
ERASMUS UNIVERSITY ROTTERDAM
Erasmus School of Economcis

Bachelor Thesis Econometrics and Operations Research

Forecasts of the Tanzanian gross domestic
product including factor models and the

machine learning technique boosting

Author: Lise Lot Ridderbos (451248)

Supervisor: P.H.B.F. Franses

Second assessor: A.M. Schnucker

Date final version: 7 July 2019

The views stated in this thesis are those of the author and not necessarily those of Erasmus School of

Economics or Erasmus University Rotterdam.

Abstract

There has been extensive research on how ‘big data’ and machine learning techniques are useful

for modeling low frequency macroeconomic variables. In this paper, it is analyzed if machine

learning, variable selection, and shrinkage method boosting within the factor-augmented auto-

regression are helpful in forecasting the gross domestic product (GDP) of Tanzania. In addition,

it is tested whether this forecast method outperforms the ‘simple’ auto-regressive (AR) with

the lag order selected by the Bayesian information criterion. The estimation is based on a

combination of the lagged GDP growth of Tanzania and the dynamical factors. The latter are

based on principal component analysis (PCA) and contain the GDP growth of 51 other African

countries from 1963 up to 2016. The evaluation of the effectiveness of the forecasts methods

is based on simulations that include a data generating process. It was found that this method

proved to generate reliable results, given that the input values are accurately described. The

five forecasts of the GDP of Tanzania result all in a lag order of 2 selected by the Bayesian

information criterion. The MSFE of the boosting method that includes principal component

analysis is lower than the MSFE of the benchmark AR(2) method. Therefore, it was found

that the factor models and the machine learning technique boosting are indeed reliable means

for modeling and forecasting the gross domestic product of Tanzania, and they outperform the

‘simple’ AR(2) model.

Contents

1 Introduction 2

2 Literature Review: Using Machine Learning Techniques to Forecast the Gross

Domestic Product Growth 3

3 Data 4

4 Methodology 5

4.1 Factor and Forecasting Models . 5

4.2 Factor Estimation Method: Principal Component Analysis 7

4.3 Machine Learning, Variable Selection, and Shrinkage Method: Boosting 9

4.4 Auto-egressive Models and Mean Square Forecast Error 10

4.5 Simulation With Data-generating Process . 11

5 Results 13

5.1 Results of the simulation . 13

5.2 Results for the African Data . 17

6 Conclusion 20

7 Appendix 24

7.1 Nomenclature . 24

7.2 Results . 25

7.3 Codes . 27

7.3.1 Simulation . 27

7.3.2 Codes with the African Data Set . 39

1 Introduction

In the last five decades technological advances have resulted in an increase in the quantity of available

macroeconomic data (Kim and Swanson (2014)). The amount of ‘big data’ and machine learning

techniques that are available for modeling and computational methods is constantly increasing.

These concepts are used in several studies in the economic literature to predict factor models (Forni

et al. (2000), Stock and Watson (2002b), Stock and Watson (2006), Bai and Ng (2008), Dufour

and Stevanovic (2010), Stock and Watson (2012), Kim and Swanson (2014) and Hassani and Silva

(2015)).

In the process of forecasting, a large set of predictors needs to be examined. It can be a costly

process to evaluate all possible combinations of the predictors if they have no specific ordering.

Solutions to this costly process would be machine learning variable selection and shrinking methods.

In the paper of Kim and Swanson (2018) it is concluded that ‘big data’ and machine learning

techniques are useful for forecasting low frequency macroeconomic variables. There are various

‘robust’ shrinking techniques for forecasting, mentioned in Kim and Swanson (2018). In this paper

the statistical learning algorithm boosting is used as a methodology of selecting the predictors in

factor-augmented auto-regressions. The factors are constructed by principal component analysis

(PCA). This is the best known and most frequently used technique in dimension-reduction (Jolliffe

(2011)). PCA reduces the variables, while it retains much of the information of the original data set

(Kim and Swanson (2018)).

The goal of this research is to forecast the low frequency macroeconomic variable gross domestic

product (GDP) growth of Tanzania using the lagged GDP growth of Tanzania and the GDP growth

of other African countries. The paper of Kim and Swanson (2018) is followed, by using one of

their forecast approaches. This research extends the previous paper by using new data, namely the

GDP growth of 52 countries in Africa from 1961 up to 2016. In addition, it is analyzed whether

this forecast method outperforms a ‘simple’ auto regressive model with a lag order selected by the

Bayesian information criterion. Hence the following main research question is formulated: Are factor

models and the machine learning technique boosting helpful for modeling and forecasting the gross

domestic product of Tanzania, and does this forecast method outperform the ‘simple’ auto-regressive

model?

In order to answer the main research question, the forecast performances need to be adequately

2

evaluated. This is done by comparing the mean square forecast error (MSFE) of the forecast method

with the MSFE of an auto-regressive forecast with lag order selected by the Bayesian information

criterion. To evaluate the effectiveness of the factor model that includes boosting and PCA in a

FAAR framework, data is simulated using a data-generating process. The input data from the

data generating process is constructed in the same format as the African data set. Therefore, the

problems in the simulation apply to the forecast of the GDP growth of Tanzania. As a consequence,

the results can be compared to test the accuracy of the method. It was found by the simulation that

the forecast method is specified correctly. The factor models and the machine learning technique

boosting proved to be a reliable tool for modeling and forecasting the gross domestic product of

Tanzania, and it outperform the ‘simple’ AR(2) model.

Answering this research question leads to valuable insights. It expands the knowledge of how

‘big data’, machine learning, variable selection, and shrinkage method boosting are used to predict

factor models and, in specific, the GDP growth of Tanzania. Additionally, the methods used in

this research can be applied to model other low frequency macroeconomic variables. Furthermore,

the research validates the applicability of replacing ‘simple’ auto-regressive models with a boosting

forecast method to increase the accuracy of the forecast.

The structure of the article is as follows: In the next section a brief summery of the relevant

literature on the field of machine learning techniques to forecast gross domestic product growth is

given. Consequently, section 3 elaborates on the sources of the required data. In the fourth section

the research methodology is explained. In section 5, the methodology is implemented and the results

are discussed. Finally, in the last section a conclusion is presented and recommendations for further

research are proposed.

2 Literature Review: Using Machine Learning Techniques to Fore-

cast the Gross Domestic Product Growth

There has been extensive research on the relationship between forecast low frequency macro economic

variables like gross domestic product (GDP) growth and machine learning techniques. As mentioned

in Hassani and Silva (2015) the potential of machine learning techniques that can handle big data

will further increase in the future. In their research the authors examined the usefulness of these

machine learning techniques for forecasting models. The authors concluded that factor models are

3

widely used to make these forecasts and the field of economics is most popular of exploiting big

data by machine learning techniques. As mentioned in Plakandaras et al. (2015) machine learning

techniques are becoming more important, because of their ability to forecast with a higher accuracy,

compared to alternative methods such as ‘simple’ auto-regressive models.

One of the studies that uses machine learning techniques to forecast low frequency macro eco-

nomic variables like GDP growth is Schumacher (2007). Forecasts of the German GDP growth is

given. Dynamic and static principal components (PC) are used for these forecasts. The main conclu-

sion of this article is that the factor models outperform the ‘simple’ auto-regressive (AR) models in

these forecasts. Not only the forecasting of the GDP growth of Germany can be interesting, but also

the forecasting the GDP growth of the United States can be of great importance. In the paper of

Carriero et al. (2015), GDP growth predictions for the United States are given. More globally, Biau

(2013) forecasts the European Union GDP growth with the machine learning technique Random

Forest. This forecast method outperforms the ‘simple’ AR model. The GDP growth in the Euro

zone can also be interesting to forecast. Factor models with maximum likelihood estimations are

used for this forecast (Bańbura and Modugno (2014)).

Boosting can be used as a machine learning technique to forecast growth in GDP. In the paper of

Kim and Swanson (2018), the GDP growth is estimated with a boosting algorithm. The success of

the boosting algorithms have caused a lot of attention (Kim and Swanson (2018). The application

of boosting to classification methodology is done by Hastie et al. (2009) and the authors conclude

that in this classification boosting is one of the most important developments in this field. This

research follows the footsteps of Kim and Swanson (2018), by using their approaches to forecast the

GDP growth.

3 Data

The data set used in this paper concerns the gross domestic product (GDP) growth of 52 African

countries from 1961 till 2016. The data is obtained from an unpublished paper (Franses and Vasilev

(2019)). This paper presents a balanced panel data set for real GDP growth growth in Africa. The

data of Ghana is moved by one row. This is corrected by starting the data of Ghana one year earlier.

The data from 1961, 1962 and 2017 till 2020 are deleted because these data points do not conclude

a GDP growth for a few African countries. So the data that is used in this research includes the

4

GDP growth of 52 African countries from 1963 till 2016.

The maximum GDP growth concerning all African Countries is the GDP growth of Eq. Guinea

from 1997 till 1998 and is equal to 150. The minimum GDP growth concerning all African countries is

the GDP growth of Libya from 2011 till 2012 and is equal to -62.1. The overall average GDP growth

is equal to 3.985. In this research the GDP growth of Tanzania is represented in the dependent

variable y, the GDP growth of the other 51 countries are represented by the explanatory variables

X. The average and standard deviation of the GDP growth of Tanzania and the other African

countries are given in figure 7 in the section 7.2 of the appendix.

When considering the whole data set, the GDP growth of the African countries from 1963 till

2016, the skeweness has a value of -0.0788 and the kurtosis has a value of 2.428. To test if the GDP

growth of Tanzania from 1961 till 2016 has a normal distribution a Jarque Bera test is applied. The

value of this Jarque Bera test is 0.79 and the p-value is 0.67, so the null hypothesis of a normal

distribution is not rejected at a significance level of 5 %.

4 Methodology

This section contains five parts. The first subsection concerns how the factor and forecasting models

are obtained and constructed. The next part discusses the principal component analysis as a factor

estimation method. The third subsection examines boosting as a machine learning variable selection

and shrinking method. Subsection 4 analyses the auto-regressive models and mean square forecast

error. The last section elaborates on a simulation to test for the validity of the implemented factor

and forecasting models.

4.1 Factor and Forecasting Models

In this research the factor and forecasting models follow the general framework described in Kim

and Swanson (2018), Stock and Watson (2002a) and Bai and Ng (2009). The variance of the forecast

dependent variable is described by structural components called factors. In specific, y is the time-

variable to be constructed, and X are the N-dimensional multiple time series containing candidate

predictors. The forecasts, yt+1 are created in two steps. Firstly, the factors Ft are identified using

the data set Xt. Thereafter these factors are used to forecast the dependent variable yt. The factor

5

model with the time series data set consisting of T observations (t=1 ... T), and N explanatory

variables is defined as:

Xt = Λ′Ft + εt, (1)

where Xt = (Xt,1, . . . , Xt,N), Ft = (ft,1, . . . , ft,r) is a vector of r < N common dynamic factors for

time period t and is extracted from the factors Ft, Λ = (λ1, ..., λr) are factor loadings associated with

these dynamic factors, and εt is the idiosyncratic components of Xt. The product Λ′Ft is defined as

the common product of Xt.

The general forecasting equation in a time series data set with recursive window consisting of

T observations (t=1, ... T) with the factor augmented auto-regression (FAAR) formulation in (1)

takes the form:

Yt+1 = Wtβw + FtβF + εt+1, (2)

Yt+1 is a vector of (t+ 1)× 1 consisting of the dependent variable and a forecast of this dependent

variable, Wt is a t× (pmax + 1) matrix with additional explanatory variables and consists of a t× 1

vector equal to ones for the constants and the remaining columns consists of the lags of y, βW and

βF are the forecast parameters and εt+h is the disturbance error. It is important to note that if
√
T

N → 0 the ordinary least squares estimates βW and βF are asymptotically normal and
√
T is

consistent, so that they do not cause regressor problems (Bai and Ng (2008)).

In this research, principal component analysis (PCA) is used to estimate (1), and is discussed

in the subsection 4.2. Thereafter in section 4.3, the machine learning boosting method is described

to make a forecast similarly as (2), and to estimate β̂F . In comparison to the factors included in

Ft from Kim and Swanson (2018), these factors do not include lags from periods before t. The

general framework for the dynamic factor and forecast models are still applicable, just by setting the

lags equal to zero. The forecast method is the same as specification type one in Kim and Swanson

(2018): first factors are constructed by PCA with the data set, secondly the machine learning

shrinkage method boosting is implemented in a factor augmented auto-regressive (AR) framework

to select functions of and weights for the factors. These functions and weights are used in the

prediction method given in (2). So in the boosting algorihtm betaF is estimated, PCA estimate Ft

and Wtβw is estimated with an AR model.

In the end the resulting forecasting model is compared by the mean squared prediction error with

the use of a benchmark model. This benchmark model includes the AR model with the amount

of lags (pbic) selected by the Bayesian information criterion, explained in section 4.4. The amount

6

of lags to include in the forecast are also estimated using this Bayesian information criterion with

the principal component regression. The amount of factors to include in the boosting method is

estimated using a selection criteria from Bai and Ng (2002), and is explained in section 4.3. To

evaluate the effectiveness of the factor estimation method, a simulation is considered. The data in

this simulation is established by a data-generating process. The experimental Setup is shown below

in figure 2.

Figure 1: Visual representation of the experimental setup of this paper.

4.2 Factor Estimation Method: Principal Component Analysis

The main reason why principal component analysis (PCA) is chosen as the factor estimation method

is, because in the paper of Kim and Swanson (2014) PCA is the mean square forecast error (MSFE)

‘best’ factor estimation for specification method one. PCA is a factor estimation method, and is used

to solve (1). The number of underlying factors (r) are also estimated with PCA. In this research

the latent principal components (PCs) are estimated on the same way as in Kim and Swanson

(2014), with the statistical procedure PCA. The data projection is in the direction of the maximum

variance, so the first principal component captures the maximum variance possible. The second

7

factor captures the maximum variance possible in the remaining orthogonal subspace, and is thus

uncorrelated with the first component. This process is repeated to obtain the remaining factors.

Possibly correlated variables in a set of observations are orthogonally transformed into linearly

uncorrelated principal components (Jolliffe (2011)). Furthermore, the first principal components

related with higher variances, are believed to have more explanatory power than those later on with

lower variances. Before using the method PCA the data is standardized, the mean of the data is

equal to zero and there is an unit variance. Because of the normalization all variables are treated

on the same "scale". The main advantage of PCs is that they are easily derived due to the singular

value decomposition (Bai and Ng (2002), Stock and Watson (2002b)). This could be the reason that

PCA is most frequently academically applied for factor estimation.

As discussed by Fan and Yao (2017), PCA makes use of (1) but the amount of factors r is

unknown, so contrarily Ft = (ft,1, ..., ft,N) and Λ = (λ1, . . . , λN). The variance of the jth row of the

explanatory variable X concerning a time series data set consisting of T observations (t=1, ... T)

has the following explicit form:

V̂ =
1

T

T∑
t=1

(Xt −X)(Xt −X)′, (3)

where Xt = (xt,1, ..., xt,N) and εt is the idiosyncratic component of Xt, X= 1
T

∑T
t=1Xt is the sample

mean vector.

Furthermore, the jth principal component is equal to the linear combinations fj,t = λ′jxt,j that

solve the following maximization problem, for j = 1, . . . , N , for i = 1, . . . , j − 1 and t = 1, . . . , T :

maximize
λj

var(fj,t) = λ′j V̂ λj

subject to λ′jλj = 1,

Cov(fj,t, fi,t) = 0

(4)

In this way the principal components are normalized and the factor’s loading can be identified.

When taking the Lagrangian form, where l is the Lagrange multiplier: Lj = λ′j V̂ λ − l(λ′λ − 1).

Setting the derivative equal to zero results in: V̂jλj = lλj , which leads to an eigenvector λj of V̂ .

As discussed before the amount of factors is unknown when elaborating in PCA. The method

estimates all N eigenvectors, but only the first r eigenvectors are used. The selection criteria for r

are given in Bai and Ng (2002). In this research the same selection criteria Bayesian information

8

criterion 3 (BIC3) is used as in the research of Kim and Swanson (2014), and is analyzed as follows:

V (r, F̂) = min
Λ

1

NT

N∑
j=1

T∑
t=1

(Xj,t − λ′jF̂t)
2

BIC3(r) = V (r, F̂) + rσ̂2 ((N + T − r)ln(NT)

NT

r̂ = argmin
0≤r≤rmax

BIC3(r),

(5)

where the sum of squared residuals divided by NT is defined as V (r, F̂), σ̂2 is the variance of

residuals with r factors and rmax is the maximal amount of factors. Additionally, the shrinkage

method boosting is also used to specify the amount of factors and the function of factors. The

selection criterion above is used as a ‘pre-selection’ of factors before applying the boosting algorithm.

This ‘pre-selected’ amount of estimated amount of factors (r̂) is estimated consistently by Kim and

Swanson (2014). In the following section the boosting algorithm is discussed.

4.3 Machine Learning, Variable Selection, and Shrinkage Method: Boosting

In this research the goal of a robust machine learning shrinking method is to select functions of and

weights for the factors, so estimate parameters βF in (2). The approach boosting is used in this

research to make a forecast for y. When applying boosting in a factor augmented auto-regression

(FAAR) framework the amount of predictors can be computed and the dependent variable yt can

be forecast similarly as in Kim and Swanson (2013) and Kim and Swanson (2018). Boosting is

a method that merges the outputs of several ‘weak-learners" (models) to create a forecast. The

forecast is created by minimizing a quadratic loss function averaged over the training data. This

forecast results in the lowest mean squared error (MSE) rates in the research of Bai and Ng (2009).

When applying the boosting algorithm, boosting can be seen as a gradient descent technique. The

boosting algorithm in this research handles time-series, on the same way as the ‘Component-Wise

L2 Boosting’ algorithm in Bai and Ng (2009). To prevent over-fitting with estimated predictors a

stopping rule is included in this algorithm. This algorithm is convenient even when the number of

potential predictors is large.

The boosting algorithm used in this research is given below as boosting algorithm 1. The

estimation of F ′tβF from (2) is represented as µM in the boosting algorithm 1. When applying

this algorithm the estimates of β̂w, the T × (pmax + 1) matrix Wt containing additional explanatory

9

variables and residual vector E need to be established a priori. These parameter are estimated by

the auto-regressive (AR) model, and this model is analyzed in the following section.

Algorithm 1 Boosting
Input Dependent variable y, dynamic factors Ft, stopping parameter M, step length v where 0 ≤ v ≤ 1,
amount of "pre-selected parameters" r, β̂w, Wt from (2) and T × 1 residual vector E
Output Forecast of the dependent variable and the optimal beta (β̂M)
Initialize µ̂0 = E and B0 =

1′T
1T

, where 1T is a T x 1 vectors of ones

for i=1, . . . , M iterations do
the "current residual" is defined as: µ = E − µ̂i−1

for j=1, . . . , r do
regress the "current Tx1 residual" µ on F̂j to obtain the residuals d̂j
SSRj = d̂′j d̂j

end for
j∗ = minjε(1,...,r) SSRj

obtain β̂j∗ by regressing µ on F̂j∗ , and β̂
⊕
j∗

is non-zero only in the j∗ position
µ̂i = µ̂i−1 + vF̂j∗ β̂j∗ . Update residuals estimates using shrinkage parameters
β̂i = β̂i−1 + vβ̂⊕j∗ . Update beta estimates using shrinkage parameters
df i = trace(Bi−1 + vF̂j∗(F̂

′
j∗
F̂j∗)

−1F̂ ′j∗(IT −Bi−1)) . Updating the degrees of freedom
σ̂i

2

=
∑T
t=1(Yt − µ̂i)2 . Estimating the variance of the boosting residuals

IC(i) = log(σ̂i
2

) + log(T)dfi

T

end for
M= argmini IC(i) . Estimating the stopping parameter M
ŷBoostingt+1 = Wtβ̂w + µ̂M

4.4 Auto-egressive Models and Mean Square Forecast Error

The auto-regressive (AR) model with optimal lag order pbic is used to estimate the additional

explanatory variableWT and parameter β̂w, and the T×1 residual vector E in the boosting algorithm

1. The AR model of lag order pmax has the following form:

yt = α+

pmax∑
i=1

βiyt−i + εt, (6)

where pmax is the maximum amount of lags, α is a constant, εt is white noise and (β1, . . . , βpmax)

are the parameters of the model. The optimal amount of lags pbic is selected by minimizing the

Bayesian information criterion (BIC) in the auto regressive model above (Heij et al. (2004) and Box

et al. (2015)). The BIC value is defined as:

BIC = −2(logL) +N ∗ log(T), (7)

10

where logL is defined as the optimized log likelihood function, obtained by the estimation of the

AR model. The AR model with optimal lag order pbic is used as benchmark. This benchmark is

used to evaluate the forecast performance of the factor model that includes boosting and PCA, by

comparing this model with the ‘simple’ AR model with lag order Pbic. This comparison is evaluated

by means of mean square forecast errors (MSFE). The definition of the MSFE is stated in (Kim and

Swanson (2018)), and is defined as:

MSFEh =
T∑

t=W−1

(Yt+1 − Ŷt+1)2, (8)

where Ŷt+1 is the forecast of the dependent variable for time t+ 1, and W is the sample estimation

period.

To test if structural breaks needs to be implemented in the factor and forecasting models, the

GDP growth of Tanzania is fitted in a auto-regressive model with optimal lag order pbic, for the

five different forecast data sets in a recursive window. The residuals of this model are analyzed by

means of kurtosis and skewness. If the skewness is smaller than one and if the kurtosis is around

three, there is no need to include structural breaks in the models. It is also checked whether these

residuals have a normal distribution by means of the Jarque-Bera test.

4.5 Simulation With Data-generating Process

To evaluate the effectiveness of the factor model that includes boosting and PCA in a factor augmen-

ted auto-regression (FAAR) framework, data is simulated using a data-generating process (DGP).

First far factors are made using the AR model with lag order one. The dependent and explanatory

variables are created using those factors. The DGP will lead to estimates of the dependent variable

y and to explanatory variables X. After the DGP, the dynamic factors F̂t are estimated by principal

component analysis (PCA). Subsequently, the boosting algorithm 1 is implemented. The algorithm

of the DGP is given below as data-generating process algorithm 2, for t = 1, . . . T observations.

When the data is generated with far = 3, the correct amount of factors in the boosting algorithm

1 and in the ’pre-selection’ needs to be equal to 3 (far). The simulation is necessary to check if certain

‘input values’ play an important role in the simulation. These ‘input values’ include the step length

v in the boosting algorithm 1, the maximum amount of lags (pmax) in (6), the maximum amount of

factors (rmax) in (5). They also concern the amount of observations, the amount of variables and the

11

Algorithm 2 data-generating process
Output Dependent variable (yt+1) and explanatory variables (Xt)

1. Construct far factors with an AR model with lag order one:

Ft,1 = α+ β1Ft−1,1 + εt,1

...

Ft,far = α+ βrFt−1,far + εt,far ,

where Ft are the constructed dynamic factors, α is a constant, β is a far × 1 vector with uniformly
distributed random numbers and ε is the idiosyncratic component of Ft with variance equal to 1.

2. Construct N explanatory variables:

Xt,1 =

far∑
i=1

Ft,iυi,1 + wt,1

...

Xt,N =

far∑
i=1

Ft,iυi,N + wt,N ,

where Xt is the T ×N explanatory variable, υ is a far×N vector with normally distributed random
numbers and w is T ×N vector of normally distributed random numbers.

3. Construct the dependent variable:

yt =

far∑
j=1

Ft,jλj + εt,

where yt is the T × 1 dependent variable, λ is a far × 1 vector with normally distributed random
numbers and ε is T × 1 vector of normally distributed random numbers.

amount of factors (far) the data is generated with. This is done by analyzing if the ‘pre-selection’

of the amount of factors, and the amount of factors selected in the boosting method differs when

changing the ‘input values’. The examination is based on two hit rates: hit-ratepr and hit-ratebo. The

former represents the hit-rate when comparing the amount of factors selected in the ‘pre-selection’

with the amount of factors far. The latter consists of the hit-rate when comparing the amount of

factors selected in the boosting algorithm 1 with the amount of factors far.

It is specifically important to test whether the optimal beta (β̂j∗) in the boosting algorithm 1

is specified correctly. This is done by applying another DGP. The dynamic factors are set equal

to the explanatory variables: Ft = Xt in the boosting algorithm 1. The dependent variable yt is

12

constructed as follows for j = 1 . . . N variables, and t = 1, . . . , T observations:

yt =
N∑
j=1

αjXt,j + εt, (9)

where Xt is a matrix of standardized normally distributed random numbers and εt is a N × 1 vector

with normally distributed random numbers. The 1 × N vector α is chosen randomly but needs

to remain constant when forecasting yt multiple times. Because when the boosting algorithm 1 is

constructed correctly, the optimal beta β̂M = (α1, . . . , αN)′. This can be verified by a one-sample

t-test when implementing k times the boosting algorithm 1, for k sufficient large.

In the next section the results are presented, and the data of African countries is used to forecast

the gross domestic product (GDP) growth of Tanzania. The data from the DGP is constructed into

the same format as the African data set. Therefore the problems in the simulation apply to the

forecasts of the GDP growth of Tanzania. Hence the valuation of the simulation is important for

the accuracy of the implemented method for forecasting the GDP growth.

5 Results

This section consists of two parts. The first analyzes the results of the simulation. The second

part discusses the forecast results of the gross domestic product (GDP) growth of Tanzania. The

simulation is necessary for the second part because it test the correctness of the boosting method

and principal component analysis implemented.

5.1 Results of the simulation

The data generating process (DGP) in algorithm 2 from the previous section 4.5 is applied for

T = 54 observations, N = 51 explanatory variables and alpha = 0.05. The stopping parameter M

has the value 100. The optimal amount of lags (pbic), the value of β̂w, the T × (pmax + 1) matrix

Wt containing additional explanatory variables and residual vector E are established as discussed in

section 4.4. The optimal amount of ‘pre-selected’ factors are estimated as discussed in section 4.2.

First, it was investigated if the amount of factors (far) from which the data is generated, plays

an important role in the estimation of the amount of ‘pre-selected’ factors. This analysis is based

on the hit-rate of the ‘pre-selected’ amount of factors (hit-ratepr). In figure 2(a), this hit-rate is

13

given for different values of far. Note that the hit-rate does not show large variations. This means

that different values of far do not have a large impact on the hit-rate of the ‘pre-selected’ amount of

factors. The hit-ratepr is around one. This indicates that the amount of factors in the ‘pre-selection’

is estimated correctly.

Secondly, the correct amount of factors of the boosting algorithm 1 is analyzed for using different

values far and step length v. This examination uses the hit-ratebo, and is represented in figure 2(b)

for different value of far and v. This figure shows that hit-ratesbo vary. When far increases, the

hit-ratesbo decrease. When comparing these hit-ratesbo with the hit-ratespr for different values of

far ≥ 1 and step length v, the hit-ratesbo are lower. This could be caused by the misspecification of

the amount of factors in the boosting algorithm. The dependent variable y in (4), depends partly on

the value of F ′tβF estimated in the boosting algorithm and partly on the value of Wtβ̂w estimated

by the auto-regressive model. The data is generated from an auto-regressive model of lag order one.

Therefore, a part of the estimations is already contained in Wtβ̂w, while in the boosting algorithm

F ′tβF is estimated. When increasing the amount of factors, fc, in the DGP, more information is

included in F ′tβF . As a result, less information needs to be added with F ′tβF . Therefore, less factors

in the boosting algorithm need to be selected. Hence, it can be true that the hit-ratesbo are lower

and decreases for increasing values of far without having a misspecification of the amount of factors

in the boosting algorithm.

In the following simulation far = 3 and corresponding optimal step length v = 0.2. Figure 8 in

the appendix section 7.2 represents the estimated amount of factors when the boosting algorithm 1

is implemented, for 100 iterations and different values of far, with step length v = 0.2. In this figure

it is shown that if the amount of factors is estimated incorrectly, the amount of estimated factors is

too low. This is in line with the explanation of the lower hit-ratebo, and the descending hit-ratebo for

different values of far. Thus, the amount of factors in the ‘pre-selection’ and the boosting algorithm

can be correctly specified.

The amount of variables and observations could also affect the amount of ‘pre-selected’ factors

and factors selected in the boosting algorithm. In figure 3(a) and 3(b) the hit-ratespr and hit-ratesbo

are represented for different values of observations and variables respectively. The hit-rates differ

not substantially when the simulation is applied for a different amount of variables and observations.

The African data set consists of 49−53 observations and 51 explanatory variables. The same amount

of variables and observations can be applied in the simulation.

14

(a) Hit-ratepr (b) Hit-ratebo

Figure 2: Hit-ratepr and Hit-ratebo for different values of far and step length v

Afterwards, it was tested if the amount of maximum lags (pmax) in (6) influences the hit-ratesbo.

Another important aspect is to analyze whether the amount of maximum factors (rmax) in (5) effects

the hit-ratespr. In figure 3(c) the hit-ratesbo and hit-ratespr are represented for different values of

pmax and rmax respectively. The amount of factors selected in the boosting algorithm 1 do not

vary significantly, for different values of pmax. Therefore, the value of pmax has little effect on the

hit-ratesbo. The optimal value of the maximum lags is 10, so pmax = 10 in the following simulation.

The amount of rmax does effect the hit-ratespr. The amount of rmax needs to be higher than far,

because otherwise the ’true’ amount of factors can not be estimated. Furthermore, rmax needs to

be smaller than 6 because otherwise the hit-ratespr will be lower. The factors in the ‘pre-selection’

is chosen 6 in the following simulation.

Lastly, the simulation tests if the optimal beta, β̂M from algorithm 1 is chosen correctly. This

is done by another DGP given in equation 9. The data is generated for T = 200 observations

and N = 4 variables. The dependent variable in the same equation is predicted 100 times, by

implementing the boosting algorithm. The vector α = (0.1, 0.2, 0.3, 0.4) in (9), so the ‘true’ values

of the parameters β̂M are (0.1, 0.2, 0.3, 0.4). The results of the estimate of the optimal beta when

the dynamic factors are set equally to the explanatory variable Xt, are shown in figure 4. The blue

lines are the estimated parameters, while the ‘true’ values of the parameter are given in red. As

can be seen, the values of the optimal beta stays approximately constant. Thus, the hypothesis

15

(a) Different amount of observations (b) Different amount of variables

(c) Different values of pmax and rmax

Figure 3: Hit-ratesbo and Hit-ratespr or different values of pmax, rmax and for the data consisting of a

different amount of observations and variables

is made that the parameter β̂M is estimated correctly. To test this hypothesis a t-test is applied.

The p-value of the estimated coefficients parameters are all larger than 0.05 as can be seen in figure

4. This leads to the conclusion that there is no significant evidence to reject the null hypothesis

that β̂M = (0.1, 0.2, 0.3, 0.4), at the 5% significance level. So the boosting algorithm 1 selects the

optimal beta correctly.

In summary, the data generating method is implemented 100 times to estimate data consisting

of 54 observations and 52 variables. The data is made of three factors, so far = 3. The amount of

16

Figure 4: Test for the optimal beta in the boosting algorithm

‘pre-selected’ variables in (5) estimated with rmax = 6, the optimal amount of lags (pbic) is estimated

by minimizing the BIC value in (7) with pmax = 10. The boosting algorithm is implemented with

stopping parameter M = 100 and step length v = 0.2. The hit-rate of the ‘pre-selected’ amount of

factors with the ‘input values’ above is around 1 and the hit-rate of factors selected in the boosting

algorithm is around 0.7. The hit-ratebo is lower than the hit-ratepr, but as discussed before both the

amount of factors in the ‘pre-selection’ and in the boosting algorithm 1 are still specified correctly.

Furthermore it is concluded, based on the results of the t-test, that the optimal beta is specified

correctly.

5.2 Results for the African Data

After analyzing the factor and forecasting models with the simulation, the models are used to make

five forecasts of the gross domestic product (GDP) growth of Tanzania. The five forecasts are

estimated using a recursive window. Prior to the forecast, it was tested whether it was necessary to

implement structural breaks in the models. The kurtosis and skewness of the residuals of the five

different forecasts are estimated for a data set corresponding to the forecast. To test if the GDP

growth of Tanzania has a normal distribution a Jarque-Bera test was applied. The test and results

are summarized below in table 1. The skewness is low and the kurtosis is nearby the value three,

17

and the Jarque-Bera test with 5% significance level concludes that the GDP growth of Tanzania has

a normal distribution. Thus, there is no need to include structural breaks in the models.

Forecasts for year Data-set Kurtosis Skewness Jarque-Bera value (p-value)

2012 1963-2011 2.6281 -0.3479 1.4005 (0.3712)

2013 1963-2012 2.5860 -0.3183 1.2733 (0.4077)

2014 1963-2013 2.5452 -0.2873 1.1635 (0.4451)

2015 1963-2014 2.5139 -0.2563 1.0604 (0.4924)

2016 1963-2015 2.5913 -0.1779 0.6117 (0.500)

Table 1: Test for structural breaks and normal distribution of the GDP growth of Tanzania

The boosting algorithm 1 from section 4.3 is implemented, with step length v = 0.2, and stopping

parameter M = 100. A recursive window is used for the forecasts and forecast 1 represents the

forecast of year 2012, forecast 2 represents the forecast of year 2013, etc.. The auto-regressive model

with optimal lag order pbic is estimated by minimizing the Bayesian information criterion (BIC) in

(7), with pmax = 6. This lag order is two in all five forecasts, so the benchmark model, concerns

an auto-regressive model with lag order 2. The AR(2) model is also used to estimate the additional

explanatory variable WT , parameter β̂w, and the T × 1 residual vector E.

The results of these forecasts are given in figure 5, together with the real GDP growth of Tanzania.

It can be seen that the differences of the GDP growth between the benchmark forecasts and the

real value of y are generally larger than when a combination of the boosting algorithm and PCA

was used. The mean squared forecast error (MSFE) is calculated for five forecasts, with T = 53 and

W = 50. The MSFE of the benchmark model is 7.7199 and is the MSFE of the forecast method that

implement boosting and PCA is 7.4493. The forecasts that implement the factor and forecasting

models, estimate the factors with PCA and implement the boosting algorithm has a lower MSFE

than the AR(2) benchmark model, thus this model outperforms the benchmark model.

The amount of ‘pre-selected’ variables is estimated in (5) with rmax = 6. The first three factors

are selected for all five forecasts during this ‘pre-selection’. The boosting algorithm selects the first

factor for all the five forecasts. In figure 6 below the factor loadings are represented for the African

countries. The factors are estimated with PCA, so the factors are a linear combination of all variables

and have all loadings. This leads to a difficult interpretation, but in this research there are only two

countries with remarkably high factor loadings. This simplifies the interpretation substantially. Eq.

Guinea (16) and Liberia (27) have a high factor loading. Therefore, these countries are used for the

18

Figure 5: Forecasts of the model that implements the boosting algorithm 1 with PCA, the benchmark AR(2)

model and the GDP growth of Tanzania

forecast of the GDP growth of Tanzania in the boosting algorithm 1. In section 7.2 of the appendix

figure 9 is given. This figure shows the map of Africa where Eq. Guinea, Liberia and Tanzania are

coloured. As can be seen, the countries are located far away from Tanzania. Thus, there is not a

clear explanation of the correlation between the GDP growth of these countries. The reason why

these particular countries have such a high factor loading is left for future research.

Figure 6: Factor loadings of the first factor

19

In conclusion, the factor and forecasting models that have factors estimated by PCA and im-

plement the boosting algorithm 1 were analyzed. The GDP growth of Eq. Guinea and Liberia are

used in these models to forecast the GDP growth of Tanzania in the implementation of the boost-

ing algorithm. These models forecast the GDP growth of Tanzania better than the ‘simple’ AR(2)

model, as shown by the mean square forecast error.

6 Conclusion

Following in the footsteps of Kim and Swanson (2018), the factor and forecasting models in spe-

cification type one are used to make five forecasts of the gross domestic product (GDP) growth of

Tanzania. The factors are first constructed by PCA with the data set, subsequently the boosting al-

gorithm is implemented in a factor augmented auto-regressive (FAAR) framework to select functions

of and weights for the factors. Lastly, these functions and weights are used in the prediction method

to make a forecast of the GDP growth of Tanzania. This estimation is based on 51 GDP growths

of other African countries, included in the dynamic factors. The lagged GDP growth of Tanzania

is also used, and is included in the part estimated by the auto-regressive model. The forecasts are

compared by means of the mean square forecast error and a benchmark model is considered includ-

ing the auto-regressive AR model with two lags. To evaluate the effectiveness of these factor models

that includes boosting and PCA in a FAAR framework, data was simulated using a data-generating

process (DGP). The data was constructed with a AR model with lag order one. The simulation

examines if the ‘pre-selected’ amount of factors and the amount of factors in the boosting algorithm

1 in section 4.3 were specified correctly. In the end, the optimal beta in the boosting algorithm 1 is

also analyzed.

The results of the simulation is as follows, the amount of factors far the data is made of does not

have a large impact on the hit-rate of the ‘pre-selected’ amount of factors (hit-ratepr). Contrarily, it

does have an impact on the hit-rate of the factors selected in the boosting algorithm 1 (hit-ratebo).

The value of the step length (v) also influences these hit-ratesbo. In the end, the step length is

chosen to be 0.2 and far = 3. Furthermore, both hit-rates hit-ratepr and hit-ratebo differ not a lot

when the simulation is applied for a different amount of variables and observations. So the amount

of variables and observation can be chosen similar to the African data set. The optimal value of

the maximum lags in (6) and (7) is 10, so pmax = 10. The amount of rmax in (5) does effect the

20

hit-ratespr, and is chosen to be 6. Lastly, the boosting algorithm 1 selects the optimal beta (β̂w)

correctly. The simulation returns a hit-ratepr of almost one and the hit-ratebo has a value around

0.7. The factors selected in the boosting algorithm 1 have a lower hit-rate but are still be correctly

specified because of reasons discussed in the previous section. Thus, this forecast method proves to

be accurate.

After the simulation, the GDP growth of Tanzania is forecast for the year 2012 up to 2016.

The forecasts concern the factor and forecasting models explained in section 4. These forecasts

outperforms the GDP growth forecast by the ‘simple’ AR(2) process. This is analyzed by the mean

square forecast error. The GDP growths of Eq. Guinea and Liberia are used for forecasting the GDP

growth of Tanzania for all five forecasts. In the end, factor models and the machine learning technique

boosting are helpful by modeling and forecasting the low frequency macro economic variable gross

domestic product in Tanzania.

For future research there are multiple areas that seem of interest. The first area has to do with

the estimation of the factors. The factors are estimated with PCA, the disadvantage of this method

is that the factors are linear combination of all variables, so they all have nonzero loadings. This

leads to a more difficult interpretation, if there are no remarkably high factor loadings. Another

disadvantage of PCA is that the most relevant components for predicting the target variable are the

one with the ‘largest’ variance, but there is no particular reason to assume this. A solution to these

disadvantages is Sparse principal component analysis (SPSE) as discussed in Zou et al. (2006). This

method allows for ‘sparsity’, and can be interesting for future research. Another potential method is

independent component analysis (Kim and Swanson (2018)). The second area concerns the machine

learning variable, and shrinkage methods. As discussed in Kim and Swanson (2018) there are also

other methods for example bagging, ridge regression the least angle regression, the ‘eleastic net’ and

the ‘non-negative garotte’ or the Bayesian model averaging. These methods might result in forecasts

with a lower MSFE and are therefore interesting to analyze.

21

References

Bai, J. and Ng, S. (2002). Determining the number of factors in approximate factor models.

70(1):191–221.

Bai, J. and Ng, S. (2008). Forecasting economic time series using targeted predictors. Journal of

Econometrics, 146(2):304–317.

Bai, J. and Ng, S. (2009). Boosting diffusion indices. Journal of Applied Econometrics, 24(4):607–

629.

Bańbura, M. and Modugno, M. (2014). Maximum likelihood estimation of factor models on datasets

with arbitrary pattern of missing data. Journal of Applied Econometrics, 29(1):133–160.

Biau, O. (2013). Euro area gdp forecasting using large survey datasets a random forest approach.

Box, G. E., Jenkins, G. M., Reinsel, G. C., and Ljung, G. M. (2015). Time series analysis: forecasting

and control. John Wiley & Sons.

Carriero, A., Clark, T. E., and Marcellino, M. (2015). Realtime nowcasting with a bayesian mixed

frequency model with stochastic volatility. Journal of the Royal Statistical Society: Series A

(Statistics in Society), 178(4):837–862.

Christophe Hurlin (2013). Determining the Number of Factors in Approximate Factor Models.

http://www.runmycode.org/companion/view/69. Accessed on 21/06/2019.

Dufour, J.-M. and Stevanovic, D. (2010). Factor-augmented varma models: Identification, estima-

tion, forecasting and impulse responses. Manuscript. Université du Québeca Montréal.

Fan, J. and Yao, Q. (2017). The elements of financial econometrics. Cambridge University Press.

Forni, M., Hallin, M., Lippi, M., and Reichlin, L. (2000). The generalized dynamic-factor model:

Identification and estimation. Review of Economics and statistics, 82(4):540–554.

Franses, P. H. and Vasilev, S. (2019). Realgdp growth in africa, 1963-2016. Unpublished.

Hassani, H. and Silva, E. S. (2015). Forecasting with big data: A review. Annals of Data Science,

2(1):5–19.

22

http://www.runmycode.org/companion/view/69

Hastie, T., Rosset, S., Zhu, J., and Zou, H. (2009). Multi-class adaboost. Statistics and its Interface,

2(3):349–360.

Heij, C., de Boer, P., Franses, P. H., Kloek, T., van Dijk, H. K., et al. (2004). Econometric methods

with applications in business and economics. Oxford University Press.

Jolliffe, I. (2011). Principal Component Analysis, pages 1094–1096. Springer Berlin Heidelberg,

Berlin, Heidelberg.

Kim, H. H. and Swanson, N. R. (2013). Mining big data using parsimonious factor and shrinkage

methods.

Kim, H. H. and Swanson, N. R. (2014). Forecasting financial and macroeconomic variables using

data reduction methods: New empirical evidence. Journal of Econometrics, 178:352–367.

Kim, H. H. and Swanson, N. R. (2018). Mining big data using parsimonious factor, machine learning,

variable selection and shrinkage methods. International Journal of Forecasting, 34(2):339–354.

Plakandaras, V., Papadimitriou, T., and Gogas, P. (2015). Forecasting daily and monthly exchange

rates with machine learning techniques. Journal of Forecasting, 34(7):560–573.

Schumacher, C. (2007). Forecasting german gdp using alternative factor models based on large

datasets. Journal of Forecasting, 26(4):271–302.

Stock, J. H. and Watson, M. W. (2002a). Forecasting using principal components from a large

number of predictors. Journal of the American statistical association, 97(460):1167–1179.

Stock, J. H. and Watson, M. W. (2002b). Macroeconomic forecasting using diffusion indexes. Journal

of Business & Economic Statistics, 20(2):147–162.

Stock, J. H. and Watson, M. W. (2006). Forecasting with many predictors. Handbook of economic

forecasting, 1:515–554.

Stock, J. H. and Watson, M. W. (2012). Generalized shrinkage methods for forecasting using many

predictors. Journal of Business & Economic Statistics, 30(4):481–493.

Zou, H., Hastie, T., and Tibshirani, R. (2006). Sparse principal component analysis. Journal of

computational and graphical statistics, 15(2):265–286.

23

7 Appendix

7.1 Nomenclature

Nomenclature

DGP Data generating process

FAAR Factor augmented auto-regressive

GDP Gross domestic product

MSFE Mean squared forecast error

PCA Principal component analysis

Hit-ratebo Amount of factors selected in the boosting algorithm 1 in section 4.3

Hit-ratepr Amount of factors selected in the ‘pre-selection’ in (5)

24

7.2 Results

Figure 7 represents the standard deviation and mean of dependent variable y and explanatory

variable X. Figure 8 represents the estimated amount of factors when the boosting algorithm 1 is

implemented, for 100 iterations and different values of far, with step length v = 0.2.Figure 9 shows

the map of Africa where Eq. Guinea, Liberia and Tanzania are coloured.

Figure 7: Standard deviation and mean of X and y

25

Figure 8: Selected factors for step length 0.2 and different values of far

Figure 9: Map of Africa

26

7.3 Codes

7.3.1 Simulation

1 MATLAB read -me file for the Simulation

2

3 make_X_y_F.m

4 -> By running this program , you can get the explanatory variables , dependent variables and the dynamic factors which are

obtained by the data generating process represented algorithm 2 of section 4.5

5

6 armodel_simulation.m

7 -> This function implements the auto -regressive (AR) model with optimal lag order p_bic. The estimates of the additional

explanatory variable W_t and parameter

8 beta^_w, and the T x 1residual vector E in the boosting algorithm 1 of section 4.3 are estimated.

9

10 NbFactorsSimulation.m

11 -> This function gives you the result of the ‘pre -selected ’ amount of factors. The code is implemented from Christophe

Hurlin (2013)

12

13 l2boost_simulation.m

14 -> This function gives you the result of boosting algorithm 1 in section 4.3

15

16 Simulation_t.m

17 -> This function gives you the estimated hitrates_bo and hitrates_pr for different amount of observations. The results are

given in figure 4(a) of section 5.1

18

19 Simulation_n.m

20 -> This function gives you the estimated hitrates_bo and hitrates_pr for different amount of variables. The results are

given in figure 4(b) of section 5.1

21

22 simulation_factor.m

23 -> This function gives you the estimated hitrates_nb for different amount of factors r_ar in the DGP. The results are

given in figure 3(a) of section 5.1

24

25 simulation_v.m

26 -> This function gives you the estimated hitrates_bo for different amount of step length v and f_ar in the DGP. The

results are given in figure 3(b) of section 5.1

27

28 Simulation_pmax.m

29 -> This function gives you the estimated hitrates_bo for different amount of maximum lags. The results are given in figure

4(c) of section 5.1

30

31 simulation_rmax.m

32 -> This function gives you the estimated hitrates_pr for different amount of factors r_max. The results are given in

figure 4(c) of section 5.1

33

34 test.m

35 -> This function gives you the tests results if the optimal beta from the boosting algorithm 1 in section 4.3 is chosen

correctly. The results are given in figure 5 of section 5.1

36

37 simulation_result.m

38 -> This function gives the estimated hitrats_bo and hitrate_pr with specific ‘input values ’

Figure 10: Read me file for the simulation

27

1 function[F_result , X_result , y_result] = make_X_y_F(n,T,r)

2 %Construct the data , from a data generating proces

3 par = rand(r,1);

4 F_result = [];

5 for i = 1:r %Construct r factors from AR model

6 model = arima(’Constant ’ ,0.05,’AR’,{par(i,1)},’Variance ’ ,1);

7 F_result = [F_result , simulate(model ,T)];

8 end

9 lin_combinations = randn(r,n);

10 x = F_result*lin_combinations + randn(T,n); %Construct dependent and explanatory variables

11 X= zscore(x);

12 y_result= X(:,1);

13 X_result= X(:,2:end);

14 end

Figure 11: Construct dependent variable y, explanatory variables X, and factors F

1 function [res_ar , lags , Wt_Bw , fcast]= armodel_simulation(y, p_max)

2 % Estimate the residuals , lags , the coefficient Wt_Bw and the value of the

3 % forecast with a AR model with optimal lag order. This lag order is

4 % selected by BIC with maximum amount of lags p_max

5 T=size(y, 1);

6 optimal_bic =0;

7 Wt_lags =[];

8 for i=1: p_max %Estimate the optimal amount of lags with the bic value

9 model = ar(y,i);

10 bic=model.Report.Fit.BIC;

11 if (i==1) || (bic <optimal_bic)

12 optimal_bic=bic;

13 lags=i;

14 end

15 end

16

17 Mdl = arima(lags ,0,0); % estimate ar model with optimal amount of lags

18 [ar_model ,~,~,info] = estimate(Mdl ,y, ’Display ’, ’off’);

19 fcast = forecast(ar_model ,1,’Y0’,y);

20

21 [res_ar] = infer(ar_model ,y); % AR(lags) residuals

22 information= info.X;

23 coef_ar =[];

24 for i=1: lags+1 %estimate coefficients of the AR(lags)

25 [coef_ar]= [coef_ar; information(i)];

26 end

27 for i=1: lags %estimate the Wt value in the boosting algrithm

28 Wt_lags =[Wt_lags , y(T-i+1)];

29 end

30 Wt= [1, Wt_lags]; %estimate the Wt value in the boosting algorithm

31 Wt_Bw= Wt*coef_ar; %estimate the WtBw value in the boosting algirhtm

32 end

Figure 12: Construct Wt, E, β̂W from equation 2 by the auto-regressive model

28

1 function [khat]= NbFactorsSimulation(X,r_max)

2 if nargin ==1, r_max=min(size(X)); end % Rule proposed by Bai and Ng to choose kmax

3 if isnan(r_max)==1, r_max=min(size(X)); end % Rule proposed by Bai and Ng to choose kmax

4 [T,N]=size(X) ; % Sample Sizes

5 if T<N % Choice of normalization according the computional cost

6 [vectors ,values] = eig(X*X’); % Eigenvalues and eigenvectors of XX’

7 factors=sqrt(T)*vectors(:,T-r_max +1:T); % Estimated Factors with kmax Factors

8 loadings=X’* factors/T; % Estimated Matrix of Factor Loadings

9 betahat=loadings*chol(loadings ’* loadings/N); % Rescaled Estimator of the Factor Loading

10 else % Case T>N

11 [vectors ,values] = eig(X’*X); % Eigenvalues and eigenvectors of X’X

12 loadings=sqrt(N)*vectors(:,N-r_max +1:N); % Estimated Matrix of Factor Loadings with kmax Factors

]

13 betahat =(X’*X)*loadings /(N*T); % Rescaled Estimator of the Factor Loading

14 end

15 Z=X-X*betahat*inv(betahat ’* betahat)*betahat ’; % Estimated Residuals

16 var_Z_kmax = sum(sum(Z.^2))/(N*T); % Estimated Variance of Residuals with kmax factors

17 V=zeros(r_max ,1); % Vector of V(k,Fk) for k=1,..,kmax

18 for k=1: r_max % Loop on the number of factor k

19 if T<N % Choice of normalization according the computional cost

20 [vectors ,values] = eig(X*X’); % Eigenvalues and eigenvectors of XX’

21 factors=sqrt(T)*vectors(:,T-k+1:T); % Estimated Factors with kmax Factors

22 loadings=X’* factors/T; % Estimated Matrix of Factor Loadings

23 betahat=loadings*chol(loadings ’* loadings/N); % Rescaled Estimator of the Factor Loading

24 else % Case T>N

25 [vectors ,values] = eig(X’*X); % Eigenvalues and eigenvectors of X’X

26 loadings=sqrt(N)*vectors(:,N-k+1:N); % Estimated Matrix of Factor Loadings with kmax Factors

27 betahat =(X’*X)*loadings /(N*T); % Rescaled Estimator of the Factor Loading

28 end

29 Z=X-X*betahat*inv(betahat ’* betahat)*betahat ’; % Estimated Residuals

30 V(k) = sum(sum(Z.^2))/(N*T); % V(k,Fk)

31 end

32 BIC3=repmat ((0:1: r_max) ’,1,2); % BIC information Criteria (BIC1 , BIC2 and BIC3)

33 BIC3 (1,2)=mean(sum(X.*X/T)); % PC information Criteria when r=0

34 CNT=min(N,T); % Function Cnt^2

35 Penalty =[(N+T)/(N*T)*log((N*T)/(N+T)) ... % Penalty Terms for IC and PC

36 (N+T)/(N*T)*log(CNT) log(CNT)/CNT];

37 Penalty=repmat(Penalty ,r_max ,1); % Penalty Terms for IC and PC

38 kk=repmat ((1:1: r_max) ’,1,3); % Matrix with increments

39 BIC3 (2:end ,2)=V+kk(:,1)*var_Z_kmax .*(N+T-kk(:,1))*log(N*T)/(N*T); % BIC3 criterium

40 [BIC3s ,khat_BIC3] = min(BIC3 (:,2));khat_BIC3=khat_BIC3 -1; % Estimated Numbers of Factor with BIC3

41 khat = khat_BIC3; % Estimated Numbers of Factor with BIC3 criteria

% BIC3 Information criterium for k=1,..,kmax

Figure 13: Select ‘pre-selected’ amount of factors, code from Christophe Hurlin (2013)

29

1 function [y_new , MSFE , BetaOpt , F, mu_result] = l2boost_simulation(X, y, M_max , v, r, y_actual , Wt_Bw , E)

2 % Implemention of the boosting algorihtm

3 %input:

4 % X explanatory variable

5 % y dependent variable

6 % M_max maximum number of boosting iterations

7 % v steplength

8 % r pre -selected amount of factors

9 % y_actual real value of the GDP of Tanzania

10 % Wt_Bw Estimation of WtBw in boosting algorithm

11 % E E are the residuals of the ar model with optimal lag order

12 % lags number of optimal lags

13 % outcome:

14 % y_new forecasted GDP of Tanzania

15 % MSFE Mean squared forecast error of the boosting algorihtm

16 % BetaOpt Optimal beta estimated in the boosting alogirthm

17 % F dynmically factors

18 % mu_result mu^M(Ft) in the boosting algorithm

19

20 T = size(y,1);

21 ICm = zeros(M_max ,1);

22 MuHat = zeros(T,M_max);

23 MuHat (:,1) = mean(E, ’omitnan ’);

24 standardizedx = zscore(X);

25 %F = X; When applying the test for the optimal beta

26 F = standardizedx*pca(standardizedx , ’VariableWeights ’, ’variance ’);

27 beta = zeros(r, M_max);

28 Bm(:,:,1) = ones(T,T,1) ’*ones(T,T,1) ’/(T);

29 SSR_min = zeros(M_max ,1);

30 for i = 1: M_max %boosting iterations

31 u = E - MuHat(:,i);

32 SSR = zeros(r,1);

33 for j = 1:r

34 [~,~,dhat] = mvregress(F(:,j), u);

35 SSR(j) = sum(dhat .^2);

36 end

37 [minSSR ,jstar] = min(SSR);

38 bhat = mvregress(F(:,jstar), u);

39 gstarHat = bhat ’*F(:,jstar);

40 MuHat(:,i+1) = MuHat(:,i) + v .* gstarHat;

41

42 %Updating Beta estimates using shrinkage parameters

43 one_regressor = zeros(r,1);

44 one_regressor(jstar ,1) = 1;

45 beta(:, i+1) = beta(:,i) + v*bhat*one_regressor;

46

47 % Updating degrees of freedom

48 Pm = F(:,jstar)*(F(:,jstar)’*F(:,jstar))^(-1)*F(:,jstar) ’;

49 Bm(:,:,i+1) = Bm(:,:,i) + v*Pm*(eye(T) - Bm(:,:,i));

50 dfm = trace(Bm(:,:,i+1));

51 % Estimating variance of boosting residuals

52 sqrt_sigma_m_hat = (y-MuHat(:,i+1))’ * (y-MuHat(:,i+1));

53 % Computing information criteria

54 ICm(i,1) = log(sqrt_sigma_m_hat) + (log(T) * dfm) /T;

55 SSR_min(i,1) = minSSR;

56 end

57 [~, Mopt] = min(ICm); % estimating the optimal amount of boosting iterations

58 BetaOpt = beta(:,Mopt +1); % selecting optimal beta

59 muopt = MuHat(:,Mopt +1); % selecting opitmal mu(F) for the forecast

60 y_new = Wt_Bw + muopt(T); % forecast

61 MSFE = (y_actual -y_new)^2; % calculate MSFE;

62 mu_result =muopt(T);

63 end

Figure 14: Boosting algorithm

30

1 function []= simulation_t ()

2 % Estimate hitrates_nb and hitrates_bo for different values of observations

3 M_max =100; %amountboostings

4 p_max =10; %maximum amount of lags

5 r_max =6; %maximum amount of factors

6 T =60; %amount of observations

7 n =52; %amount of variables

8 iterations =100; %amount of iterations

9 v = 0.2; %step length

10 factor = 3; %value of f_ar

11 hitrate_b=zeros(T-40,1);

12 hitrate_nb=zeros(T-40,1);

13 place =1;

14 for t=40:T %for different amount of observations

15 hitrate_amount_nb =0;

16 hitrate_amount_b =0;

17 for i=1: iterations

18 [~, X, y] = make_X_y_F(n,t,factor);

19 r = NbFactorsSimulation(X,r_max);

20 [E, ~, Wt_Bw] = armodel_simulation(y, p_max);

21 [~, ~, BetaOpt] = l2boost_simulation(X, y, M_max , v, r, y(end), Wt_Bw , E);

22 if sum(BetaOpt ~=0)== factor

23 hitrate_amount_b = hitrate_amount_b +1;

24 end

25 if r== factor

26 hitrate_amount_nb = hitrate_amount_nb +1;

27 end

28 end

29

30 hitrate_nb(place) = hitrate_amount_nb/iterations %estimte hitrate_nb

31 hitrate_b(place) = hitrate_amount_b/iterations %estimate hitrate_bo

32 place=place+1

33 end

34 xplot =40:60;

35 plot(xplot , hitrate_nb)

36 hold on

37 plot(xplot , hitrate_b)

38 legend (["hit -rate_{nb}";"hit -rate_{bo}"])

39 end

Figure 15: Estimated hit-ratesbo and hit-ratespr for different amount of observations

31

1 function []= simulation_n ()

2 %estimate the hitrates_bo and hitrates_pr for different amount of variables

3 M_max = 100; %amountboostings

4 p_max = 10; %maximum amount of lags

5 r_max = 6; %maximum amount of factors

6 t = 54; %amount of observations

7 iterations = 100; %amount of iterations

8 v = 0.2; %step length

9 factor = 3; %amount of f_ar

10 N = 61;%amount of maximum variables

11 hitrate_b=zeros(N-41,1);

12 hitrate_nb=zeros(N-41,1);

13 place =1;

14 for n=41:N

15 hitrate_amount_nb =0;

16 hitrate_amount_b =0;

17 for i=1: iterations

18 [~, X, y] = make_X_y_F(n,t,factor);

19 r = NbFactorsSimulation(X,r_max);

20 [E, ~, Wt_Bw] = armodel_simulation(y, p_max);

21 [~, ~, BetaOpt] = l2boost_simulation(X, y, M_max , v, r, y(end), Wt_Bw , E);

22 if sum(BetaOpt ~=0)== factor

23 hitrate_amount_b = hitrate_amount_b +1;

24 end

25 if r== factor

26 hitrate_amount_nb = hitrate_amount_nb +1;

27 end

28 end

29 hitrate_nb(place) = hitrate_amount_nb/iterations; %estimate hitrate_nb

30 hitrate_b(place) = hitrate_amount_b/iterations; %estimate hitrate_bo

31 place=place +1;

32 end

33 xplot =40:60;

34 plot(xplot , hitrate_nb)

35 hold on

36 plot(xplot , hitrate_b)

37 end

Figure 16: Estimated hit-ratesbo and hit-ratespr for different amount of variables

32

1 function []= simulation_factor ()

2 %estimate the hitrates_pr for different amount of f_ar

3 factor =3; %amount factors data is made of

4 T =54; %amount of observations

5 n =52; %amount of variables

6 iterations =100; %amount of iterations

7 hitrate_nb=zeros (10 ,1);

8 r_max = 6; %maximum amount of factors

9

10 for factor =1:5

11 hitrate_amount_nb =0;

12 for i=1: iterations

13 [~, X] = make_X_y_F(n,T,factor);

14 r = NbFactorsSimulation(X,r_max);

15 if r== factor

16 hitrate_amount_nb = hitrate_amount_nb +1;

17 end

18 end

19 hitrate_nb(r_max ,1) = hitrate_amount_nb/iterations ;

20 r_max

21 end

22 f1 = figure;

23

24 figure(f1)

25 xplot =1:15;

26 plot(xplot , hitrate_nb);

27 title (" Hitrate for ‘preselected ’ amount of factors ")

28 end

Figure 17: Estimated hit-ratebo, with different amount of far factors in the DGP

33

1 function [factors_estimated_b , hitrate_b]= simulation_v ()

2 %Estimate hitrate_bo for different values of f_ar and v

3 M_max =100; %amountboostings

4 p_max =10; %maximum amount of lags

5 r_max =6; %maximum amount of factors

6 T =54; %amount of observations

7 n =52; %amount of variables

8 iterations =100; %amount of iterations

9 %v = 0.2;

10 hitrate_b =zeros (10 ,1);

11 factors_estimated_b =[];

12 %number =1;

13 for factor =1:5 %estimate for differnt values of f_ar

14 number =1;

15 for v=0.1:0.1:1 %estimate for differnt values of step length v

16 hitrate_amount_b =0;

17 for i=1: iterations

18 [~, X, y] = make_X_y_F(n,T,factor);

19 r = NbFactorsSimulation(X,r_max);

20 [res_ar , ~, Wt_Bw] = armodel_simulation(y, p_max);

21 [~, ~, BetaOpt] = l2boost_simulation(X, y, M_max , v, r, y(T), Wt_Bw , res_ar);

22 if sum(BetaOpt ~=0)== factor

23 hitrate_amount_b = hitrate_amount_b +1;

24 end

25 factors_estimated_b(i,number)= sum(BetaOpt ~=0);

26 end

27 hitrate_b(number ,factor) = hitrate_amount_b/iterations ;

28 number =number +1;

29 end

30 end

31 f1=figure

32 figure(f1)

33 xplot =0.1:0.1:1

34 plot(xplot , hitrate_b);

35 title (" Hitrate for amount of factors selected by boosting combined with PCA");

36 factors_estimated_b

37 %{

38 number2b =1;

39 for k=1:5

40 subplot(3,2,k);

41 xplot =1:1: iterations;

42 bar(xplot , factors_estimated_b (:,k));

43 hold on

44 plot (0: iterations +1, k*ones(iterations +2), ’r’);

45 title("f_{ar} ="+ k);

46 legend ([" estimated ";" original "]) ;

47 number2b=number2b +1;

48 end

49 %}

Figure 18: Estimated hit-ratesbo for different amount of far and steplength v

34

1 function []= simulation_pmax ()

2 %estimate the hitrates_bo for different amount of maximum lags

3 M_max =100; %amount of boostings

4 factor =3; %amount of f_ar

5 r_max =6; %maximum amount of factors

6 T =54; %amount of observations

7 n =52; %amount of variables

8 iterations =100; %amount of iterations

9 v =0.2; %steplength

10 hitrate_b =zeros (10 ,1);

11 factors_estimated_b =[];

12

13 for p_max =1:15 %for different amount of maximum lags

14 hitrate_amount_b =0;

15 for i=1: iterations

16 [~, X, y] = make_X_y_F(n,T,factor);

17 r = NbFactorsSimulation(X,r_max);

18 [res_ar , ~, Wt_Bw] = armodel_simulation(y, p_max);

19 [~, ~, BetaOpt] = l2boost_simulation(X, y, M_max , v, r, y(T), Wt_Bw , res_ar);

20 if sum(BetaOpt ~=0)== factor

21 hitrate_amount_b = hitrate_amount_b +1;

22 end

23 factors_estimated_b(i,p_max)= sum(BetaOpt ~=0);

24 end

25 hitrate_b(p_max) = hitrate_amount_b/iterations ;

26 end

27 f1 = figure;

28 figure(f1)

29 xplot =1:15;

30 plot(xplot , hitrate_b);

31 end

Figure 19: Estimated hit-ratesbo for different amount of maximum lags

35

1 function []= simulation_rmax ()

2 %estimate the hitrates_pr for different amount of factors r_max

3 factor =3; %amount factors data is made of

4 T =54; %amount of observations

5 n =52; %amount of variables

6 iterations =100; %amount of iterations

7 hitrate_nb=zeros (10 ,1);

8

9 for r_max =1:15

10 hitrate_amount_nb =0;

11 for i=1: iterations

12 [~, X] = make_X_y_F(n,T,factor);

13 r = NbFactorsSimulation(X,r_max);

14 if r== factor

15 hitrate_amount_nb = hitrate_amount_nb +1;

16 end

17 end

18 hitrate_nb(r_max ,1) = hitrate_amount_nb/iterations ;

19 r_max

20 end

21 f1 = figure;

22

23 figure(f1)

24 xplot =1:15;

25 plot(xplot , hitrate_nb);

26 title (" Hitrate for ‘preselected ’ amount of factors ")

27 end

Figure 20: Estimated hit-ratesbo for different amount of maximum factors

36

1 function [OptimalBeta , results , p, stats] = test()

2 T=200;

3 n=4;

4 beta_wanted =[0.1 0.2 0.3 0.4];

5 r_max = 4; % maximum amount of factors when selecting ‘pre -selected ’ factors

6 m_max =100; % maximum amount of boostings

7 p_max =10; % maximum amount of lags when estimating the optimal lags

8 v=0.2; %steplength

9 simulations =100; %amount of simulations

10 results=zeros(n,1);

11 p=zeros(n,1);

12 OptimalBeta =[];

13 result =[];

14

15 for i=1: simulations

16 xtest= zscore(randn(T,n));

17 ytest= 0.1* xtest (:,1)+ 0.2* xtest (:,2) + 0.3* xtest (:,3) + 0.4* xtest (:,4) + 0.1* randn(T,1);

18 %now you want that your beta is equal to (0.1, 0.2, 0.3, 0)

19 r= NbFactorsSimulation(xtest ,r_max);

20 [E, ~, Wt_Bw] = armodel_simulation(ytest , p_max);

21 [~,~, OptimalBeta(i,:)] = l2boost_simulation(xtest , ytest , m_max , v, r, ytest(T), Wt_Bw , E);

22 i

23 end

24 for i=1:n

25 [results(i,1), p(i,1) ,~, stats_between] = ttest(OptimalBeta (:,i), beta_wanted(i));

26 stats(i,1)= stats_between.tstat;

27 end

28

29 for j=1:n

30 subplot(2,2,j)

31 xplot =1: simulations;

32 yplot= OptimalBeta (:,j);

33 plot(xplot ,yplot , ’b’)

34 hold on

35 plot(xplot , beta_wanted(j)*ones(simulations), ’r’);

36 end

37 end

Figure 21: Test for the optimal beta β̂M from the boosting algorithm 1 in section 4.3

37

1 function []= simulation_result ()

2 %Estimate the hitrates_bo and hitrates_nb for the optimal ’input -values ’

3 M_max =100; %amountboostings

4 p_max =10; %maximum amount of lags

5 r_max =6; %maximum amount of factors

6 n =52; %amount of variables

7 iterations =100; %amount of iterations

8 T =54; %amount of observations

9 v = 0.2; %step length

10 factor = 3; %vamount of f_ar

11 hitrate_nb =[];

12 hitrate_b =[];

13 for j=1:10

14 hitrate_amount_nb =0;

15 hitrate_amount_b =0;

16 for i=1: iterations

17 [~, X, y] = make_X_y_F(n,T,factor);

18 r = NbFactorsSimulation(X,r_max);

19 [E, ~, Wt_Bw] = armodel_simulation(y, p_max);

20 [~, ~, BetaOpt] = l2boost_simulation(X, y, M_max , v, r, y(end), Wt_Bw , E);

21 if sum(BetaOpt ~=0)== factor

22 hitrate_amount_b = hitrate_amount_b +1;

23 end

24 if r== factor

25 hitrate_amount_nb = hitrate_amount_nb +1;

26 end

27 end

28 hitrate_nb(j) = hitrate_amount_nb/iterations %estimate hitrate_nb

29 hitrate_b (j) = hitrate_amount_b/iterations %estimate hitrate_b

30 end

31 nb_result = mean(hitrate_nb) %estimate the overall hitrate_nb

32 b_result = mean(hitrate_b) %estimate the overall hitrate_b

33 end

Figure 22: The estimated hit-ratebo and estimated hit-ratepr with specific ‘input values’

38

7.3.2 Codes with the African Data Set

1 MATLAB read -me file for the African data set

2

3 armodel_Africa.m

4 -> This implement the auto -regressive (AR) model with optimal lag order p_bic. The estimates of the additional explanatory

variable W_t and parameter beta^_w , and the T x 1residual vector E in the boosting algorithm 1 of section 4.3 are

estimated.

5

6 NbFactorsAfrica.m

7 -> This give you the result of the ‘pre -selected ’ amount of factors. The code is implemented from Christophe Hurlin (2013).

8

9 l2boost_Africa.m

10 -> his gives you the result of boosting algorithm 1 in section 4.3.

11

12 testbreaks.m

13 -> This test if structural breaks need to be implemented in the models. The results are given in table 1 in section 5.2.

14

15 Africa.m

16 -> This makes forecast and gives the MSFE off the boosting algorithm and the AR model with optimal lag order. The results

are given in figure 6 of section 5.2.

Figure 23: Read me file for the simulation

39

1 function [res_ar , lags , Wt_Bw , fcast]= armodel_Africa(y, pmax)

2 % Estimate the residuals , lags , the coefficient Wt_Bw and the value of the

3 % forecast with a AR model with optimal lag order. This lag order is

4 % selected by BIC with maximum amount of lags p_max

5 T=size(y, 1);

6 optimal_bic =0;

7 Wt_lags =[];

8 for i=1: p_max %Estimate the optimal amount of lags with the bic value

9 model = ar(y,i);

10 bic=model.Report.Fit.BIC;

11 if (i==1) || (bic <optimal_bic)

12 optimal_bic=bic;

13 lags=i;

14 end

15 end

16

17 Mdl = arima(lags ,0,0); % estimate ar model with optimal amount of lags

18 [ar_model ,~,~,info] = estimate(Mdl ,y, ’Display ’, ’off’);

19 fcast = forecast(ar_model ,1,’Y0’,y);

20

21 [res_ar] = infer(ar_model ,y); % AR(lags) residuals

22 information= info.X;

23 coef_ar =[];

24 for i=1: lags+1 %estimate coefficients of the AR(lags)

25 [coef_ar]= [coef_ar; information(i)];

26 end

27 for i=1: lags %estimate the Wt value in the boosting algrithm

28 Wt_lags =[Wt_lags , y(T-i+1)];

29 end

30 Wt= [1, Wt_lags]; %estimate the Wt value in the boosting algorithm

31 Wt_Bw= Wt*coef_ar; %estimate the WtBw value in the boosting algirhtm

32 end

Figure 24: Construct Wt, E, β̂W from equation 2 by the auto-regressive model

40

1 function [khat]= NbFactorsAfrica(X,r_max)

2 if nargin ==1, r_max=min(size(X)); end % Rule proposed by Bai and Ng to choose kmax

3 if isnan(r_max)==1, r_max=min(size(X)); end % Rule proposed by Bai and Ng to choose kmax

4 [T,N]=size(X) ; % Sample Sizes

5 if T<N % Choice of normalization according the computional cost

6 [vectors ,values] = eig(X*X’); % Eigenvalues and eigenvectors of XX’

7 factors=sqrt(T)*vectors(:,T-r_max +1:T); % Estimated Factors with kmax Factors

8 loadings=X’* factors/T; % Estimated Matrix of Factor Loadings

9 betahat=loadings*chol(loadings ’* loadings/N); % Rescaled Estimator of the Factor Loading

10 else % Case T>N

11 [vectors ,values] = eig(X’*X); % Eigenvalues and eigenvectors of X’X

12 loadings=sqrt(N)*vectors(:,N-r_max +1:N); % Estimated Matrix of Factor Loadings with kmax Factors

]

13 betahat =(X’*X)*loadings /(N*T); % Rescaled Estimator of the Factor Loading

14 end

15 Z=X-X*betahat*inv(betahat ’* betahat)*betahat ’; % Estimated Residuals

16 var_Z_kmax = sum(sum(Z.^2))/(N*T); % Estimated Variance of Residuals with kmax factors

17 V=zeros(r_max ,1); % Vector of V(k,Fk) for k=1,..,kmax

18 for k=1: r_max % Loop on the number of factor k

19 if T<N % Choice of normalization according the computional cost

20 [vectors ,values] = eig(X*X’); % Eigenvalues and eigenvectors of XX’

21 factors=sqrt(T)*vectors(:,T-k+1:T); % Estimated Factors with kmax Factors

22 loadings=X’* factors/T; % Estimated Matrix of Factor Loadings

23 betahat=loadings*chol(loadings ’* loadings/N); % Rescaled Estimator of the Factor Loading

24 else % Case T>N

25 [vectors ,values] = eig(X’*X); % Eigenvalues and eigenvectors of X’X

26 loadings=sqrt(N)*vectors(:,N-k+1:N); % Estimated Matrix of Factor Loadings with kmax Factors

27 betahat =(X’*X)*loadings /(N*T); % Rescaled Estimator of the Factor Loading

28 end

29 Z=X-X*betahat*inv(betahat ’* betahat)*betahat ’; % Estimated Residuals

30 V(k) = sum(sum(Z.^2))/(N*T); % V(k,Fk)

31 end

32 BIC3=repmat ((0:1: r_max) ’,1,2); % BIC information Criteria (BIC1 , BIC2 and BIC3)

33 BIC3 (1,2)=mean(sum(X.*X/T)); % PC information Criteria when r=0

34 CNT=min(N,T); % Function Cnt^2

35 Penalty =[(N+T)/(N*T)*log((N*T)/(N+T)) ... % Penalty Terms for IC and PC

36 (N+T)/(N*T)*log(CNT) log(CNT)/CNT];

37 Penalty=repmat(Penalty ,r_max ,1); % Penalty Terms for IC and PC

38 kk=repmat ((1:1: r_max) ’,1,3); % Matrix with increments

39 BIC3 (2:end ,2)=V+kk(:,1)*var_Z_kmax .*(N+T-kk(:,1))*log(N*T)/(N*T); % BIC3 criterium

40 [BIC3s ,khat_BIC3] = min(BIC3 (:,2));khat_BIC3=khat_BIC3 -1; % Estimated Numbers of Factor with BIC3

41 khat = khat_BIC3; % Estimated Numbers of Factor with BIC3 criteria

% BIC3 Information criterium for k=1,..,kmax

Figure 25: Select ‘pre-selected’ amount of factors, code from Christophe Hurlin (2013)

41

1 function [y_new , MSFE , BetaOpt , F, mu_result] = l2boost_Africa(X, y, M_max , v, r, y_actual , Wt_Bw , E)

2 % Implemention of the boosting algorihtm

3 %input:

4 % X explanatory variable

5 % y dependent variable

6 % M_max maximum number of boosting iterations

7 % v steplength

8 % r pre -selected amount of factors

9 % y_actual real value of the GDP of Tanzania

10 % Wt_Bw Estimation of WtBw in boosting algorithm

11 % E E are the residuals of the ar model with optimal lag order

12 % lags number of optimal lags

13 % outcome:

14 % y_new forecasted GDP of Tanzania

15 % MSFE Mean squared forecast error of the boosting algorihtm

16 % BetaOpt Optimal beta estimated in the boosting alogirthm

17 % F dynmically factors

18 % mu_result mu^M(Ft) in the boosting algorithm

19

20 T = size(y,1);

21 ICm = zeros(M_max ,1);

22 MuHat = zeros(T,M_max);

23 MuHat (:,1) = mean(E, ’omitnan ’);

24 standardizedx = zscore(X);

25 F = standardizedx*pca(standardizedx , ’VariableWeights ’, ’variance ’);

26 beta = zeros(r, M_max);

27 Bm(:,:,1) = ones(T,T,1) ’*ones(T,T,1) ’/(T);

28 SSR_min = zeros(M_max ,1);

29 for i = 1: M_max %boosting iterations

30 u = E - MuHat(:,i);

31 SSR = zeros(r,1);

32 for j = 1:r

33 [~,~,dhat] = mvregress(F(:,j), u);

34 SSR(j) = sum(dhat .^2);

35 end

36 [minSSR ,jstar] = min(SSR);

37 bhat = mvregress(F(:,jstar), u);

38 gstarHat = bhat ’*F(:,jstar);

39 MuHat(:,i+1) = MuHat(:,i) + v .* gstarHat;

40

41 %Updating Beta estimates using shrinkage parameters

42 one_regressor = zeros(r,1);

43 one_regressor(jstar ,1) = 1;

44 beta(:, i+1) = beta(:,i) + v*bhat*one_regressor;

45

46 % Updating degrees of freedom

47 Pm = F(:,jstar)*(F(:,jstar)’*F(:,jstar))^(-1)*F(:,jstar) ’;

48 Bm(:,:,i+1) = Bm(:,:,i) + v*Pm*(eye(T) - Bm(:,:,i));

49 dfm = trace(Bm(:,:,i+1));

50 % Estimating variance of boosting residuals

51 sqrt_sigma_m_hat = (y-MuHat(:,i+1))’ * (y-MuHat(:,i+1));

52 % Computing information criteria

53 ICm(i,1) = log(sqrt_sigma_m_hat) + (log(T) * dfm) /T;

54 SSR_min(i,1) = minSSR;

55 end

56 [~, Mopt] = min(ICm); % estimating the optimal amount of boosting iterations

57 BetaOpt = beta(:,Mopt +1); % selecting optimal beta

58 muopt = MuHat(:,Mopt +1); % selecting opitmal mu(F) for the forecast

59 y_new = Wt_Bw + muopt(T); % forecast

60 MSFE = (y_actual -y_new)^2; % calculate MSFE;

61 mu_result =muopt(T);

62 end

Figure 26: Boosting algorithm

42

1 function [res_ar , skewness_result , kurtosis_result] = testbreaks(y)

2 %test for structural breaks

3 skewness_result =[];

4 kurtosis_result =[];

5 test =[]; %Jarquebera test value

6 p=[]; %p-value

7 place =1;

8 for t=50:54

9 [ar , ~,~, info_result]= estimate(arima(2,0,0), y(1:t), ’Display ’, ’off’);

10 information= info_result.X;

11 [res_ar]= infer(ar ,y(1:t));

12 skewness_result(place ,1)= skewness(res_ar)

13 kurtosis_result(place ,1) = kurtosis(res_ar)

14 [~ ,p(:,place), test(:,place)]= jbtest(res_ar);

15 place = place + 1

16 end

17 end

Figure 27: Test if structural breaks needs to be implemented in the models

43

1 ffunction [MSFE_Boost ,MSFE_Benchmark] = Africa ()

2 load data_Africa

3 M_max =100; %amountboostings

4 p_max =10; %maximum amount of lags

5 r_max =6; %maximum amount of factors

6 v =0.2; %step length

7 MSFE_boost =[];

8 MSFE_ar =[];

9 place =1;

10 BetaOpt_result =[];

11 GDP_Tanzania= zeros (5,1);

12 lag_order =[];

13 [T] =size(x,1);

14 for fc=5: -1:1 %forecast of the GDP of Tanzania from 2012 till 2016

15 r= NbFactorsAfrica(x,r_max) %estimate optimal amount of ‘pre -selected ’ factors

16 [E, lags ,Wt_Bw ,fcast] = armodel_Africa(y(1:(T-fc)), p_max); %estimate benchmark model

17 MSFE_ar(place ,1) = (y(T-fc+1)-fcast)^2; %MSFE benchmark model

18 MSFE_ar(place ,2) = fcast;

19 lag_order(place ,1) = lags;

20 [y_new , MSFE , BetaOpt] = l2boost_Africa(x(1:(T-fc) ,:), y(1:(T-fc)), M_max , v, r, y(T-fc+1), Wt_Bw , E); %estimate boosting

algirthm

21 MSFE_boost(place ,1)= MSFE; %MSFE boosting algorithm

22 MSFE_boost(place ,2) = y_new;

23 GDP_Tanzania(place)= y(T-fc+1);

24 BetaOpt_result (:,place)=BetaOpt;

25 place=place +1;

26 end

27 MSFE_Boost= sum(MSFE_boost (:,1))

28 MSFE_Benchmark= sum(MSFE_ar (:,1))

29 xplot =1:5;

30 plot(xplot , MSFE_boost (:,2))

31 hold on

32 plot(xplot , MSFE_ar (:,2))

33 hold on

34 plot(xplot , GDP_Tanzania)

35 legend ([" Forecast boosting ";" Forecast benchmark "; "GDP Tanzania "])

36 end

Figure 28: Main code estimating the GDP of Tanzania, and he MSFE with the boosting algorithm

that includes PCA and and the AR model with optimal lag order (pbic)

44

	Introduction
	Literature Review: Using Machine Learning Techniques to Forecast the Gross Domestic Product Growth
	Data
	Methodology
	Factor and Forecasting Models
	Factor Estimation Method: Principal Component Analysis
	Machine Learning, Variable Selection, and Shrinkage Method: Boosting
	Auto-egressive Models and Mean Square Forecast Error
	Simulation With Data-generating Process

	Results
	Results of the simulation
	Results for the African Data

	Conclusion
	Appendix
	Nomenclature
	Results
	Codes
	Simulation
	Codes with the African Data Set

