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Abstract

Many studies have applied factor models to reduce the dimension of the subspace

spanned by the predictors through factor analysis. This paper revisits partial least

squares to investigate the forecasting performance when this reduction is related to

the forecast goal. The most well-known method to estimate the common factors,

called principal components, is used for comparison. This study revisits three differ-

ent approaches of partial least squares to investigate whether forecasting accuracy

can be improved over this widely used factor forecasting method. In addition, a

regularization and variable selection method, called the elastic net, is applied to the

same data from the Stock and Watson database, as another method to forecast while

the dimension among the predictors is reduced. One static and one dynamic par-

tial least squares approach show good improvements over the principal components

method. The elastic net method has relatively good forecast accuracy, but fails to

improve the forecast performance of principal components in most cases.
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1 Introduction

Multiple studies (for example, Stock and Watson, 2002a,b; De Mol et al., 2008; Matheson, 2006

and others) have shown that the performance in forecasting can be improved by incorporating

a reduced set of the available predictors instead of forecasting with all the variables that are

available. This is due to the fact that reducing the data set to the most informative predictors,

removes the ’noise’ when predicting the target variable. Incorporating a spacious amount of

variables in one forecasting model while estimating with standard econometric methods appears

to be inefficient or just impossible, because the added ’noisy’ series cause the residual cross-

correlation to exceed the amount allowed by the theory (Boivin and Ng, 2006). This can be due

to the arising of high dimensionality and multicollinearity. Different methods and techniques

have been found to take into account these flaws (for example, Stock and Watson, 2002a,b; De

Mol et al., 2008; Matheson, 2006). Important examples of this are the factor models, which

extract a small number of factors from a large amount of predictors by means of factor analysis

and use these estimated factors to regress them over the target variable. The subspace that is

spanned by the predictors is decreased by applying this method. For example, Chan et al. (1998)

and Stock and Watson (2002b) extract three factors out of 150 series and with this improve the

forecast accuracy of various macroeconomic variables. The most well-known and used method

to obtain consistent estimates of the common factors are principal components (PC). This can

be used in both static and dynamic factor models.

However, the current knowledge of improving the forecast performance by reducing the sub-

space spanned by the predictors is insufficient as it is not related to the forecast goal when this is

done by means of factor methods. This is because when the common factors are estimated, the

methodology does not consider the predictive ability of the predictors for the target variable.

Another method which relates the reduction of the subspace spanned by the predictors to

the forecast goal is introduced by Wold (1996): partial least squares (PLS). This method deals

with the problems of multicollinearity and high dimensionality in static applications. However,

knowledge of this method in a dynamic context is still scarce. Fuentes et al. (2015), Groen

and Kapetanios (2008) and Kelly and Pruitt (2012) revisit useful approaches in this context.

Kelly and Pruitt (2012), for example, successfully obtain asymptotic efficiency when estimating

common factors.

This paper revisits PLS, following Fuentes et al. (2015), and investigates whether the forecast

performance can be improved in both static and dynamic applications. Compared to PLS, PC

estimates common factors which “do not depend directly on the prediction purpose” (Fuentes et
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al., 2015). The reason for this is that when the factors are estimated, the methodology does not

take into account the predictive power of the predictors over the target variable, such that there

is no relation between the reduction of the dimension of the subspace spanned by the predictors

and the goal of forecasting. PLS is a method that relates this reduction with the forecast goal.

However, as PC is the most widely used method to estimate the common factors, I compare the

forecast performances of this method with those of PLS. Many studies (Bai and Ng, 2002; Boivin

and Ng, 2006 and others) show that not only the number of predictors, but also the quality of

the predictors is of great importance to the estimation and prediction of the target variable.

With the quality of the predictors, I refer to the informative content that they contain about

the target variable. In this paper, I focus on choosing the predictors which contain the most

useful information about the target variable to improve the forecast accuracy, instead of using

all the predictors that are available. This means that for predictors with too little informative

content, the factor loadings can have a value of zero.

Choosing a subset of variables can also be done by penalizing least squares methods which

build on OLS. The lasso (Tibshirani, 1996) and the ridge (Hoerl and Kennard, 1988) regression

are two of those penalizing techniques. The lasso performs an L1-penalty on the regression co-

efficients whereas the ridge performs an L2-penalty. A third method considered in this paper to

reduce the influence of predictors that contain too little information about the target variable is

the elastic net (EN). It is a regularization technique that performs automatic variable selection

and simultaneously shrinks the estimates by my means of combining the penalties of the previ-

ously named penalizing techniques. The method is introduced by Zou and Hastie (2005) as a

special case of the least angle regression (LARS) algortihm, introduced by Efron et al. (2004).

The motivation for using the EN is because of the special properties it has: (1) the simultaneous

variable selection and shrinkage of the estimates creates a parsimonious model; (2) it performs

group selection for highly correlated predictors, a property that neither the lasso nor the ridge

contains.

The forecasting performance of the EN method and three different PLS methods are com-

pared to those of the PC to investigate whether forecasting performance can be improved upon

the most widely used factor method. The focus of this comparison is on the US inflation over

the timeframe from 1960 to 2003. To do so, I obtain data from the Stock and Watson database.

Extracting factors by means of PLS results in the best forecast accuracy when the lags of

the target variable are directly included in the forecasting equation to capture the dynamic

behaviour of the target. One static and one dynamic approach apply PLS with this property

and show good improvements in prediction over PC.
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Using the EN to select a subset of the predictors to forecast the target variable shows a

strong forecast performance for the 24-month ahead prediction, but fails to improve forecast

accuracy compared to the widely used PC method in most cases.

The paper proceeds as follows. Section 2 presents a review of the existing literature of this

problem. Section 3 describes the data that is being used for the empirical comparison. The

methods and techniques are explained and interpreted in section 4. Section 5 contains the

results of the empirical comparisons. At last, conclusions are drawn in section 6.

2 Literature

A seminal study on PC is Stock and Watson (2002a), who use the first k principal components

as factors in a linear regression to forecast the target variable. This is done by modelling the

covariability of many predictors into a smaller number of factors. These forecasts are asymp-

totically efficient and the estimated factors are consistent. Boivin and Ng (2005) show a factor

model which contains just a small number of auxiliary parameters that need specification, such

that the model is robust to misspecification. However, it is based on static PC, such that it

does not hold for dynamic applications. Bai and Ng (2008) investigate refinements to the factor

models: (1) they allow a non-linear relation between the predictors and the target variable; (2)

they relate the estimation with the forecast goal.

PLS tries to improve the forecast accuracy while reducing the dimension of the subspace

spanned by the predictors, where there is a relationship between the forecast goal and this re-

duction. PLS is introduced by Wold (1966) for static applications. Wold (1966) shows that

this method is valid even in the situations where the amount of predictors exceeds the sample

size and for multicollinearity. Groen and Kapetanios (2008), (2015) are one of the first to in-

vestigate PLS in a dynamic context. They conclude that PLS regression is comparable to PC

regression when the target variable and the predictors relate via a factor structure. However,

PLS regression surpasses PC regression in case of weaker factor structure in the data. Also,

Eickmeier and Ng (2011) acknowledge that the strength of the factor structure in the data is

of great importance to the forecast accuracy and the comparison of different methods such as

PC and PLS. With this, they mention that their New Zealand data set has a stronger factor

structure than the international data sets. Following Fuentes et al. (2015), who efficiently im-

prove forecasting while reducing the dimension of the subspace spanned by the predictors using

different approaches of PLS, I revisit PLS in both static and dynamic applications, where I use

the same United States (US) macroeconomic time series.
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The EN is a regularization and variable selection method introduced by Zou and Hastie

(2005), which is based on the LARS algorithm, proposed by Efron et al. (2004). The use of

the EN method next to PLS is because of the different ways of reducing the dimension of the

subspace spanned by the predictors. The EN method performs pure selection of the predic-

tors to incorporate in the forecasting model, wehereas PLS extracts a small number of factors

that weight all the variables. Zou and Hastie (2005) combine the L1-penalty on the coefficients

from the lasso regression (Tibshirani 1996) and the L2-penalty on the coefficients from the ridge

regression (Hoerl and Kennard, 1988) to construct the EN regression and find that it outper-

foms both techniques. Bai and Ng (2008) consider the EN soft-thresholding rules to select the

variables from the original data set and extract factors from this subset to forecast the target

variable. This paper uses the EN method as a pure selection technique, whereas the selection is

just an intermediate step for Bai and Ng (2008) before extracting the factors.

3 Data

The target variable is the logarithm of the US consumer price index (CPI). The choice of inflation

as the target variable is because of the difficulty in forecasting it. In particular, it is difficult

to improve the forecast performance with multivariate forecasting models, over a univariate

benchmark. This is due to the changes in the inflation process since the mid-1980s (Stock and

Watson, 2006). Following Fuentes et al. (2015), at least the second differences of the target

variable has to be taken to obtain a covariance stationary series. This paper defines the target

variable as defined in Fuentes et al. (2015):

yht+h =
1200

h
(yt+h − yt)− 1200(yt − yt−1) (1)

and

zt = 1200(yt − yt−1)− 1200(yt−1 − yt−2) (2)

where zt is considered as the lag of the target variable.

The Stock and Watson (2005) database is used to compute the forecast performance of PLS

and PC. This data set contains 132 monthly US macroeconomic time series over the time frame

from January 1959 until December 2003. The data set is not complete for every variable, such

that the sample starts at January 1960 with in total 528 observations. To achieve stationarity,

the series are transformed by taking logarithms and/or first or second differences. This is done

in the same way as in Bai and Ng (2008) and Stock and Watson (2006). Following Fuentes et al.

(2015) and Bai and Ng (2008), I divide the total sample into seven different forecast subsamples.
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If the relation between the predictors and the target variable changes over time, then this is

considered by using these different subsamples. In this way the dynamic features of the data

are taken into account. The subsamples are shown in table 1.

Table 1: Estimation and forecast subsamples, h is the forecast horizon

SS Estimation subsample Forecast subsample

M1 1960:03 to 1970:03-h 1970:03 to 1980:12

M2 1960:03 to 1980:03-h 1980:03 to 1990:12

M3 1960:03 to 1990:03-h 1990:03 to 2000:12

M4 1960:03 to 1970:03-h 1970:03 to 1990:12

M5 1960:03 to 1970:03-h 1970:03 to 2000:12

M6 1960:03 to 1980:03-h 1980:03 to 2000:12

M7 1960:03 to 1970:03-h 1970:03 to 2003:12

4 Methodology

This section describes the framework and techniques that are used to forecast the target variable.

First, the general forecasting framework is discussed. Next, for both the PLS and the EN method

is explained how these are applied to this framework.

4.1 Partial Least Squares

The forecast of yht+h, depends on the information up to time t of the target variable itself,

predictors Xt and their lags. Following Fuentes et al. (2015), the general forecasting framework

is defined as follows:

yht+h = µ+ φ(L)zt + β′(L)F̂t + ηt+h (3)

where yht+h is the target variable to be forecasted h-step ahead, φ(L) and β′(L) denote the lag

polynomials such that φ(L)zt and β′(L)F̂t are the lags of the target variable and the estimated

factors, F̂t, respectively, with their corresponding coefficients. The h-step-ahead prediction error

is denoted by ηt+h.

The set of predictors can contain a huge amount of variables. However, I only use a small

(relevant) part of these variables that contain the most useful information about the target

variable. Following Fuentes et al. (2015), I use PLS which relates the reduction of the dimension

among the predictors to the prediction of the target variable. The factors that are extracted by
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means of PLS are based on the covariance between the set of predictors and the target variable to

be forecasted. To obtain these factors, I perform the eigenvalue decomposition on the following

matrix:

M = X ′Y Y ′X (4)

where Y is the vector of dimension T containing the target variable and X is the set of

predictors with dimension TxN . Both include the information up to time T = t.

Making a linear combination of the first eigenvector of the matrix M and the variables in X,

gives the first PLS factor f̂PLSjt . For the second PLS factor, the matrices X and Y are different

such that the second factor obtains information that is not contained in the first one. For

simplicity I denote this new matrix as:

M = v′uu′v (5)

where u and v are the vectors of residuals from the regressions of the target variable and the

predictors, respectively, on the first PLS factor. For every next PLS factor, I perform the

eigenvalue decomposition on the vectors of residuals from the regressions of the target variable

and the predictors, respectively, on the previous PLS factors. Whereas PC only focuses on the

variance between the predictors and the target variable, PLS also focuses on the correlation.

This technique can be used for static and dynamic applications, where this paper examines

one static approach (a) and two dynamic approaches (b and c), as in Fuentes et al. (2015). The

forecasting model consists of the forecasting equation (3) and

F̂t = WXt, (6)

which denotes the factors as a linear combination of the predictors as to be substituted in the

forecasting equation. Following Fuentes et al. (2015), the static and dynamic approaches for

the forecasting process are listed and elaborated below.

Static approach:

(a) For the static approach, I apply PLS as stated before to the matrix M = X ′Y
′
hY
′
hX where

Y
′
h = (yh1+h, ..., y

h
T+h) contains the target variable h periods ahead for every point of time

t. Stated otherwise: if the forecast horizon is equal to one (h= 1) and the estimation

sample is from March 1960 to February 1970, then Y
′
h contains the target variable yh for

the period April 1960 to March 1970. The matrix X contains the original set of predictors

such that, using the previous example, it contains all variables for the period from March

1960 to February 1970. For extracting the factors, the lags of the target variable are not
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included whereas they are included in the forecasting equation, such that the dynamics of

the target variable are not taken into account when constructing the factors. However, by

including these lags in the forecasting equation, the dynamics of the target variable are

taken into account directly.

Dynamic approaches:

(b) For the first dynamic approach, I apply PLS to the matrix M = X ′eY
′
hY
′
hXe where Y

′
h is

the target variable as explained in static approach (a) and Xe is the set of all original

predictors and augmented with q lags of the target variable (zt, ..., zt−q+1). By setting

q = 1 for the example as used above, the set X is augmented with the lags of the target

variable for the observations March 1960 to February 1970. In this way the dynamics of

the target variable are taken into account while extracting the factors. The lags of the

target variable are not included in the forecasting equation.

(c) For the second dynamic approach, I first perform an AR(p) process on the target variable

for the specific estimation sample. Next, I apply PLS to the matrix M = X ′εε′X where

X is again the original set of predictors and ε is the vector of residuals from the estimated

AR(p) process of the previous step. For this dynamic approach, I include lags of the

target variable in the forecasting equation. In this way, the effect of the AR(p) process is

considered solely before making use of the PLS estimation.

After extracting the factors by means of one of the approaches above, it is substituted in the

forecasting equation (3) as a reduced set of explanatory variables.

The final forecasts are estimated by equation (3), where φ(L)zt denotes the effect of the lags

of the target variable and β′(L)F̂t denotes the effect of the estimated factors and their lags. I

estimate the factors and parameters with the information available up until time t. Following

Fuentes et al. (2015) and Bai and Ng (2008), I use the Bayesian information Criterion (BIC)

to determine the amount of lags of the factors and the target variable, with a maximum lag

length of six when allowed by the sample size, and set to four otherwise. For both the static

and dynamic approaches, I investigate the forecast horizons h = 1, 6, 12 and 24. I consider the

forecast performance for different numbers of factors and choose the final number that coincides

with the best performance.
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4.2 Elastic Net

Another method to reduce the number of predictors that are used to forecast the target variable

yht+h is penalized regression. Multiple penalizing techniques together with their drawbacks and

advantages are discussed in this section. The penalizing technique used in this paper is the

elastic net, which is a combination between the ridge and the lasso penalizing techniques. The

resulting problem is solved by means of the LARS-EN algortihm.

A different forecasting framework is used to predict the target variable by means of the EN:

yht+h = µ+ β′(L)Xe,t + ηt+h (7)

where β′(L) denotes the lag polynomials such that β′(L)Xe,t are the predictors and their lags,

with their corresponding coefficients. To take into account the dynamics of the target variable,

the lags of the target, zt, as defined in equation (2), are included in the set of predictors, resulting

in the enlarged matrix Xe. The EN penalizing technique selects the predictors to include in the

forecasting model.

The ridge regression applies a L2-penalty (
∑N

j=1 β
2
j = ‖β‖22 where N is the number of

predictors including zt) on the regression coefficients and solves the following minimization

problem:

min
β

RSS + λridge

N∑
j=1

β2j (8)

where RSS is the sum of squared residuals from a standard OLS regression with yht+h as a target,

and λridge ∈ [0,∞) is the ridge penalty. The drawback regarding this technique is that the ridge

penalty function only shrinks the regression coefficients towards zero, but never sets them equal

to zero. Hence, it does not result in a parsimonious model.

The lasso regression substitutes the L2-penalty with the L1-penalty (
∑N

j=1 |βj | = ‖β‖1),

resulting in the problem:

min
β

RSS + λlasso

N∑
j=1

|βj | (9)

where λlasso ∈ [0,∞) denotes the lasso penalty. An advantage of the lasso over the ridge

regression is that it can set the values of the estimates equal to zero, such that it simultaneously

shrinks the estimates and performs variable selection, implying that a parsimonious model can be

created. However, Zou and Hastie (2005) address two drawbacks regarding the lasso regression:

(1) in the case of N > T , the convex minimization problem constitutes to the fact that the

lasso cannot select more than T predictors; (2) in the case of high pairwise correlations within
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a group of predictors, the lasso does not perform group selection but selects one predictor and

makes no distinguish in which one to select.

The solution to the drawbacks as stated above is the EN regression, because besides the fact

that it shrinks the coefficient estimates and simultaneously performs automatic variable selection,

it also performs group selection for a group of predictors with high pairwise correlations. As

stated by Zou and Hastie (2005) it is ”a stretchable fishing net that retains ’all the big fish’”.

The EN regression combines the penalties of the lasso and the ridge regression by means of a

convex combination. This results in the following minimization problem:

min
β

RSS + λENPα(β) (10)

where

Pα(β) = (1− α)
N∑
j=1

|βj |+ α
N∑
j=1

β2j (11)

where λEN ∈ [0,∞) and α ∈ (0, 1] are regularization parameters, following Zou and Hastie

(2005) and Hastie et al. (2008). When α is strictly between 0 and 1, the EN regression is

performed. When α is equal to one, the problem is equal to the lasso. When α moves towards

zero, the problem approaches the ridge regression. To follow the denotation of Bai and Ng

(2008), I rewrite the equation and substitute λ1 = λEN(1 − α) and λ2 = λENα to obtain the

following problem:

min
β

RSS + λ1

N∑
j=1

|βj |+ λ2

N∑
j=1

β2j (12)

from which the penalty is strictly convex if λ2
λ1+λ2

> 0.

An advantage of the EN is that by adjusting the data set by

X∗e = (1 + λ2)
−1/2

(
Xe√
λ2IN

)
and y∗ =

(
y

0N

)
, (13)

such that X∗e is a (T +N)xN matrix and y∗ is a vector of length (T +N), the EN criterion can

be rewritten as a lasso problem which can be solved by means of the LARS-EN algorithm. For

γ = λ1√
1+λ2

the EN estimator can be rewritten as

β∗∗ = argmin
β

RSS∗ + γ
N∑
j=1

|βj |. (14)

Before the LARS-EN algorithm can be performed, the double-shrinkage effect has to be

deleted. The double-shrinkage effect occurs because both the lasso and the ridge penalty perform

shrinkage to the coefficient estimates. Zou and Hastie (2005) introduce β∗ = (1 + λ2)β
∗∗ as the

EN estimator that solves this problem.
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4.3 LARS-EN Algorithm

The LARS (’least angle regression’) algorithm proposed by Efron et al. (2004) iteratively es-

timates the target variable in a piecewise linearly way taking into account the maximum cor-

relation with the residuals. The LARS-EN algortihm used in this paper, proposed by Zou and

Hastie (2005), is based on the LARS algorithm.

Let µ̂k be the estimate of the target variable in the kth-step, with starting value µ0 = 0 in

the first step. In every step, one predictor is added to the active set, such that k is the number

of predictors after k steps. This implies that the coefficients of the other N − k predictors are

equal to zero. Let ĉ = X∗e
′(y∗ − µ̂k) be the vector of dimension N of correlations between the

set of predictors and the residual vector in the kth-step. The maximum correlation is defined as

Ĉ = max
j
|ĉj | such that K = {j : |ĉj | = |Ĉ|} (15)

where K is the set of indices that correspond with the predictors that contain the largest

correlations in absolute value. With this, the active variable set corresponding to K, in the

kth-step is denoted by

X∗e,Kk
= (sign(ĉj)x

∗
j )j∈K . (16)

Let GKk
= X∗

′
e,Kk

X∗e,Kk
such that with the transformed data set this is

GKk
=

1

1 + λ2
(X∗

′
e,Kk

X∗e,Kk
+ λ2IN ). (17)

The inverse of this matrix is needed to construct AKk
= (1′KG

−1
Kk

1K)−1/2 (where 1K is a Kx1

vector of ones), which is done by up- or downdating the Cholesky factorization of the GKk−1

matrix from the previous step. Zou and Hastie (2005) found that the up- or downdating of

the Cholesky factorization of X∗
′
e,Kk−1

X∗e,Kk−1
+ λ2IN is done in the exact same way as is done

on X∗
′
e,Kk−1

X∗e,Kk−1
by Golub and Van Loan (1983). When AKk

is constructed, the equiangular

vector uKk
is denoted by

uKk
= X∗e,Kk

wKk
where wKk

= AKk
G−1Kk

1K and aKk
= X∗

′
e,Kk

uKk
. (18)

The LARS-EN algorithm then updates the target variable in every step:

µ̂k+1 = µ̂k + γ̂uKk
(19)

where

γ̂ = min+

j∈Kc

(
Ĉ − ĉj
AK − aj

,
Ĉ + ĉj
AK + aj

)
. (20)
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4.4 Choice of tuning parameters

The parameters λEN en α from equation (10) and (11) are considered as the tuning parameters

of the EN regression. A widely used method, and also used by Zou and Hastie (2005), is the

10-fold cross-validation (CV) to compute the prediction error of the estimation sample. I use the

10-fold CV and choose to use the largest value of λEN for which the prediction error is within one

standard error from the minimum mean squared error (MSE). Choosing the tuning parameter

α implies to what extent the EN penalty interpolates between the ridge penalty and the lasso

penalty (Hastie et al., 2008). To choose a value for the tuning parameter α, I compare forecasts

for three different values (α = 0.25, 0.5 and 0.75) and allow the final value to be determined by

the forecasting performance.

5 Forecast Results

The forecasting performance of the PC method and the three PLS approaches for the forecast

horizons h = 1, 6, 12 and 24 are shown in tables 2, 3, 4 and 5, respectively. Following Bai and

Ng (2008), I use k = 10 factors for the PC regression. Regarding PLS, I investigate both the

forecast performance for k = 1 and k = 2 factors and let the number of factors be determined by

the best forecasting performance. To compare the predictive ability of the different methods, I

use the relative mean-squared error (RMSE) over a univariate benchmark, as in Fuentes et al.

(2015). The univariate benchmark used for the forecast horizon h = 1 is an AR(4) process. For

the horizons h = 6, 12 and 24, I fit the target variable to an AR(4) process, zt and three lags.

This gives the following RMSE:

RMSE (method) =
MSE (method)

MSE (AR(4))
. (21)

From the RMSE I can clearly observe whether a method performs better or worse than the

benchmark. Namely, when the RMSE has a value of less than one, the method has a better

forecast performance than the AR(4) model.

5.1 Fixed Estimation Sample

Tables 2-5 present the results of the forecasting performances of the PC method and the three

different approaches of PLS as discussed in section 4.1 together with the EN method for the

different forecast horizons. For these forecasts a fixed estimation sample is used. With a fixed
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estimation sample, I refer to the fixed number of observations used to estimate the factors and

regression coefficients for the forecast sample. For example, for forecasting 1970:03 to 1980:12,

all forecasts use the factors and parameters estimated for the sample 1960:03 to 1970:03-h.

This is done differently than in Fuentes et al. (2015), where an expanding estimation sample

is used. Regarding the same example, for the first forecast (1970:03) an expanding estimation

uses factors and parameters estimated for the sample 1960:03 to 1970:03-h. However, the last

forecast (1980:12) is based on estimation up to 1980:12-h. The difference in the estimation

samples is taken into account when interpreting the results. The results in tables 2-5 give

multiple remarkable insights to the forecasting models regarding the increasing horizon and

when comparing the results with those of Fuentes et al. (2015).

Table 2: RMSE, h= 1

PC PLS EN

Period (k = 10) a (k = 1) b (k = 2) c (k = 2) (k = max. 10)

M1: 70.3-80.12 0.991 1.052 1.080* 0.988 0.872α=0.5

M2: 80.3-90.12 1.073 1.002 1.045* 1.077 0.959α=0.75

M3: 90.3-00.12 0.964 1.013 1.078 0.924 0.947α=0.5

M4: 70.3-90.12 0.970 1.015 1.132* 0.992 0.945α=0.75

M5: 70.3-00.12 0.958 1.007 1.135* 0.984 0.946α=0.5

M6: 80.3-00.12 1.049 0.992 1.105 0.967 0.934α=0.75

M7: 70.3-03.12 0.983 1.014 1.139* 0.988 0.930α=0.75

Note: The table presents the RMSE of PC, PLS and EN over the benchmark for the 1-month forecast

horizon. An asterisk means k = 1. The best forecasting performance for each subsample is indicated in

bold. The value of the tuning parameter α is indicated for the EN.
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Table 3: RMSE, h= 6

PC PLS EN

Period (k = 10) a (k = 1) b (k = 2) c (k = 2) (k = max. 10)

M1: 70.3-80.12 0.713 0.592 1.012 0.591 0.731α=0.75

M2: 80.3-90.12 0.646 0.594* 1.189 0.619 0.887α=0.75

M3: 90.3-00.12 0.669 0.564* 1.029 0.651 0.715α=0.5

M4: 70.3-90.12 0.668 0.568 1.092 0.631 0.843α=0.75

M5: 70.3-00.12 0.675 0.539 1.068 0.612 0.821α=0.5

M6: 80.3-00.12 0.648 0.563* 1.197 0.610 0.815α=0.75

M7: 70.3-03.12 0.671 0.526 1.067 0.597 0.826α=0.75

Note: The table presents the RMSE of PC, PLS and EN over the benchmark for the 6-month forecast

horizon. An asterisk means k=1. The best forecasting performance for each subsample is indicated in

bold. The value of the tuning parameter α is indicated for the EN.

Table 4: RMSE, h= 12

PC PLS EN

Period (k = 10) a (k = 1) b (k = 2) c (k = 2) (k = max. 10)

M1: 70.3-80.12 0.648 0.558 0.810 0.552 0.578α=0.75

M2: 80.3-90.12 0.613 0.497 1.232 0.521 0.787α=0.75

M3: 90.3-00.12 0.739 0.511 1.185 0.649 0.691α=0.75

M4: 70.3-90.12 0.664 0.564 0.887 0.565 0.601α=0.75

M5: 70.3-00.12 0.668 0.544 0.871 0.549 0.607α=0.75

M6: 80.3-00.12 0.620 0.512 1.329 0.509 0.737α=0.75

M7: 70.3-03.12 0.647 0.531 0.881 0.532 0.625α=0.75

Note: The table presents the RMSE of PC, PLS and EN over the benchmark for the 12-month forecast

horizon. An asterisk means k=1. The best forecasting performance for each subsample is indicated in

bold. The value of the tuning parameter α is indicated for the EN.

To start, I find that there is improvement with respect to the widely used PC method.

For the 1-month forecast horizon the forecast performances of the static PLS approach (a) are

weaker then those of the PC method. However, for the remaining forecast horizons this PLS

approach performs better than the PC method for almost every subsample.
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Table 5: RMSE, h= 24

PC PLS EN

Period (k = 10) a (k = 1) b (k = 2) c (k = 2) (k = max. 10)

M1: 70.3-80.12 0.536 0.526 0.649 0.532 0.634α=0.75

M2: 80.3-90.12 0.550 0.628* 1.223 0.515 0.734α=0.75

M3: 90.3-00.12 0.694 1.518 3.487 0.593 0.641α=0.75

M4: 70.3-90.12 0.539 0.531 0.844 0.547 0.638α=0.75

M5: 70.3-00.12 0.547 0.502 0.849 0.525 0.622α=0.75

M6: 80.3-00.12 0.554 0.702* 1.825 0.506 0.689α=0.75

M7: 70.3-03.12 0.530 0.515 0.853 0.521 0.626α=0.5

Note: The table presents the RMSE of PC, PLS and EN over the benchmark for the 24-month forecast

horizon. An asterisk means k=1. The best forecasting performance for each subsample is indicated in

bold. The value of the tuning parameter α is indicated for the EN.

Second, the general pattern of the results show that the forecast accuracy keeps improving over

to the univariate benchmark as the forecast horizon gets larger. This holds for all methods. This

is also found by Fuentes et al. (2015) and before in the factor model literature. However, the

results found by Fuentes et al. (2015) show better forecast performances for all methods when

the forecast horizon increases. These differences may be due to the fact that I am using a fixed

estimation sample, whereas Fuentes et al. (2015) uses an expanding estimation sample. The

estimation sample expands with the size of the horizon every time a forecast is made, such that

the number of observations for estimation increases for every forecast. The estimation sample

used in this paper is fixed, such that there is a fixed number of observations to estimate the

parameters and factors for the complete forecast sample. This might explain the better results

obtained in Fuentes et al. (2015) and the increasing difference in results for larger forecast

horizons.

Third, the results show that the PLS approach (b) performs (much) worse than the other

methods and in many cases even worse than the benchmark. This is due to the way of in-

corporating the dynamic behaviour of the target variable into the forecasting model. In this

approach the dynamics of the target variable are taken into account by incorporating the lags

of the target variable as additional predictors for extracting the factors, whereas they are not

included directly into the forecasting equation. PLS assigns a weight to all the predictors, in
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this case including the lags of the target variable. Because the number of variables is large, the

weights associated with the lags of the target are considerably smaller compared to when they

are incorporated directly into the forecasting equation (as in approaches (a) and (c)), such that

it does not sufficiently capture the dynamics of the variable to forecast. Besides this, I observe

that the performances for the subsamples M2 and M6 for all forecast horizons are much lower

compared to those of Fuentes et al. (2015). This might imply that using PLS approach (b)

with a fixed estimation sample does not account for the changing relation over time between

the predictors and the target variable as is done with the expanding estimation sample. This is

also the case for the results of PLS approach (a) considered for subsample M2 and M6 for the

forecast horizon h = 24.

Another observation regarding the results from PLS approach (b) is that some forecasts are

better than in Fuentes et al. (2015) considered for the horizons h = 1, 6 and 12. This difference

may arise from the choice of the lags of the target variable in the enlarged matrix of predictors

Xe. This choice is not clearly defined in Fuentes et al. (2015), although they may have chosen

to use yt and several lag, whereas I augment the matrix with zt as defined in equation (2). The

choice of zt as the lags is because they are defined as the lags of the transformed target variable,

whereas yt are the lags of the natural logarithm of the CPI. Besides this, I also use zt as lags in

the forecasting equation for approaches (a) and (c), such that this research consistently uses zt

as lags of the target variable. With this, I obtain considerably better results than Fuentes et al.

(2015), in particular for the 12-month forecast horizon.

Fourth, the results regarding approach (c) outperform the widely used PC method in 82% of

all subsamples. This implies that considering the effect of the AR(p) process before PLS estima-

tion seems appropriate to capture the dynamic relationship of the target variable. However, the

results are adjusted such that they are comparable to the other approaches and to the results

from Fuentes et al. (2015). These adjustments are made by changing the number of lags of the

target variable and the factors in the forecasting equation. Defining the number of lags by means

of the BIC results in much better forecasting performance than those obtained by Fuentes et

al. (2015). Such strong forecast performance seems non applicable, so that adjustment had to

be made. The results regarding approach (c) are obtained by fitting an AR(1) process to the

target variable to obtain the residuals for the eigenvalue decomposition, whereas Fuentes et al.

(2015) does not state which AR(p) process to apply. I have tried multiple alternatives to obtain

the residuals, from which the results are shown in Appendix A. None of the alternatives results

in the RMSE comparable to Fuentes et al. (2015).

Fifth, the EN method shows the best forecast performance considering the 1-month forecast
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horizon for six out of seven subsamples. However, when the forecast horizon increases, the fore-

cast performance of the EN improves over the benchmark, but not with the same amplitude as

the other methods. This results in the fact that the EN shows weak forecast performance for

the remaining forecast horizons. The EN also shows weaker forecast performances considered

for the 24-month forecast horizon compared to the 12-month horizon.

Sixth, PLS approaches (a) and (b) for the subsample M3 considered for the 24-month fore-

cast horizon show significantly weak forecast performance. This implies that these approaches

cannot capture the dynamics of the target variable for this specific sample. In particular, PLS

approach (b) performs more than three times worse than the benchmark. Approach (a) accounts

for some more of the temporal instability because of the incorporated lags of the target in the

forecasting equation.

At last, PLS approach (a) performs the best in almost all samples for the forecast horizons

h = 6, 12 and 24. This indicates that applying PLS with a static approach extracts the most

relevant information about the target variable when using a fixed estimation sample.

5.2 Expanding Estimation Sample

Tables 6-9 show the forecast performance of PC, LARS and the EN over the univariate bench-

mark. For this empirical comparison an expanding estimation sample is used as described in

the previous section. The forecasting results with respect to PC and LARS are obtained from

Fuentes et al. (2015), for which PC uses k = 10 for the number of factors and LARS for both

k = 5 and 10. I have decided to keep a maximum of ten variables selected by the EN for a good

comparison with LARS.
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Table 6: RMSE, h= 1

PC LARS EN

Period k = 10 k = 5 k = 10 k = max. 10

M1: 70.3-80.12 1.015 1.102 1.190 1.370α=0.75

M2: 80.3-90.12 0.982 1.018 1.022 0.910α=0.75

M3: 90.3-00.12 0.963 1.015 1.025 1.192α=0.75

M4: 70.3-90.12 0.998 1.067 1.112 1.118α=0.75

M5: 70.3-00.12 0.990 1.059 1.098 1.130α=0.75

M6: 80.3-00.12 0.972 1.019 1.025 0.974α=0.75

M7: 70.3-03.12 0.979 1.047 1.092 1.138α=0.75

Note: The table presents the RMSE of PC, LARS and the EN over the benchmark for the 1-month

forecast horizon. The best forecasting performance for each subsample is indicated in bold. The value of

the tuning parameter α is indicated for the EN. Results of PC and LARS are obtained from Fuentes et

al. (2015).

Table 7: RMSE, h= 6

PC LARS EN

Period k = 10 k = 5 k = 10 k = max. 10

M1: 70.3-80.12 0.712 0.786 0.719 0.608α=0.75

M2: 80.3-90.12 0.654 0.789 0.794 0.925α=0.75

M3: 90.3-00.12 0.660 0.986 1.066 0.591α=0.75

M4: 70.3-90.12 0.675 0.815 0.789 0.699α=0.75

M5: 70.3-00.12 0.671 0.825 0.810 0.658α=0.75

M6: 80.3-00.12 0.652 0.808 0.826 0.800α=0.75

M7: 70.3-03.12 0.670 0.817 0.803 0.635α=0.75

Note: The table presents the RMSE of PC, LARS and the EN over the benchmark for the 6-month

forecast horizon. The best forecasting performance for each subsample is indicated in bold. The value of

the tuning parameter α is indicated for the EN. Results of PC and LARS are obtained from Fuentes et

al. (2015).

The first observation regarding the EN method for the tables 6-9 is the weak forecast per-

formance considered for the 1-month forecast horizon. The EN performs worse than the widely
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Table 8: RMSE, h= 12

PC LARS EN

Period k = 10 k = 5 k = 10 k = max. 10

M1: 70.3-80.12 0.631 0.606 0.554 0.586α=0.75

M2: 80.3-90.12 0.575 0.641 0.710 0.869α=0.75

M3: 90.3-00.12 0.723 1.032 0.989 0.694α=0.75

M4: 70.3-90.12 0.603 0.624 0.626 0.650α=0.75

M5: 70.3-00.12 0.611 0.670 0.666 0.638α=0.75

M6: 80.3-00.12 0.594 0.717 0.765 0.800α=0.75

M7: 70.3-03.12 0.609 0.680 0.671 0.630α=0.75

Note: The table presents the RMSE of PC, LARS and the EN over the benchmark for the 12-month

forecast horizon. The best forecasting performance for each subsample is indicated in bold. The value of

the tuning parameter α is indicated for the EN. Results of PC and LARS are obtained from Fuentes et

al. (2015).

Table 9: RMSE, h= 24

PC LARS EN

Period k = 10 k = 5 k = 10 k = max. 10

M1: 70.3-80.12 0.532 0.539 0.542 0.464α=0.75

M2: 80.3-90.12 0.506 0.535 0.545 0.977α=0.75

M3: 90.3-00.12 0.546 0.975 0.767 0.679α=0.75

M4: 70.3-90.12 0.522 0.537 0.547 0.340α=0.75

M5: 70.3-00.12 0.523 0.572 0.564 0.482α=0.75

M6: 80.3-00.12 0.512 0.599 0.576 0.886α=0.75

M7: 70.3-03.12 0.523 0.574 0.565 0.495α=0.75

Note: The table presents the RMSE of PC, LARS and the EN over the benchmark for the 24-month

forecast horizon. The best forecasting performance for each subsample is indicated in bold. The value of

the tuning parameter α is indicated for the EN. Results of PC and LARS are obtained from Fuentes et

al. (2015).

used PC method and both options of LARS, for five out of seven subsamples. However, when

the forecast horizon increases to 6 months, the EN performs much better and yields the best
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forecast performance for four subsamples.

A second interesting observation is the value for the tuning parameter α for the EN. This

value is equal to 0.75 for every subsample over all forecast horizons, implying that the EN pe-

nalization interpolates more towards the lasso penalty than the ridge penalty. Because of the

fact that the ridge penalty never sets the coefficients equal to zero, the value of α indicates that

there are many zero coefficients in the true model.

Third, the results of the EN show inconsistent improvement with the increasing forecast

horizon. With this, I refer to the improvements made over the benchmark when the forecast

horizon increases. Namely, when the horizon increases to h= 12, the EN yields better forecasts

than for h= 6, but the improvement is much less compared to the previous improvement when

the forecast horizon increases from h= 1 to h= 6. Also, the improvement of the EN compared

to the other methods is much lower, such that the EN has a weaker forecast performance than

PC and LARS for the 12-month forecast horizon. However, when the forecast horizon increases

further to h= 24, the EN performs again much better for four subsamples, yielding the four

best forecasts.

Third, the forecast accuracy regarding the EN method considered for the subsamples M2 and

M6 are considerably lower compared to the other subsamples. The results of the two subsamples

for the 24-month forecast horizon are even worse than for the 12-month horizon, something that

is also observed for the EN with a fixed estimation sample.

Fourth, solely comparing LARS with the EN shows that the EN performs better than LARS

for only 57% of the time. This implies that none of the two penalizing techniques consistently

dominates the other. However, the subsamples for which the EN has a stronger forecast perfor-

mance the results differ substantially from those of LARS. This might be due to the property of

group selection that is performed by the EN. Groups of variables with high pairwise correlations

might be present in those subsamples, such that the EN has a better forecast accuracy than

LARS.

6 Conclusions

This paper revisits partial least squares (PLS), following Fuentes et al. (2015), to investigate

whether the forecast performance can be improved over the widely used principal components

(PC) method when reducing the dimension of the subspace spanned by the predictors and

relating this feature to the forecast goal. One static and two dynamic approaches of the PLS

method are applied to 132 monthly US macroeconomic time series. Another method to reduce
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the dimension among the predictors applied in this study is the elastic net (EN), a regularization

technique that combines the penalties of two penalizing techniques to simultaneously perform

shrinkage and variable selection. The target is the US inflation where the estimation sample

regarding PLS is fixed, whereas the EN is considered for both a fixed estimation sample and an

expanding estimation sample.

Regarding the three different approaches of PLS, results show that including the lags directly

into the forecasting equation yields much better results than incorporating these lags to the

original set of predictors. This is due to the fact that PLS weights all the predictors. The weights

associated with the lags of the target are much less compared to when they are incorporated

directly into the forecasting equation, such that it does not sufficiently capture the dynamics

of the target variable. Static approach (a) includes the lags of the target directly into the

forecasting equation, which yields better forecasting results than the widely used PC method in

71% of all subsamples.

Dynamic PLS approach (c) also includes the lags of the target variable directly into the

forecasting equation, but isolates the AR(p) process before PLS estimation. This approach

outperforms the PC method for almost all subsamples, implying that the alternative way of

incorporating the dynamics of the target variable seems to capture the dynamic relationship

appropriately. However, these results should be interpreted carefully, since the lags in the

forecasting equation had to be adjusted to obtain comparable results to Fuentes et al. (2015).

The EN with a fixed estimation sample performs good for the very short forecast horizon

(h= 1), but shows no improvement over PC when the forecast horizon increases. When the

EN is performed with an expanding estimation sample, it shows weak forecast performance for

the very short forecast horizon, but the forecast accuracy improves when the forecast horizon

gets longer. In particular, the EN has the strongest forecasting performance for four subsamples

considered for the 24-month forecast horizon. Yet, PC shows better forecast accuracy than the

EN for 61% of the subsamples. Hence, improvements over PC are found, but the EN cannot be

regarded as an consistent improvement over PC.

Overall, the empirical comparison shows that reducing the subspace among predictors by

extracting factors from the most informative predictors to predict a specific target variable

improves forecasting performance of the most widely used factor method.

Additionally, the EN has the property to select variables for every period a forecast is made.

It can be of great interest for policy makers to know which predictors consist of the most

informative content about the target variable. These could be observed and interpreted so that

the EN could be used as an exploratory tool for an additional gain to this study.
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Appendix A: Alternative results PLS approach (c)

Table A1: RMSE PLS approach (c) for different alternatives of residuals, h= 1

Residual alternatives

Period ε = yht+h− φyht ε = yht+h− φyht+h(BIC) ε = yht+h− φzt

M1: 70.3-80.12 0.612* 0.687* 0.653*

M2: 80.3-90.12 0.763* 0.842* 0.766*

M3: 90.3-00.12 0.674* 0.756* 0.815*

M4: 70.3-90.12 0.815 0.857 0.809

M5: 70.3-00.12 0.790* 0.787* 0.790*

M6: 80.3-00.12 0.967* 0.801* 0.803*

M7: 70.3-03.12 0.785 0.786 0.791

Note: The table presents the RMSE of PLS approach (c) (k = 2) over the benchmark for the 1-month

forecast horizon. The second row denotes the different alternatives to obtain the residuals, as tried for

PLS approach (c). BIC denotes the number lags p used for the AR(p) process as determined by the BIC.

An asterisk means k=1.

Table A2: RMSE PLS approach (c) for different alternatives of residuals, h= 6

Residual alternatives

Period ε = yht+h− φyht ε = yht+h− φyht+h(BIC) ε = yht+h− φzt

M1: 70.3-80.12 0.591 0.563 0.585

M2: 80.3-90.12 0.458* 0.482* 0.518*

M3: 90.3-00.12 0.322* 0.536* 0.577*

M4: 70.3-90.12 0.515 0.551 0.546

M5: 70.3-00.12 0.488 0.529 0.530

M6: 80.3-00.12 0.430* 0.498* 0.517*

M7: 70.3-03.12 0.496* 0.514* 0.523*

Note: The table presents the RMSE of PLS approach (c) (k = 2) over the benchmark for the 6-month

forecast horizon. The second row denotes the different alternatives to obtain the residuals, as tried for

PLS approach (c). BIC denotes the number lags p used for the AR(p) process as determined by the BIC.

An asterisk means k=1.
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Table A3: RMSE PLS approach (c) for different alternatives of residuals, h= 12

Residual alternatives

Period ε = yht+h− φyht ε = yht+h− φyht+h(BIC) ε = yht+h− φzt

M1: 70.3-80.12 0.552 0.584 0.579

M2: 80.3-90.12 0.521 0.542 0.535

M3: 90.3-00.12 0.349* 0.537* 0.560*

M4: 70.3-90.12 0.565 0.577 0.578

M5: 70.3-00.12 0.549 0.555 0.563

M6: 80.3-00.12 0.509 0.562 0.540

M7: 70.3-03.12 0.532 0.539 0.548

Note: The table presents the RMSE of PLS approach (c) (k = 2) over the benchmark for the 12-month

forecast horizon. The second row denotes the different alternatives to obtain the residuals, as tried for

PLS approach (c). BIC denotes the number lags p used for the AR(p) process as determined by the BIC.

An asterisk means k=1.

Table A4: RMSE PLS approach (c) for different alternatives of residuals, h= 24

Residual alternatives

Period ε = yht+h− φyht ε = yht+h− φyht+h(BIC) ε = yht+h− φzt

M1: 70.3-80.12 0.523 0.544 0.563

M2: 80.3-90.12 0.424 0.496 0.507

M3: 90.3-00.12 0.536* 0.527* 0.534*

M4: 70.3-90.12 0.511 0.554 0.585

M5: 70.3-00.12 0.488 0.519 0.547

M6: 80.3-00.12 0.412 0.531 0.527

M7: 70.3-03.12 0.456 0.492 0.522

Note: The table presents the RMSE of PLS approach (c) (k = 2) over the benchmark for the 24-month

forecast horizon. The second row denotes the different alternatives to obtain the residuals, as tried for

PLS approach (c). BIC denotes the number lags p used for the AR(p) process as determined by the BIC.

An asterisk means k=1.
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Appendix B: Programs

• EN Fix Est Sample: This program calculates the mean squared errors for the Elastic

Net with a fixed estimation sample.

• EN Exp Est Sample: This program calculates the mean squared errors for the Elastic

Net with an expanding estimation sample.

• PLS: This program estimates the factors by means of the three different approaches of

PLS, which are exported to EViews to forecast the target variable.

• PC: This program estimates the factors by means of the PC method, which are exported

to EViews to forecast the target variable.
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