
Evaluating Clustering Algorithms

and Autoencoders for Segmenting

Customers in the Tourism Domain

Author
Mark Riezebos

450121

Bachelor Thesis Econometrics and Operations Research∗

Supervisor
Utku Karaca

Second assessor
Anoek Castelein

Erasmus University Rotterdam
Erasmus School of Economics

July 7, 2019

∗The views stated in this thesis are those of the author and not necessarily those
of Erasmus School of Economics or Erasmus University Rotterdam.

Abstract

Nowadays, recommender systems are used to give customers personalized recommenda-
tions on where to go on vacation, based on social media data. However, the collaborative
filtering algorithms which are used by these recommender systems face scalability problems
because of the exponential growth in the amount of social media data. Therefore, in this the-
sis we compare different clustering algorithms in order to segment customers in the tourism
domain. We also use autoencoders as a dimensionality reduction technique for the consid-
ered data sets, with the aim of filtering out noise in the data and improving the performance
of the clustering algorithms. The results show that the k-means algorithm, the k-medoids
algorithm, and the hierarchical clustering algorithm with either complete or Ward linkage
are the clustering algorithms which in general perform the best. Which of these algorithms
to use depends on the data set. The results also show that autoencoders are able to improve
the performance of the clustering algorithms, especially for large data sets.

2

Contents

1 Introduction 4

2 Related work 5

3 Data description 6

4 Methodology 6
4.1 Data cleaning and normalizing . 7
4.2 Clustering algorithms . 7

4.2.1 Partitioning clustering . 8
4.2.1.1 K-means . 8
4.2.1.2 K-medoids . 8
4.2.1.3 Clustering for Large Applications (CLARA) 9
4.2.1.4 Fuzzy c-means (FCM) . 9

4.2.2 Hierarchical clustering . 10
4.2.3 Density-based clustering . 11

4.2.3.1 DBSCAN . 11
4.2.3.2 OPTICS . 12

4.3 Autoencoders . 13
4.4 Evaluation measures . 17

5 Results 18

6 Conclusion and future work 22

3

1 Introduction

Tourism has globally grown above average at approximately 4% per year for eight straight years
since 2010 [1]. Also, the world’s top 5 tourism spending countries together spent around $581
billion on tourism in 2017. Therefore, tourism can be considered as an important source of
income for many people worldwide. However, in many cases tourists are faced by the following
problem.

Suppose one is planning to go on vacation, but (s)he does not yet know the destination of
the trip. One option is to gather information from social media and the internet on multiple
destinations, and make a decision based on this information. However, this approach is very
time consuming and therefore not very appealing to customers. This is where recommender
systems come into the picture. Based on the historical behaviour of customers on social media
and the internet, recommender systems are able to give customers personalized recommendations
on where to go on vacation.

These recommender systems are able to process big volumes of data, oftentimes making
use of collaborative filtering algorithms [2, 3]. However, social media and the internet have
caused an exponential growth in the amount of data to be processed, making collaborative
filtering recommender systems computationally expensive, thus leading to scalability problems
[4]. The proposed solution by the authors of [5] to these scalability problems is to make use
of clustering algorithms. These clustering algorithms are incorporated in recommender systems
by only making personalized recommendations within relatively small clusters. To be specific,
the authors of [5] use partitioning clustering algorithms for segmenting customers in the tourism
domain, based on social media data.

We expand the work of [5] in this thesis by comparing the performance of the proposed
partitioning clustering algorithms to hierarchical clustering algorithms as well as density-based
clustering algorithms. However, these clustering algorithms may suffer from scalability problems
due to the high dimensions of some of the data sets encountered in social media data. Therefore,
we employ deep learning and autoencoders as a dimensionality reduction technique to further
boost the performance of the clustering algorithms used in this thesis. This will also help to deal
with the presence of noise and outliers in large data sets, as it is likely that the encoding of a
data set will filter out the noise.

From the previous, it follows that the main research question that we investigate in this thesis
is:

“How to devise a clustering algorithm for segmenting customers in the tourism domain, based
on social media data?”

In order to answer this main research question, we investigate the following sub-questions:

• “What type of clustering algorithm should be used for effectively segmenting customers in
the tourism domain, based on social media data?”

• “How do dimensionality reduction techniques affect the performance of clustering algorithms
in the tourism domain?”

4

The results in section 5 show that the clustering algorithms which perform the best in general
are the k-means algorithm, the k-medoids algorithm, and the hierarchical clustering algorithm
with either complete or Ward linkage. Also, it shows that, especially for large data sets, it is
possible to improve the performance of the clustering algorithms by using autoencoders to reduce
the dimensionality of the data.

This thesis is structured as follows. An overview of existing related literature is given in
section 2. In section 3, we give a description of the data used. The methods used in order to
answer the research question are discussed in section 4. Section 5 presents the results obtained
by the clustering algorithms and autoencoders. We draw some final conclusions in section 6.
There, we also discuss limitations of the research being done in this thesis, and we give some
suggestions for future research.

2 Related work

A lot of research has been done with respect to (collaborative filtering) recommender systems
[6], which are also used in various other applications than tourism, such as e-commerce and
movies [7, 8, 9]. There has even been a competition called the “Netflix Prize”, with the target
of developing the best collaborative filtering algorithm for predicting user ratings of movies [10].
The winner of this competition, a team called “BellKor’s Pragmatic Chaos”, was awarded a
sum of $1,000,000 [11]. Recommender systems have also been developed using other algorithms
than collaborative filtering, such as recommender systems based on matrix factorization models
[12], content-based recommendation, knowledge-based recommendation, or hybrid models which
combine collaborative filtering and knowledge-based recommendation [13].

Clustering algorithms can be divided into two types: partitioning clustering algorithms and
hierarchical clustering algorithms [14]. In the field of partitioning clustering algorithms, methods
have been developed for effectively clustering documents with high dimensional feature spaces
[15]. These clustering techniques are based on generalizations of graph partitioning. Recent de-
velopments on hierarchical clustering have shown that a proper objective function, combined with
a simple recursive sparsest-cut based approach for similarity-based hierarchical clustering, and a
classic average-linkage approach for dissimilarity-based hierarchical clustering, yields relatively
efficient results [16].

More novel clustering algorithms, compared to the standard partitioning and hierarchical
clustering algorithms, make use of incorporated dimensionality reduction techniques. One of
these algorithms is the spectral clustering algorithm [17]. This algorithm derives matrices from
the data under consideration, and uses eigenvectors of the matrices in order to perform di-
mensionality reduction techniques before the actual clustering is done. Another solution to the
scalability problems that are oftentimes encountered in clustering, is called canopy clustering [18].
Its central idea is that it efficiently divides the data into overlapping subsets, called canopies, by
using a cheap, approximate distance measure.

Next to dimensionality reduction techniques which are incorporated into clustering algo-
rithms, the field of dimensionality reduction techniques is a well-studied research topic on its
own as well. One of the most traditional dimensionality reduction techniques is principal compo-
nent analysis [19]. The main idea of principal component analysis is to transform the data into a

5

new set of variables (called the principal components). These principal components should then
be uncorrelated, and ordered in such a way that most of the variation present in the entire data
set is captured by the first few variables. An extension of principal component analysis, called
kernel principal component analysis, which is proposed in [20], makes use of an integral operator
kernel function to efficiently compute the principal components. When the situation occurs in
which the data consists of non-negative signals only, it has been shown that non-negative matrix
factorization is a useful dimensionality reduction technique [21]. Non-negative matrix factoriza-
tion decomposes the non-negative data matrix into the product of two other non-negative data
matrices. The autoencoder technique which we use in this thesis for dimensionality reduction,
has also been used in other applications like noise reduction and speech enhancement [22]. For
an overview of nonlinear dimensionality reduction techniques, one could consider the overview
provided by [23].

3 Data description

The data used to evaluate the algorithms described in section 4 consists of three different data
sets of varying sizes. These are the same data sets as the ones which are used in [5].

The first data set we are presented with is the so called BuddyMove1 data set, which contains
the number of reviews for 6 different destination categories across South India per reviewer.
These numbers of reviews per reviewer are collected from more than 1500 reviews originating
from HolidayIQ.com, during a period which lasted until October 2014. The BuddyMove data set
contains 249 observations on 7 attributes (the first attribute is a unique user ID).

The second data set is collected from TripAdvisor, and it contains average user reviews on
10 different destination categories across East Asia. Each of the single review ratings is either
“Terrible” (0), “Poor” (1), “Average” (2), “Very Good” (3), or “Excellent” (4). We will refer to
this data set as the TripAdvisor2 data set, which consists of 980 observations on 11 attributes
(the first attribute represents a unique user ID).

The third and largest data set we consider contains average user ratings from Google reviews
on attractions from 24 different categories across Europe. The individual user ratings range from
1 (“Terrible”) to 5 (“Excellent”). This third data set will be referred to as the Google3 data set,
containing 5456 observations on 25 attributes (again the first attribute is a unique user ID).

A summary of the three data sets and information on the individual attributes are provided
in Table A1 (see Appendix A).

4 Methodology

In this section, we describe the methods used in order to answer the main research question
and its sub-questions. In section 4.1, we show how we deal with missing values in the data,
and why we normalize the data before clustering. The clustering algorithms which serve to
segment customers of the data sets, are discussed in section 4.2. In section 4.3, we present the

1The BuddyMove data set is available at https://archive.ics.uci.edu/ml/datasets/BuddyMove+Data+Set.
2The TripAdvisor data set is available at https://archive.ics.uci.edu/ml/datasets/Travel+Reviews.
3The Google data set is available at https://archive.ics.uci.edu/ml/datasets/Tarvel+Review+Ratings.

6

https://www.holidayiq.com/
https://www.tripadvisor.com/
https://www.google.com/
https://archive.ics.uci.edu/ml/datasets/BuddyMove+Data+Set
https://archive.ics.uci.edu/ml/datasets/Travel+Reviews
https://archive.ics.uci.edu/ml/datasets/Tarvel+Review+Ratings

autoencoders which we use to deal with the high dimensions of some of the data sets encountered
in social media data. We also need to evaluate how well our methods perform, therefore in section
4.4 we show which evaluation measures we use for this.

4.1 Data cleaning and normalizing

The data we work with in this thesis may contain missing values. Therefore, we have to come up
with a way to deal with those potential missing values. In our case, we do not have any missing
values for the BuddyMove and Tripadvisor data sets, and we only have two observations with a
missing value for the Google data set (out of the 5456 observations). As we thus have very few
observations with missing values, we simply remove the observations that contain missing values.
However, one may encounter a data set in which the number of observations with a missing value
is substantially higher. In this case, it may be better to replace a missing value by the mean of
the attribute for which the missing value occurs.

As we will see in Section 4.2, for the clustering algorithms we have to compare observations
from a given data set based on the differences in their attribute values. However, for some
attributes the differences between observations may be higher than for other attributes, which
would lead to some attributes having a higher influence than others when comparing observations.
This is not desirable, as we would like to have that each attribute has the same amount of
influence when comparing observations. Therefore, we have to normalize the data before we start
clustering. We do this in the following manner. For each of the attribute values, we subtract the
mean of that attribute. Then, we divide each of the attribute values by the standard deviation
of that attribute. In this way, each attribute approximately gets a mean of zero and a standard
deviation of one.

4.2 Clustering algorithms

In general, clustering is a subfield of machine learning which focuses on the task of grouping a set
of objects in such a way that objects from the same cluster are more similar than objects from
different clusters. Clustering is an unsupervised approach, which means that the data we work
with is not categorized. Thus, instead of having to predict the labels of objects, clustering, and
in general unsupervised machine learning algorithms, try to find hidden patterns in the data.
Through finding these hidden patterns, clustering algorithms tend to expose relevant groups
within data sets.

However, in order to be able to form a clustering, we need to define how to measure similarity
between objects. We consider the similarity between two objects to be the distance between
those objects. This means that opting for a clustering with high intra-cluster similarity and
low inter-cluster similarity, requires a clustering in which objects from the same cluster are
relatively close to each other, and objects from different clusters are relatively far away from
each other. In the literature, several methods have been used to measure distance, including
Euclidian distance, Manhattan distance, Cosine similarity, the Jaccard coefficient, Minkowski
distance, and Pearson’s correlation coefficient [5, 24]. In this thesis, we use Euclidean distance
to measure similarity between objects, as this is the most commonly used distance measure.

7

As mentioned before, we can make a distinction between two types of clustering algorithms:
partitioning clustering algorithms and hierarchical clustering algorithms, which are discussed in
sections 4.2.1 and 4.2.2, respectively. The difference between partitioning and hierarchical clus-
tering algorithms is that for partitioning clustering algorithms, the objects are clustered in such
a way that we end up with a single partition, whereas for hierarchical clustering algorithms, the
objects are clustered in such a way that we get a nested sequence of partitions. On the other
hand we have density-based clustering algorithms, which are discussed in section 4.2.3. We dis-
cuss density-based clustering algorithms separately from partitioning and hierarchical clustering
algorithms, since some density-based clustering algorithms create a clustering consisting of a
single partition, and some create a clustering consisting of a nested sequence of partitions.

4.2.1 Partitioning clustering

The partitioning clustering algorithms we consider in this thesis are the same algorithms as in [5].
The most traditional of these algorithms are k-means clustering, which was introduced by [25],
and k-medoids clustering, which is equivalent to Partitioning Around Mediods (PAM) [26, 27].
Furthermore, we use Clustering for Large Applications (CLARA) [27, 28, 29] and fuzzy c-means
clustering [30, 31]. As this thesis is an extension of [5], we will not discuss the partitioning
clustering algorithms in detail. Instead, we briefly explain each of the algorithms and advise to
consult [5] for thorough explanations of the algorithms.

4.2.1.1 K-means The k-means algorithm partitions a given data set into k clusters. Each
of these clusters has a centroid, which is the mean of the objects in that cluster. As such, the
centroid of a cluster does not have to be an actual object from the data set. The algorithm starts
by selecting k initial centroids, which are obtained by randomly sampling objects from the data
set. Then, for each object in the data set, the distance to each of the centroids is calculated, and
the object is assigned to the cluster corresponding to the closest centroid. After all of the objects
have been assigned to clusters, the centroids are updated by calculating the mean of each cluster.
This process of assigning objects to clusters and updating centroids is iteratively repeated until
the clustering assignments do not change, or until a maximum number of iterations is reached.

The main advantage of the k-means algorithm is that it is relatively easy to understand and
implement. However, disadvantages are the sensitivity to outliers, and the scalability problems
that occur for large data sets. We also face the challenges of having to to define the number of
clusters beforehand, and having to choose how to select initial centroids. The implementation
of the k-means algorithm used in this thesis, is the one by Hartigan and Wong [32]. This
implementation is an efficient version of the original k-means algorithm.

4.2.1.2 K-medoids The k-medoids algorithm is very similar to the k-means algorithm. The
main difference however is that for the k-medoids algorithm, the centroid of a cluster is called
the medoid, which is the object of that cluster for which the average distance to all other objects
in that cluster is minimal. As a result, the k-medoids algorithm works as follows. By randomly
sampling objects from the data set, k initial medoids are selected. We then calculate the distance
to each of the medoids for each object in the data set. Thereafter each object is assigned to the

8

cluster corresponding to the nearest medoid. When each of the objects has been assigned to a
cluster, we update the medoids in the following way. For each of the clusters, we search for an
object within that cluster that has a lower average distance to all other objects in that cluster
than the current medoid. If we find such an object for a particular cluster, we make that object
the medoid of that cluster. Similarly to the k-means algorithm, the process of assigning objects
to clusters and updating medoids is iteratively repeated until the clustering assignments stay the
same, or until we reach a maximum number of iterations.

The k-medoids algorithm suffers from the same problems as the k-means algorithm, except
that the k-medoids algorithm is more robust to outliers. This is because the k-medoids algorithm
uses medoids as centroids instead of means, which results in centroids that do not adjust to
outliers. We use the Partitioning Around Medoids (PAM) [27] implementation of the k-medoids
algorithm in this thesis.

4.2.1.3 Clustering for Large Applications (CLARA) The CLARA algorithm has been
developed in order to resolve the scalability problems faced by the PAM algorithm. As such, the
CLARA algorithm extends the PAM algorithm in the following manner. The data set is split up
into different subsets by means of random sampling, and to each of these subsets, we apply the
PAM algorithm. This yields k medoids for each subset, and we obtain a clustering for the entire
data set by assigning each object of the data set to the nearest medoid. We can then evaluate
the quality of the obtained clustering for each subset by calculating the average dissimilarity of
the objects in the data set to their closest medoid. Therefore, for each subset, we end up with a
clustering for the entire data set, and we select the clustering with the highest quality (thus the
lowest average dissimilarity). In this thesis, we use the CLARA algorithm provided by [27].

4.2.1.4 Fuzzy c-means (FCM) In fuzzy clustering, each object of the data set belongs to
each cluster to a certain degree, as opposed to non-fuzzy clustering in which each object of the
data set belongs to exactly one cluster. The extent to which object xi belongs to cluster j, is
denoted by the degree of membership µj(xi), and it must hold that µj(xi) ε [0, 1] for all objects
xi and for all clusters j. Each object will have a relatively high degree of membership for clusters
that are nearby, and a relatively low degree of membership for clusters that are further away (less
similar). We therefore also impose the restriction that the degrees of membership of each object
must sum to 1, i.e.,

∑c
j=1 µj(xi) = 1 for all objects xi, where c is the total number of clusters. The

FCM algorithm serves to minimize the objective function
∑c

j=1

∑n
i=1 µj(xi)

md2(xi, Cj), where
n is the number of objects, m is the fuzziness coefficient, and d2(xi, Cj) is the squared distance
between object xi and cluster j’s centroid Cj . The fuzziness coefficient m lies in the range [1,∞],
and as m increases, the fuzziness of the obtained clustering by fuzzy c-means increases as well.
It is most common to set m equal to 2 [33]. In order to minimize the objective function, the
following procedure is applied.

We first have to determine c, the number of clusters. For each of these clusters, we randomly
sample an object from the data set, such that we obtain c initial centroids. Based on these

9

centroids, we calculate the degree of membership for each object xi to each cluster j as

µj(xi) =

(
c∑
l=1

(
d2(xi, Cj)

d2(xl, Cj)

)1/(m−1)
)−1

. (1)

We can then update the centroid of each cluster j by

Cj =

∑n
i=1 µj(xi)

mxi∑n
i=1 µj(xi)

m
. (2)

The procedure of updating membership degrees by (1) and centroids by (2) is iteratively
repeated until the membership degrees stay the same, or until a maximum number of iterations
is reached. In this way, we minimize the objective function. Eventually, to obtain a single
partition, each object xi is assigned to the cluster for which the degree of membership is highest.
The fuzzy c-means implementation used in this thesis stems from [30].

4.2.2 Hierarchical clustering

Here we explain the hierarchical clustering algorithm considered in this thesis. We use agglom-
erative hierarchical clustering, which has a bottom up approach: each object starts as its own
cluster, and we iteratively select two clusters that are merged to form one larger cluster, until
all objects are in one single cluster [14]. As such, we have to decide on each iteration which two
clusters are going to be merged. This is done by taking the two clusters which are the most sim-
ilar (or the closest to each other in terms of distance). There are several methods to determine
the distance between two clusters. In this thesis, we first consider the perhaps simplest distance
measures, which are single linkage, complete linkage, and average linkage. Single linkage mea-
sures the distance between two clusters as the minimum distance between any two objects of the
clusters, whereas complete linkage measures the distance between two clusters as the maximum
distance between any two objects of the cluster. As one would expect, the distance between two
clusters is measured as the average distance between any two objects of the clusters in the case
of average linkage. A mathematical representation of the distance measures is given below, with
A and B being two clusters containing objects, thus d(xi, xj) represents the distance between
object xi from cluster A and object xj from cluster B. We use |.| to denote the cardinality of a
cluster.

Single linkage: d(A,B) = min
xiεA,xjεB

{d(xi, xj)} (3)

Complete linkage: d(A,B) = max
xiεA,xjεB

{d(xi, xj)} (4)

Average linkage: d(A,B) =
1

|A||B|
∑
xiεA

∑
xjεB

d(xi, xj) (5)

Besides single, complete, and average linkage, we also consider the more advanced distance
measure called Ward linkage [34, 35]. This distance measure is given by (6), with ||.|| the
Euclidean norm, and CA and CB the centroids of clusters A and B, respectively.

10

Ward linkage: d(A,B) =
|A||B|
|A|+ |B|

||CA − CB||2 (6)

However, we have a problem as it is desired to end up with a single partition of the data
set, and applying the agglomerative hierarchical clustering algorithm does not give us such a
single partition explicitly. Instead, the algorithm gives us a hierarchical clustering from which
we can derive a single partition. In order to be able to obtain such a single partition, we have
to specify the number of clusters, just as for the partitioning clustering algorithms. Having
specified this number of clusters, we can obtain a single partition by moving down the hierarchy
of the hierarchical clustering. Namely, we start with one cluster that contains all objects, and
each time we take a step down in the hierarchy, one of the clusters is split into two clusters.
Therefore, we can just take steps down in the hierarchy until we end up with the desired number
of clusters. Note that this process of taking steps down in the hierarchy is exactly the opposite
of the agglomeration which is done in the agglomerative hierarchical clustering algorithm.

4.2.3 Density-based clustering

Next to the partitioning and hierarchical clustering algorithms described above, we consider the
density-based clustering algorithms DBSCAN (Density-Based Spatial Clustering of Applications
with Noise) [36, 37], and OPTICS (Ordering Points To Identify the Clustering Structure) [38],
which is an extension to the DBSCAN algorithm.

4.2.3.1 DBSCAN The DBSCAN algorithm is based on the notion that clusters may have
any arbitrary shape. Therefore we identify clusters by only considering the density of a certain
region in the space of the input data. More precisely, we classify each object of the data set as
one of the following: a core point, a border point, or an outlier. The main idea is that a core
point lies in the core of a cluster, a border point belongs to a cluster but not to its core, and an
outlier does not belong to any cluster. The advantage of this approach is that we do not have to
specify the number of clusters beforehand, as opposed to partitioning and hierarchical clustering
algorithms. Instead, we have to specify two other parameters: minPts and eps. After specifying
these parameters, we can identify an object P as:

• a core point, if the number of objects for which the distance to P is less than or equal to
eps, is at least minPts;

• a border point, if the number of objects for which the distance to P is less than or equal
to eps, is less than minPts, but there is a core point for which the distance to P is less
than or equal to eps;

• an outlier, if the number of objects for which the distance to P is less than or equal to eps,
is less than minPts, and there is no core point for which the distance to P is less than or
equal to eps.

When identifying an object as a core point or as a border point, we also make sure to store
for which cluster the object is a core point or border point, such that we end up with a single

11

partition.
In Algorithm B1, the pseudocode of the DBSCAN algorithm is given (see Appendix B). The

algorithm makes use of two functions, which are called dist and RangeQuery, respectively. For
the former function, we simply apply the Euclidean distance in this thesis, whereas the latter
function returns a list containing all neighbors of a given object P . An object is considered as a
neighbor of P if its distance to P is less than or equal to eps. The pseudocode of the RangeQuery
function can be found in Algorithm B2 (see Appendix B).

Having specified the functions needed, we can discuss the DBSCAN algorithm in detail.
What the algorithm does, is that it iterates over all objects in the database. When an object has
already been assigned to a cluster, we move onto the next object. If not, we check whether the
object is an outlier. If the object is identified as an outlier, we label it as “noise”, and proceed
to the next object. However, if the object is not identified as an outlier, we identify it as a core
point and create a new cluster for that object. We then iterate over all neighbors of the core
point, and if a neighbor was identified as an outlier earlier on, we now identify that neighbor as
a border point of the current cluster. If a neighbor has already been assigned to another cluster,
we skip that neighbor and go to the next one. Finally, if a neighbor has not been labeled yet, we
assign that neighbor to the current cluster, and we check whether that neighbor is a core point
of the cluster as well. If this is the case, we extend the list of neighbors with all neighbors of the
newly found core point.

4.2.3.2 OPTICS As earlier mentioned, the OPTICS algorithm is an extension to the DB-
SCAN algorithm, and it does so by addressing one of the disadvantages of the DBSCAN algo-
rithm. This disadvantage is that the DBSCAN algorithm does not work well for data consisting
of clusters with varying density, since we can not adjust the values of the parameters minPts
and eps for each cluster separately. The way the OPTICS algorithm tackles this disadvantage, is
by linearly ordering the objects of the data set according to the density structure of the objects.
This means that objects in a dense cluster are listed closer together than objects in a less dense
cluster. Since the OPTICS algorithm does not provide an explicit clustering, we have to extract
a clustering from the outputted list of ordered objects. Now, in order to provide an ordering for
the objects, we need to know two things for each object P :

• The core-distance of P . If P is a core point, then the core-distance of P is defined as the
smallest value of eps for which the number of objects within a distance of eps from P is
greater than or equal to minPts. However, if P is not a core point, then the core-distance
of P is undefined.

• The reachability-distance to P from a core point O. If there is a core point O for which
the distance to P is smaller than or equal to eps, the reachability-distance from O to P is
defined as the maximum of the core-distance of O and the distance from P to O. In the
case that such a core point O does not exist, the reachability-distance to P is undefined.

This core-distance and reachability-distance of each object are then used by the OPTICS
algorithm, which is displayed in Algorithm B3 (see Appendix B). There, one can also find how
the core-distance is implemented as a function. Next to this function, the OPTICS algorithm

12

makes use of the functions dist, RangeQuery, and updateSeeds. The dist and RangeQuery

functions are exactly the same as for the DBSCAN algorithm. The updateSeeds function is
described in Algorithm B4 (see Appendix B).

Having explained the core concepts of the OPTICS algorithm, we are able to discuss it in
detail. First, an empty list OrderSeeds is created to store the ordered objects. The objects
will eventually be in ascending order, according to their reachability-distance from the closest
core point. Also, OrderSeeds will eventually contain multiple groups of ascending objects (in
terms of the reachability-distance), since the objects will be grouped within the list such that
their reachability-distances correspond to core points from the same cluster. We initialize the
reachability-distance of each of the objects as “undefined”. Then, we iterate over all unprocessed
objects from the database, and for each object we mark it as processed and add it to the
OrderSeeds list. If the unprocessed object is not a core point, we simply move on to the next
unprocessed object. However, if we encounter an unprocessed object P which does happen to be
a core point, we update the reachability-distance of all objects which are neighbors of P . Each
of these neighbors is temporarily stored in ascending order (based on the reachability-distance)
in the priority queue Seeds. In this way, we can find out whether some of these neighbors are
core points as well, and if this is the case, we add the neighbors of those core points to Seeds
as well. The objects in Seeds will eventually be ordered like we need it for the OrderSeeds
list. Therefore, all objects which are present in Seeds are then dequeued one by one, and added
to the OrderSeeds list. In the end, all objects that come from the same Seeds queue, will be
assigned to the same cluster.

4.3 Autoencoders

In this section, we explain the autoencoders which we use as a dimensionality reduction technique
in order to deal with the high dimensions of some of the data sets encountered in social media
data. Autoencoders are specific types of neural networks [39, 40]. Therefore we will first explain
neural networks, and then discuss how autoencoders work.

Neural networks stem from the field of machine learning, and are among the most popular
techniques in this field nowadays. A neural network is a model which tries to learn the features of
a data set, usually with the purpose of classification. A visual representation of the architecture
of a neural network is shown in Figure 1, which we will use to explain how a neural network
works.

To give an example, neural networks are widely used to classify handwritten digits, with the
goal of trying to predict which digit has been written in a certain image. This is done in the
following manner. A neural network consists of an input layer, one or more hidden layers, and
an output layer. Each of these layers consist of neurons, which all hold a single value. These
neurons are represented by the grey circles in Figure 1. The number of neurons for the input
layer is equal to k, the dimension of the input data, while the number of neurons for the output
layer is equal to m, the number of classes which can be predicted. For example, if we try to
classify handwritten digits which are represented by images of 28 × 28 pixels, then the input
layer consists of 784 neurons, and the output layer consists of 10 neurons (since we can predict
the numbers 0 to 9). In between the input layer and the output layer, we have h hidden layers,

13

Input	layer Hidden	layers Output	layer

�1

�2

��

ℎ1 ℎ2 ℎℎ

�
(������)

1

�
(������)

2

�
(������)
�

Figure 1: Architecture of a neural network.

with h ≥ 0. The amount of hidden layers, and the number of neurons per hidden layer are not
predefined. All the neurons are then, layer by layer, connected to each other through weights.
These weights are visualized in Figure 1 by the lines which connect the neurons. The value
which is held by a single neuron is then the weighted sum of all neurons in the previous layer,
plus a bias term. Additionally, this value is transformed by applying an activation function.
Mathematically, the value held by the j-th neuron in the l-th layer can thus be represented as

z
(l)
j = σ

(
w

(l)
j z

(l−1) + b
(l)
j

)
. (7)

Here, σ(·) is the activation function, w(l)
j is a row vector containing the weights from layer

l − 1 to the j-th neuron of layer l, z(l−1) is a column vector containing the values held by the
neurons in layer l− 1, and b(l)j is the bias term for the j-th neuron of layer l. The neural network
we have described thus far is known as a feedforward neural network, since this neural network
takes the input data and feeds it forward layer by layer, until we reach the output layer. If we
go back to the example of classifying handwritten digits, then the values which are held by the
neurons in the output layer represent the probabilities that the input image corresponds to those
digits (since each neuron in the output layer represents one of the digits). The digit which is
then predicted for that input image, is the one which corresponds to the neuron in the output
layer with the highest probability.

The knowledge of a neural network is thus fully stored in the weights and biases, and training
the network comes down to adjusting these weights and biases. More precisely, training a neural
network consists of three parts: a feedforward part, a backpropagation part, and a part in which
the weights and biases are updated.

First, we apply the feedforward part which works as we described above: it takes the input
data and feeds it forward layer by layer, until we reach the output layer. Then we can evaluate
how well the neural network is performing by comparing the output to the desired output. In
the case of classifying handwritten digits, the desired output would be a probability of 1 for the
digit that is written in the input image, and a probability of 0 for all other digits. In this way,
we can use a loss function which uses the output and the desired output to compute a loss value

14

for the neural network. The lower this loss value is, the better the neural network is performing.
Second, using the loss function, we can apply the backpropagation part of training the neural

network. This part applies gradient descent in order to minimize the loss function. It does so by
taking the output of the loss function, and based on this output, the gradient descent algorithm
computes partial derivatives for all weights and biases. The partial derivative of the weight that
connects the i-th neuron of layer l−1 to the j-th neuron of layer l is given by (8), and the partial
derivative of the bias term for the j-th neuron of layer l is given by (9). In both equations, L is
the loss function.

∆w
(l)
ij =

∂L

∂w
(l)
ij

(8)

∆b
(l)
j =

∂L

∂b
(l)
j

(9)

Third and last, we update the weights and biases of the neural network. For this part, we use
the partial derivatives of the weights and biases that are computed during the backpropagation.
The weights and biases are then updated by equations (10) and (11), respectively. Here, α is the
learning rate, which determines how much the weights and biases change. The value of α lies in
the range (0, 1].

w
(l)
ij := w

(l)
ij − α ∗∆w

(l)
ij (10)

b
(l)
j := b

(l)
j − α ∗∆b

(l)
j (11)

Above, we have described the three parts of training a neural network. Executing these three
parts once is called an epoch, and during each single epoch, the weights and biases get updated
once in order to minimize the loss function. Then, to fully train a neural network, we have to
iteratively execute multiple epochs.

As earlier mentioned, the amount of hidden layers and the number of neurons per hidden
layer are not predefined. These numbers are thus free parameter choices which one can adjust.
The disadvantage of this is that there is no way to determine the optimal amount of hidden
layers and the number of neurons per layer, since there is no real intuition behind it. The only
intuition we have is that each hidden layer tries to capture some features of the data set, and
that multiple hidden layers can thus improve our model. However, we must not create too many
hidden layers and neurons, since we do not want our model to pick up noise. Deciding on the
amount of hidden layers and the number of neurons per hidden layer thus comes down to a
process of trial and error with parameter settings that seem reasonable.

Having explained neural networks, we can now discuss autoencoders and how they relate to
neural networks. An autoencoder is a neural network which consists of two parts: an encoder
and a decoder. The encoder serves to encode the most important features of the data to a
lower dimension. Then, the decoder tries to decode the encoded data back to the original data.
Therefore, the desired output of an autoencoder is exactly the data that was given as input, and
the input layer and output layer thus have exactly the same number of neurons (if we go back to

15

the neural network of Figure 1, we have that k = m). A visual representation of an autoencoder
is given in Figure 2.

Figure 2: Visual representation of an autoencoder.

For the hidden layers, there is one middle layer which represents the encoded data. This
is the layer which is presented in red in Figure 2. The number of neurons in this middle layer
is thus equal to the lower dimension to which the data is encoded (we call this the encoding
dimension). The input layer, the hidden layers in between the input layer and the middle layer,
and the middle layer together form the encoder. The decoder consists of the middle layer, the
hidden layers in between the middle layer and the output layer, and the output layer.

When creating the autoencoders for the data sets in this thesis, there are quite some param-
eter choices that need to made. For most of these parameter choices, it is not the case that there
is one choice that is particularly the best, as was also explained for the number of hidden layers
and the number of neurons per hidden layer. Therefore, the parameter choices that are made in
this thesis for the autoencoders are the result of what seems logical, and finding out what works
best by trial and error, unless otherwise stated.

The first decision to make is which activation function σ(·) to use. One possible activation
function is the rectified linear unit (ReLu) function [41], which is given by σ(z) = max{0, z}.
However, this activation function suffers from the so called “dying ReLu” problem. This is the
problem that whenever the input of a neuron gets non-positive, we get zero as the value being
held by that neuron. This neuron is then said to be “dead”, and this may cause other neurons in
further layers to become “dead” as well. A proposed solution to this problem by the authors of
[42], is the leaky ReLu function. This function is given by σ(z) = max{γz, z}, with γ ε (0,1). As
one is able to observe, replacing 0 by γz prevents the neurons from becoming “dead”. Now, for
the encoder part of the autoencoder, we apply the leaky ReLu function with γ = 0.3. However,
for the decoder part of the autoencoder, we simply apply the linear activation function, which
is given by σ(z) = z. Note that this means that for the neurons of the middle layer, the leaky
ReLu function is applied, as computing the values which are held by the neurons in the middle
layer is part of encoding the data.

We then have to decide which loss function to use for the autoencoders in this thesis, and
for this decision, we choose to use the Mean Squared Error (MSE) loss function. This function

16

is given by

L =
1

n

n∑
i=1

(
Z

(output)
i −Xi

)2
, (12)

with n the number of observations in the data set, Z(output)
i a column vector containing the

values which are held by the neurons of the output layer for the i-th observation, and Xi a
column vector containing the attribute values of the i-th observation.

When applying backpropagation, we have to specify which optimizer to use. Here, we use
the ADADELTA optimizer [43], which is a method that dynamically adapts the learning rate,
based on first order information only (see equations (10) and (11) for the learning rate). In this
way, we do not have to set the learning rate manually.

What is left are parameter choices that differ per data set. Therefore, we discuss these
parameter choices separately for each data set. Note that for each of the data sets, the dimension
of the data is equal to the number of attributes minus one, since the first attribute is a unique
user ID for each of the data sets.

First, we have the BuddyMove data set. This data set only has a dimension of 6, however we
still apply an autoencoder to this data set to see if it can improve the results. The encoder part
of this autoencoder contains one hidden layer with 5 neurons, the encoding dimension is equal
to 3, and the decoder part also contains one hidden layer with 5 neurons. Therefore, we end up
with an autoencoder which consists of 5 layers in total, which contain 6, 5, 3, 5, and 6 neurons,
respectively. We use 300 epochs to train this autoencoder.

Secondly, we create an autoencoder for the Tripadvisor data set, which has a dimension of
10. For this autoencoder, the encoder part contains one hidden layer of 8 neurons, the encoding
dimension is equal to 5, and the decoder part also contains one hidden layer of 8 neurons.
This autoencoder thus consists of 5 layers in total, which contain 10, 8, 5, 8, and 10 neurons,
respectively. Again, we use 300 epochs to train this autoencoder.

Third and last, an autoencoder is created for the Google data set. This data set has the
highest dimension of the three data sets, which is 24. We therefore have an encoder part which
contains two hidden layers of 20 and 15 neurons, respectively. The encoding dimension of this
autoencoder is equal to 10, and the decoder part contains two hidden layers of 15 and 20 neurons,
respectively. We therefore get an autoencoder which consists of 7 layers in total, which contain
24, 20, 15, 10, 15, 20, and 24 neurons, respectively. In order to train this autoencoder, we use
200 epochs.

4.4 Evaluation measures

After cleaning the data, normalizing the data, possibly encoding the data using an autoencoder,
and then applying one of the clustering algorithms of Section 4.2, we end up with a single partition
of the data set. In order to evaluate how well our methods perform, we need a way to evaluate
the goodness of such a single partition. We do this by considering the same evaluation measures
as in [5], except for the entropy measure. The reason for this is that the entropy measure is an
external evaluation measure [44], which means that we need labeled data to compute the entropy
measure. However, the data we are presented with is unlabeled, which makes it impossible to

17

compute the entropy measure. This means that the evaluation measures that we do consider are
internal evaluation measures. These are the average Silhouette width (avg.silwidth) [45], the
Dunn index (dunn) [46], an index which belongs to the family of Dunn indexes (dunn2), and a
ratio of average distances (wb.ratio). These evaluation measures have the following definitions.
The Silhouette width of an object i is defined as

s(i) =
b(i)− a(i)

max{a(i), b(i)}
, (13)

with a(i) the average dissimilarity between i and all other objects of A, which is the cluster
to which i belongs. Note that a(i) = 0 if i is the only object in A. If we define d(i, C) as
the average dissimilarity between i and the objects of cluster C, then b(i) can be defined as
minC 6=A{d(i, C)}. The average Silhouette width is then calculated as 1

n

∑n
i=1 s(i), with n the

number of observations in the data set.
For the Dunn index, we divide the minimum separation between any two clusters by the

maximum of the diameters of all clusters. We can write this mathematically as

D =
mini=1,...,k;j=i+1,...,k{d(ci, cj)}

maxl=1,...,k{diam(cl)}
. (14)

Here, k is the number of clusters, d(ci, cj) is the minimum distance between any two objects
of clusters i and j, and diam(cl) is the maximum distance between any two objects of cluster l.

The dunn2 measure is defined as the minimum average dissimilarity between any two clusters
divided by the maximum average within cluster dissimilarity. Mathematically, this translates to

D2 =
mini=1,...,k;j=i+1,...,k{davg(ci, cj)}

maxl=1,...,k{davg(cl)}
, (15)

with k again the number of clusters, davg(ci, cj) the average dissimilarity between the objects
of clusters i and j, and davg(cl) the average dissimilarity between the objects of cluster l.

The last evaluation measure we consider, wb.ratio, can be defined as

wb =
avg.within

avg.between
. (16)

In this equation, avg.within is the average distance between any two objects from the same
cluster, and avg.between is the average distance between any two objects from different clusters.

Note that for the interpretation of these evaluation measures in section 5, the average Sil-
houette width, the Dunn index, and the dunn2 measure should be as high as possible, while the
wb.ratio measure should be as low as possible.

5 Results

The results obtained by implementing the methods described in section 4 are presented in this
section. In Tables A2 and A3, we give an overview of the programs that are written in the
programming languages R and Python, respectively, to obtain the results, including a short
explanation for each of the programs (see Appendix A). Also, in Table A4 we provide an overview
of the tools and packages that we use in R and Python (see Appendix A).

18

Before we are able to obtain results for the clustering algorithms, we need to specify the
number of clusters for the partitioning clustering algorithms as well as the hierarchical clustering
algorithms. We do this by estimating the optimal number of clusters for each of the data sets,
using the package NbClust in R. This package provides a function which uses 26 indices, of which
each proposes an optimal number of clusters. The number of clusters which is then actually used,
is the number of clusters which is proposed the most by the 26 indices. We apply this function
provided by NbClust to the non-encoded as well as the encoded data, and compare these results
to the results of [5] in Tables 1, 2, and 3 for the BuddyMove, Tripadvisor, and Google data
sets, respectively. In these tables, “Hierarchical single”, “Hierarchical complete”, “Hierarchical
average”, and “Hierarchical Ward” refer to hierarchical clustering with single, complete, average,
and Ward linkage, respectively.

Optimal number of clusters based on...
[5] non-encoded data encoded data

A
lg
or
it
hm

(s
) Partitioning clustering 4 2 3

Hierarchical single N/A 4 3
Hierarchical complete N/A 2 3
Hierarchical average N/A 2 2
Hierarchical Ward N/A 3 3

Table 1: Optimal number of clusters for the BuddyMove data set.

Optimal number of clusters based on...
[5] non-encoded data encoded data

A
lg
or
it
hm

(s
) Partitioning clustering 8 6 2

Hierarchical single N/A 3 2
Hierarchical complete N/A 3 2
Hierarchical average N/A 2 2
Hierarchical Ward N/A 3 3

Table 2: Optimal number of clusters for the Tripadvisor data set.

Optimal number of clusters based on...
[5] non-encoded data encoded data

A
lg
or
it
hm

(s
) Partitioning clustering 3 3 4

Hierarchical single N/A 13 2
Hierarchical complete N/A 4 5
Hierarchical average N/A 2 2
Hierarchical Ward N/A 3 3

Table 3: Optimal number of clusters for the Google data set.

We observe that the optimal number of clusters for a particular data set and algorithm is
dependent on whether we base it on [5], the non-encoded data, or the encoded data. Therefore,
for each combination of a data set and algorithm, we apply the algorithm to that data set with
each of the proposed number of clusters.

Next to the number of clusters, for the fuzzy c-means algorithm we also need to specify the
fuzziness coefficient m. As earlier mentioned, it is most common to set m equal to 2. However,

19

for the Tripadvisor and Google data sets, this value form yields clusterings which are too fuzzy,
meaning that µj(xi) ≈ 1

c for each object xi, and each cluster j. Thus, in order to reduce the
fuzziness, we decreasem for the Tripadvisor and Google data sets until the resulting clusterings
are not too fuzzy anymore. This results in m being equal to 2, 1.4, and 1.2 for the BuddyMove,
Tripadvisor, and Google data sets, respectively.

The only parameters left to specify, are the parameters for the DBSCAN and OPTICS
algorithms. For the DBSCAN algorithm, it is common to setminPts equal to the dimensionality
of the data plus one, or higher [47]. Therefore, in order to obtain the best results possible, we
consider the values equal to the dimensionality of the data plus one and higher for the minPts
parameter. For the eps parameter, we create a plot of k-nearest neighbor distances. We can
then use this plot by setting eps equal to the value for which the knee occurs in the plot. The
parameters for the OPTICS algorithm are specified in the same way as the parameters for the
DBSCAN algorithm.

Having specified all parameters for the clustering algorithms, we are able to show the results
of each of the clustering algorithms which are described in section 4.2. In [5], each of the obtained
clusterings is visualized by a plot for the clustering itself, and by a Silhouette plot. In this thesis,
we do not show these plots as the number of clusterings that we obtain is rather large. However,
the plots are available by running the programs which are listed in Table A2.

In Tables 4, 5, and 6, the values of the considered evaluation measures are shown for the
BuddyMove, Tripadvisor, and Google data sets, respectively. In these tables, “H. complete” and
“H. Ward” refer to hierarchical clustering with complete and Ward linkage, respectively. Also,
each cell of these tables contains two values for that evaluation measure: one in which we apply
the clustering algorithm to the non-encoded data to obtain a clustering (which is shown first),
and one in which we apply the clustering algorithm to the encoded data to obtain a clustering
(which is shown in brackets). The value which corresponds to the case in which the encoded
data is used, is marked with an asterisk if that value is better than the value which corresponds
to the case in which the non-encoded data is used. Also, for each evaluation measure, we have
highlighted the best result. We thus use the non-encoded as well as the encoded data to obtain
clusterings. However, an important thing to mention is that for both cases, we use the non-
encoded data to obtain the evaluation measures for a clustering. This is due to the fact that the
evaluation measures we consider are internal evaluation measures, which means that we would
not be able to compare these evaluation measures if they were based on different data sets.

The first thing to notice in Tables 4, 5, and 6, is that some of the discussed clustering
algorithms are missing. These algorithms are the hierarchical clustering algorithm with single
as well as average linkage, the DBSCAN algorithm, and the OPTICS algorithm. Also, for
hierarchical clustering with complete linkage and the number of clusters set to 2, the results
are missing for the Tripadvisor data set, which are replaced by “N/A”. The reason that these
algorithms are missing, is that they are not able to provide a proper clustering. This is because
for each of the obtained clusterings by these algorithms, the largest cluster contains at least 86.7%
of the objects in the data set, and for 27 of these 31 clusterings, the largest cluster contains at
least 97.8% of the objects in the data set.

Second, we notice that our results for the partitioning clustering algorithms in Tables 4, 5,

20

Evaluation measure
avg.silwidth dunn dunn2 wb.ratio

A
lg
or
it
hm

k-means (k=4) 0.343 (0.272) 0.074 (0.032) 1.320 (1.269) 0.517 (0.561)
k-means (k=2) 0.361 (0.287) 0.073 (0.041) 1.398 *(1.421) 0.609 (0.691)
k-means (k=3) 0.358 (0.294) 0.064 (0.052) 1.494 (1.382) 0.553 (0.594)
k-medoids (k=4) 0.318 (0.201) 0.043 (0.032) 1.317 (0.971) 0.530 (0.629)
k-medoids (k=2) 0.365 (0.289) 0.065 (0.051) 1.421 (1.395) 0.602 (0.686)
k-medoids (k=3) 0.334 (0.301) 0.043 (0.038) 1.389 *(1.393) 0.556 (0.605)
CLARA (k=4) 0.277 (0.258) 0.075 (0.052) 1.226 *(1.227) 0.536 (0.583)
CLARA (k=2) 0.343 (0.289) 0.083 (0.041) 1.338 *(1.428) 0.647 (0.689)
CLARA (k=3) 0.342 (0.277) 0.038 (0.032) 1.461 (1.365) 0.552 (0.612)
FCM (c=4, m=2) 0.253 (0.244) 0.034 (0.032) 1.108 *(1.240) 0.545 (0.576)
FCM (c=2, m=2) 0.357 (0.275) 0.036 *(0.062) 1.377 (1.371) 0.614 (0.702)
FCM (c=3, m=2) 0.342 (0.292) 0.048 (0.038) 1.473 (1.397) 0.551 (0.597)
H. complete (k=2) 0.328 (0.259) 0.087 *(0.088) 1.350 (1.330) 0.635 (0.745)
H. complete (k=3) 0.264 *(0.332) 0.091 (0.085) 1.146 *(1.473) 0.627 *(0.575)
H. Ward (k=3) 0.355 (0.311) 0.145 (0.070) 1.610 (1.461) 0.565 (0.603)

Table 4: Clustering results for the BuddyMove data set.

Evaluation measure
avg.silwidth dunn dunn2 wb.ratio

A
lg
or
it
hm

k-means (k=8) 0.137 (0.065) 0.036 (0.024) 0.760 *(0.805) 0.675 (0.751)
k-means (k=6) 0.141 (0.072) 0.064 (0.041) 0.807 *(0.823) 0.704 (0.771)
k-means (k=2) 0.213 (0.173) 0.062 (0.045) 1.199 *(1.215) 0.772 (0.821)
k-medoids (k=8) 0.119 (0.057) 0.024 *(0.025) 0.773 *(0.854) 0.691 (0.763)
k-medoids (k=6) 0.125 (0.051) 0.045 (0.033) 0.834 *(0.980) 0.720 (0.804)
k-medoids (k=2) 0.210 (0.169) 0.043 *(0.051) 1.252 (1.203) 0.780 (0.824)
CLARA (k=8) 0.106 (0.062) 0.024 *(0.024) 0.843 *(0.888) 0.715 (0.761)
CLARA (k=6) 0.099 (0.080) 0.038 (0.021) 0.855 (0.664) 0.770 *(0.759)
CLARA (k=2) 0.148 *(0.174) 0.035 *(0.042) 1.126 *(1.213) 0.854 *(0.821)
FCM (c=8, m=1.4) 0.109 (0.046) 0.024 *(0.033) 0.780 *(0.913) 0.712 (0.791)
FCM (c=6, m=1.4) 0.094 (0.050) 0.028 (0.020) 0.999 *(1.001) 0.754 (0.815)
FCM (c=2, m=1.4) 0.206 (0.175) 0.052 (0.042) 1.192 *(1.216) 0.780 (0.820)
H. complete (k=3) 0.190 (0.139) 0.071 (0.046) 1.057 (1.021) 0.743 (0.799)
H. complete (k=2) N/A *(0.148) N/A *(0.045) N/A *(1.144) N/A *(0.866)
H. Ward (k=3) 0.185 (0.118) 0.089 (0.044) 1.009 *(1.088) 0.772 (0.824)

Table 5: Clustering results for the Tripadvisor data set.

and 6 are different than the results in [5]. As we do not have access to the R code that the
authors of [5] used in order to obtain their results, it is hard to determine what causes theses
differences exactly. However, it is worth to mention that for the BuddyMove data set, if we do
not normalize the data, we get exactly the same results for each of the partitioning clustering
algorithms with the number of clusters set to 4.

We observe from the results that applying the clustering algorithms to the encoded data does
not necessarily yield better clusterings than applying these algorithms to the non-encoded data.
However, it does seem to be the case that as the size of the data set increases, we get relatively
more instances in which applying the clustering algorithms to the encoded data works better than
applying these algorithms to the non-encoded data. This would make sense as dimensionality
reduction techniques are needed most for larger data sets, since in general they contain more
noise.

21

Evaluation measure
avg.silwidth dunn dunn2 wb.ratio

A
lg
or
it
hm

k-means (k=3) 0.145 (0.139) 0.003 *(0.005) 1.051 (1.032) 0.794 (0.798)
k-means (k=4) 0.144 (0.129) 0.013 *(0.015) 1.012 *(1.028) 0.778 (0.791)
k-medoids (k=3) 0.122 (0.107) 0.021 (0.003) 0.996 *(1.041) 0.809 (0.830)
k-medoids (k=4) 0.121 (0.116) 0.006 (0.002) 0.915 *(0.932) 0.807 (0.815)
CLARA (k=3) 0.067 *(0.099) 0.008 *(0.011) 0.883 *(0.999) 0.881 *(0.870)
CLARA (k=4) 0.081 *(0.123) 0.010 (0.007) 0.904 *(0.963) 0.847 *(0.799)
FCM (c=3, m=1.2) 0.135 (0.104) 0.004 *(0.005) 1.003 *(1.043) 0.809 (0.857)
FCM (c=4, m=1.2) 0.105 *(0.108) 0.005 *(0.006) 0.937 *(1.008) 0.819 *(0.813)
H. complete (k=4) 0.134 (0.079) 0.109 (0.052) 1.055 (0.952) 0.781 (0.817)
H. complete (k=5) 0.126 (0.077) 0.114 (0.057) 1.055 (0.914) 0.781 (0.802)
H. Ward (k=3) 0.122 *(0.124) 0.100 (0.086) 1.037 *(1.146) 0.816 (0.831)

Table 6: Clustering results for the Google data set.

Furthermore, there is not one algorithm in particular that consistently outperforms the other
algorithms for all data sets. We can however conclude that the k-means algorithm, the k-
medoids algorithm, and the hierarchical clustering algorithm with Ward linkage perform the
best in general for the BuddyMove and Tripadvisor data sets. For the Google data set, we
can conclude that the k-means algorithm and the hierarchical clustering algorithm with either
complete or Ward linkage perform the best in general. Which of these algorithms to choose and
whether to apply them to the non-encoded or encoded data, thus depends on which data set is
used and which evaluation measure is considered as the most important.

6 Conclusion and future work

In this thesis, we have extended the work of [5] by comparing the performance of partitioning clus-
tering algorithms to hierarchical clustering algorithms and density-based clustering algorithms.
These clustering algorithms are used for segmenting customers in the tourism domain, based on
social media data. Furthermore, we have used autoencoders to obtain encoded representations
of the data sets, in order to reduce its dimensions. We have applied the clustering algorithms to
the non-encoded data as well as the encoded data to obtain clusterings. These clusterings are
evaluated using four internal evaluation measures.

The results have shown that the hierarchical clustering algorithm with single as well as
average linkage, and density-based clustering algorithms do not provide a proper clustering for
the social media data. To answer the research question, we conclude that the k-means algorithm,
the k-medoids algorithm, and the hierarchical clustering algorithm with either complete or Ward
linkage are the clustering algorithms which in general are the most effective. Whether to apply
the clustering algorithms to the non-encoded data or the encoded data, seems to depend on the
size of the data set, since applying the clustering algorithms to the encoded data seems to work
better as the size of the data set increases. Concluding, the choice of which clustering algorithm
to use and whether to apply this clustering algorithm to the non-encoded data or encoded data
for segmenting customers in the tourism domain, depends on the data set under consideration,
and which evaluation measure one considers to be the most important.

For future work, we suggest to further explore the use of hierarchical clustering algorithms,

22

as they have shown to perform relatively well under certain circumstances. Since we have only
considered agglomerative hierarchical clustering, it might be interesting to consider divisive hi-
erarchical clustering as well. The use of autoencoders has shown to be promising for obtaining
better results, especially for larger data sets. Therefore, we think it would be interesting to
apply autoencoders in combination with clustering algorithms to larger data sets than the ones
considered in this thesis. Also, as there are many parameter choices that need to be made for
autoencoders, and the parameter choices that are considered in this thesis are quite limited, one
can further explore which parameter choices yield the best results.

23

References

[1] World Tourism Organization (UNTWO). UNWTO Annual Report 2017. World Tourism
Organization (UNWTO), Madrid, 2018.

[2] S. Renjith and C. Anjali. A personalized mobile travel recommender system using hybrid
algorithm. In 2014 First International Conference on Computational Systems and Commu-
nications (ICCSC), pages 12–17, Dec 2014.

[3] S. Renjith and C. Anjali. A Personalized Travel Recommender Model Based on Content-
based Prediction and Collaborative Recommendation. International Journal of Computer
Science and Mobile Computing, ICMIC13:66–73, 12 2013.

[4] S. Jiang, X. Qian, T. Mei, and Y. Fu. Personalized travel sequence recommendation on
multi-source big social media. IEEE Transactions on Big Data, 2(1):43–56, March 2016.

[5] S. Renjith, A. Sreekumar, and M. Jathavedan. Evaluation of Partitioning Clustering Algo-
rithms for Processing Social Media Data in Tourism Domain. In 2018 IEEE Recent Advances
in Intelligent Computational Systems (RAICS), pages 127–131, Dec 2018.

[6] J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. T. Riedl. Evaluating Collaborative
Filtering Recommender Systems. ACM Trans. Inf. Syst., 22(1):5–53, Jan 2004.

[7] J. B. Schafer, J. Konstan, and J. Riedl. Recommender Systems in e-commerce. In Pro-
ceedings of the 1st ACM Conference on Electronic Commerce, EC ’99, pages 158–166, New
York, NY, USA, 1999. ACM.

[8] B. N. Miller, I. Albert, S. K. Lam, J. A. Konstan, and J. Riedl. MovieLens Unplugged:
Experiences with an Occasionally Connected Recommender System. In Proceedings of the
8th International Conference on Intelligent User Interfaces, IUI ’03, pages 263–266, New
York, NY, USA, 2003. ACM.

[9] M. S. Pera and Y. Ng. A Group Recommender for Movies Based on Content Similarity and
Popularity. Inf. Process. Manage., 49(3):673–687, 2013.

[10] J. Bennett, S. Lanning, and N. Netflix. The Netflix Prize. 01 2009.

[11] A. Töscher and M. Jahrer. The BigChaos Solution to the Netflix Grand Prize. 01 2009.

[12] R. Bell, Y. Koren, and C. Volinsky. Matrix Factorization Techniques for Recommender
Systems. Computer, 42(08):30–37, Aug 2009.

[13] R. Burke. Hybrid Recommender Systems: Survey and Experiments. User Modeling and
User-Adapted Interaction, 12(4):331–370, Nov 2002.

[14] A. K. Jain and R. C. Dubes. Algorithms for Clustering Data. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1988.

24

[15] D. Boley, M. Gini, R. Gross, E.H. Han, K. Hastings, G. Karypis, V. Kumar, B. Mobasher,
and J. Moore. Partitioning-based clustering for Web document categorization. Decision
Support Systems, 27:329–341, 12 1999.

[16] V. Cohen-Addad, V. Kanade, F. Mallmann-Trenn, and C. Mathieu. Hierarchical Clustering:
Objective Functions and Algorithms, pages 378–397. 2018.

[17] U. von Luxburg. A tutorial on spectral clustering. Statistics and Computing, 17(4):395–416,
Dec 2007.

[18] A. McCallum, K. Nigam, and L. H. Ungar. Efficient Clustering of High-dimensional Data
Sets with Application to Reference Matching. In Proceedings of the Sixth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD ’00, pages 169–
178, New York, NY, USA, 2000. ACM.

[19] I. Jolliffe. Principal Component Analysis, pages 1094–1096. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2011.

[20] Bernhard Schölkopf, Alexander Smola, and Klaus-Robert Müller. Kernel principal compo-
nent analysis. In W. Gerstner, A. Germond, M. Hasler, and J. D. Nicoud, editors, Artificial
Neural Networks — ICANN’97, pages 583–588, Berlin, Heidelberg, 1997. Springer Berlin
Heidelberg.

[21] D. D. Lee and H. S. Seung. Algorithms for Non-negative Matrix Factorization. In T. K.
Leen, T. G. Dietterich, and V. Tresp, editors, Advances in Neural Information Processing
Systems 13, pages 556–562. MIT Press, 2001.

[22] X. Lu, Y. Tsao, S. Matsuda, and C. Hori. Speech enhancement based on deep denoising
autoencoder. In INTERSPEECH, 2013.

[23] L. van der Maaten, E. Postma, and H. Herik. Dimensionality Reduction: A Comparative
Review. Journal of Machine Learning Research - JMLR, 10, 01 2007.

[24] A. Huang. Similarity Measures for Text Document Clustering, 2008.

[25] J. MacQueen. Some methods for classification and analysis of multivariate observations.
In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability,
Volume 1: Statistics, pages 281–297, Berkeley, Calif., 1967. University of California Press.

[26] L. Kaufman and P. Rousseeuw. Clustering by Means of Medoids. Data Analysis based on
the L1-Norm and Related Methods, pages 405–416, 01 1987.

[27] L. Kaufman and P. Rousseeuw. Finding Groups in Data: An Introduction To Cluster
Analysis. 01 1990.

[28] H. S. Park and C. H. Jun. A simple and fast algorithm for K-medoids clustering. Expert
Systems with Applications, 36(2, Part 2):3336–3341, 2009.

25

[29] C. P. Wei, Y. H. Lee, and C. H. Hsu. Empirical comparison of fast clustering algorithms
for large data sets. In Proceedings of the 33rd Annual Hawaii International Conference on
System Sciences, pages 10 pp.–, Jan 2000.

[30] J. C. Bezdek. Pattern Recognition with Fuzzy Objective Function Algorithms. Kluwer Aca-
demic Publishers, Norwell, MA, USA, 1981.

[31] J. C. Bezdek, R. Ehrlich, and W. Full. FCM: The fuzzy c-means clustering algorithm.
Computers Geosciences, 10(2):191–203, 1984.

[32] J. A. Hartigan and M. A. Wong. Algorithm AS 136: A K-Means Clustering Algorithm.
Journal of the Royal Statistical Society. Series C (Applied Statistics), 28(1):100–108, 1979.

[33] Z. Cebeci, F. Yildiz, A. T. Kavlak, C. Cebeci, and H. Onder. ppclust: Probabilistic and
Possibilistic Cluster Analysis, 2019. R package version 0.1.2.

[34] J. H. Ward Jr. Hierarchical Grouping to Optimize an Objective Function. Journal of the
American Statistical Association, 58(301):236–244, 1963.

[35] F. Murtagh and P. Legendre. Ward’s Hierarchical Agglomerative Clustering Method: Which
Algorithms Implement Ward’s Criterion? Journal of Classification, 31(3):274–295, Oct
2014.

[36] M. Ester, H. P. Kriegel, J. Sander, and X. Xu. A Density-based Algorithm for Discovering
Clusters a Density-based Algorithm for Discovering Clusters in Large Spatial Databases
with Noise. In Proceedings of the Second International Conference on Knowledge Discovery
and Data Mining, KDD’96, pages 226–231. AAAI Press, 1996.

[37] E. Schubert, J. Sander, M. Ester, H. P. Kriegel, and X. Xu. DBSCAN Revisited, Revisited:
Why and How You Should (Still) Use DBSCAN. ACM Trans. Database Syst., 42(3):19:1–
19:21, Jul 2017.

[38] M. Ankerst, M. M. Breunig, H. P. Kriegel, and J. Sander. OPTICS: Ordering Points to
Identify the Clustering Structure. SIGMOD Rec., 28(2):49–60, Jun 1999.

[39] A. Ng. Sparse autoencoder. CS294A Lecture notes, 72(2011):1–19, 2011.

[40] G. E. Hinton and R. R. Salakhutdinov. Reducing the Dimensionality of Data with Neural
Networks. Science, 313(5786):504–507, 2006.

[41] X. Glorot, A. Bordes, and Y. Bengio. Deep Sparse Rectifier Neural Networks. In Geoffrey
Gordon, David Dunson, and Miroslav Dudík, editors, Proceedings of the Fourteenth Inter-
national Conference on Artificial Intelligence and Statistics, volume 15 of Proceedings of
Machine Learning Research, pages 315–323, Fort Lauderdale, FL, USA, 11–13 Apr 2011.
PMLR.

[42] A. L. Maas, A. Y. Hannun, and A. Y. Ng. Rectifier nonlinearities improve neural network
acoustic models. 2013.

26

[43] M. D. Zeiler. ADADELTA: An Adaptive Learning Rate Method. arXiv preprint
arXiv:1212.5701, 2012.

[44] M. Meilă. Comparing clusterings—an information based distance. Journal of Multivariate
Analysis, 98(5):873–895, 2007.

[45] P. Rousseeuw. Silhouettes: A graphical aid to the interpretation and validation of cluster
analysis. Journal of Computational and Applied Mathematics, 20:53–65, 1987.

[46] J. C. Dunn. Well-Separated Clusters and Optimal Fuzzy Partitions. Journal of Cybernetics,
4(1):95–104, 1974.

[47] M. Hahsler, M. Piekenbrock, S. Arya, and D. Mount. dbscan: Density Based Clustering of
Applications with Noise (DBSCAN) and Related Algorithms, 2018. R package version 1.1-3.

27

Appendix A: Tables

Data set
BuddyMove TripAdvisor Google

Number of
observations 249 980 5456

Number of
attributes 7 11 25

Attribute 1 Unique user ID Unique user ID Unique user ID
Number of reviews on... Average user feedback on... Average ratings on...

Attribute 2 stadiums, sports complexes, etc. art galleries churches
Attribute 3 religious institutions dance clubs resorts
Attribute 4 beaches, lakes, rivers, etc. juice bars beaches
Attribute 5 theaters, exhibitions, etc. restaurants parks
Attribute 6 malls, shopping places, etc. museums theaters
Attribute 7 parks, picnic spots, etc. resorts museums
Attribute 8 N/A parks/picnic spots malls
Attribute 9 N/A beaches zoos
Attribute 10 N/A theaters restaurants
Attribute 11 N/A religious institutions pubs/bars
Attribute 12 N/A N/A local services
Attribute 13 N/A N/A burger/pizza shops
Attribute 14 N/A N/A hotels/other lodgings
Attribute 15 N/A N/A juice bars
Attribute 16 N/A N/A art galleries
Attribute 17 N/A N/A dance clubs
Attribute 18 N/A N/A swimming pools
Attribute 19 N/A N/A gyms
Attribute 20 N/A N/A bakeries
Attribute 21 N/A N/A beauty & spas
Attribute 22 N/A N/A cafes
Attribute 23 N/A N/A view points
Attribute 24 N/A N/A monuments
Attribute 25 N/A N/A gardens

Table A1: Summary of the three data sets and information on the attributes.

28

Program name Explanation
CLARA.R Applies the CLARA algorithm to the non-encoded data.
data_cleaning_and_normalizing.R Imports, cleans, and normalizes the non-encoded

BuddyMove, Tripadvisor, and Google data sets.
DBSCAN.R Applies the DBSCAN algorithm to the non-encoded data.
encoded_CLARA.R Applies the CLARA algorithm to the encoded data.
encoded_data_cleaning_and_normalizing.R Imports, cleans, and normalizes the encoded BuddyMove,

Tripadvisor, and Google data sets.
encoded_DBSCAN.R Applies the DBSCAN algorithm to the encoded data.
encoded_fuzzy_c-means.R Applies the fuzzy c-means algorithm to the encoded data.
encoded_hierarchical_average.R Applies the hierarchical clustering algorithm with average

linkage to the encoded data.
encoded_hierarchical_complete.R Applies the hierarchical clustering algorithm with complete

linkage to the encoded data.
encoded_hierarchical_single.R Applies the hierarchical clustering algorithm with single

linkage to the encoded data.
encoded_hierarchical_ward.R Applies the hierarchical clustering algorithm with Ward

linkage to the encoded data.
encoded_k-means.R Applies the k-means algorithm to the encoded data.
encoded_k-medoids.R Applies the k-medoids algorithm to the encoded data.
encoded_nbclust_hierarchical.R Determines the optimal number of clusters for the

hierarchical clustering algorithms, based on the encoded
data.

encoded_nbclust_partitioning.R Determines the optimal number of clusters for the
partitioning clustering algorithms, based on the encoded
data.

encoded_OPTICS.R Applies the OPTICS algorithm to the encoded data.
fuzzy_c-means.R Applies the fuzzy c-means algorithm to the non-encoded

data.
hierarchical_average.R Applies the hierarchical clustering algorithm with average

linkage to the non-encoded data.
hierarchical_complete.R Applies the hierarchical clustering algorithm with complete

linkage to the non-encoded data.
hierarchical_single.R Applies the hierarchical clustering algorithm with single

linkage to the non-encoded data.
hierarchical_ward.R Applies the hierarchical clustering algorithm with Ward

linkage to the non-encoded data.
k-means.R Applies the k-means algorithm to the non-encoded data.
k-medoids.R Applies the k-medoids algorithm to the non-encoded data.
nbclust_hierarchical.R Determines the optimal number of clusters for the

hierarchical clustering algorithms, based on the
non-encoded data.

nbclust_partitioning.R Determines the optimal number of clusters for the
partitioning clustering algorithms, based on the
non-encoded data.

OPTICS.R Applies the OPTICS algorithm to the non-encoded data.

Table A2: Programs used in R.

Program name Explanation
autoencoder.py Creates autoencoders for the BuddyMove, Tripadvisor, and

Google data sets to encode these data sets to a lower
dimension.

data_cleaning_and_normalizing.py Imports, cleans, and normalizes the non-encoded
BuddyMove, Tripadvisor, and Google data sets.

Table A3: Programs used in Python.

29

Programming language Package/tool Usage
R scale function Data normalizing
R NbClust Determination of optimal number of clusters
R stats package K-means algorithm
R cluster PAM and CLARA algorithms
R ppclust Fuzzy c-means algorithm
R factoextra Hierarchical clustering and data visualization
R dbscan DBSCAN and OPTICS algorithms
R fpc Clustering evaluation measures
Python Keras Autoencoders

Table A4: Packages and tools used.

30

Appendix B: Algorithms

Algorithm B1: DBSCAN
Required parameters/functions:

• DB: Database containing all objects.

• minPts: The minimum number of data points (objects) needed to form a cluster (excluding
one of the core points of that cluster).

• eps: Distance threshold for two objects to be considered neighbors.

• dist(A, B): Computes the distance between two objects A and B.

• RangeQuery(DB, P , eps; dist): Returns a list containing all objects from database DB which
are within a distance of eps from object P , according to the distance function dist. These
objects are considered to be neighbors of P . See Algorithm B2.

def DBSCAN(DB, minPts, eps):
1: C ← 0 // Cluster label
2: for each object P in DB do
3: if label(P) is defined then
4: continue // Skip objects which are already labeled
5: end if
6: Neighbors N ← RangeQuery(DB, P , eps, dist)
7: if |N | < minPts then
8: label(P) ← Noise // P is identified as an outlier
9: continue

10: end if
11: C ← C + 1 // Increment cluster label
12: label(P) ← C // P is identified as a core point
13: N ← N \ {P}
14: for each object Q in N do
15: if label(Q) == Noise then
16: label(Q) ← C // Q is identified as a border point
17: end if
18: if label(Q) is defined then
19: // Q is already assigned to another cluster, or it is a border point of the current
20: // cluster, therefore we do not have to consider its neighbors
21: continue
22: end if
23: label(Q) ← C
24: Neighbors M ← RangeQuery(DB, Q, eps, dist)
25: if |M | ≥ minPts then
26: // Q is identified as a core point, therefore we also have to consider its neighbors
27: N ← N ∪M
28: end if
29: end for
30: end for

31

Algorithm B2: RangeQuery
Required parameters/functions:

• DB: Database containing all objects.

• P : An object from DB.

• eps: Epsilon.

• dist(A, B): Computes the distance between two objects A and B.

def RangeQuery(DB, P , eps):
1: Neighbors N ← ∅
2: for each object Q in DB do
3: if dist(P , Q) ≤ eps then
4: N ← N ∪Q
5: end if
6: end for
7: return N

32

Algorithm B3: OPTICS
Required parameters/functions:

• DB: Database containing all objects.

• minPts: The minimum number of data points (objects) needed to form a cluster (excluding
one of the core points of that cluster).

• eps: Distance threshold for two objects to be considered neighbors.

• dist(A, B): Computes the distance between two objects A and B.

• RangeQuery(DB, P , eps; dist): Returns a list containing all objects from database DB
which are within a distance of eps from object P , according to the distance function dist.
These objects are considered to be neighbors of P . See Algorithm B2.

• core_dist(DB, P , minPts, eps; RangeQuery): First computes the neighbors of object
P as N ← |RangeQuery(DB, P , eps)|. If it then holds that |N | < minPts, the function
returns UNDEFINED. Otherwise (thus if |N | ≥ minPts), the function returns the distance
between P and the minPts-th closest neighbor of P .

• updateSeeds(DB, P , N , Seeds, minPts, eps; core_dist): Updates the priority queue
Seeds by enqueueing all neighbors of P from N which are not marked as processed yet.
See Algorithm B4.

def OPTICS(DB, minPts, eps):
1: // List to store the objects, which are ordered according to their reachability-distance
2: OrderSeeds← empty list
3: for each object P in DB do
4: P.reachability_dist← UNDEFINED
5: end for
6: for each unprocessed object P in DB do
7: Mark P as processed
8: Add P to orderSeeds
9: if core_dist(DB, P , minPts, eps) != UNDEFINED then

10: N ← RangeQuery(DB, P , eps)
11: Seeds← empty priority queue
12: updateSeeds(DB, P , N , Seeds, minPts, eps)
13: while Seeds is not empty do
14: Q← Seeds.dequeue()
15: O ← RangeQuery(DB, Q, eps)
16: Mark Q as processed
17: Add Q to orderSeeds
18: if core_dist(DB, Q, minPts, eps) != UNDEFINED then
19: updateSeeds(DB, Q, O, Seeds, minPts, eps)
20: end if
21: end while
22: end if
23: end for

33

Algorithm B4: updateSeeds
Required parameters/functions:

• DB: Database containing all objects.

• P : A core point.

• N : A list containing all neighbors of P .

• Seeds: Priority queue in which objects are in ascending order, according to their
reachability-distance from the closest core point. The objects in this queue are likely
to end up in the same cluster.

• minPts: The minimum number of data points (objects) needed to form a cluster (excluding
one of the core points of that cluster).

• eps: Distance threshold for two objects to be considered neighbors.

• dist(A, B): Computes the distance between two objects A and B.

• RangeQuery(DB, P , eps; dist): Returns a list containing all objects from database DB
which are within a distance of eps from object P , according to the distance function dist.
These objects are considered to be neighbors of P . See Algorithm B2.

• core_dist(DB, P , eps, minPts; RangeQuery): First computes the neighbors of object
P as N ← |RangeQuery(DB, P , eps)|. If it then holds that |N | < minPts, the function
returns UNDEFINED. Otherwise (thus if |N | ≥ minPts), the function returns the distance
between P and the minPts-th closest neighbor of P .

def updateSeeds(DB, P , N , Seeds, minPts, eps):
1: coredist← core_dist(DB, P , eps, minPts)
2: for each object Q in N do
3: if Q is unprocessed then
4: new_reachability_dist← max{coredist, dist(P , Q)}
5: if Q.reachability_dist == UNDEFINED then
6: Q.reachability_dist← new_reachability_dist
7: Seeds.enqueue(Q, new_reachability_dist)
8: else if new_reachability_dist < Q.reachability_dist then
9: Q.reachability_dist← new_reachability_dist

10: Seeds.move_up(Q, new_reachability_dist)
11: end if
12: end if
13: end for

34

	Introduction
	Related work
	Data description
	Methodology
	Data cleaning and normalizing
	Clustering algorithms
	Partitioning clustering
	K-means
	K-medoids
	Clustering for Large Applications (CLARA)
	Fuzzy c-means (FCM)

	Hierarchical clustering
	Density-based clustering
	DBSCAN
	OPTICS

	Autoencoders
	Evaluation measures

	Results
	Conclusion and future work

