the interval [0, t], while

N(s, t) does the same for the interval [s, t]. A counting process qualifies for the category
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”self-exciting point process” if for s < t < u

(1)cov(N(s, t), N(t, u) ) > 0,

where cov(X, Y ) is the covariance between X and Y (Stover, n.d.). The intuition behind

this definition is that the probability of future events increases with the occurrence of events

in the past. The aftershock behavior of earthquakes makes it interesting to look at models

that capture this aspect. An earthquake can trigger a subsequent earthquake, which in its

turn can cause another earthquake, and so on. As mentioned in the introduction, herding

behavior causes market crashes to show similarities with that of earthquakes. Given a certain

market crash, the probability of a next crash increases.

2.2 Hawkes’ point processes

Hawkes (1971) was the first to explicitly define a self-exciting point process model when

looking for a model that could capture this aspect of earthquake occurrences. This resulted

in the name Hawkes process. Ogata (1988) compared a Hawkes process and several other

models with respect to their ability to predict earthquakes. This led to the conclusion that

the proposed Hawkes model, defined as Epidemic Type Aftershock-Sequences (ETAS) model,

is superior. Over the years, many different extensions of the ETAS model have been used in

the field of seismology, and are still of frequent occurrence (Liniger, 2009).

Hawkes models take into account the positive relationship between the arrival of one event

and the probability of subsequent arrivals. A Hawkes process is a non-homogeneous Poisson

process. This means that its intensity rate is a function of time. The history of events before

a certain point in time determines the chance of a new event at that point. The conditional

intensity of jump arrivals following a Hawkes process is given by

(2)λ(t) = µ+

∫ t

0

g(t− s)dN(s),

where µ is the constant part of the intensity, N(s) is a counting process and g(t) is called the

response function (Ozaki, 1979). In order to account for the elastic aftereffect described by

Lomnitz (1974), I set
(3)g(t) = ae−αt.

This effect is based on the theory of elastic rebound. It concerns the situation where an

object, in this case a tectonic plate, gets forcibly deformed within its elastic limits. When

this happens, a certain amount of time passes before the plate returns to its initial form.

This is called the elastic aftereffect. In financial terms, this effect can be interpreted as the

time it takes for stock prices to return to their normal level after a market crash.
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The efficient market hypothesis (EMH) is a theory that states that stock prices are always

fair, or in other words, on their true level. This could only be the case when all available

information is reflected in these prices. This would mean that it is impossible for any investor

to generate profits by buying undervalued or selling overvalued stocks. The behavior of stock

prices after a market crash, however, is an indication that prices can deviate from their fair

level. This is in contradiction with the EMH. The fact that Hawkes models account for an

effect of market crashes that influences stock prices over a longer period of time, implies that

not all information is instantly reflected in stock prices, thus contravening the EMH.

In the case of an event at time t, equation (2) shows that dN(t) = 1 and consequently

dλ(t) = g(0) = a. This event has a decreasing influence on λ(t), such that at time u > t the

increase in λ(t) caused by the event at time t is equal to g(u− t) = ae−α(u−t) (Bacry et al.,

2012). This shows the self-excited aspect of the process.

2.3 Estimation

In the early applications of Hawkes processes, the parameters of the models were often

estimated through spectral analysis techniques, but this grew less popular over time. The

maximum likelihood method for point processes that is developed by Rubin (1972) was further

investigated and applied to Hawkes models by Ozaki (1979). When performing maximum

likelihood estimation, one focuses on the likelihood function

(4)L(θ|y) = f(y|θ),

where θ is the vector of parameters and y is the observed data. The likelihood function

expresses the likelihood of the parameters in θ given the observed data. By maximizing the

likelihood function, one chooses the parameters that make the observed data most likely.

This means that these parameters have the largest probability of being equal to the parame-

ters in the data generating process. The functions L(θ|y) and log(L(θ|y)) are monotonically

related. This means that when L(θ̂1|y) < L(θ̂2|y), then log(L(θ̂1|y)) < log(L(θ̂2|y)). The

consequence of this fact is that maximizing either one of these functions will give the same

parameter estimates. Since the optimization of the log-likelihood function log(L(θ|y)) re-

quires less computational power, this is the function that is used in maximum likelihood

estimation (Myung, 2003). Given the observed events at time t1, t2.., tn in the interval [0, T ]

the log-likelihood function is given by

(5)logL(θ|t1, ..., tn) =
n∑
i=1

log( µ+

∫ ti

0

g(ti − s)dN(s) )−
∫ T

0

( µ+

∫ t

0

g(t− s)dN(s) )dt,
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where θ = (µ, a, α)T is the parameter vector (Rubin, 1972). After substituting and rewriting

this comes down to

(6)

logL(θ|t1, ..., tn) =
n∑
i=1

log( µ+

∫ ti

0

ae−α(ti−s)dN(s) )−
∫ T

0

( µ+

∫ t

0

ae−α(t−s)dN(s) )dt =

n∑
i=1

log( µ+
∑
tj<ti

ae−α(ti−tj) )− ( µT +
∑
tj<T

a

α
( 1− e−α(T−tj) ) ).

In order to find the parameter estimates, the maximum of the log-likelihood function has

to be determined. To find an extremum, i.e. maximum or minimum, of a continuous and

differentiable function, the chosen parameters must result in a first derivative that is equal

to zero. This is called the likelihood equation. Therefore, the set of likelihood equations is

given by

(7)
δlogL(θ|t1, ..., tn)

δθ
= 0.

See the appendix for the three likelihood equations of the specified Hawkes process. When

the log-likelihood function is non-linear and contains multiple parameters, it is often not

possible to determine the solutions to the likelihood equations analytically, like in this case.

The best approach is then to use a nonlinear optimization algorithm.

While Newton-type methods calculate the Hessian matrixH directly, quasi-Newton methods

approximate the Hessian in order to be more computational and time-efficient. This Hessian

matrix consists of the second-order derivatives. Multiple methods for estimating H have

been proposed over the years, of which the one created by Broyden, Fletcher, Goldfarb, and

Shanno (BFGS algorithm) is widely regarded as the most effective. In this method, H0 is

a random symmetric, positive definite matrix. The updating of the approximated Hessian

then happens in the following manner:

(8)Hk+1 = Hk +
qkq

T
k

qTk sk
− Hksksk

THT
k

sTkHksk
,

with
(9)qk = ∇f(xk+1)−∇f(xk),

(10)sk = xk+1 − xk

(Mathworks, n.d.). As Matlab only provides the BFGS algorithm as part of a minimiza-

tion algorithm, I minimize −logL(θ|t1, ..., tn), which yields the same parameter estimates as

maximizing logL(θ|t1, ..., tn).
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2.4 Residual analysis

In order to assess the goodness-of-fit of the proposed model, I perform the residual analysis

Ogata (1988) describes. As mentioned before, I assume the data {ti} is generated by a self

exciting point process with the conditional intensity given by equation (2). Now consider the

transformed times {τi}, which are determined by

(11)

τi =

∫ ti

0

λ(t)dt

=

∫ ti

0

( µ+

∫ t

0

ae−α(t−s)dN(s) )dt

=

∫ ti

0

µdt+

∫ ti

0

∫ ti

s

ae−α(t−s)dtdN(s)

= µti +
∑
tj<ti

(
−a
α
e−α(ti−tj) +

a

α
).

According to Papangelou (1972), the transformed times {τi} follow a stationary, homogeneous

Poisson(1) process. The transformed data can loosely be interpreted as the residuals or noise

of the original point process {ti}. That is why {τi} is also called the residual process.

Figure 2.1 shows a plot of the timeline of the earthquake times, as well as the sequence of

transformed times. For the purpose of visibility, I plot only a part of the full sequences. I

choose observation 271-308 for both plots, because these observations in {ti} clearly show the

clustering characteristic of the earthquake occurrences times. At the same time, it is visible

that the residual process {τi} is ”spread out” much more evenly over time. This can be an

indication that they follow a homogeneous Poisson process.

Figure 2.1: A timeline of the same 38 events for both the earthquake sequence and the

residual process of this sequence
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When the estimated conditional intensity denoted by λ(t, θ̂) is a good approximation

of λ(t), then τi(t, θ̂) should have the characteristics of a Poisson(1) process. If this is the

case, then the transformed interarrival times, ζi = τi+1 − τi, are independent exponential

random variables with mean equal to 1 (Gresnigt et al., 2015). In order to verify this, I

perform a Kolmogorov-Smirnov test to obtain a test decision for the null hypothesis that the

transformed interarrival times follow an exponential distribution with intensity 1. For the

Kolmogorov-Smirnov test, I use Matlab to determine the empirical cumulative distribution

function, which I will denote by F̂ . The one-sample Kolmogorov-Smirnov test statistic is

the absolute value of the maximized difference between F̂ and the hypothetical cumulative

distribution function, denoted by G (Massey Jr., 1951). In this situation, G is the cumulative

distribution function of the exponential(1) distribution, i.e.

(12)KS = maxx( |F̂ (x)−G(x)| ).

3 Results

3.1 Application to earthquake data

Following Ogata (1988), I use the earthquake dataset constructed by Utsu (1982). It contains

information about every earthquake within the ”off Tohoku district” in the Pacific Ocean

near Japan for the period of 1885 until 1980, provided the earthquake had a magnitude equal

to or larger than 6.0. The district is located within the Circum-Pacific seismic belt, where

the Pacific Plate subducts underneath the Eurasian plate. This causes the district to suffer

from earthquakes frequently.

Performing maximum likelihood estimation on the dataset using the previously specified

Hawkes model provides the following estimates:

Table 3.1: Maximum likelihood estimation results of the Hawkes model applied to the earth-

quake data

µ̂ â α̂ -LogL AIC

Value 6.71E-06 0.000127 0.000426 5796.33 11598.7

These are the parameters estimated for equation (2). As can be seen in this equation,

µ̂ is the constant part of the estimated conditional intensity rate λ(t, θ̂), and â and α̂ the

estimates for the parameters in the response function.

I derive the standard errors for these estimates from the Hessian matrix of the log-likelihood,
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evaluated at the optimal point. The negative of the Hessian at this point is called the

observed Fisher information matrix I(θ̂). Assuming asymptotic normality for the maximum

likelihood estimates with as expected value the true parameter values and variance equal to

the inverse of the observed Fisher information criterion is denoted as

(13)θ̂
a∼ N ( θ, [I(θ̂)]

−1
).

This shows that the standard errors of the estimates are equal to the square roots of the

diagonal elements of this asymptotic covariance matrix, i.e.

(14)SE(θ̂) =
1√
I(θ̂)

,

(Pawitan, 2013). In order for a certain point to qualify as a local minimum, it is a necessary

condition that the Hessian at that point is positive semidefinite. Intuitively, this means

that the log-likelihood will not decrease in any direction as seen from that point. The

approximated Hessian for this model, however, does not meet this condition. This results in

standard errors for the maximum likelihood estimates that are imaginary numbers. I state

with fair certainty that the estimated parameters do not provide a local minimum, even

though the given point might be close to a minimum. There are several possible causes for

this problem. The first focuses on the fact that the BFGS algorithm is of the quasi-Newton

type, and thus does not use the actual Hessian, but merely an approximation. It is possible

that the actual Hessian would positive semidefinite at point θ̂.

A second, more likely explanation is that the minimization algorithm that I use met one of its

stopping conditions before finding an actual minimum. This can occur when for instance the

function is very flat, but still decreasing around the possible minimum. If an iteration of the

minimization does not result in a sufficient decrease in the objective function, the algorithm

is terminated.

The consequence for this estimation is the absence of standard errors for the estimates, which

are most likely not an optimal solution for the maximum likelihood estimation.

Since I use the same dataset as Ogata (1988) and the estimating approach is similar, it is

interesting to compare the results to the ones listed in this paper. Unfortunately, Ogata

(1988) does not list the parameter estimates, but only the log-likelihood evaluated at the

minimum. For the same response function I assume in the Hawkes process, equation (3),

Ogata (1988) lists the negative log-likelihood as (−logL = 2288.4). This differs greatly

from the resulting log-likelihood (−logL = 5796.33) in this paper. Comparing the Akaike

information criterion (AIC) of the two papers provides an insight into which model has the

better fit for the data. Since the same model is used in both papers, a higher log-likelihood

G. C. Visser 8
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results in a higher AIC. However, since not only the model is identical but also the used

dataset, the reasonable expectation would be that the AICs of the models would be close to

each other. That is why an AIC of 4582.8 for Ogata (1988) against 11598.7 for my model is

another surprising result.

Assuming that the same equation (6) is used for the log-likelihood, this is an indication of

substantially different parameter estimates. On top of that, the AICs suggest that the model

Ogata (1988) estimates, is superior in terms of fitting the dataset. This is remarkable as the

models are supposed to be each other’s equivalent.

A possible explanation for this observation lies in the usage of the dataset, which lists the

earthquake occurrence times down to the minute. If Ogata (1988) chose to set the interval

lengths to daily or hourly instead of by the minute as I do in this paper, this causes different

results.

Another possible cause of these deviant results I consider more plausible is the fact that the

found solution for the minimization of the negative log-likelihood function does not actually

provide a minimum, as discussed before. This results in an estimated model that is inferior

to a model that has estimated parameters that do provide a local minimum.

3.2 Application to S&P 500 financial data

Besides the earthquake data, I use the described methodology on the financial dataset, con-

sisting of the price levels of the S&P 500 index for the period January 2, 1957, to September

1, 2008. For my research, I consider the returns of the index, given by

(15)Rt =
pt − pt−1

pt−1

× 100,

where pt is the closing price of the S&P 500 index on day t, adjusted for dividends and

splits. The corresponding set of returns consists of 13005 data points. It is necessary to

decide what classifies as a market crash in terms of returns. Following Gresnigt et al. (2015),

I set the 95% quantile of negative returns as market crashes. This results in a total of

650 crashes. Performing maximum likelihood estimation on these observations provided the

following estimates for the Hawkes model specified by equation (2):

Table 3.2: Maximum likelihood estimation results of the Hawkes model applied on the S&P

500 market crash data

µ̂ â α̂ -LogL AIC

Value
0.0120

(0.0017)

0.0304

(0.0044)

0.0397

(0.0061)
2355.69 4717.38
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Unfortunately, it is not possible to compare these results directly with those listed by

Gresnigt et al. (2015). While several models are estimated in the aforementioned paper, the

one specified by equation (2) is absent. It is possible however to compare the performance

of the model I estimate with that of the other models of Gresnigt et al. (2015) by means of

their AIC. These indicate that my model is of a higher quality for the financial dataset, as it

has a lower AIC than any one of the models estimated by Gresnigt et al. (2015).

Even though the dataset I use consists of returns from the same index, over the same period,

it consists of around 700 fewer returns than the one Gresnigt et al. (2015) uses. This is

possibly due to the fact that Gresnigt et al. (2015) add stock price levels to the dataset for

the national holidays, which are not trading days, for example the prices of the day before.

This might contribute to part of the difference in the results.

3.3 Residual Analysis

When the Kolmogorov-Smirnov test statistic, given by equation (12), becomes larger than

the approximated critical value, it means that the maximum difference between the empirical

and hypothetical cumulative distribution function becomes too large for it to be likely that

the data is generated by the process that I assume under the null hypothesis. Depending

on the chosen significance level and the calculated p-value, the decision is made whether or

not the null hypothesis is rejected. I set the significance level equal to 0.05, which is often

considered to be the default level.

3.3.1 Earthquake data

In order to be able to judge the fit of the Hawkes model for the earthquake data, I perform a

residual analysis on this dataset. The results for the Kolmogorov-Smirnov test with the null

hypothesis that the transformed times follow a Poisson(1) process are listed below:

Table 3.3: Results of the Kolmogorov-Smirnov (K-S) test with the null hypothesis that the

transformed interarrival times of the earthquakes are exponential(1) random variables

Approximated critical value K-S test statistic p-value

Value 0.0615 0.0586 0.0700

These results indicate that even though the estimates are suboptimal and the model has

a larger AIC than the ones Ogata (1988) tests, it does seem to fit the data reasonably well.

The results lead to the test decision of not rejecting the null hypothesis that the transformed
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interarrival times are independent exponential(1) random variables, or equivalently, that the

transformed times follow a homogeneous Poisson process with intensity 1. This means that

at a 5% level, the earthquake occurrences do not deviate significantly from the Hawkes point

process model specified by equation (2) and the estimated parameters in table 3.1.

3.3.2 S&P 500 financial data

I perform the same residual analysis on the S&P 500 financial data, to evaluate the goodness-

of-fit of the Hawkes model. The results for the Kolmogorov-Smirnov test with the null

hypothesis that the transformed times follow an unit Poisson process are listed below:

Table 3.4: Results of the Kolmogorov-Smirnov (K-S) test with the null hypothesis that the

transformed interarrival times of the market crashes are exponential(1) random variables

Approximated critical value K-S test statistic p-value

Value 0.0530 0.0514 0.0630

These results lead to the conclusion that the Hawkes point process model specified by

equation (2) and the estimates in table 3.2, fits the S&P 500 data well enough for me not to

dismiss it based on this test. I do not reject the null hypothesis that the transformed times

follow a homogeneous Poisson process with intensity 1. That is, the negative returns above

the 95% quantile, that I consider as crashes, do not deviate significantly from the model at

a 5% level.

3.4 Simulation study

In order to simulate the times at which an event happens according to the estimated Hawkes

model, I follow the procedure Gresnigt et al. (2015) describes:

1. Since the time of the first event is not influenced by any other event occurrences, the

expected time until the first event t1 is exponentially distributed with intensity µ̂.

2. For every tn after t1, I calculate the probability Pno event that there is no event in the

interval (tn−1, tn).

3. Draw a number u from a uniform distribution on the interval (0, 1).

4. If u > Pno event, an event occurs at tn. If u < Pno event, do nothing.

5. Repeat until tn = T .

G. C. Visser 11
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Pno event for the interval (tn−1, tn) is the probability of no event occurring in said interval.

This probability is defined as

Pno event = P (N(tn)−N(tn−1) = 0 )

(16)
= 1− exp(−

∫ tn

tn−1

λ(t) )

= 1− exp( (µtn−1−µtn) −
∑

tj<tn−1

(− a
α
e−α(tn−tj) +

a

α
e−α(tn−1−tj) ) − a

α
e−α(tn−tn−1) +

a

α
).

For each of the two datasets used, I simulate 10,000 new datasets using the estimated param-

eter values as listed in 3.1 and 3.2. Over these new datasets I determine the new estimates

for the parameters. For each of the three parameters, I take the average of the 10,000 values

and compare them to the real values used in the data generating process. These results are

listed below.

3.4.1 Earthquake data

Table 3.5: Results of maximum likelihood estimation of the Hawkes model for the simulated

earthquake datasets and p-values for the t-tests with null hypothesis that the estimated

parameters are equal to the data generating parameters

µ a α

true value 6.71e-06 0.000127 0.000426

estimated value
5.41e-08

(2.77e-08)

0.775

(0.420)

0.546

(0.264)

p-value < 0.00001 < 0.00001 < 0.00001

It can be seen that the estimated values deviate from the true data generating parameters.

I test whether these differences are significant, by means of performing two-tailed t-tests.

The null hypothesis in these tests is that the estimated parameters are equal to their ”true”

counterparts in the data generating process. The p-values for these tests are listed in table

3.5 as well, showing that all three estimated parameters differ significantly from their true

value.
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3.4.2 S&P 500 financial data

Table 3.6: Results of maximum likelihood estimation of the Hawkes model for the simulated

S&P crash datasets and p-values for the t-tests with null hypothesis that the estimated

parameters are equal to the data generating parameters

µ a α

true value 0.0120 0.0304 0.0397

estimated value
1.11e-04

(4.64e-05)

0.272

(0.125)

0.308

(0.161)

p-value < 0.00001 < 0.00001 < 0.00001

For this dataset, I observe from table 3.6 that the estimated values are different from the true

values as well. Furthermore, the p-values of the t-tests show that again, these differences are

significant.

Neither the results of the simulation of the earthquake occurrences, nor those of the S&P 500

crashes are in accordance with expectations. This is most likely due to an error I make in

calculating the probabilities of no event happening given by equation (16). When evaluating

the probability, it becomes clear that it starts out small, but then increases monotonically

in N(s). It does not provide the intended characteristic of self-exciting behavior, since the

probability of a subsequent event decreases every time an event occurs. This results in

simulated datasets with events clustered at the beginning of the sample period. After a

certain point the probability of an event happening becomes so small, that no more events

are generated. This point is reached in such a fast manner, that for the 10,000 S&P 500 crash

simulations, the latest simulated crash is on average at day 127. This is a clear indication

of a faulty simulation, considering that the sample period is [0, 13005]. The average number

of generated crashes is 28, against 650 in the estimation sample. For the earthquake data,

the average last simulated earthquake is at minute 149534, which is at about 0.3% of the

total sample period [0, 50490720]. The average number of simulated earthquakes for the

10,000 earthquake simulations is 127, against 483 for the estimation sample. To give a visual

representation of the problem with the simulated datasets, I plot the first simulation for the

S&P data. This is shown in figure 3.1.
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Figure 3.1: A timeline of the 32 market crashes in the first simulated S&P crashes dataset

As the expected time until the first event is exponentially distributed with intensity µ̂,

t1 = 84 for every financial simulation. As the last simulated crash in this dataset is at t = 125,

the horizontal axis is bounded at t = 200 in this plot. I am not able to make conclusions from

these results, as they are erroneous. The most conspicuous improvement for this procedure

is to correctly calculate the probability given by equation (16).

4 Conclusion

This paper investigates the similarities in the behavior of stock prices around market crashes

and that of earthquakes. At the center of this research are the Hawkes point process and the

question of whether this model can be used to describe financial market crashes. In previ-

ous papers, this process has been used to describe earthquake occurrences. Its conditional

intensity includes a constant part and a part called the response function, that is affected by

previous occurrences. Events can cause subsequent events, while this probability decreases

as time passes after the original event, causing a clustering characteristic.

The model is first applied to an earthquake dataset, consisting of every earthquake with a

magnitude of 6 or higher, that occurred in the vicinity of Japan. The maximum likelihood

parameter estimates are used to construct the residual process, which shows that the model

possesses a good fit for the data. This confirms the self-exciting behavior of earthquakes.

The same is done for an S&P 500 index dataset, containing daily returns from a period of

approximately 52 years. The model is applied to the 95% quantile of extreme negative re-

turns. Again, the residual analysis confirms that the maximum likelihood estimated Hawkes

model that accounts for self-enforcing behavior is a good fit for the data.
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For both datasets, the parameter estimates are used to generate 10,000 new datasets, 20,000

in total, according to the algorithm Gresnigt et al. (2015) describes. Over these datasets,

the parameters are once more estimated using maximum likelihood, and their average is

compared with the true values. For both datasets, these estimates differ significantly from

their counterparts in the data generating process. This is the result of a mistake in the sim-

ulation procedure, in particular at the calculation of the probability of no event happening

in a certain interval. This causes the simulated datasets to consist of fewer events than the

estimation samples, all clustered at the beginning of the sample period. For the simulation

results to be useful, the probability of no event happening in a certain interval needs to be

determined accurately. Unfortunately, it is not possible to achieve this within the given time

span for this thesis.

I conclude that the occurrences of financial market crashes follow a Hawkes process. This

finding can be used in further research to make predictions about the probabilities of crashes

in the future.

More research on this topic can prove to be interesting in multiple directions. The first option

is to incorporate different response functions and compare these with the model used in this

paper by means of their Akaike information criterion. Besides that, further investigation of

the simulated series is interesting, in order to analyze whether they possess the major features

that characterize the Hawkes process. Lastly, the models could be applied to high-frequency

financial data.
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5 Appendix

5.1 Likelihood equations

(17)
δLogL

δµ
=

n∑
i=1

1

µ+
∑

tj<ti
ae−α(ti−tj)

− T

= 0.

(18)
δLogL

δa
=

n∑
i=1

∑
tj<ti

e−α(ti−tj)

µ+
∑

tj<ti
ae−α(ti−tj)

−
∑
tj<T

1

α
( 1− e−α(T−tj) )

= 0.

(19)
δLogL

δα
= −

n∑
i=1

∑
tj<ti

ae−α(ti−tj) × (ti − tj)
µ+

∑
tj<ti

ae−α(ti−tj)
−

∑
tj<T

a

α
( (

1

α
+ (T − tj))e−α(T−tj) −

1

α
)

= 0.

5.2 Matlab codes

The matlab codes that I used to perform my research are included in a zip-file. Every file is

briefly explained below.

• createData.m transforms the dataset given by (Ogata, 1988) into a vector containing

the event occurrence times.

• createTransformedTimes.m calculates the transformed times τi of the sequence ti, the

interarrival times ζi and performs the Kolmogorv-Smirnov test specified in the text.

• dummy.m is used in simulation.m to return a boolean that is true if an event occurs

at a certain time, and false otherwise.

• fixSPData.m transforms the pricelevels of the SP 500 index into returns.

• getParametersSimulatedSeries.m performs MLE on the 10,000 simulated datasets.

• plotting.m plots an example of the earthquake times against their transformed times.

• plottingSimulaties.m plots the first simulated S&P crash dataset.

• simulation.m simulates 10,000 datasets using the parameters estimated for the Hawkes

model.

• thesis.m performs MLE for the Hawkes model.
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