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Abstract

This study uses static factor methods to forecast the annual GDP growth of the Democratic Republic of

Congo. In a three step approach, factors are computed from a data set of growth variables for other

African countries and international variables via sparse and non-sparse Principal Component Analysis.

Thereafter, machine learning techniques in the form of Elastic Net and Bayesian Model Averaging

are employed to forecast residuals of an autoregressive model. It is found that the forecasts do not

outperform estimations of a simple autoregressive model. Further, it is detected that the Congolese

data suffer from structural breaks and that models taking such breaks into account gain improvements

in predictive performance over comparable autoregressive models.

The views stated in this thesis are those of the author and not necessarily those of Erasmus School of Economics
or Erasmus University Rotterdam.
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1. INTRODUCTION Forecasting GDP with Factor Models and Machine Learning Methods

1. Introduction

Modern macroeconomic data are often characterized by two properties: first, they are limited

in time, as credible data only exist for recent years for many variables. Second, there is an

abundance of variables for more recent years. Therefore, it has become a common challenge

that the number of variables for a forecasting problem is similar or larger than the number of

observations. Classical Econometric models, such as Ordinary Least Squares Regressions, are not

constructed for such data sets. This caused the creation of parsimonious estimation methods,

which aim to reduce the number of explanatory variables used. With such methods, estimation

and forecasting problems can be solved for a large number of variables in a macroeconomic

setting.

Among other studies, Kim and Swanson (2018) provide an extensive comparison of differ-

ent parsimonious methods, all following a three step approach: First factor methods are utilized

to extract common components from a data set. Second, an autoregressive (AR) model is fitted

and the factors estimate its residuals in a third step with machine learning methods. From the

methods presented by Kim and Swanson (2013), this paper chooses Principal Component Anal-

ysis (PCA) and Sparse Principal Component Analysis (SPCA) for the factor models, while the

Elastic Net and Bayesian Model Averaging (BMA) are picked for the machine learning tools.

With its significant impact on most industrial and financial sectors as well as the political

and socio-economic well-being of a population, one variable commonly forecasted by parsi-

monious frameworks is the Gross Domestic Product (GDP) growth of a country. Yet, current

literature focuses on estimates for industrialized countries with a variety of explanatory vari-

ables available. An economic region for which, according to my knowledge, no GDP forecasts

were computed with parsimonious methods for most African countries. Due to insufficient sta-

tistical infrastructure, GDP growth forecasts for African countries are often less accurate than for

Western regions. This especially applies to the Democratic Republic of Congo (DRC), one of the

largest countries in Sub-Saharan Africa. As the DRC is a diverse and populous state, uniquely

covering the wide variety of both problems and opportunities of Sub-Saharan Africa, GDP fore-

casts for the DRC are of special interest. Further, with its positioning in the geographic heart of

Africa it is susceptible to shocks from different African economic regions, which have potential

predictive power for the DRC’s GDP growth.

Macroeconomic data such as GDP growth do not provide a high frequency and are thus
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generated over a long time period. As they are additionally subject to a variety of effects and

potential shifts of the political and socio-economic background, such data are often subject to

structural parameter breaks, changing parameter estimates and diluting forecasting accuracy.

Hence, identification of potential structural breaks is important when calculating reasonable

forecasting estimates in a parsimonious framework.

The above considerations highlight the possibility of potential forecasting improvements

and the relevance of structural breaks. Hence, this paper investigates the following two research

questions:

1. Can GDP growth variables from African countries improve forecasting performance for the

Democratic Republic of Congo’s GDP growth as compared to current IMF forecasts or autore-

gressive models, if a combination of Factor Analysis methods (sparse and non-sparse Principal

Component Analysis) mixed with Machine Learning techniques (Elastic Net and Bayesian

Model Averaging) is applied?

2. Are such GDP forecasts affected by structural parameter breaks and do forecasts that take

potential breaks into account outperform the previously described models?

The first question is academically relevant, as it applies contemporary machine learning

methods to a new problem, namely the DRC’s GDP growth. This also allows for testing state of

the art machine learning models such as the Elastic Net and BMA in combination with factor

models in the form of PCA and SPCA and their applicability to other forecasting problems. From

an Economic perspective, the estimation can pinpoint specific drivers of DRC’s GDP growth,

extending Economic knowledge in an African framework. The second question is important

as potential structural breaks are influential not only for this study, but might be shared by

other variables concerning the DRC. Thus, findings can be used for data selection by future

studies. Further, identification of structural breaks can clarify macroeconomic, societal and

political issues that caused such a change.

From an industry perspective, GDP forecasts are used in various settings. This analysis

can show whether specific machine learning methods that utilize GDP growth data from other

countries improve the predictive accuracy of current GDP forecasts. As the methods are applied

to the DRC, which suffers from more inaccurate forecasts, this effect can be even more notable.
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The findings of the paper show that overall, the forecasting methods do not provide an

improvement in forecasting accuracy as compared to an AR model, though they outperform the

IMF forecasts. Further, structural breaks are identified for different forecasting horizons in 1975

and around 2000, and factor and machine learning models that consider such parameter breaks

outperform AR forecasts over the same data set.

The rest of the paper proceeds as follows: Section 2 provides an overview of the DRC, Sec-

tion 3 discusses previous academic GDP growth and forecasting literature and Section 4 gives

insights into the data. Afterwards, Section 5 discusses the relevant methodology and Section 6

explains the results in detail and answers the research questions, including a simulation to eval-

uate the forecasting performance of the chosen models and a description of the factor model

results. Lastly, Section 7 concludes.

2. Country Review

The DRC, between 1971 and 1997 also referred to as Zaire, is a state in Central Africa.

After its status as a Belgian colony, first as a property of King Leopold II and from 1908 onwards

in the hands of the Belgian government, it gained independence in 1960 (Nzongola-Ntalaja,

2002). In 1965, Mobutu Sese Seko came into power and established a cleptocratic dictatorship,

deteriorating the economy (Haskin, 2005). This dictatorship came to an end with worsening

economic conditions and the start of the two Congo Wars (Turner, 2007). In 1997, Mobutu was

overturned by Laurent-Désiré Kabila in the first Congo War that lasted from 1996 until 1997.

After a short peace period, the former winner coalition broke, resulting in the second Congo

War (1998 - 2003). This war was characterized by the involvement of other African countries,

such as Rwanda, Burundi, Angola, Namibia and Simbabwe, as well as a depletion of the DRC’s

natural resources and the necessary infrastructure by all affiliated parties (Montague, 2002;

Nest, Grignon, & Kisangani, 2006). The second Congo war ended with a peace process and the

signing of a treaty in 2003, followed by democratic elections in 2006. Yet, the DRC remains in

political turmoil, signified by the Kivu conflict in Eastern Congo which started in 2004.

Today, the DRC is still stuck in a politically troubled position. The national government

lacks power over the eastern provinces, which are disputed territories between different rebel

groups and warlords. In fact, due to the weakness of the central government it is often claimed

that the DRC is a failed state (Trefon, 2011). Further, the DRC is still far from establishing

3



Forecasting GDP with Factor Models and Machine Learning Methods 2. COUNTRY REVIEW

a functional democratic system. On the Economist’s 2018 Democracy Index it ranks 165th,

only placing above North Korea and Syria (The Economist Intelligence Unit, 2019), while the

Reporters without Borders’ World Press Freedom Index (Reporters Without Borders, 2019) holds

it on position 154 out of 180 countries. With population estimates ranging between 81 and 98

million inhabitants (for data sources, the reader is referred to Table 8 in the Appendix), it is

the fourth largest African country. Its population growth rate of 3.3% in 2017 compares to an

overall Sub-Saharan African growth rate of 2.7%, indicating that the DRC’s population share

will increase in the future.

On the United Nations’ 2018 Human Development Index (United Nations Development

Programme, 2018) the DRC is listed at position 176 out of 189 countries with a score of 0.457.

Drivers for this positioning are a low life expectancy at birth (60 years) and few expected years

of schooling (9.8). Additionally, the DRC had a purchasing price power adjusted GDP per capita

of only $889 in 2017, which is less than a fourth of the figure for all of Sub-Saharan Africa with

$3,838. The DRC’s economic situation is also highlighted by other key figures: In 2012, 76.6%

of its population lived below the absolute poverty threshold ($1.90 per day in 2011 purchasing

price power) compared to 43.7% for sub-Saharan Africa in total while these proportions were

91% vs. 68.8% for a threshold of $3.20 per day.

Despite its large population, the DRC contributed less than 2.5% to the Sub-Saharan

African GDP in 2017 with a GDP of $37.6 billion (and $1,671 billion for all of Sub-Saharan

Africa). However, these numbers do not provide an accountable estimate of the DRC’s true

economic power, as it has a large informal economic sector (Adoho & Doumbia, 2018). Its econ-

omy is mainly based on agriculture with 80 million hectares of arable land and the production

of natural resources. Especially the Eastern provinces provide an abundance of minerals such

as diamonds, gold, copper and coltan. The country is further rich in energy resources with oil

(mainly located in western Congo) and natural gas. A map of the DRC’s natural resources is

given in the Appendix in Figure 8. In the agricultural sector, especially the production of natural

rubber and coffee is important (World Atlas).

The DRC’s economy and political structure are in parts shaped by its geography; the centre

of the large country (the DRC is Africa’s second biggest state) is occupied by the Congo Basin,

home to the world’s second biggest rain forest and surrounded by groups of mountains (World

Atlas). This basin was created by the Congo river, which is Africa’s second longest river and
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of highest importance for the DRC’s infrastructure, as it allows for shipment of goods. Access

to the sea is only granted by a small area in the West with the DRC’s largest international

harbour, Matadi. As notable parts of the DRC’s infrastructure, especially its streets and train

grids, dilapidated during the dictatorship of Mobutu and the Congo Wars, this complicates trade

across the country, strengthening the separation between eastern and western areas of the DRC.

A graphical proof for these sparse links can be seen in Figure 7 in the Appendix, which shows the

DRC’s national transport system. As a consequence, eastern areas of the DRC mainly trade with

neighbouring countries and not the western sections, shipping their goods via harbours at the

Eastern African coast (Foster & Benitez, 2011). Further, due to the bad state of infrastructure, the

DRC often allocates mining rights with the obligation to construct the necessary infrastructure

around the mines to countries such as China (Kabemba, 2016). Lastly, the DRC’s most important

trade partner is China with a share of 45% of Congo’s exports and 21% of its imports in 2017

(MIT). An overview of the DRCs’ trade statistics can be found in the Appendix, with Figure 9

showing its main export goods and Figure 10 listing its main trade partners.

3. Literature Review

Economic growth has long been a focus of theoretical academic research. For example,

Solow (1956) and Swan (1956) initiated a long-run growth model in which capital per capita

converges to a steady-state level and GDP growth is driven by exogenous parameters, such as

the population growth rate and technical progress. Lucas Jr (1988) and Romer (1986) inter-

nalize the technological progress factor in the Endogenous Growth model, focusing on the im-

provements in human capital that generate economic growth with increasing returns-to-scale.

A consequence is the postulation of conditional convergence, according to which countries with

lower economic starting levels, such as the DRC, can catch up with more developed economies

by investing in non-human and human capital.

Barro (1996) analyzes large cross-country data sets, finding strong support for the condi-

tional convergence hypothesis subject to variables such as schooling, life expectancy and the rule

of law. Yet, for most African economies, this catch-up phase did not occur yet. Sachs and Warner

(1997) argue that this is due to trade policy fallacies and geographical factors. Further, Sachs

and Warner (1995) show that economies with large ratios of natural resource exports, such as

the DRC, experience weaker GDP growth even after controlling for other factors, though these

findings are not robust to other measures of natural resource abundance like resource reserves
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(Stijns, 2005).

Recent academic literature made use of parsimonious methods in a variety of ways. Aang,

Piazzesi, and Wei (2006) use a large set of variables to forecast the Yield curve. Eickmeier,

Lemke, and Marcellino (2011) predict monetary variables and Gregory (1999) macroeconomic

fluctuations between G7 countries. Besides pure financial and monetary variables studies, Kim

and Swanson (2018) analyze the forecasting power of parsimonious estimators on different

macroeconomic variables, including the GDP growth of the USA. Kim (2018) follows a simi-

lar approach for South Korea, while Artis and Banerjee (2005) focus on the United Kingdom.

All three studies detect that sophisticated econometric parsimonious frameworks can increase

predictive accuracy when forecasting GDP growth.

With regards to the chosen machine learning and factor methods, which are all entailed

in Kim and Swanson (2013), PCA and SPCA are applied in a variety of forecasting settings. For

example, Skittides and Früh (2014) employ PCA to forecast wind speed with past events and

Ritchie, Holzinger, Li, Pendergrass, and Kim (2015) predict phenotype traits with genome data

using SPCA. For the machine learning techniques, Schumacher (2010) uses the Elastic Net on

a factor model to predict German GDP growth with international variables, while Bai and Ng

(2008) use a similar framework with targeted predictors to forecast US inflation. BMA is used

by Koop and Potter (2004) in a predictive factor model setting to forecast US GDP growth and

inflation. The forecasting studies generally conclude that the machine learning techniques can

boost forecasting performance for an appropriate choice of explanatory variables.

4. Data

Real annual GDP growth rates for 52 African countries from 1963 until 2017 are available

at the World Bank data repository. As for 28 countries, data are not available throughout the en-

tire time period, Franses and Vasilev (2019) provide an adjusted data set where for all countries

except for South Sudan missing data were imputed with PC regressions based on demographic,

production and financial variables. This study extends the data set with the 2017 World Bank

annual real GDP growth data and observations for Somalia and Eritrea, for which no World Bank

GDP growth data exists after 2011 (Eritrea) respectively 1990 (Somalia) are removed from the

data set. Moreover, real annual GDP growth variables for the USA and the world in total are

added to the data set to provide information on global GDP movement. Further, World Bank

price estimates for the commodities Oil (Crude Oil, avg.), Gold, Copper, Rubber (SGP/MYS) and
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Table 1: Descriptive statistics for the DRC’s annual real percentage GDP growth

mean median max min std. dev. 25th percentile 75th percentile Jarque-Bera

1.356 2.200 9.500 -13.500 5.216 -1.450 5.800 3.873

Coffee (Robusta) are reduced by US inflation to proxy a real price change and complete the set

of explanatory variables. To compare forecasts with estimates by real institutions, the DRC’s last

available growth forecasts between 2013 and 2017 for the five consecutive year are downloaded

from the IMF data repository.

The original data contain large deviations, such as observations more than four standard

deviations off the mean, which can be caused by external effects, measurement errors, or, in

the case of the African GDP variables, inaccurate estimates. Therefore, all variables were con-

secutively adjusted such that data more than three standard deviation off the mean are set at

three standard deviations off the mean1. This gives a total of 57 variables for the time period

from 1963 until 2017, given as annual percentage change. Especially for small changes, this is

highly similar to the transformation in Kim and Swanson (2018), where changes of log values

are used.

Descriptive Statistics for the DRC are given in Table 1, while those of the other 56 variables

are listed in Table 9 in the Appendix. Table 1 indicates that, on average, the DRC experienced

weak positive growth over the past 55 years with a mean GDP growth of 1.26%. Additionally,

with a Jarque-Bera test statistic of 3.87, normality is not rejected at a 5% critical value.

Figure 1 plots the DRC’s annual percentage real GDP growth over the sample period.

Clearly, the figure can be roughly split into three periods: first, the DRC experiences substantial,

yet highly fluctuating growth up to the the mid 1980s with a short period of economic decline

towards the end of the 19070s. Subsequently, a strong recessive period follows during the 1990s,

which are the last years of Mobutu’s dictatorship and the beginning of the Congo Wars. This

is followed by a third period after the end of the Congo Wars, which is shaped by a resurging

1The forecasting analysis was also performed for the original data set and the original data set with large outliers
set to an average between the previous and the subsequent data point. Further, both of these specifications were first
performed with all countries included in the data set and in a second analysis with Liberia and Equatorial Guinea
removed from the data set, as the two countries exhibit excessive fluctuations. Lastly, as Franses and Janssens (2019)
show that pre-whitening the explanatory variables can be important to get non-spurious principal components, the
residuals of an AR(1) regression were used as explanatory variables for all previous specifications. However, none
of the different data settings provide a substantial improvement in predictive power over all forecasting periods as
compared to the method used in this paper.
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Figure 1: Real Percentage annual GDP growth
of the DRC

Figure 2: Correlation of annual real GDP
growth between the African countries lagged by
one year and the DRC. For grey countries / dis-
puted regions, data are not included in the data
set

economy and strong economic growth, though a sharp decline of GDP growth can be observed

at the end of the sample.

A map indicating the correlation of all African in-sample countries lagged by 1 year with

the DRC is shown in Figure 2, while Figures 11 and 12 in the Appendix show specifications

without a lag and with a lag of five years. The figures indicate that the DRC’s economic perfor-

mance exhibits strongest correlation with Central and South African countries, though for a five

year lag Botswana, Zimbabwe and Lesotho are negatively correlated. Especially neighbouring

countries, such as Angola and Tanzania are moving in accordance with the DRC. Thus, it can be

expected that factors for these countries will have the strongest predictive power on the DRC’s

economic growth. For an overview of the correlation between all 57 sample variables, the reader

is referred to Figure 13 in the Appendix. No indication of sample covariances is given, as the

subsequent statistical analysis uses standardized variables.

5. Methodology

5.1. Factor Models

The general framework of factor models, as defined in Kim and Swanson (2018) and Stock and

Watson (2011, 2002) assumes that the variation of a dependent variable is caused by structural

components called factors. To forecast the dependent variable it is thus necessary to employ a
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two step process: first, factors F which are collected in the data set X in the form of common

components are identified and in a second step they are used to compute forecasts of the depen-

dent variable y. For a data set consisting of observations over T time periods and N explanatory

variables, Stock and Watson (2002) define the factor model as

X = FΛ′ + e (1)

where X is the T x N-dimensional matrix of explanatory variable observations, F is a T x r-

dimensional matrix of factors with r < N , Λ an N x r-dimensional matrix of factor loadings and

e a T x N-dimensional vector of idiosyncratic components with a mean of 0. In this and all

following sections, the N columns of X are standardized to have mean 0 and a variance of 1. As

it is assumed that the number of underlying factors, r, is smaller than the number of explanatory

variables, N, factor models allow for a dimensionality reduction of the explanatory variables, as

performed in Swanson and Xiong (2018) and Kim and Swanson (2018). For a given time period

t = 1, ...T and variable j = 1, ...,N , the formulation becomes

Xj,t = FtΛj + ej,t (2)

where Ft = (f1,t , ..., fr,t) is a vector consisting of the r factor terms at time period t and Λj =

(λj,1, ...,λj,r )′ holds the factor loading for observation j. With the factor formulations as in Equa-

tions 1 and 2, the h-step forecasting model of the dependent variable can be defined as

yt+h =Wtβw +FtβF + εt+h (3)

where Yt+h is the dependent variable at time t + h, Wt is a 1xs dimensional vector of additional

explanatory variables, such as lags of Y, βw and βF are the parameters of the forecasting equation

and εt+h is a zero mean forecast error.

To estimate Equation 1, PCA and SPCA are employed in this paper. Their methodology is

explained in Section 5.2. Afterwards, the machine learning methods described in 5.3 in the form

of the Elastic Net and BMA are used to find sparse solutions for Equation 3. This is equivalent

to specification Sp1 in Kim and Swanson (2018), and therefore this paper uses static factor

methods as described by Chamberlain and Rothschild (1982), which assume that the factors
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included in Ft do not include lags from periods before t. As this is equivalent to a dynamic factor

model with lag loadings set to 0, the forecastig literature on dynamic forecasting models (Stock

& Watson, 2006), which was adapted by Kim and Swanson (2018) can be applied nonetheless.

Static factor models are chosen as they generate greater predictive power in Kim and Swanson

(2013).

It is notable that such estimates for βw and βF do not cause the generated regressor prob-

lem, as their least squares estimates are
√
T consistent and asymptotically normal if

√
T
N −→ 0 (Bai

& Ng, 2008), such that the estimates are consistent.

5.2. Factor Estimation Methods

Factor estimation methods are used to solve Equation 1 and provide an estimate for the number

of underlying factors, r. In this paper, PCA and SPCA are applied. While PCA is the academic

standard approach to factor estimation and also generates the Mean Squared Predictive Error

(MSPE) best forecasts in Kim and Swanson (2013), SPCA is picked because it allows for a clearer

identification of the factors and their drivers by penalizing non-zero parameters.

5.2.1. Principal Component Analysis

PCA is a well-studied transformation technique that extracts the orthogonal components respon-

sible for the largest variability from a data set (Hastie, Tibshirani, & Friedman, 2009). For this

purpose, recall that Equation 2 can be rewritten as

Xt = FtΛ
′ + et (4)

with Xt = (X1,t , ...,XN,t) being the tth row of X , Λ′ = (Λ1, ...,ΛN ) being the factor matrix and

t = 1, ...,T . Though Kim and Swanson (2018) include the explanatory variable y in the set of

explanatory variables, X , the two variables are treated separately in this paper, because such a

separation is suggested if N is large (Stock & Watson, 2006). Then, a variance estimator V̂ =
1
T

∑T
t=1XtX

′
t is constructed and uncorrelated linear components Λj for j = 1, ..,T are found such

that they maximize Λ′j V̂Λj . The orthogonality property of Λ, which requires that Λ′Λ = Irxr ,

where Irxr is a r x r identity matrix, and consequently λ′iλi = 1 and λ′iλj = 0 for i, j = 1, ...,T ,

i , j, serves as a normalization of the problem in order to identify the factor loadings.
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Essentially, PCA models the problem of finding the r normalized eigenvectors with the

largest eigenvalues. Yet, it can also be related to Singular Value Decomposition (SVD) (Wall,

Rechtsteiner, & Rocha, 2003). In SVD, an mxn-dimensional matrix is factorized into USV ′,

where U (mxm) and V (nxn) are orthonormal matrices and S is anmxn-dimensional rectangular

diagonal matrix with the positive elements σi on the ith diagonal position. Wall et al. (2003)

indicate that for the SVD X = USV ′,

X ′X = V S′SV ′ (5)

such that V gives the eigenvectors and the elements σi the corresponding eigenvalues of the

covariance matrix X ′X . This also implies for the principal components that

F = XV = USV ′V = US. (6)

Lastly, as the number of factors, r, is not known a priori, PCA is used to find all N eigen-

vectors. Thereafter, selection criteria as defined in Bai and Ng (2002) can be used to identify

the number of factors, r. In this paper, this step will be performed by the information criterion

P2, such that

IC(r) = log(
tr(e′e)
TN

) + k
N + T
NT

log(min(N,T )) (7)

with e = X − FΛ′ is minimized over k = 1, ...,15.

5.2.2. Sparse Principal Component Analysis

In PCA, interpreting factors is not straightforward as the factor loadings are typically non-zero.

Thus, Zou, Hastie, and Tibshirani (2006) define SPCA, which penalizes non-zero parameters.

For this, they transform PCA to a regressive framework and define the Nxr-matrices ∆ and Λ,

an approximation of the factor loadings, for the optimization problem

(∆̂,Λ̂) = argmin
∆,Λ

 T∑
t=1

||Xt −∆Λ′Xt ||2 +
r∑
j=1

η1,j ||λj ||1 + η
r∑
j=1

||λj ||2
 s.t. ∆′∆ = Ir (8)

where Xt = (X1,t ,X2,t , ...,XN,t) is specified to be a column vector, λj is the jth column of Λ,

|λj |1 =
∑r
i=1 |λj,i | and |λj |2 =

∑r
i=1λ

2
j,i . This problem is computationally difficult to optimize, as it
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is not jointly convex in ∆ and Λ. However, for fixed values of ∆̂ respectively Λ̂, the optimization

with respect to the other parameter matrix follows a more standard procedure.

Therefore, Zou et al. (2006) suggest a two step procedure to optimize Equation 8. First, for

fixed values of ∆̂, an orthonormal matrix ∆̂
+

can be defined such that [∆̂, ∆̂
+
] is an orthonormal

matrix and

T∑
t=1

||Xt − ∆̂Λ̂
′
Xt ||2 = ||X −XΛ̂∆̂

′ ||2 = ||X∆̂
+||2 +

r∑
j=1

||X δ̂j −Xλj ||2. (9)

Now, for each loading i with i = 1, ..., r, substitution of Equation 9 into Equation 8 with a

deletion of the constant part of Equation 9 and a separation of the r independent optimizations

changes the program to

λ̂j = argmin
j

(
||X δ̂j −Xλj ||2 + η1,j ||λj ||1 + η||λj ||2

)
(10)

for i = 1, ..., r, which can each be solved with the LARS-EN algorithm explained in Section 5.3.1.

For the second step, Λ̂ is fixed. Therefore, the two penalties in Equation 8, which only

depend on values of Λ, can be deleted and the resulting problem is

∆̂ = argmin
∆

T∑
t=1

||Xt −∆Λ̂
′
Xt ||2 = argmin

∆
||X −XΛ̂∆′ ||2 s.t. ∆̂

′
∆̂ = I rxr . (11)

As this problem no longer contains any penalty terms, it is easier to solve. Using the reduced

rank Procustres rotation (Mardia & Bibby, 1979), which states that for an nxp-matrix M and an

nxk-matrix N, the constrained minimization problem

Â = argmin
A
||M −NA′ ||2 s.t. A′A = Ikxk (12)

and the SVD M ′N = UDV ′, Â = UV ′. Consequently, for the SVD X ′XΛ̂ = UDV ′, I get that

∆̂ = UV ′.

The algorithm presented by Zou et al. (2006) starts by approximating ∆̂ with the principal

components F and then repeatedly computes estimates for Λ̂ and ∆̂. The program terminates

when the estimates are either sufficiently converging or a maximum number of iterations (50)

has been reached. For the parameter r, the approximations yielded in 5.2.1 are used and only

12
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the r eigenvalue-largest principal components are passed to the algorithm.

5.3. Robust Estimation Methods

Machine Learning Methods can be utilized to provide robust estimates of the β parameters in

Equation 3. More precisely, as there are two pairs of explanatory variables, Wt and Ft, the

methodology first estimates the relationship

yt+h =Wtβw + ε∗t+h (13)

generating consistent estimates β̂w, and thereafter the methods of Elastic Net and BMA are used

to compute estimates β̂f from

ε̂∗t+h = FtβF + εt+h (14)

where ε̂∗t+h = yt+h−Wtβw. This approach follows the structure from Kim and Swanson (2018). In

this section, two contemporary approaches are applied. The first is the Elastic Net, as it combines

two often-employed shrinkage methods, the Lasso and the Ridge regression, and the scond is

BMA, which is generally viewed to be one of the best model selection techniques (Fernandez,

Ley, & Steel, 2001b; Ravazzolo, Paap, Van Dijk, & Franses, 2008).

5.3.1. Elastic Net

In an Elastic Net, a regularized regression framework is used to estimate parameters, in the case

of this paper, to estimate βf . To do so, it combines the linear L1 penalty of a Lasso (Tibshi-

rani, 1996) and the squared L2 penalty of a Ridge regression (Hoerl & Kennard, 1970) to the

regularized Naive Elastic Net expression

β̂NEN = argmin
β

(
|Y −Xβ|2 + η1|β|1 + η2|β|2

)
(15)

where |β|1 =
∑r
j=1 |βj |, |β|2 =

∑r
j=1β

2
j and X and Y are the standard exogenous respectively

dependent regression variables. (Zou & Hastie, 2005). For rewritten matrices with X+ = (1 +

η2)
− 1

2
( X√
η2In

)
and Y + =

( Y
0N

)
, the problem becomes the Lasso-like expression

β̂+ = argmin
β+

(
|Y + −X+β|2 +γ |β|1

)
(16)

13
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with γ = η1
1+η2

and β+ =
√
1+ η2β, such that βNEN = 1√

1+η2
β. This problem contains only one L1

penalty and can thus be solved more efficiently. Zou and Hastie (2005) notice that the Naive

Elastic Net underestimates β due to the two separate penalization terms. Therefore, they define

the Elastic Net estimator to be

β̂EN = (1+ η2)β̂
NEN such that β̂EN =

√
(1 + η2)β̂

+

To solve Equation 16, Zou and Hastie (2005) extend the Least Angle Regression (LARS)

algorithm (Efron, Hastie, Johnstone, Tibshirani, et al., 2004) into a LARS-EN version. The LARS

algorithm allows for an efficient solution of regression problems with high-dimensional data,

that is, a regression problem with a large number of explanatory variables, by increasing the

parameter estimate into the direction of the largest correlation between explanatory variables

and the current regression residual up to the point where a different combination of explanatory

variables shows a larger correlation. The LARS-EN algorithm calls the LARS algorithm for fixed

values of η2 and optimizes Equation 16. Then, cross-validation (CV) (Hastie et al., 2009) is

utilized to find the best values for η1 and η2. Zou and Hastie (2005) use 10-fold CV, which is

explained in Section 5.4 and choose the values for η1 and η2 which result in the smallest CV

error.

5.3.2. Bayesian Model Averaging

In Bayesian Model Averaging, it is assumed that the exact formulation of a forecasting Equation

follows one out of Q different models. For possible models Mq with q = 1, ...,Q, and random

dependent variables yt+h, this means that forecasts can be calculated as

E[yt+h|Data] =
Q∑
q=1

(
E[yt+h|Data,Mq]p(Mq|Data]

)
(17)

due to the law of conditional probability (Chipman et al., 2001; Hoeting, Madigan, Raftery, &

Volinsky, 1999). Kim and Swanson (2018) implement BMA in a factor model, assuming that

models Mq are all linear regression problems with conjugate priors - that is, their posterior

distribution belongs to the same distribution family as their prior probability - and differ based

on their inclusion of explanatory variables only. As each potential explanatory variable can either

14
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be included or excluded, this gives, for r potential explanatory variables, a total of Q = 2r model

candidates. Due to the large number of candidate models, this problem is complex by nature,

but Koop and Potter (2004) provide an algorithm to solve it. Instead of computing a forecast

for each of the Q potential forecasting models, their algorithm draws models from p(Mq|Data),

simplifying the complexity of the problem. To include the common variables WF , such as an

intercept or lags of y, these are integrated out using a noninformative prior with

y∗t+h = β
∗F∗t + ε

∗
t (18)

where y∗t+h = [IT −Wt(W ′tWt)−1W ′t ]Yt+h, F
∗
t = [IT −Wt(W ′tWt)−1W ′t ]F̂t and εt+h is normally dis-

tributed with mean 0 and constant variance σ2. The prior distributions are then defined by

α|σ−2 ∼ N (β
¯
,σ2B

¯
) and σ−2 ∼ G(s

¯
−2,v

¯
), where G(a,b) is the Gamma distribution with mean a

and b degrees of freedom (Poirier, 1995, p. 100) and β
¯
, B

¯
, s
¯
−2 and v

¯
are hyperparameters. If γ

is an indicator vector stating whether a variable is included (1) or excluded (0) from a model,

sequential estimates for p(γ |y,σ2) and p(σ2|y,γ) can then be computed with Gibbs Samplers if

σ2 is assumed to be unknown. This requires orthogonal explanatory variables Ft, as fulfilled by

PCA. For S models drawn and with E(yt1 |Data,M
(s)) giving the predictive mean for models M(S),

1
S

S∑
s=1

E(yt+h|Data,M(S)) −→ E(yt+h|Data) (19)

for S −→∞, and averaged models estimates will converge to their true mean values.

To run the algorithm, it is necessary to specify the probability density functions for p(γ |y,σ2)

and p(y|γ,σ2). While p(y,γ,σ2) is simply the marginal likelihood of the regression and p(σ2|y,γ)

has the inverted-Gamma form of a linear regression model with the inclusion of explanatory

variables as given by γ,

p(γ) =
r∏
j=1

θ
γj
j (1−θj )1−γj (20)

where θj , the prior probability that a potential explanatory variable gets included in the model,

is set to 1
2 .

For the other four hyperparameters, values are selected in accordance with Fernandez, Ley,

and Steel (2001a) and Kim and Swanson (2018). The Gamma function is assigned improper,

noninformative parameters with v
¯
= 0, such that s−2 is not part of the marginal likelihood or the
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posterior function. For α
¯

, a vector of zeros with length r is used and A
¯
= (gZ ′Z)−1, where two

different values for g, namely 1
T (specification BMA0) and 1

r2 (BMA1) are chosen.

5.4. Forecast Errors

The employed techniques, especially the two robust estimation methods, are statistically non-

trivial and therefore statistical inference of standard errors is not possible. Instead, CV (Hastie

et al., 2009) can help in deriving an estimate for the forecast errors. In CV, observations are

sequentially removed from the training sample to serve as a testing sample. The most common

form of CV is k-fold CV, in which k observations form the testing sample and the remaining T −k

observations construct the training sample. For k = 1, this is also referred to as Leave-one-out

CV. If ŷt gives 1-step ahead estimate when only observation yt forms the training sample, then

the CV 1-step ahead forecast error can be computed as

ê21 =
1
T

T∑
t=1

(ŷt − yt) (21)

For a time series, such as the prevailing problem, CV does not yield consistent estimates as

the dependent variables are correlated. Therefore, the CV training sample for yt only includes

observations up to t − 1 and removes all observations later than t from the model (Hyndman &

Athanasopoulos, 2018; Tashman, 2000). The h-step ahead forecast error can then be calculated

as

ê2h =
1

T −m+1

T∑
t=1

(ŷt − yt) (22)

where m is the minimum number of observations required by the estimation and forecast esti-

mates ŷt are based on observations 1, .., t − h. As out-of-sample h-step forecasts with h > 1 are

computed in this research paper, which can miss up to the last h−1 observations, forecast errors

for these estimates are also constructed based on observations 1, ..., t − o, where o = 1, ...,h.

5.5. Structural Breaks

Though it it an assumption of factor models that the loadings are constant over time, Stock

and Watson (2002) show that for small intertemporal instabilities the standard PCA estimator is

consistent. However, for larger instabilities this changes and the number of included factors, r,
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increases. Breitung and Eickmeier (2011) derive that for a single change of the factor loadings

yit = FtΛ
(1)
1 + εi,t for t = 1, ...,T ∗ and yit = FtΛ

(2)
1 + εi,t for t = T ∗ +1, ...,T (23)

for i = 1, ...,N , with Ft = (ft,1, ft,2, ..., ft,r ) and the i.i.d. idiosyncratic error variables εt = (ε1,t , ...,εN,t),

the number of observed factors increases from r, its actual value, to 2r. More generally, for k

structural breaks in the sample, the expected number of observed factors increases to (k +1) ∗ r.

Breitung and Eickmeier (2011) provide a variety of break tests, but conclude that for samples

with a small number of observations the Lagrange Multiplier (LM) is best. Assuming that the

break happens simultaneously for all parameters in Equation 3 for a known break date, the test

is defined by si = TR2
i , where R2

i is the R2 of

ε̂i,t = θ
′
i F̂t +κ

′
iWt +φ

′F̂∗t +ψ
′W ∗t + ε̃i,t (24)

with ε̂i,t = yi,t − β̂′iWt − λ̂′i F̂t, f̂t is the factor estimate for the entire sample, Wt the additional

parameters used for the AR model and

F̂∗t =


0 for t = 1, ..., T*

F̂t for t = T* + 1, ..., T
W ∗t =


0 for t = 1, ..., T*

Wt for t = T* + 1, ..., T
. (25)

Under a set of standard assumptions, such as as Assumptions A-G in Bai and Perron (2003),

independence of the factors and the εi,t error terms and if T −→ ∞ and N −→ ∞, si is χ2(r)

distributed. For the DRC, possible break dates are marked by political events, such as the end of

the Mobutu dictatorship in 1997 and the official end of the DRC’s civil war in 2003.

For an unknown break date, which is only assumed to lie within [T τ0,T (1 − τ0)] with

τ0 ∈ [0,1], the sup-LM statistic can be computed as

κi,T (τ0) = sup
τ∈[τ0,1−τ0]

(sτi ) (26)

where sτi is the LM statistic for break point τ. If, additional to the previous assumptions, Tn −→ 0

and
1
T

τT∑
t=1

FtF
′
t
p
−→ τΣf

17
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1
T

τT∑
t=1

Ftεi,t =⇒ σiΣ
0.5
f Wi(τ)

where Σf is a positive definite matrix and Wi(a) an r-dimensional standard Brownian motion,

then

κ(τ0) = sup
τ∈[τ0,1−τ0]

(
[(1)−W (τ)]′[(1)−W (τ)]

τ(1− τ)

)
. (27)

Critical values for this distribution are interfered from Andrews (1993).

5.6. Autoregressive Models

As mentioned in Section 5.1, a set of additional explanatory variables Wt is used. Following the

methodology from Kim and Swanson (2018), this paper will define Wt such that it models an

AR process of order p, with Wt = (1, yt−1, ..., yt−p), where p is chosen such that is maximizes the

Bayesian Information Criterion under the assumption of normally distributed error terms (Heij,

De Boer, Franses, Kloek, & Dijk, 2004)

BIC(p) = log(s2p) + p
log(N )
N

(28)

where s2p is the maximum likelihood estimator of the AR model’s error variance. The AR model of

order p is further used as a benchmark against which the combined factor and machine learning

models are compared.

5.7. Simulations

To check for the potential improvements in predictive power of the factor methods as compared

to forecasts generated with an AR model, a simulation study is applied. Similar to the Monte

Carlo analysis’ of Stock and Watson (2002) and Breitung and Eickmeier (2011), the following

underlying Data Generating Process (DGP) is assumed:

ft,i =
p∑
j=1

αj,ift−j,i + εf actors,t,i (29)

yt = Ftβ + ε1,t (30)

Xt = FtΓ + ε2:N,t (31)
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(1− aL)εi,t = (1+ b2)vi,t + bvi+1,t + bvi−1,t (32)

vi,t = σi,tηi,t (33)

σ2
i,t = δ0 + δ1σ

2
i,t−1 + δ1v

2
i,t−1 (34)

where αj,i gives the AR parameter for the jth lag of the ith factor, Ft = (ft,1, ft,2, ..., ft,r )

if there are r different factors in total and they are based on an AR(p) model each, β is a

parameter vector generating the composition of the dependent variable, Γ = (γ1,γ2, ...,γN ) is

a matrix holding the parameter vectors that generate the N explanatory variables and ε2:N,t =

(ε2,t , ...,εN,t). Additionally, values for the error term parameters a, b, δ0 and δ1, which are defined

as in Stock and Watson (2002) are given in the Appendix. Also, the idiosyncratic components

εf actors and ηi,t are all normally i.i.d. with mean zero and variance one.

While Equation 32 introduces correlated error terms into the simulation, Equations 33

and 34 simulate heteroscedasticity. Both specifications are important for a realistic simulation,

as macroeconomic variables tend to exhibit cross-correlation and heteroscedasticity. The main

difference between the above specification and Stock and Watson (2002) is that the factors

are constructed based on an AR(p) process, while the explanatory and dependent variable are

formed by factors from one factor only. This models the analyzed process, which first utilizes an

AR regression model and then constructs static factor estimation methods on the residual.

The simulations are tested for r = 1 and r = 5. In both cases, all elements of Γ are

standard normally distributed. For the AR process, three different specifications are analyzed

and described in the Appendix.

Besides checking for the influence of the number of factors, r, and the number of lags

in the factor DGP, p, simulations can also determine how the used framework operates if the

number of observations, T , is small compared to the number of explanatory variables, N . With

only 52 observations and 50 explanatory variables, such a problem also applies here and hence

the outcome of the simulation study is important for the reliability of the results.

6. Results

6.1. Simulation Results

Simulations are modelled to mirror potential versions of the DRC forecasting experiment. For

each different specification, 100 repetitions of five forecasts for a dependent variable are cre-
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ated. The specifications differ by their number of observations, T and the forecasting period,

which is h from Equation 3. Both of these are observable variables and for the DRC forecasting

experiment, T = 52 and h = 1,2,3,4,5. Further, the specifications differ by observable character-

istics of the underlying data generating process, namely the number of factors, the number of

AR lags, the specifications of the AR processes, the correlation of error terms and potential het-

eroscedasticity of error terms. The simulations are performed for different input specifications,

as outlined in the Appendix, and forecasts are created for an AR(p) model, the methods of an

Elastic Net and the two BMA versions using PCs as an explanatory variable. No simulations for

SPCA forecasts are created as their computation is complex due to the repetitive optimization

with Elastic Nets and therefore not computationally feasible.

The simulations can not only clarify whether the employed methods provide accurate

forecasts in comparison to an AR model, but also whether the methodology performs suffi-

ciently well at filtering out the correct AR lag and the number of factors of the data generating

process. Results for key statistics are summarized in Table 2 for the more realistic case of cor-

related, heteroscedastic error terms while Table 14 in the Appendix provides information about

the specifications with uncorrelated, homoscedastic error terms. As AR configurations 1 and

2 model an AR(1) process while configuration 3 is an AR(3) process, Table 2 shows that the

methodology performs well at identifying the correct number of lags, p. Further, Table 2 also

indicates that the PCA selection criterion does reasonably well at selecting the correct number

of PC factors for AR configurations 1 and 2, though the number of PCA factors is sometimes

sharply overestimated. Yet, as the factors are subsequently used for robust machine learning

techniques, this is not of too much concern. However, for AR configuration 3 the estimates are

more off, overestimating the number of factors for specifications with h = 1 and a small number

of observations, while underestimating the number of factors in other cases. With regards to

the β estimates of the three machine learning models, Table 2 indicates that the Elastic Net is

most restrictive at selecting parameters, but often underestimatss the true number of factors in

the model. The two BMA models, on the contrary, typically use most factors for their estimation

results, thus overestimating the number of parameters in many cases. Still, with concern to

forecasting accuracy, the BMA1 optimization performs best for all specifications with h = 1, and

many 5-period forecast specifications. In general, it appears that most gains in predictive power

occur for shorter forecasting horizons, whereas the predictive power of the mixed models fac-
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Table 2: Simulation Outcomes for different specifications of a factor model with correlated and
heteroscedastic errors and 100 repetitions per specification

lags T # factors AR Config mean lags mean PCA facs mean non-0 βi s EN mean non-0 βi s BMA0 mean non-0 βi s BMA1 Best model

1 50 3 Config. 1 1.404 3.486 3.288 3.486 3.486 BMA1
50 3 Config. 2 1.528 3 1.388 3 3 BMA1
50 3 Config. 3 3.304 14.798 8.608 14.79 14.548 BMA1
50 5 Config. 1 1.534 7.318 5.956 7.318 7.314 BMA1
50 5 Config. 2 1.4 5.054 2.97 5.054 5.054 BMA1
50 5 Config. 3 2.904 19.546 8.54 19.538 18.802 BMA1
100 3 Config. 1 1.362 4.738 4.268 4.738 4.738 BMA1
100 3 Config. 2 1.166 3 1.772 3 3 BMA1
100 3 Config. 3 3.402 15.156 10.718 15.134 14.994 BMA1
100 5 Config. 1 1.21 8.764 7.238 8.764 8.762 BMA1
100 5 Config. 2 1.218 5.124 4.142 5.124 5.124 BMA1
100 5 Config. 3 3.024 19.62 10.136 19.552 18.782 BMA1
400 3 Config. 1 2.11 10.582 7.58 10.55 10.582 BMA1
400 3 Config. 2 1.048 3 2.442 3 3 BMA1
400 3 Config. 3 3.866 1.442 0.39 1.146 1.136 BMA1
400 5 Config. 1 1.294 11.456 8.754 11.372 11.452 BMA1
400 5 Config. 2 1.032 5.742 4.87 5.736 5.742 BMA1
400 5 Config. 3 3.234 1 0.062 1 1 BMA1

5 50 3 Config. 1 1.368 3.042 0.872 3.042 3.042 EN
50 3 Config. 2 1.524 3 0.574 3 3 AR
50 3 Config. 3 3.238 17.106 7.448 17.086 16.62 AR
50 5 Config. 1 1.56 5.9 1.792 5.9 5.89 AR
50 5 Config. 2 1.452 5.004 1.612 5.004 5.004 EN
50 5 Config. 3 2.962 19.754 8.42 19.748 18.942 AR
100 3 Config. 1 1.292 3.068 1.158 3.068 3.068 BMA1
100 3 Config. 2 1.164 3 0.806 3 3 EN
100 3 Config. 3 3.432 17.76 8.312 17.72 17.23 BMA1
100 5 Config. 1 1.212 7.028 1.304 7.028 7.024 AR
100 5 Config. 2 1.2 5 0.716 5 5 AR
100 5 Config. 3 3.072 19.906 8.94 19.828 19 BMA1
400 3 Config. 1 1.966 5.478 3.912 5.468 5.478 BMA1
400 3 Config. 2 1.04 3 0.338 2.998 3 AR
400 3 Config. 3 3.924 1.47 0.362 1.412 1.408 BMA0
400 5 Config. 1 1.316 13.256 3.952 13.012 13.076 BMA1
400 5 Config. 2 1.04 5 0.836 4.998 5 AR
400 5 Config. 3 3.432 1 0.01 1 1 BMA1

tors partly dissipates for longer forecasting horizons. This suggests that PCA does not perform

sufficiently well at identifying the correct factors for such factor models.

Overall, the results from Table 2 are also supported by Table 14 in the Appendix. Further,

Table 15 underlines the strength of BMA1 forecasts, especially for 1-period forecast horizons,

even though the BMA0 forecasts often reach comparable results.

6.2. (Sparse) Principal Components

From the correlation matrix of the 56 explanatory variables, sparse and non-sparse PCs are

constructed to identify structural patterns within the data set. Integral information of the PC

factor loadings is contained in the normed eigenvectors with an Euclidean length of one. Fig-

ure 3 shows a heatmap for each variables’ individual contribution to the 27 PCs, which are the

components that each account for at least 1% of the explained sample correlation. The factor

loadings are based on data over the entire time period, to allow for a more accurate estimation.

Overall, it can be seen that no variable, whether it is a country’s GDP growth or a raw material

price change, accounts for an abnormally large contribution to the size of a principal compo-
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Figure 3: heatmap of the proportional contribution to the first 27 PCs

nent. Additionally, no obvious cluster of factor loadings can be interfered from the heatmap,

which would indicate grouped explanatory variables. For a clearer picture of the factor load-

ings, Table 10 in the Appendix gives the factor loadings of the first three normed eigenvectors,

while Figure 4 depicts the fraction of sample correlation explained by each PC. The figure shows

that no PC individually accounts for a majority of the sample correlation, as the first PC only

accounts for a share of 10.3% of the correlation. Further, while there is a drop between the

second (8.7%) an the third PC (6.3%), the decrease in explained correlation is more gradual

afterwards and the share of explained correlation only drops below 1% after the 27th PC.

To allow for a clearer identification of individual factors, the SPCs, which can set factor

loadings to 0 due to their Elastic Net framework, can help. Figure 5 depicts each variables’ share

of the first three SPCs, while Table 11 gives the corresponding parameter estimates. Figure 5

signals that the first SPC has 10 non-zero factor loadings, and that all these factor loadings

belong to Sub-Saharan African countries. As these countries form a varied mix of different

economies, such as South Africa, Ethiopia and Angola, with different economic development

and diverse main industries, this is a general factor for Sub-Saharan GDP growth. The second

SPC attributes its largest factor to worldwide GDP growth, followed by African countries like

Botswana, the Seychelles and Sao Tome. All of these countries have in common that a large
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Figure 4: Fraction of explained correlation by
all PCs which explain at least 1% of sample cor-
relation

Figure 5: Variables with non-zero factor load-
ings for the first three SPCs

share of their GDP is built on tourism and that they are popular for international holidays. Thus,

the second SPC can be seen as a proxy for the global state of the economy and its influence

on African GDP growth, specifically through tourism. The third SPC is solely formed by raw

materials, namely rubber, copper, oil and gold. Therefore, this factor models the impact of raw

material prices on African GDP growth, which is especially important for raw-material exporting

countries like the DRC.

For further information, Figure 14 in the Appendix plots the first components for both

PCA and SPCA, as well as the DRC’s real annual GDP growth, while Table 12 in the Appendix

gives the correlations for the three variables. The plot shows that the two components capture

some variation of the DRC’s GDP growth, but that the contained information is limited. This

is further supported by the correlation matrix with correlations between 0.3 and 0.4. Lastly,

Table 13 provides the descriptive statistics for the two components.

6.3. Residual Analysis

With the factor estimates provided by PCA and SPCA as explanatory variables, forecasts can be

computed according to Equation 3 and estimates ˆεt+h can be computed. By construction, their

mean is 0, which is enforced by the constant term in the AR model. Other assumptions from the

methodology are that the idiosyncratic components are i.i.d., as specified by the structural break

framework, while the BMA methodology requires that the error terms are normally distributed.

Table 3 provides descriptive statistics of the error terms for all estimation methods and
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Table 3: Descriptive statistics of the residuals for the factor models and a forecasting horizon (h) of
one respectively five years

h factor method optimization std Skewness Kurtosis Jarque-Bera 1st autocorr. 2nd autocorr.

1 PCA EN 5.181 -0.629 2.879 3.458 0.677 0.522
PCA BMA0 3.920 -0.246 1.963 2.854 -0.086 0.025
PCA BMA1 3.915 -0.246 1.968 2.835 -0.088 0.022
SPCA EN 5.089 -0.650 2.921 3.671 0.647 0.457
SPCA BMA0 3.859 -0.173 1.985 2.489 -0.098 -0.018
SPCA BMA1 3.877 -0.195 1.975 2.607 -0.095 -0.006

5 PCA EN 5.369 -0.646 2.877 3.294 0.734 0.561
PCA BMA0 5.263 -0.809 3.166 5.184 0.695 0.471
PCA BMA1 5.258 -0.815 3.181 5.268 0.694 0.467
SPCA EN 5.232 -0.773 3.196 4.759 0.734 0.561
SPCA BMA0 5.213 -0.866 3.318 6.077* 0.686 0.445
SPCA BMA1 5.215 -0.864 3.313 6.044* 0.687 0.448

* indicates rejection of normality at 5% significance, ** at 1, *** at 0.1%. The test assumes that the Jarque-Bera
statistic is χ2(2) distributed

forecasting horizons of one and five years. The table shows that then Elastic Net residuals exhibit

a larger standard deviation, a stronger skewness and a larger kurtosis than the BMA residuals for

a forecasting horizon of one year, while this is not the case for a forecasting horizon of five years.

This is in line with the simulation results, where the estimations and thus also the residuals for

the Elastic Net and BMA become more similar for larger forecasting horizons. Further, the

Jarque-Bera test indicates that normality is only rejected at a 5% significance level for the two

BMA specifications and factors computed with SPCA, while normality is not rejected for any

residual for 90% confidence intervals. Hence, it can be concluded that the estimated residuals

do not strongly violate normality and fulfill the assumptions of BMA.

With regards to the autocorrelations, Table 3 depicts that for a forecast horizon of one

year, only the two Elastic Net models show strong first and second autocorrelations. For a fore-

cast horizon of five years, the BMA values again become more similar to the Elastic Net values,

and the autocorrelation increases. Figure 15 in the Appendix plots the first 20 autocorrelations

for residuals computed with PCA and BMA1, with 95% confidence intervals based on variances

computed with Bartlett’s formula. As all autocorrelations in Figure 15a are inside the 95% confi-

dence interval, no significant autocorrelations are detected for this specification of the residual.

For a forecasting horizon of 5 years, this changes and now the first two autocorrelations are sig-

nificant at a 5% significance level. Such a finding is expected, as consecutive forecasts contain

overlapping intervals. Further, as this finding only concerns the first two autocorrelations for

one forecasting horizon, the assumptions of the structural break tests are not severely violated.
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Table 4: Forecasts for the DRC’s annual real GDP growth and forecasting horizons from 1 to 5 years
for different models

h forecast for act. value IMF estimate AR PCA EN PCA BMA0 PCA BMA1 SPCA EN SPCA BMA0 SPCA BMA1

1 2014 9.5 10.4880 5.885 6.044 5.938 5.965 6.372 6.254 6.170
2015 6.9 10.2500 6.783 6.964 6.854 6.879 7.015 6.879 6.905
2016 2.4 9.3080 5.038 5.065 5.050 5.051 5.349 5.254 5.227
2017 3.7 6.6310 1.940 1.985 1.961 1.964 2.055 2.012 2.009
2018 - 5.8920 2.841 2.969 2.888 2.909 3.104 3.043 3.012

2 2015 6.9 8.4890 5.342 5.342 5.346 5.350 5.701 5.499 5.514
2016 2.4 7.8960 6.000 6.000 6.008 6.016 6.000 6.061 6.086
2017 3.7 7.2980 4.346 4.346 4.347 4.348 4.586 4.462 4.462
2018 - 6.4030 1.896 1.896 1.898 1.899 1.982 1.929 1.938
2019 - 5.7070 2.596 2.596 2.604 2.609 2.596 2.627 2.639

3 2016 2.4 7.3000 4.772 4.772 4.780 4.787 5.175 4.955 4.963
2017 3.7 6.8000 5.083 5.083 5.097 5.113 5.083 5.133 5.154
2018 - 6.2000 3.816 3.816 3.819 3.821 3.816 3.933 3.933
2019 - 6.5000 1.789 1.789 1.794 1.796 1.991 1.890 1.902
2020 - 5.2000 2.374 2.374 2.388 2.398 2.453 2.423 2.435

4 2017 3.7 4.2470 3.289 3.289 3.293 3.296 3.707 3.470 3.496
2018 - 4.9690 3.614 3.614 3.621 3.629 3.614 3.659 3.680
2019 - 4.8650 2.835 2.835 2.836 2.836 2.835 2.868 2.878
2020 - 5.0110 1.488 1.488 1.490 1.491 1.701 1.574 1.594
2021 - 5.5190 1.877 1.877 1.882 1.886 1.877 1.937 1.957

5 2018 - 2.9870 2.579 2.579 2.622 2.648 3.232 3.094 2.958
2019 - 3.2730 2.773 2.773 2.821 2.854 2.773 2.924 2.963
2020 - 3.7250 2.270 2.270 2.272 2.273 2.571 2.475 2.447
2021 - 4.3080 1.399 1.399 1.419 1.424 1.399 1.441 1.454
2022 - 4.7020 1.650 1.650 1.691 1.706 1.978 1.841 1.831

6.4. Forecasts

To test the accuracy of the forecasts and provide an answer to the question of improved forecast-

ing accuracy, forecasting estimates of the DRC’s real annual percentage GDP growth are given

in Table 4 together with the actual in-sample values and the IMF estimates from October of the

prior year. As for each forecasting horizon exactly five forecasts are created based on the same

explanatory variables, forecasts for horizons of more than one year include out-of-sample fore-

casts. Table 4 shows that overall, the factor model forecasts do not largely deviate from the AR

forecasts, which are always based on one lag as p = 1 is chosen as the best criterion according to

the Bayesian Information Criterion. In fact, for forecasting horizons of more than one year the

Elastic Net estimate based on PC factors is equal to the AR forecast in most cases. In contrast,

the IMF estimates deviate from both the AR and the factor model estimates.

Forecast errors for all in-sample forecasts are given in Table 5. As indicated by the table’s

last column, except for the 1-step ahead 2014 forecast, the above described models always

outperform the IMF forecasts. Yet, this comparison may not be too realistic, as the forecasting

models are based on GDP growth estimates that were not available when the models predict the

forecast. For example, the World Bank 2015 GDP growth data were not available in 2015, such

that 1-step ahead forecasts for the 2016 GDP growth could only be made once the forecasts are

published, which did not happen before 2017. Also, it is a notable finding that the IMF forecasts
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Table 5: Forecast Errors for the DRC’s annual real GDP growth and forecasting horizons from 1 to 5
years for different models

h forecast for IMF estimate AR PCA EN PCA BMA0 PCA BMA1 SPCA EN SPCA BMA0 SPCA BMA1 best model

1 2014 -0.988 3.615 3.456 3.562 3.535 3.128 3.246 3.330 IMF
2015 -3.35 0.117 -0.064 0.046 0.021 -0.115 0.021 -0.005 SPCA BMA1
2016 -6.908 -2.638 -2.665 -2.650 -2.651 -2.949 -2.854 -2.827 AR
2017 -2.931 1.760 1.715 1.739 1.736 1.645 1.688 1.691 SPCA EN

2 2015 -1.589 1.558 1.558 1.554 1.550 1.199 1.401 1.386 SPCA EN
2016 -5.496 -3.600 -3.600 -3.608 -3.616 -3.600 -3.661 -3.686 AR
2017 -3.598 -0.646 -0.646 -0.647 -0.648 -0.886 -0.762 -0.762 AR

3 2016 -4.9 -2.372 -2.372 -2.380 -2.387 -2.775 -2.555 -2.563 AR
2017 -3.1 -1.383 -1.383 -1.397 -1.413 -1.383 -1.433 -1.454 AR

4 2017 -0.547 0.411 0.411 0.407 0.404 -0.007 0.230 0.204 SPCA EN

tend to overestimate the in-sample GDP growth, whereas the computed forecasts often provide

estimates that are too low. This is likely due the sharpe decrease of the DRC’s GDP growth at

the end of the sample period, as the growth rate falls from a high-growth environment with

values above 9% to growth rates between 2% and 4%. Therefore, this forecasting environment

is favorable for stationary AR based models which have a mean reverting property.

Table 5 further shows that the simple AR model provides the best forecast in five out of

10 cases, with the Elastic Net model based on SPC factors winning for three forecasts and the

BMA1 model with PC factors winning for one forecast. Therefore, it can not be concluded that

the factor models with machine learning optimization methods are able to improve forecasting

accuracy.

With regards to Cross-validation estimates of the forecasting errors’ standard deviation,

which are given in Tables 16 and 17 in the Appendix, the standard deviation estimates increase

for longer forecasting horizons, while the difference for specific forecasting methods is only

marginal. Also, there is a slight tendency for the forecasting errors to increase for longer gaps

between the training data and the forecasted variable. This small increase may be due to the

occurrence of structural breaks, which are tested in the next section. One potential reason for

the similarity of the AR forecasts with the factor model estimates is that for all forecasts, the

information criterion in Equation 7 only selects the first factor. This result was consistent for

other factor selection methods described in Bai and Ng (2002), as well as for for an application

of selection criteria to SPCA directly. An explanation for this finding is that the first few princi-

pal components do not explain a majority of the sample correlation, as indicated by Figure 4.

Further, inclusion of a larger number of factors, such as all factors with individually explained

sample correlation above a threshold of 1% or 2% did change the forecasting estimates, but this

change was only marginal compared to the difference between, for example, the factor model
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(a) Forecasts for h = 1 (b) Forecasts for h = 5

Figure 6: 1 and 5-step ahead forecasts of the DRC’s real annual percentage GDP growth for op-
timization with the AR model, BMA1 with PCA factors and EN with SPCA factors against the IMF
estimates and the actual values. Dashed-pointed lines give 2-standard deviation (approximately
70%) Confidence Intervals

forecasts and the IMF estimates, and did not improve in-sample forecasting accuracy.

To provide a graphical representation of the different forecast, estimates for the best mod-

els by Table 5 are plotted in Figure 6 for forecasting horizons of one and five years and Figure 16

in the Appendix for two, three and four years. For in-sample forecasts, the actual growth rates

are also given, as are estimates for the CV-based confidence intervals. The figures clearly indi-

cate the similarity between the AR and the factor model forecasts. Moreover, due to the large

confidence intervals, the forecasts are predicted to not be too accurate and are not significantly

different from the IMF forecasts. However, due to the limited sample size for the CV, forecast-

ing errors may be overestimated such that this finding is not too robust. Still, the similarity

between the forecasting errors and the in-sample residuals in Table 3 is a favorable sign for the

importance of the large forecasting errors.

6.5. Structural Break Tests

The above results depend on the assumption that neither the AR process nor the factor mod-

els are affected by strong, or only impacted by weak structural parameter breaks. First, this

assumption is tested for known break dates. As was outlined in the Section 2, the DRC expe-

rienced impactful political events during the past 30 years that could have potentially changed

the country’s growth path, for example the Congo Wars. As potential break dates, the start of the

First Congo War (1996), the end of the Mobutu dictatorship (1997) and the end of the second
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Table 6: Break tests for known break dates in 1996, 1997, 2003, 2004 and 2008 with assumed
breaks in the AR process and the factor loadings

h = 1 h = 2 h = 3 h = 4 h = 5

year LM stat. p-value LM stat. p-value LM stat. p-value LM stat. p-value LM stat. p-value

1996 5.691 0.128 4.201 0.241 6.191 0.103 9.132 0.028 10.703 0.013
1997 6.062 0.109 5.951 0.114 7.363 0.061 11.647 0.009 14.882 0.002
2003 6.132 0.105 7.380 0.061 6.866 0.076 9.961 0.019 11.105 0.011
2008 3.007 0.391 3.436 0.329 5.062 0.167 5.862 0.119 6.063 0.109

Congo War (2003) are chosen. Further, the start of the Great Recession (2008) is investigated.

Table 6 summarizes the LM tests for all four break tests. The LM statistics are χ2(3)

distributed, as all models only contain a constant, one factor and one lag of the dependent

variable by choice of the selection criteria. While for 1-step ahead forecasts, none of the break

dates is significant even at a 10% significance level, both two and three year forecasting horizons

indicate structural breaks in 1997 and 2003 at a 10% significance level. Additionally, 4 and

5-step ahead forecasts show significant breaks in 1996, 1997 and 2003 at a 5% significance

level. These findings indicate the the political events distorted the data structure, whereas no

significant effect of the Great Recession was found.

The different significance levels of the potential break dates for different forecasting hori-

zon show that the chosen break dates do not provide full information about the potential occur-

rence of parameter changes. Therefore, a test for an unknown break date is more applicable. For

this test, the parameter value τ = 0.185 is chosen to perform statistical analysis over 63% of the

sample. Table 18 in the Appendix lists all LM statistics for the tested 33 years, while Table 7 lists

the maximum LM statistic for each forecasting horizon. Using the critical values from Andrews

(1993) for τ = 0.2 and p = 3, which are approximately equal to critical values for τ = 0.185,

the statistics reject the assumption of no structural breaks for all forecasting horizons except for

the 2-step ahead forecasts at a 10% significance level. Moreover, except for the 3 year forecast

horizon, the same conclusion also occurs at a 5% significance level. It thus appears plausible

to assume that the sample is indeed impacted by structural breaks. Still, the exact placement

of the structural break differs per forecast. Whereas forecasting horizons of more than 1 year

show their largest LM statistic for years around 2000 and therefore for time periods during the

second Congo War, the 1-step ahead forecast exhibits its most significant LM statistic for 1975,

which takes place during the Mobutu dictatorship. To highlight the difference between these

two break sets, Table 18 tells that forecast horizons of more than one year do not indicate the
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Table 7: Maximum LM statistics for an unknown break date with τ = 0.185 for simulataneous
breaks of the AR process and the factor loadings. The critical values from Andrews (1993) for the
comparable bound at τ = 0.2 are 11.80 at 10% significance, 13.69 at 5% significance and 17.28 at
1% significance

h = 1 h = 2 h = 3 h = 4 h = 5

year of maximum 1975 2001 2000 1999 1998
max LM statistic 13.844** 10.749 12.970* 15.485** 16.225**

* indicates rejection of no breaks at 5% significance, ** at 1, *** at 0.1%.

possibility of structural breaks at any acceptable significance level in 1975, while 1-step ahead

forecasts are insignificant around 2000.

As structural breaks can worsen the functionality of factor models, forecasts that take the

occurrence of parameter breaks into account can provide better forecasts. With two very distinct

date estimates for parameter changes, this gives two different forecasting models with break

dates in 1975 respectively 2000. As only forecasts for periods beyond 2013 are created, data

before the respective break date are only used for the PCA and SPCA calculations, while factors

and lagged dependent variables from these time periods are deleted from the sample. Tables 19

and 21 in the Appendix show the forecasts for the new specifications. Overall, the forecasts do

not improve, but their relative performance compared to the AR model, especially for the BMA

specifications, over the same data sample improves as indicated by Tables 20 and 22. Thus, the

non-improvement of the forecasts may simply be due to an insufficient number of observations,

as for example for the break date in 2000 only 14 observations are used for the AR process and

the machine learning models, whereas the factor model and machine learning methodology is

now better able to capture the underlying stochastic process. Hence, the general conclusion for

this section is that there is strong support for the occurrence of structural breaks and models that

take such breaks into account appear to be better able to replicate the data-generating process.

7. Conclusion

This paper analyzed the predictive power of GDP growth from African countries bundled

with international variables onto the DRC’s annual GDP growth in a factor model framework.

The paper’s findings are two-fold: First, the factor models did not improve the models predictive

power as compared to an AR model. This is potentially due to a limited number of PC and SPC

factors selected by criteria suggested in Bai and Ng (2002). Yet, when compared to the official

IMF forecasts, the models perform favorable, plausibly due to the mean-reverting property of
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the AR model.

Second, it was found that the framework is impacted by structural parameter breaks,

which can differ depending on the forecasting horizon. For 1-step ahead forecasts, the LM

test for an unknown break date exhibits its most extreme statistics in 1975, while for 2-to-5-

step ahead forecasts this occurs around 2000. While the first break happens in the midst of the

Mobutu dictatorship, the second break date marks the period of the Congo Wars, which changed

the DRC from a dictatorship to a formally democratic system. Inclusion of the break dates can

improve predictive performance as compared to an AR model.

Especially for forecasts with structural break assumptions, the BMA models outperform

Elastic Net specifications. This suits to the simulation outcomes, where BMA models are often

the best-performing models in terms of forecast accuracy. A key difference between the Elastic

Net and BMA models is that the Elastic Net enforces stricter restrictions on its parameter values,

such that they are more often equal to zero. For BMA specifications, this effct is less drastic

as models are selected in an iterative process based on prior and posterior probabilities. The

finding of less non-zero parameter values for BMA specifications is consistent with both the

simulation and the findings for the DRC’s GDP growth.

As limitations, this research only included growth data from other countries and price

changes of natural resources as explanatory variables. Though different variable transforma-

tions were tested, they did not have a significant influence on the results. Inclusion of other

explanatory variables can increase the predictive power of the model. Additionally, higher fre-

quency data such as quarterly growth data can benefit the study, as they allow for a larger testing

sample, enabling the computation of significant MSPE comparison statistics, and for more re-

liable estimates for later break dates. A second limitation is that this study checks a specific

subset of machine learning techniques and factor methods. Other optimization methods, such

as the Random Forest model, Support Vector Machines or an addition of Neural Networks, could

improve forecast accuracy. Also, usage of Independent Component Analysis can alter the factor

selection process. As a third limitation, the study only considers forecasts for the DRC. As the

used variables are applicable to other African countries as well, it can be interesting to check how

forecast estimates perform for distinct African countries, and whether differences in forecasting

accuracy are attributable to specific characteristics, such as a country’s geographic position, the

openness to trade or the structure of its exports and imports.
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Appendix

A. Appendix to the Country Review

Figure 7: Digrammatic map of the DRC’s national transport systems (Trefon, 2011)

Figure 8: Map of the natural resources in the DRC (Trefon, 2011)

36



APPENDICES Forecasting GDP with Factor Models and Machine Learning

Table 8: Sources for the Data in Section 2. All web pages retrieved on June 10, 2019

variable country / region institution url link

population DRC World Bank World Bank DRC overview
population DRC IMF IMF overview page
% population growth DRC, Sub-Saharan Africa World Bank World Bank population growth
PPP adjusted GDP per capita DRC, Sub-Saharan Africa World Bank World Bank PPP adjusted GDP data
population share below $1.90 per day DRC, Sub-Saharan Africa World Bank World Bank poverty data
population share below $3.20 per day DRC, Sub-Saharan Africa World Bank World Bank poverty data
GDP data DRC, Sub-Saharan Africa World Bank World Bank GDP data
agricalture overview DRC World Bank World Bank agricultural overview

Figure 9: Exported goods of the DRC in percentage of total exports. 2017 data (MIT)

(a) destinations of the DRC’s exports

(b) origins of the DRC’s imports

Figure 10: Destinations of the DRC’s exports and origins of its imports in percentage of
total exports respectivly imports. 2017 data (MIT)

37

https://data.worldbank.org/country/congo-dem-rep
https://www.imf.org/en/Countries/COD
https://data.worldbank.org/indicator/SP.POP.GROW?locations=CD-ZG
https://data.worldbank.org/indicator/NY.GDP.PCAP.PP.CD?locations=CD-ZG&name_desc=true
https://data.worldbank.org/indicator/SI.POV.DDAY?locations=CD-ZG&name_desc=true
https://data.worldbank.org/indicator/SI.POV.LMIC?locations=CD-ZG&name_desc=true
https://data.worldbank.org/indicator/NY.GDP.MKTP.CD?locations=CD-ZG&name_desc=true
https://www.worldbank.org/en/country/drc/overview


Forecasting GDP with Factor Models and Machine Learning APPENDICES

B. Appendix to the Methodology

B.1. Parameter specifications of the simulation

In AR configuration 1, there exists 1 lag with α = (0.8,0.65,−0.7) for 3 factors and α =

(0.8,0.65,−0.7,0.7,−0.8) for 5 factors. In specification 2, weaker parameters are chosen such

that α = (0.3,0.2,−0.25) and α = (0.3,0.2,−0.25,0.25,−0.3). For configuration 3, 3 lags are

chosen (p = 3) such that for lag 1, α1 = (0.6,0.5,−0.5), for lag 2 α2 = (0.2,0.3,−0.2) and

for lag 3 α3 = (0.1,−0.2,0.3). For 5 factors, this gives alpha1 = (0.6,0.5,−0.5,0.3,−0.4),α2 =

(0.2,0.3,−0.2,0.55,−0.4) and α3 = (0.1,−0.2,0.3,0.1,−0.1.

The homogenous specification with uncorrelated errors is given by δ0 = 1,δ1 = 0,δ2 =

0, a = 0 and b = 0. For the correlated heterogenous errors, δ0 = 0.7,δ1 = 0.25,δ2 = 0.05, a = 0.1

and b − 0.2.

C. Appendix to the Data Section

Figure 11: Correlation of annual real GDP
growth between the African countries and the
DRC. For grey countries / disputed regions, data
are not included in the data set

Figure 12: Correlation of annual real GDP
growth between the African countries lagged by
5 years and the DRC. For grey countries / dis-
puted regions, data are not included in the data
set
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Table 9: Descriptive statistics of annual real percentage GDP growth for the USA, the world and the
other African countries, as well as percentage price changes of commodities reduced by inflation

Country mean max min std. dev. Country mean max min std. dev.

USA 3.01 7.26 -2.78 2.07 Ivory Coast 4.05 17.60 -11.00 5.39
World 3.46 6.67 -1.24 1.57 Kenya 4.75 15.99 -4.70 3.75
Oil 6.87 118.36 -54.60 37.16 Lesotho 4.56 19.85 -10.73 5.10
Gold 3.84 67.28 -37.54 21.15 Liberia 1.04 44.98 -42.91 14.65
Copper 5.26 105.01 -56.07 33.25 Libya 0.03 39.06 -39.00 13.01
Rubber 4.54 123.10 -54.37 39.52 Madagascar 2.06 9.90 -9.33 3.80
Coffee 1.80 95.44 -53.43 31.21 Malawi 4.31 16.70 -10.20 4.95
Algeria 4.08 16.97 -8.81 4.30 Mali 4.10 18.92 -7.40 4.94
Angola 3.78 22.60 -15.42 6.40 Mauritania 3.69 19.54 -5.10 5.28
Benin 3.81 10.00 -4.90 2.94 Mauritius 5.83 14.20 -4.97 3.60
Botswana 8.30 26.40 -7.70 6.07 Morocco 4.99 13.30 -5.40 3.83
Burkina Faso 4.39 11.00 -1.80 3.16 Mozambique 5.53 21.54 -10.49 5.34
Burundi 2.67 17.59 -8.00 4.98 Namibia 4.10 12.15 -1.80 2.68
Cabo Verde 5.89 19.20 -2.30 4.73 Niger 2.62 13.50 -13.54 5.39
Cameroon 3.73 20.11 -10.90 5.46 Nigeria 3.95 27.75 -15.70 7.93
CAR 1.70 9.50 -10.33 4.01 Rwanda 5.19 26.13 -15.75 6.98
Chad 3.36 28.02 -21.29 8.22 Sao Tome 4.38 22.59 -10.30 6.07
Comoros 3.11 12.86 -5.40 3.25 Senegal 3.06 8.90 -6.60 3.60
Congo Rep 3.99 20.29 -9.00 5.43 Seychelles 4.71 21.20 -8.20 6.06
Djibouti 2.44 7.10 -6.60 3.24 Sierra Leone 2.75 23.39 -17.90 6.88
Egypt 4.96 13.09 0.60 2.71 South Africa 2.95 7.90 -2.10 2.41
Eq Guinea 10.88 68.47 -36.80 19.20 Sudan 3.98 16.70 -6.30 5.27
Ethiopia 3.67 13.90 -14.00 7.06 Tanzania 4.66 8.50 0.50 1.99
Gabon 3.75 28.01 -20.50 8.09 Togo 3.77 15.50 -12.75 5.51
Gambia 3.92 12.40 -4.30 3.29 Tunisia 4.58 14.15 -1.90 3.19
Ghana 3.68 14.00 -8.96 4.21 Uganda 5.47 15.80 -6.20 3.89
Guinea 3.50 8.66 -1.50 1.72 Zambia 3.46 16.60 -8.60 4.63
Guinea Bissau 2.43 18.20 -13.78 5.40 Zimbabwe 2.95 22.60 -17.70 7.49
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Figure 13: Correlation heatmap for all 57 variables.

D. Appendix to the Result Section
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Table 10: Factor loadings for the first three PCs as defined by the three eigenvectors corresponding
to the three largest eigenvalues

First PC Second PC Third PC First PC Second PC Third PC

USA -0.004 0.252 0.087 Ivory Coast 0.156 0.148 -0.091
World 0.167 0.326 0.004 Kenya 0.127 0.256 0.008
Oil 0.039 0.148 0.244 Lesotho 0.025 0.170 0.165
Gold 0.119 0.185 0.227 Liberia 0.194 0.005 -0.135
Copper 0.007 0.103 0.338 Libya 0.058 0.094 0.061
Rubber -0.035 0.138 0.333 Madagascar 0.172 -0.026 -0.036
Coffee 0.038 0.055 0.150 Malawi 0.143 0.071 -0.063
Algeria 0.065 0.110 -0.140 Mali 0.120 -0.073 0.037
Angola 0.220 -0.079 0.027 Mauritania 0.209 -0.099 -0.128
Benin 0.030 -0.048 -0.004 Mauritius 0.108 0.224 -0.078
Botswana 0.018 0.317 -0.132 Morocco 0.098 0.051 -0.023
Burkina Faso 0.189 -0.202 0.000 Mozambique 0.262 -0.066 0.060
Burundi 0.036 0.026 -0.052 Namibia 0.191 0.130 -0.100
Cabo Verde -0.025 -0.035 0.155 Niger 0.178 -0.152 0.030
Cameroon -0.012 0.052 -0.110 Nigeria 0.181 0.051 -0.055
CAR 0.135 0.017 0.037 Rwanda 0.162 -0.048 -0.152
Chad 0.071 -0.122 0.000 Saotome 0.252 0.138 0.014
Comoros -0.088 0.121 -0.220 Senegal 0.106 -0.160 -0.115
Congo Rep -0.064 0.039 -0.313 Seychelles 0.104 0.218 0.026
Djibouti 0.134 0.029 -0.112 Sierra Leone 0.117 -0.012 0.006
Egypt -0.095 0.001 -0.144 South Africa 0.198 0.086 -0.143
Eq Guinea 0.035 -0.060 0.002 Sudan 0.043 -0.197 -0.092
Ethiopia 0.137 -0.228 0.054 Tanzania 0.245 -0.115 0.123
Gabon 0.072 0.056 -0.207 Togo 0.124 0.097 0.023
Gambia -0.068 0.018 -0.141 Tunisia 0.009 0.156 -0.228
Ghana 0.198 -0.094 0.175 Uganda 0.169 -0.064 0.045
Guinea 0.146 -0.068 0.162 Zambia 0.239 -0.165 -0.056
Guinea Bissau -0.014 -0.047 0.007 Zimbabwe 0.023 0.058 -0.100
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Table 11: Factor loadings for the first three SPCs as defined by the columns of Lambda belonging
which correspond to the three eigenvalue approximations for the three largest eigenvalues.

First PC Second PC Third PC First PC Second PC Third PC

USA 0 0 0 Ivory Coast 0 0.121 0
World 0 0.844 0 Kenya 0 0.191 0
Oil 0 0 0.399 Lesotho 0 0 0
Gold 0 0 0.187 Liberia 0 0 0
Copper 0 0 0.544 Libya 0 0 0
Rubber 0 0 0.714 Madagascar 0.008 0 0
Coffee 0 0 0 Malawi 0 0 0
Algeria 0 0 0 Mali 0 0 0
Angola 0.259 0 0 Mauritania 0.283 0 0
Benin 0 0 0 Mauritius 0 0.286 0
Botswana 0 0.264 0 Morocco 0 0 0
Burkina Faso 0 0 0 Mozambique 0.215 0 0
Burundi 0 0 0 Namibia 0 0.075 0
Cabo Verde 0 0 0 Niger 0 0 0
Cameroon 0 0 0 Nigeria 0 0 0
CAR 0 0 0 Rwanda 0 0 0
Chad 0 0 0 Saotome 0 0.178 0
Comoros 0 0 0 Senegal 0 0 0
Congo Rep 0 0 0 Seychelles 0 0.211 0
Djibouti 0 0 0 Sierra Leone 0 0 0
Egypt 0 0 0 South Africa 0.054 0 0
Eq Guinea 0 0 0 Sudan 0 0 0
Ethiopia 0.354 0 0 Tanzania 0.587 0 0
Gabon 0 0 0 Togo 0 0 0
Gambia 0 0 0 Tunisia 0 0.057 0
Ghana 0.192 0 0 Uganda 0.035 0 0
Guinea 0 0 0 Zambia 0.544 0 0
Guinea Bissau 0 0 0 Zimbabwe 0 0 0

Table 12: Correlation matrix for the DRC’s annual real percentage GDP growth, the first normed PC
and the first normed SPC

Congo DR First PC First SPC
Congo DR 1 0.313 0.396
First PC 1 0.650
First SPC 1

Table 13: Descriptive statistics for the first normed PC and SPC

mean median max min std 25th percentile 75th percentile Jarque-Bera

3.916 3.644 8.020 -0.938 1.963 2.8190 5.298 0.135
10.188 10.282 26.381 -5.264 7.850 4.776 15.229 0.974
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Figure 14: Plot of the DRC’s annual percentage real GDP growth, as well as the first PC and SPC
with normed factor loadings for the 56 explanatory variables
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(a) Autocorrelations for h = 1 (b) Autocorrelations for h = 5

Figure 15: Autocorrelations for optimization with PCA and BMA1 for a forcasting horizon of one
and five years. 95% Confidence Intervals are based on variances computed with Bartlett’s formula
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Table 16: Cross-validation statistics for forecast horizons between one and and four years and data
gaps between zero and three years between the observed data and the forecasted year

h factor method ML method gap Mean Median Std. Dev.

1 PCA EN 0 -0.139 -1.846 4.397
PCA BMA0 0 -0.280 -2.050 4.688
PCA BMA1 0 -0.032 -1.806 4.487
SPCA EN 0 -0.197 -2.028 4.445
SPCA BMA0 0 -0.116 -1.898 4.406
SPCA BMA1 0 -0.116 -1.899 4.389

2 PCA EN 0 -0.615 -1.203 5.040
PCA BMA0 0 -1.001 -2.365 5.359
PCA BMA1 0 -0.841 -2.129 5.137
SPCA EN 0 -0.412 -1.203 5.181
SPCA BMA0 0 -0.432 -1.232 5.119
SPCA BMA1 0 -0.413 -1.224 5.159
PCA EN 1 -0.101 -1.511 5.256
PCA BMA0 1 -0.731 -2.966 5.890
PCA BMA1 1 -0.182 -1.510 5.296
SPCA EN 1 -0.250 -2.241 5.119
SPCA BMA0 1 -0.205 -1.459 5.008
SPCA BMA1 1 -0.154 -1.434 5.042

3 PCA EN 0 -0.459 -2.012 5.784
PCA BMA0 0 -0.384 -2.190 5.951
PCA BMA1 0 -0.424 -1.988 5.804
SPCA EN 0 -0.577 -2.012 5.519
SPCA BMA0 0 -0.501 -1.940 5.581
SPCA BMA1 0 -0.499 -1.931 5.572
PCA EN 1 -0.286 -1.358 5.261
PCA BMA0 1 -0.550 -1.925 5.160
PCA BMA1 1 0.372 -1.436 7.248
SPCA EN 1 -0.345 -1.358 5.164
SPCA BMA0 1 -0.280 -1.333 5.137
SPCA BMA1 1 -0.251 -1.335 5.171
PCA EN 2 -0.245 -1.127 5.272
PCA BMA0 2 0.127 -1.182 7.290
PCA BMA1 2 -1.091 -1.639 4.908
SPCA EN 2 -0.121 -1.006 5.366
SPCA BMA0 2 -0.085 -1.078 5.357
SPCA BMA1 2 -0.068 -1.097 5.394

4 PCA EN 0 -0.889 -1.307 5.876
PCA BMA0 0 -1.345 -2.118 5.632
PCA BMA1 0 -1.208 -1.149 5.411
SPCA EN 0 -0.855 -1.217 5.914
SPCA BMA0 0 -0.952 -1.237 5.635
SPCA BMA1 0 -0.844 -1.242 5.795
PCA EN 1 -0.718 -1.158 5.935
PCA BMA0 1 -1.088 -2.461 6.215
PCA BMA1 1 -1.358 -2.677 5.458
SPCA EN 1 -0.714 -1.158 5.565
SPCA BMA0 1 -0.831 -1.145 5.443
SPCA BMA1 1 -0.734 -1.138 5.603
PCA EN 2 -0.916 -2.019 6.021
PCA BMA0 2 -1.184 -2.872 6.216
PCA BMA1 2 -0.500 -3.127 7.281
SPCA EN 2 -0.823 -1.434 5.944
SPCA BMA0 2 -0.789 -1.224 5.819
SPCA BMA1 2 -0.738 -1.200 5.931
PCA EN 3 -0.904 -2.975 6.327
PCA BMA0 3 -1.324 -3.786 6.385
PCA BMA1 3 -1.057 -3.017 6.107
SPCA EN 3 -0.747 -2.975 6.212
SPCA BMA0 3 -0.877 -2.865 6.238
SPCA BMA1 3 -0.766 -2.862 6.216
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Table 17: Cross-validation statistics for a forecast horizon of five years and data gaps between zero
and four years between the observed data and the forecasted year

factor method ML method gap Mean Median Std. Dev.

PCA EN 0 -0.574 -1.377 6.412
PCA BMA0 0 -0.376 -2.463 7.607
PCA BMA1 0 -0.625 -1.315 6.378
SPCA EN 0 -0.889 -1.377 5.999
SPCA BMA0 0 -1.028 -1.299 5.823
SPCA BMA1 0 -0.781 -1.284 5.997
PCA EN 1 0.112 -1.422 7.703
PCA BMA0 1 0.054 -2.378 7.605
PCA BMA1 1 0.055 -1.680 7.667
SPCA EN 1 0.342 -0.631 7.956
SPCA BMA0 1 0.016 -0.965 7.427
SPCA BMA1 1 0.126 -1.022 7.654
PCA EN 2 0.105 -1.655 7.880
PCA BMA0 2 0.234 -3.752 10.662
PCA BMA1 2 0.126 -2.896 8.426
SPCA EN 2 0.177 -0.897 7.958
SPCA BMA0 2 -0.146 -1.173 7.670
SPCA BMA1 2 -0.060 -1.294 7.731
PCA EN 3 0.154 -1.625 7.941
PCA BMA0 3 -0.040 -2.077 8.186
PCA BMA1 3 0.048 -2.318 9.500
SPCA EN 3 0.115 -1.490 7.802
SPCA BMA0 3 -0.152 -1.622 7.555
SPCA BMA1 3 0.036 -1.618 7.747
PCA EN 4 0.265 -1.523 7.973
PCA BMA0 4 -0.295 -3.477 8.504
PCA BMA1 4 0.857 -1.507 8.840
SPCA EN 4 0.285 -1.523 7.979
SPCA BMA0 4 0.055 -1.493 7.640
SPCA BMA1 4 0.205 -1.481 7.795
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Table 18: Break tests for unknown break dates and τ = 0.185 with assumed breaks in the AR process
and the factor loadings. P-values refer to the probability of no break for this specific break point

h = 1 h = 2 h = 3 h = 4 h = 5

year LM stat. p-value LM stat. p-value LM stat. p-value LM stat. p-value LM stat. p-value

1974 13.294 0.004 3.752 0.289 0.749 0.862 1.838 0.607 0.224 0.974
1975 13.844 0.003 5.611 0.132 1.157 0.763 2.132 0.545 1.267 0.737
1976 13.554 0.004 5.114 0.164 1.142 0.767 2.596 0.458 1.457 0.692
1977 9.731 0.021 5.564 0.135 1.684 0.641 2.214 0.529 1.132 0.769
1978 10.851 0.013 3.429 0.330 1.886 0.596 2.557 0.465 1.216 0.749
1979 12.317 0.006 3.457 0.326 1.590 0.662 2.413 0.491 1.283 0.733
1980 13.410 0.004 4.546 0.208 2.051 0.562 2.311 0.510 1.331 0.722
1981 12.848 0.005 4.534 0.209 2.126 0.547 2.266 0.519 1.264 0.738
1982 11.330 0.010 4.908 0.179 2.034 0.565 1.754 0.625 1.264 0.738
1983 11.539 0.009 4.882 0.181 1.126 0.771 1.788 0.618 1.758 0.624
1984 11.113 0.011 4.840 0.184 1.139 0.768 2.179 0.536 2.494 0.476
1985 10.144 0.017 4.907 0.179 1.035 0.793 2.534 0.469 3.021 0.388
1986 10.943 0.012 4.476 0.214 1.063 0.786 2.531 0.470 2.824 0.420
1987 11.356 0.010 4.638 0.200 1.019 0.797 2.425 0.489 2.729 0.435
1988 11.327 0.010 5.101 0.165 1.410 0.703 3.482 0.323 3.206 0.361
1989 11.530 0.009 5.479 0.140 2.525 0.471 5.369 0.147 5.198 0.158
1990 11.179 0.011 4.868 0.182 2.585 0.460 6.280 0.099 7.935 0.047
1991 9.716 0.021 4.412 0.220 3.805 0.283 8.300 0.040 8.778 0.032
1992 6.810 0.078 3.474 0.324 6.446 0.092 8.549 0.036 8.780 0.032
1993 4.412 0.220 4.837 0.184 6.757 0.080 8.527 0.036 8.708 0.033
1994 5.817 0.121 4.935 0.177 5.114 0.164 8.546 0.036 8.730 0.033
1995 5.969 0.113 4.180 0.243 4.795 0.187 8.356 0.039 8.788 0.032
1996 5.692 0.128 4.201 0.241 6.191 0.103 9.132 0.028 10.703 0.013
1997 6.062 0.109 5.951 0.114 7.363 0.061 11.647 0.009 14.882 0.002
1998 5.480 0.140 6.071 0.108 8.168 0.043 13.844 0.003 16.225 0.001
1999 5.649 0.130 6.438 0.092 10.811 0.013 15.485 0.001 16.044 0.001
2000 6.032 0.110 9.182 0.027 12.970 0.005 15.290 0.002 14.724 0.002
2001 7.155 0.067 10.749 0.013 12.220 0.007 13.640 0.003 13.049 0.005
2002 7.301 0.063 9.382 0.025 9.328 0.025 11.444 0.010 11.729 0.008
2003 6.132 0.105 7.380 0.061 6.866 0.076 9.961 0.019 11.105 0.011
2004 4.727 0.193 5.683 0.128 5.680 0.128 9.075 0.028 9.720 0.021
2005 3.691 0.297 4.876 0.181 5.213 0.157 7.704 0.053 8.240 0.041
2006 3.429 0.330 4.597 0.204 4.530 0.210 6.634 0.085 8.329 0.040

Table 19: Forecasts for the DRC’s annual real GDP growth and forecasting horizons from one to five
years for different models assuming a structural break in 1975

h forecast for act. value IMF estimate AR PCA EN PCA BMA0 PCA BMA1 SPCA EN SPCA BMA0 SPCA BMA1

1 2014 9.5 10.488 7.142 7.142 7.154 7.161 7.142 7.205 7.229
2015 6.9 10.250 8.167 8.167 8.179 8.188 8.167 8.195 8.207
2016 2.4 9.308 5.933 5.933 5.936 5.936 5.933 5.984 5.990
2017 3.7 6.631 2.153 2.153 2.158 2.159 2.153 2.170 2.176
2018 - 5.892 3.233 3.233 3.247 3.252 3.233 3.269 3.281

2 2015 6.9 8.489 6.288 6.288 6.286 6.285 6.288 6.336 6.353
2016 2.4 7.896 6.995 6.995 6.994 6.993 6.995 7.014 7.023
2017 3.7 7.298 4.961 4.961 4.961 4.960 4.961 4.992 4.998
2018 - 6.403 2.126 2.126 2.126 2.126 2.126 2.142 2.148
2019 - 5.707 2.925 2.925 2.926 2.926 2.925 2.934 2.937

3 2016 2.4 7.300 5.616 5.616 5.609 5.605 5.616 5.679 5.701
2017 3.7 6.800 5.864 5.864 5.860 5.857 5.864 5.874 5.878
2018 - 6.200 4.351 4.351 4.350 4.350 4.351 4.382 4.389
2019 - 6.500 2.074 2.074 2.073 2.073 2.074 2.112 2.124
2020 - 5.200 2.732 2.732 2.730 2.729 2.732 2.751 2.759

4 2017 3.7 4.247 4.374 4.374 4.386 4.393 4.374 4.456 4.485
2018 - 4.969 4.704 4.704 4.718 4.730 4.704 4.719 4.727
2019 - 4.865 3.697 3.697 3.698 3.698 3.697 3.709 3.713
2020 - 5.011 1.953 1.953 1.959 1.960 1.953 1.989 2.002
2021 - 5.519 2.457 2.457 2.469 2.473 2.457 2.483 2.494

5 2018 - 2.987 3.395 3.687 3.475 3.507 3.964 3.764 3.728
2019 - 3.273 3.662 3.968 3.770 3.782 4.065 3.854 3.883
2020 - 3.725 2.967 3.039 2.971 2.972 3.190 3.107 3.104
2021 - 4.308 1.764 1.921 1.804 1.808 1.856 1.819 1.823
2022 - 4.702 2.111 2.350 2.174 2.200 2.393 2.288 2.280
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Table 20: Forecast Errors for the DRC’s annual real GDP growth and forecasting horizons from one
to five years for different models assuming a structural break in 1975

h forecast for IMF estimate AR PCA EN PCA BMA0 PCA BMA1 SPCA EN SPCA BMA0 SPCA BMA1 best model

1 2014 -0.988 2.358 2.358 2.346 2.339 2.358 2.295 2.271 IMF
2015 -3.350 -1.267 -1.267 -1.279 -1.288 -1.267 -1.295 -1.307 AR
2016 -6.908 -3.533 -3.533 -3.536 -3.536 -3.533 -3.584 -3.590 AR
2017 -2.931 1.547 1.547 1.542 1.541 1.547 1.530 1.524 SPCA BMA1

2 2015 -1.589 0.612 0.612 0.614 0.615 0.612 0.564 0.547 SPCA BMA1
2016 -5.496 -4.595 -4.595 -4.594 -4.593 -4.595 -4.614 -4.623 PCA BMA1
2017 -3.598 -1.261 -1.261 -1.261 -1.260 -1.261 -1.292 -1.298 PCA BMA1

3 2016 -4.900 -3.216 -3.216 -3.209 -3.205 -3.216 -3.279 -3.301 PCA BMA1
2017 -3.100 -2.164 -2.164 -2.160 -2.157 -2.164 -2.174 -2.178 PCA BMA1

4 2017 -0.547 -0.674 -0.674 -0.686 -0.693 -0.674 -0.756 -0.785 IMF

Table 21: Forecasts for the DRC’s annual real GDP growth and forecasting horizons from one to five
years for different models assuming a structural break in 2000

h forecast for act. value IMF estimate AR PCA EN PCA BMA0 PCA BMA1 SPCA EN SPCA BMA0 SPCA BMA1

1 2014 9.5 10.488 6.558 6.558 6.527 6.523 6.600 6.362 6.411
2015 6.9 10.250 7.781 7.844 7.595 7.656 8.048 7.369 7.507
2016 2.4 9.308 6.742 6.947 6.720 6.725 6.907 6.568 6.601
2017 3.7 6.631 5.382 5.382 5.381 5.381 5.382 5.401 5.403
2018 - 5.892 5.309 5.309 5.306 5.305 5.309 5.339 5.338

2 2015 6.9 8.489 6.984 7.109 6.745 6.827 7.089 5.994 6.489
2016 2.4 7.896 7.089 7.167 6.846 6.923 7.393 6.552 6.771
2017 3.7 7.298 6.153 6.153 6.145 6.146 6.153 5.996 6.020
2018 - 6.403 7.182 7.182 7.182 7.182 7.182 7.209 7.211
2019 - 5.707 6.828 6.828 6.830 6.830 6.828 6.811 6.812

3 2016 2.4 7.300 7.563 7.690 7.303 7.396 7.616 7.313 7.378
2017 3.7 6.800 5.951 5.951 5.923 5.924 5.951 6.023 6.032
2018 - 6.200 5.902 5.902 5.905 5.904 5.902 5.927 5.925
2019 - 6.500 7.107 7.107 7.111 7.110 7.107 7.145 7.149
2020 - 5.200 6.759 6.759 6.766 6.767 6.759 6.807 6.804

4 2017 3.7 4.247 5.701 5.701 5.673 5.671 5.701 5.708 5.708
2018 - 4.969 4.731 4.731 4.739 4.739 4.731 4.797 4.805
2019 - 4.865 5.722 5.722 5.723 5.723 5.722 5.774 5.771
2020 - 5.011 7.438 7.438 7.441 7.441 7.438 7.467 7.469
2021 - 5.519 6.943 6.943 6.947 6.948 6.943 6.986 6.983

5 2018 - 2.987 3.978 3.978 3.989 3.990 3.978 4.189 4.152
2019 - 3.273 3.191 3.191 3.202 3.201 3.191 3.284 3.292
2020 - 3.725 5.237 5.237 5.238 5.238 4.980 5.356 5.336
2021 - 4.308 8.778 8.778 8.783 8.783 8.778 8.807 8.808
2022 - 4.702 7.755 7.755 7.765 7.766 7.755 7.864 7.849

Table 22: Forecast Errors for the DRC’s annual real GDP growth and forecasting horizons from one
to five years for different models assuming a structural break in 2000

h forecast for IMF estimate AR PCA EN PCA BMA0 PCA BMA1 SPCA EN SPCA BMA0 SPCA BMA1 best model

1 2014 -0.988 2.942 2.942 2.973 2.977 2.900 3.138 3.089 IMF
2015 -3.350 -0.881 -0.944 -0.695 -0.756 -1.148 -0.469 -0.607 SPCA BMA0
2016 -6.908 -4.342 -4.547 -4.320 -4.325 -4.507 -4.168 -4.201 SPCA BMA0
2017 -2.931 -1.682 -1.682 -1.681 -1.681 -1.682 -1.701 -1.703 PCA BMA0

2 2015 -1.589 -0.084 -0.209 0.155 0.073 -0.189 0.906 0.411 PCA BMA1
2016 -5.496 -4.689 -4.767 -4.446 -4.523 -4.993 -4.152 -4.371 SPCA BMA0
2017 -3.598 -2.453 -2.453 -2.445 -2.446 -2.453 -2.296 -2.320 SPCA BMA0

3 2016 -4.900 -5.163 -5.290 -4.903 -4.996 -5.216 -4.913 -4.978 IMF
2017 -3.100 -2.251 -2.251 -2.223 -2.224 -2.251 -2.323 -2.332 PCA BMA0

4 2017 -0.547 -2.001 -2.001 -1.973 -1.971 -2.001 -2.008 -2.008 IMF
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(a) Forecasts for h = 2 (b) Forecasts for h = 3

(c) Forecasts for h = 4

Figure 16: 2, 3 and 4-step ahead forecasts of the DRC’s real annual percentage GDP growth for
optimization with the AR model, BMA1 with PCA factors and EN with SPCA factors against the
IMF estimates and the actual values. Dashed-pointed lines give 2-standard deviation (approximately
70%) Confidence Intervals

E. Code Appendix
import pickle

import numpy as np

import pandas as pd

def do_pca(X, nrfactors = -1):

# estimates factors of X via PCA

import numpy as np

x_data = np.copy(X)

rows, cols = x_data.shape
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if nrfactors == -1:

rows, nrfactors = x_data.shape

x_data = standardize(x_data)

cov = np.cov(x_data, rowvar = False, bias = True)

eigval, eigvec = np.linalg.eigh(cov)

eigvec = eigvec * (cols ** 0.5)

fac = np.matmul(x_data, eigvec) / cols

return eigval, eigvec[:,-nrfactors : ], (fac[:,-nrfactors : ])

def do_pca_traintest(X, nrfactors = -1):

# separate estimation of PCA for training and testing samples, both in X

import numpy as np

x_data = np.copy(X)

rows, cols = x_data.shape

if nrfactors == -1:

rows, nrfactors = x_data.shape

x_train = x_data[:-1, :]

x_train = standardize(x_train)

x_test = stand_test(x_data[-1, :].reshape((1, cols)), x_train)

cov = np.cov(x_train, rowvar=False, bias = True)

eigval, eigvec = np.linalg.eigh(cov)

eigvec = eigvec * (cols ** 0.5)

fac_train = x_train.dot(eigvec) / cols

fac_test = x_test.dot(eigvec) / cols

return eigval, eigvec[:,-nrfactors : ], (fac_train[:,-nrfactors : ]), (fac_test

[:,-nrfactors : ])
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def nr_included_factors_pca(X):

# implementation of Panel IC from Bai and NG(2002) with the Kim and Swanson (2013)

penalty

import numpy as np

x_data = np.copy(X)

x_data = standardize(x_data)

T, n = x_data.shape

max_factors = 20

IC = np.inf

min_i = 0

eigval, eigvec, fac = do_pca(x_data)

for i in range(1, max_factors + 1):

fac_use = fac[:, -i: ]

x_approx = fac_use.dot(np.transpose(eigvec[:, -i: ]))

error = x_data - x_approx

errorstat = np.trace(np.transpose(error).dot(error)) / (T*n)

penalty = (i) * float(n + T) / (n*T) * np.log(min(n, T))

ICnew = np.log(errorstat) + penalty

if ICnew <= IC:

IC = ICnew

min_i = i

return min_i

def do_spca(X, r = 0):

# implementation of SPCA

import numpy as np

from sklearn.linear_model import ElasticNetCV
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x_data = np.copy(X)

rows, cols = x_data.shape

if r <= 0:

r = cols

x_data = standardize(x_data)

eigval, eigvec, fac = do_pca(x_data)

Deltas = eigvec

Lambdas = np.zeros((cols, cols))

convergence_cond = False

looprep = 0

while not convergence_cond:

# in each loop, optimize Lambda and Delta

looprep += 1

#print(looprep)

Delas_old = Deltas.copy()

Lambdas_old = Lambdas.copy()

for j in range(cols):

X_use = x_data.dot(Deltas[:, j])

EN = ElasticNetCV(l1_ratio= [1, 0.5], cv = 10, fit_intercept=False,

alphas=np.arange(1, 100, 1))

#y_hat_use, beta_use = cv_en(X_use, x_data, etas2 = [0])

EN.fit(x_data, X_use)

beta_use = EN.coef_

Lambdas[:, j] = beta_use

for_svd = np.dot(np.dot(np.transpose(x_data), x_data), Lambdas)

u, s, vh = np.linalg.svd(for_svd)

Deltas = np.dot(u, vh)
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# some convergence criterion to stop

Deltas_diff = Deltas - Delas_old

Lambdas_diff = Lambdas - Lambdas_old

deltas_ratio = np.sum(np.abs(Deltas_diff)) / np.sum(np.abs(Deltas))

lambdas_ratio = np.sum(np.abs(Lambdas_diff[:, -r:])) / np.sum(np.abs

(Lambdas[:, -r:]))

threshold = 0.001

if ((looprep > 5) & (deltas_ratio < threshold) & (lambdas_ratio < threshold)):

indexer = np.sum(np.abs(Lambdas), axis=0)

Lambdas = Lambdas[:, indexer > 0]

for coli in range(Lambdas.shape[1]):

Lambdas[:, coli] /= (Lambdas[:, coli] @ Lambdas[:, coli]) ** 0.5

fac = np.matmul(x_data, Lambdas)

if r < Lambdas.shape[1]:

return Lambdas[:, -r:], fac[:, -r:]

else:

return Lambdas, fac

if looprep == 50:

indexer = np.sum(np.abs(Lambdas), axis = 0)

Lambdas = Lambdas[:, indexer > 0]

for coli in range(Lambdas.shape[1]):

Lambdas[:, coli] /= (Lambdas[:, coli] @ Lambdas[:, coli]) ** 0.5

fac = np.matmul(x_data, Lambdas)

if r < Lambdas.shape[1]:

return Lambdas[:, -r:], fac[:, -r:]

else:

return Lambdas, fac
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def ar_sel(Y, max_lag):

# select number of lags of AR model

import numpy as np

y = np.copy(Y)

from statsmodels.tsa.ar_model import AR

ar = AR(y)

model_fit = ar.fit(maxlag = max_lag, ic = ’bic’)

lags = model_fit.k_ar

return lags

def ar_reg(Y_train, arlag, hlag, maxarlag, maxhlag):

# select correct y values, fit AR model

from sklearn.linear_model import LinearRegression

import numpy as np

y_train = np.copy(Y_train)

n = len(y_train)

y_train_dep = y_train[maxarlag + maxhlag - 1:]

y_train_expl = np.ones((len(y_train_dep), arlag))

if arlag > 0:

for i in range(arlag):

y_train_expl[:, i] = y_train[maxarlag + maxhlag - i - hlag - 1:-i - hlag]

linreg = LinearRegression(fit_intercept=True)

linreg.fit(y_train_expl, y_train_dep)

y_hat_train = linreg.predict(y_train_expl)

y_test_expl = np.ones((1, arlag))
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if arlag > 0:

y_test_expl[0, 0] = y_train_dep[-hlag]

if arlag > 1:

y_test_expl[0, 1:] = y_train_expl[-1, :-1]

y_hat_test = linreg.predict(y_test_expl)

if arlag > 0:

betas_train = np.append(linreg.intercept_, linreg.coef_)

else:

betas_train = [linreg.intercept_]

return y_train_dep, betas_train, y_hat_train, y_hat_test

def do_en(Dep, Expl, eta1, eta2):

# implementation of the Elastic Net

import numpy as np

from sklearn.linear_model import LassoLars

dep = np.copy(Dep)

expl = np.copy(Expl)

rows, cols = expl.shape

idStack = np.identity(cols) * (eta2**0.5)

explPlTr = (1/((1+eta2)**0.5)) * np.concatenate((expl, idStack), axis=0)

depPlTr = np.concatenate((dep, np.zeros(cols)), axis=0)

LL = LassoLars(alpha = ((eta1 / (1 + eta2)**0.5) ), fit_intercept = False)

LL.fit(explPlTr, depPlTr)

#LL.fit(expl, dep)

betas = LL.coef_

betas *= (1 + eta2)**0.5

# Lreg = LinearRegression()

y_hat = np.dot(expl, betas)
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return y_hat, betas

def do_en_testtrain(dep, expl, expltest, eta1, eta2):

# estimate EN for training and testing data

import numpy as np

from sklearn.linear_model import LassoLars

rows, cols = expl.shape

idStack = np.identity(cols) * (eta2**0.5)

explPlTr = (1/((1+eta2)**0.5)) * np.concatenate((expl, idStack), axis=0)

depPlTr = np.concatenate((dep, np.zeros(cols)), axis=0)

LL = LassoLars(alpha = ((eta1 / (1 + eta2)**0.5) ), fit_intercept = False)

LL.fit(explPlTr, depPlTr)

betas = LL.coef_

betas *= (1 + eta2)**0.5

y_hat_train = np.dot(expl, betas)

y_hat_test = np.dot(expltest, betas)

return y_hat_train, y_hat_test, betas

def do_bma(nburn, nkeep, dep, expl, prior_opt):

# implementation of BMA

import numpy as np

import statsmodels.api as sm

y = dep.copy()

X = expl.copy()

T, k = X.shape
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X -= np.mean(X, axis=0)

X_reg = sm.add_constant(X)

res = sm.OLS(y, X_reg).fit()

t_stats = res.tvalues

molddraw = np.zeros(k + 1)

# MAYBE, MAYBE NOT

molddraw[0] = 1

for i in range(1, k + 1):

if np.abs(t_stats[i]) > 0.5:

molddraw[i] = 1

Xold = X_reg[:, molddraw == 1]

kold = np.sum(molddraw)

molddraw = molddraw[1:]

if prior_opt == 1:

g0 = 1 / (k ** 2)

else:

g0 = 1 / T

ytynm = (y - np.mean(y)) @ (y - np.mean(y))

xtxinv = np.linalg.inv((Xold.T) @ Xold)

ymy = y @ y - y @ Xold @ xtxinv @ (Xold.T) @ y

g1 = g0 / (g0 + 1)

g2 = 1 / (g0 + 1)

lprobold = 0.5 * kold * np.log(g1) - 0.5 * (T - 1) * np.log(g2 * ymy + g1 * ytynm)

inccount = np.zeros(k)

msize = 0
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b1mo = np.zeros(k)

numrep = nburn + nkeep

for currrep in range(numrep):

Xnew = np.copy(Xold)

mnewdraw = np.copy(molddraw)

rancheck = np.round(np.random.rand() * k).astype(int)

if rancheck > 0:

incl_to_here = np.sum(molddraw[:rancheck - 1]).astype(’int’)

if molddraw[rancheck - 1] == 1:

Xnew = np.append(Xold[:, :incl_to_here + 1], Xold[:, incl_to_here + 2:],

axis=1)

mnewdraw[rancheck - 1] = 0

else:

# Check INdices!!!

Xnew = np.append(np.append(Xold[:, : incl_to_here + 1], X[:,

[rancheck - 1]], axis=1),Xold[:, incl_to_here + 1:], axis=1)

mnewdraw[rancheck - 1] = 1

knew = np.sum(mnewdraw) + 1

xtxinv = np.linalg.pinv((Xnew.T) @ Xnew)

ymy = y @ y - y @ Xnew @ xtxinv @ (Xnew.T) @ y

lprobnew = 0.5 * knew * np.log(g1) - 0.5 * (T - 1) *

np.log(g2 * ymy + g1 * ytynm)

if np.log(np.random.rand()) < (lprobnew - lprobold):

Xold = Xnew

lprobold = lprobnew

molddraw = mnewdraw

kold = knew
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if currrep >= nburn:

inccount += molddraw

msize += kold

Q1inv = (1 + g0) * ((Xold.T) @ Xold)

Q1 = np.linalg.pinv(Q1inv)

b1 = Q1 @ (Xold.T) @ y

curr_belem = 0

# CHECK!!!!

for i in range(k):

if molddraw[i] == 1:

curr_belem += 1

bmean = b1[curr_belem]

b1mo[i] += bmean

b1mo /= nkeep

return b1mo

def cv_en(Y_use, Xx_use):

# optimization of EN hyperparameters by CV

import numpy as np

y_use = np.copy(Y_use)

X_use = np.copy(Xx_use)

cvs = 10

cv_splitparams = np.floor(np.arange(0, X_use.shape[0] + 0.5,

X_use.shape[0] / cvs)).astype(’int’)
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cv_splitparams[-1] -= 1

etas1 = np.append(np.arange(0, 1, 0.1), np.arange(1, 100, 1))

etas2 = [0, 0.01, 0.1, 1, 10, 100, 1000]

IcColl = np.zeros((len(etas1), len(etas2)))

for eta1i in range(len(etas1)):

eta1 = etas1[eta1i]

for eta2i in range(len(etas2)):

eta2 = etas2[eta2i]

y_hat_test_help = np.zeros(X_use.shape[0])

y_test_help = np.zeros(X_use.shape[0])

for i in range(len(cv_splitparams) - 1):

X_train = np.delete(X_use, np.arange(cv_splitparams[i],

cv_splitparams[i + 1] + 1), axis=0)

y_train = np.delete(y_use, np.arange(cv_splitparams[i],

cv_splitparams[i + 1] + 1))

X_test = X_use[cv_splitparams[i]: cv_splitparams[i + 1] + 1, :]

y_test = y_use[cv_splitparams[i]: cv_splitparams[i + 1] + 1]

y_hat_train, y_hat_test, beta_en = do_en_testtrain(y_train,

X_train, X_test, eta1, eta2)

y_hat_test_help[cv_splitparams[i]: cv_splitparams[i + 1] + 1]

= y_hat_test

y_test_help[cv_splitparams[i]: cv_splitparams[i + 1] + 1] = y_test

resid = y_test_help - y_hat_test_help

sigma2 = np.dot(resid, resid)

IcColl[eta1i, eta2i] = np.log(sigma2) + (np.sum(beta_en > 0) +

np.sum(beta_en < 0)) * np.log(X_test.shape[0]) / X_test.shape[0]

IcColl[eta1i, eta2i] = np.log(sigma2) + (X_test.shape[1]) *
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np.log(X_test.shape[0]) / X_test.shape[0]

IC = np.inf

eta1best = 0

eta2best = 0

for eta1i in range(len(etas1)):

eta1 = etas1[eta1i]

for eta2i in range(len(etas2)):

eta2 = etas2[eta2i]

if IcColl[eta1i, eta2i] <= IC:

eta1best = eta1

eta2best = eta2

IC = IcColl[eta1i, eta2i]

y_hat_use, beta_use = do_en(y_use, X_use, eta1best, eta2best)

return y_hat_use, beta_use

def standardize(X_dat):

# standardize variables

import numpy as np

from scipy.stats import zscore

X = np.copy(X_dat)

X = zscore(X, axis = 0)

return X

def stand_test(x_test, x_train):

# standardize testing and training data

import numpy as np

X_test = np.copy(x_test)
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X_train = np.copy(x_train)

X_test = X_test.astype(float)

rows, cols = X_test.shape

for i in range(cols):

X_test[:, i] = np.divide(X_test[:, i] - np.mean(X_train[:, i]),

np.std(X_train[:, i]))

return X_test

def sort_factors(Facs, fmax):

# sorting the factors if lags are included

import numpy as np

facs = np.copy(Facs)

if fmax == 1:

return facs

rows, cols = facs.shape

facs_new = np.ones((rows - fmax + 1, fmax * cols))

for i in range(fmax):

facs_new[:, i * cols : (i+1) * cols] = facs[fmax - 1 - i:rows-i, :]

return facs_new

def smooth_data(X_use):

# smoothing the data

import numpy as np

X = np.copy(X_use)

for j in range(X.shape[1]):

helper = np.copy(X[:, j])

cond = False

while cond == False:
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hm = np.mean(helper)

hs = np.std(helper)

violations = 0

for i in range(X_use.shape[0]):

if helper[i] > hm + 3*hs:

helper[i] = hm + 3*hs

violations += 1

elif helper[i] < hm - 3*hs:

helper[i] = hm - 3 * hs

violations += 1

if violations == 0:

cond = True

X[:, j] = helper

return X

def cal_forecasts(hlag = 1):

# calculation of the DRC forecasts

import numpy as np

import pandas as pd

np.random.seed(2)

maxarlag = 4

data_df = pd.read_excel(’research_data.xlsx’, index_col=’year’, parse_dates=[0])

data = smooth_data(data_df.to_numpy())

y = data[:, 0]

XX = data[:, 1:]

T = data_df.shape[0]
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xlen = 48

break_start = 36

#y = np.arange(1963, 2018)

#XX = np.arange(1963, 2018).reshape(55, 1)

y_hats_ar = np.zeros(T - xlen - maxarlag + 2)

y_hats_pcaen = np.zeros(T - xlen - maxarlag + 2)

y_hats_pcabma0 = np.zeros(T - xlen - maxarlag + 2)

y_hats_pcabma1 = np.zeros(T - xlen - maxarlag + 2)

y_hats_spcaen = np.zeros(T - xlen - maxarlag + 2)

y_hats_spcabma0 = np.zeros(T - xlen - maxarlag + 2)

y_hats_spcabma1 = np.zeros(T - xlen - maxarlag + 2)

for i in range(T - xlen - maxarlag + 2 + - hlag + hlag):

print(’At Forecast: ’, i)

# recursive estimation

if i < T - xlen - maxarlag + 2 + - hlag + 1:

y_use = np.copy(y[break_start:i + xlen + maxarlag + hlag - 2])

ar_lag = ar_sel(y_use[maxarlag + hlag - 2: ], maxarlag)

print(ar_lag)

y_train, betas_train, y_hat_train_ar, y_hat_test_ar = ar_reg(y_use,

ar_lag, hlag, maxarlag, hlag)

X_use = np.copy(XX[maxarlag + hlag - 1 - hlag: maxarlag + i + xlen - 1,:])

else:

y_use = np.copy(y[break_start:])

ar_lag = ar_sel(y_use[maxarlag + hlag - 2:], maxarlag)

y_train, betas_train, y_hat_train_ar, y_hat_test_ar = ar_reg(y_use,

ar_lag, hlag, maxarlag, hlag)

if ar_lag == 0:
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y_hat_test_ar = betas_train

elif ar_lag == 1:

y_hat_test_ar = betas_train[0] + betas_train[1] * y[maxarlag +

i + xlen - 2]

else:

y_hat_test_ar = betas_train[0]

for k in range(1, ar_lag + 1):

y_hat_test_ar += betas_train[k] * y[maxarlag + i + xlen - 1 - k]

X_use = np.append(np.copy(XX[maxarlag + hlag - 1 - hlag: T - hlag, :]),

np.copy(XX[maxarlag + i + xlen - 2, :]).reshape((1,

XX.shape[1])), axis=0)

#print(y_train, X_use)

# do PCA

nr_factors_pca = nr_included_factors_pca(X_use)

eigval, eigvec, facs= do_pca(X_use,nr_factors_pca)

facs = facs[break_start :, :]

# do SPCA

Lambdas, facs_spca = do_spca(X_use, nr_factors_pca)

facs_spca = facs_spca[break_start :, :]

#test and train variables, non-adjusted

resid_train = y_train - y_hat_train_ar

fac_train = facs[:-1, :]

fac_test = facs[-1, :]

fac_train_spca = facs_spca[:-1, :]

fac_test_spca = facs_spca[-1, :]

# standardize and center, test and train variables, adjusted

67



Forecasting GDP with Factor Models and Machine Learning APPENDICES

fac_Adj = standardize(facs)

fac_trainAdj = fac_Adj[:-1, :]

fac_testAdj = fac_Adj[-1, :]

fac_Adj_spca = standardize(facs_spca)

fac_trainAdj_spca = fac_Adj_spca[:-1, :]

fac_testAdj_spca = fac_Adj_spca[-1, :]

resid_trainAdj = resid_train - np.mean(resid_train)

# do EN on residual

y_hat_train_pcaen, minBeta_pcaen = cv_en(resid_trainAdj, fac_trainAdj)

# forecast

y_hat_test_pcaen = fac_testAdj.dot(minBeta_pcaen) + y_hat_test_ar

#BMA

beta_pcbma0 = do_bma(300, 1000, resid_train, fac_train, 0)

beta_pcbma1 = do_bma(300, 1000, resid_train, fac_train, 1)

y_hat_test_pcabma0 = beta_pcbma0 @ fac_test + y_hat_test_ar

y_hat_test_pcabma1 = beta_pcbma1 @ fac_test + y_hat_test_ar

# EN SPCA

y_hat_train_pcaen_spca, minBeta_spcaen = cv_en(resid_trainAdj,

fac_trainAdj_spca)

# forecast

y_hat_test_pcaen_spca = fac_testAdj_spca.dot(minBeta_spcaen) + y_hat_test_ar

# BMA SPCA

beta_pcbma0_spca = do_bma(300, 1000, resid_train, fac_train_spca, 0)

beta_pcbma1_spca = do_bma(300, 1000, resid_train, fac_train_spca, 1)
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y_hat_test_pcabma0_spca = beta_pcbma0_spca @ fac_test_spca + y_hat_test_ar

y_hat_test_pcabma1_spca = beta_pcbma1_spca @ fac_test_spca + y_hat_test_ar

# save forecasts and check parameter

y_hats_ar[i] = y_hat_test_ar

y_hats_pcaen[i] = y_hat_test_pcaen

y_hats_pcabma0[i] = y_hat_test_pcabma0

y_hats_pcabma1[i] = y_hat_test_pcabma1

y_hats_spcaen[i] = y_hat_test_pcaen_spca

y_hats_spcabma0[i] = y_hat_test_pcabma0_spca

y_hats_spcabma1[i] = y_hat_test_pcabma1_spca

# print(np.mean(np.square(resid_train)))

# print(np.mean(np.square(y_train - (fac_trainAdj.dot(minBeta_pcaen) +

y_hat_train_ar))))

# print(np.mean(np.square(y_train - (fac_train @ beta_pcbma0 +

y_hat_train_ar))))

# print(np.mean(np.square(y_train - (fac_train @ beta_pcbma1 +

y_hat_train_ar))))

# print(np.mean(np.square(y_train - (fac_trainAdj_spca.dot(minBeta_pcaen_spca)

+ y_hat_train_ar))))

# print(np.mean(np.square(y_train - (fac_train_spca @ beta_pcbma0_spca

+ y_hat_train_ar))))

# print(np.mean(np.square(y_train - (fac_train_spca @ beta_pcbma1_spca

+ y_hat_train_ar))))

return [y_hats_ar, y_hats_pcaen, y_hats_pcabma0, y_hats_pcabma1,

y_hats_spcaen, y_hats_spcabma0, y_hats_spcabma1]
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def factor_ana():

# analysis of the PCA and SPCA factors

import numpy as np

import pandas as pd

np.random.seed(2)

maxarlag = 4

data_df = pd.read_excel(’research_data.xlsx’, index_col = ’year’,

parse_dates=[0])

data = smooth_data(data_df.to_numpy())

y = data[:, 0]

XX = data[:, 1:]

#y = data_df.iloc[:, 0].to_numpy()

#XX = data_df.iloc[:, 1:].to_numpy()

T = data_df.shape[0]

xlen = 48

hlag = 1

i = 4

y_use = np.copy(y[:i + xlen + maxarlag + hlag - 2])

X_use = np.copy(XX[maxarlag + hlag - 1 - hlag: maxarlag + i + xlen - 1, :])

ar_lag = ar_sel(y_use[maxarlag + hlag - 2:], maxarlag)

# do PCA

nr_factors_pca = nr_included_factors_pca(X_use)

print(nr_factors_pca)

eigval, eigvec, facs= do_pca(X_use)
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for coli in range(eigvec.shape[1]):

eigvec[:, coli] /= (eigvec[:, coli] @ eigvec[:, coli]) ** 0.5

facs = np.matmul(XX, eigvec)

# do SPCA

Lambdas, facs_spca = do_spca(X_use)

Lambdas_df = pd.DataFrame(Lambdas)

Eigvec_df = pd.DataFrame(eigvec)

Eigval_df = pd.DataFrame(eigval)

Lambdas_df.to_csv(’Lambdas.csv’)

Eigvec_df.to_csv(’Eigvec.csv’)

Eigval_df.to_csv(’Eigval.csv’)

print(’First SPCA’)

print(data_df.iloc[:, 1:].columns[Lambdas[:, -1] > 0])

print(’Second SPCA’)

print(data_df.iloc[:, 1:].columns[Lambdas[:, -2] > 0])

print(’Third SPCA’)

print(data_df.iloc[:, 1:].columns[Lambdas[:, -3] > 0])

#import pickle

#with open(’static_res_forecasts.pickle’, ’wb’) as output:

# pickle.dump([eigval, eigvec, Lambdas], output)

def cal_resids(hlag = 1):

# calculate the residuals for the results section

import numpy as np

import pandas as pd
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np.random.seed(2)

maxarlag = 4

data_df = pd.read_excel(’research_data.xlsx’, index_col=’year’,

parse_dates=[0])

data = smooth_data(data_df.to_numpy())

y = data[:, 0]

XX = data[:, 1:]

T = data_df.shape[0]

xlen = 48

#y = np.arange(1963, 2018)

#XX = np.arange(1963, 2018).reshape(55, 1)

y_hats_ar = np.zeros(T - xlen - maxarlag + 2)

y_hats_pcaen = np.zeros(T - xlen - maxarlag + 2)

y_hats_pcabma0 = np.zeros(T - xlen - maxarlag + 2)

y_hats_pcabma1 = np.zeros(T - xlen - maxarlag + 2)

y_hats_spcaen = np.zeros(T - xlen - maxarlag + 2)

y_hats_spcabma0 = np.zeros(T - xlen - maxarlag + 2)

y_hats_spcabma1 = np.zeros(T - xlen - maxarlag + 2)

i = 4

print(’At Forecast: ’, i)

# recursive estimation

if i < T - xlen - maxarlag + 2 + - hlag + 1:

y_use = np.copy(y[:i + xlen + maxarlag + hlag - 2])

ar_lag = ar_sel(y_use[maxarlag + hlag - 2: ], maxarlag)

print(ar_lag)
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y_train, betas_train, y_hat_train_ar, y_hat_test_ar = ar_reg(y_use,

ar_lag, hlag, maxarlag, hlag)

X_use = np.copy(XX[maxarlag + hlag - 1 - hlag: maxarlag + i + xlen - 1,:])

else:

y_use = np.copy(y)

ar_lag = ar_sel(y_use[maxarlag + hlag - 2:], maxarlag)

y_train, betas_train, y_hat_train_ar, y_hat_test_ar = ar_reg(y_use,

ar_lag, hlag, maxarlag, hlag)

if ar_lag == 0:

y_hat_test_ar = betas_train

elif ar_lag == 1:

y_hat_test_ar = betas_train[0] + betas_train[1]

* y[maxarlag + i + xlen - 2]

else:

y_hat_test_ar = betas_train[0]

for k in range(1, ar_lag + 1):

y_hat_test_ar += betas_train[k] * y[maxarlag + i + xlen - 1 - k]

X_use = np.append(np.copy(XX[maxarlag + hlag - 1 - hlag: T - hlag, :]),

np.copy(XX[maxarlag + i + xlen - 2, :])

.reshape((1, XX.shape[1])), axis=0)

# do PCA

nr_factors_pca = nr_included_factors_pca(X_use)

eigval, eigvec, facs= do_pca(X_use,nr_factors_pca)

# do SPCA

Lambdas, facs_spca = do_spca(X_use, nr_factors_pca)

Lambdas = do_spca(X_use, nr_factors_pca)
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#test and train variables, non-adjusted

resid_train = y_train - y_hat_train_ar

fac_train = facs[:-1, :]

fac_test = facs[-1, :]

fac_train_spca = facs_spca[:-1, :]

fac_test_spca = facs_spca[-1, :]

# standardize and center, test and train variables, adjusted

fac_Adj = standardize(facs)

fac_trainAdj = fac_Adj[:-1, :]

fac_testAdj = fac_Adj[-1, :]

fac_Adj_spca = standardize(facs_spca)

fac_trainAdj_spca = fac_Adj_spca[:-1, :]

fac_testAdj_spca = fac_Adj_spca[-1, :]

resid_trainAdj = resid_train - np.mean(resid_train)

# do EN on residual

y_hat_train_pcaen, minBeta_pcaen = cv_en(resid_trainAdj, fac_trainAdj)

# forecast

y_hat_test_pcaen = fac_testAdj.dot(minBeta_pcaen) + y_hat_test_ar

#BMA

beta_pcbma0 = do_bma(300, 1000, resid_train, fac_train, 0)

beta_pcbma1 = do_bma(300, 1000, resid_train, fac_train, 1)

y_hat_test_pcabma0 = beta_pcbma0 @ fac_test + y_hat_test_ar

y_hat_test_pcabma1 = beta_pcbma1 @ fac_test + y_hat_test_ar

# EN SPCA
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y_hat_train_pcaen_spca, minBeta_spcaen = cv_en(resid_trainAdj, fac_trainAdj_spca)

# forecast

y_hat_test_pcaen_spca = fac_testAdj_spca.dot(minBeta_spcaen) + y_hat_test_ar

# BMA SPCA

beta_pcbma0_spca = do_bma(300, 1000, resid_train, fac_train_spca, 0)

beta_pcbma1_spca = do_bma(300, 1000, resid_train, fac_train_spca, 1)

y_hat_test_pcabma0_spca = beta_pcbma0_spca @ fac_test_spca + y_hat_test_ar

y_hat_test_pcabma1_spca = beta_pcbma1_spca @ fac_test_spca + y_hat_test_ar

y_hat_train_pcabma0_spca = fac_train_spca @ beta_pcbma0_spca + y_hat_train_ar

y_hat_train_pcabma1_spca = fac_train_spca @ beta_pcbma1_spca + y_hat_train_ar

# save forecasts and check parameter

e_train_pcaen = y_train - y_hat_train_pcaen

e_train_pcabma0 = y_train - y_hat_train_pcabma0

e_train_pcabma1 = y_train - y_hat_train_pcabma1

e_train_spcaen = y_train - y_hat_train_pcaen_spca

e_train_spcabma0 = y_train - y_hat_train_pcabma0_spca

e_train_spcabma1 = y_train - y_hat_train_pcabma1_spca

e_df = pd.DataFrame({’PCA EN’: e_train_pcaen, ’PCA BMA0’: e_train_pcabma0,

’PCA BMA1’: e_train_pcabma1,

’SPCA EN’: e_train_spcaen, ’SPCA BMA0’: e_train_spcabma0,

’SPCA BMA1’: e_train_spcabma1})

filename = ’ferrors’ + str(hlag) + ’.csv’

e_df.to_csv(filename)

for i in range(e_df.shape[1]):

print(e_df.columns[i])
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print(e_df.iloc[:, i].autocorr(lag = 1))

print(e_df.iloc[:, i].autocorr(lag = 2))

def break_test(hlag = 1, break_at = 35):

# calculate the break test statistics

import numpy as np

import pandas as pd

np.random.seed(2)

maxarlag = 4

data_df = pd.read_excel(’research_data.xlsx’, index_col=’year’, parse_dates=[0])

data = smooth_data(data_df.to_numpy())

y = data[:, 0]

XX = data[:, 1:]

T = data_df.shape[0]

xlen = 48

y_dep = y[hlag:]

y_expl = y[:-hlag]

#X_expl = XX[:-hlag]

# do PCA

#nr_factors_pca = nr_included_factors_pca(X_use)

eigval, eigvec, facs= do_pca(XX,1)

# do SPCA
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facs_spca = facs

#Lambdas, facs_spca = do_spca(XX, 1)

facs_expl = facs[:-hlag, :]

facs_spca_expl = facs_spca[:-hlag, :]

from sklearn.linear_model import LinearRegression

reg = LinearRegression(fit_intercept=False)

expl_help = np.append(np.ones((len(y_expl), 1)), y_expl.reshape((len(y_expl),

1)), axis = 1)

expl_pca = np.append(expl_help, facs_expl, axis = 1)

expl_spca = np.append(expl_help, facs_spca_expl, axis = 1)

reg.fit(expl_pca, y_dep)

error_pca = y_dep - reg.predict(expl_pca)

reg.fit(expl_spca, y_dep)

error_spca = y_dep - reg.predict(expl_spca)

expl_pca2 = np.copy(expl_pca)

expl_pca2[:break_at, :] = 0

expl_pca_testreg = np.append(expl_pca, expl_pca2, axis = 1)

expl_spca2 = np.copy(expl_spca)

expl_spca2[:break_at, :] = 0

expl_spca_testreg = np.append(expl_spca, expl_spca2, axis=1)

reg = LinearRegression(fit_intercept=False)

reg.fit(np.append(expl_pca, expl_pca2, axis = 1), error_pca)

R2_pca = reg.score(np.append(expl_pca, expl_pca2, axis = 1), error_pca)

reg.fit(np.append(expl_spca, expl_spca2, axis = 1), error_spca)

R2_spca = reg.score(np.append(expl_spca, expl_spca2, axis = 1), error_spca)

s_pca = expl_pca.shape[0] * R2_pca
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s_spca = expl_pca.shape[0] * R2_spca

from scipy.stats import chi2

prob_pca = chi2.cdf(s_pca, 3)

prob_spca = chi2.cdf(s_spca, 3)

#print(R2_pca, s_pca, prob_pca)

#print(R2_spca, s_spca, prob_spca)

return s_pca, prob_pca

def all_break_test():

#execution of break test for known and unknown break dates

t0 = 10

size = 54 - 2*10

t_fordistr = 10/54

stats_help = np.zeros(size)

second_stats = np.zeros((size + 1, 15))

for i in range(size):

for j in range(5):

s_pca, prob_pca = break_test(hlag = j+1, break_at = (t0 + i))

second_stats[i + 1, j*3 : (j+1)*3] = [1964 + t0 + i, s_pca, prob_pca]

for i in range(5):

second_stats[-1, i*3 : (i+1)*3] = second_stats[np.argmax(second_stats

[:-1, i* 3 + 1]), i*3 : (i+1)*3]

stats1_df = pd.DataFrame(first_stats)

stats2_df = pd.DataFrame(second_stats)

stats1_df.to_csv(’break_test1.csv’)
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stats2_df.to_csv(’break_test2/.csv’)

def cal_cv_forecasterrors(hlag=1):

# CV forecast error estimates

import numpy as np

import pandas as pd

np.random.seed(2)

maxarlag = 4

data_df = pd.read_excel(’research_data.xlsx’, index_col=’year’, parse_dates=[0])

data = smooth_data(data_df.values)

y = data[:, 0]

XX = data[:, 1:]

T = data_df.shape[0]

xlen = 48

startsize = 25

for_fill = np.zeros((T - startsize, hlag))

e_coll = [np.copy(for_fill), np.copy(for_fill), np.copy(for_fill),

np.copy(for_fill), np.copy(for_fill),

np.copy(for_fill), np.copy(for_fill)]

for lag_cons in range(hlag):

for i in range(T - startsize):

if i % 10 == 0:

print(’at lag: ’, i)

# recursive estimation
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if lag_cons == 0:

y_use = np.copy(y[:i + startsize])

ar_lag = ar_sel(y_use[maxarlag + hlag - 2:], maxarlag)

y_train, betas_train, y_hat_train_ar, y_hat_test_ar = ar_reg(y_use,

ar_lag, hlag, maxarlag, hlag)

X_use = np.copy(XX[maxarlag - 1: i + startsize - hlag + 1, :])

y_test = np.copy(y[i + startsize])

else:

y_use = np.copy(y[:i + startsize - lag_cons])

ar_lag = ar_sel(y_use[maxarlag + hlag - 2:i + startsize - lag_cons],

maxarlag)

y_train, betas_train, y_hat_train_ar, y_hat_test_ar = ar_reg(y_use,

ar_lag, hlag, maxarlag, hlag)

if ar_lag == 0:

y_hat_test_ar = betas_train

elif ar_lag == 1:

y_hat_test_ar = betas_train[0] + betas_train[1] * y[i +

startsize - 1]

else:

y_hat_test_ar = betas_train[0]

# print(y.shape)

# print(ar_lag)

# print(i + startsize)

# print(betas_train[ar_lag])

for k in range(1, ar_lag + 1):

y_hat_test_ar += betas_train[k] * y[i + startsize - k]

y_test = np.copy(y[i + startsize])

X_use = np.append(np.copy(XX[maxarlag - 1: i + startsize - hlag -

lag_cons, :]),np.copy(XX[i + startsize - hlag, :]).reshape((1,

XX.shape[1])), axis=0)
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# print(y_train, X_use)

# do PCA

nr_factors_pca = nr_included_factors_pca(X_use)

eigval, eigvec, facs = do_pca(X_use, nr_factors_pca)

# do SPCA

Lambdas, facs_spca = do_spca(X_use, nr_factors_pca)

# test and train variables, non-adjusted

resid_train = y_train - y_hat_train_ar

fac_train = facs[:-1, :]

fac_test = facs[-1, :]

fac_train_spca = facs_spca[:-1, :]

fac_test_spca = facs_spca[-1, :]

# standardize and center, test and train variables, adjusted

fac_Adj = standardize(facs)

fac_trainAdj = fac_Adj[:-1, :]

fac_testAdj = fac_Adj[-1, :]

fac_Adj_spca = standardize(facs_spca)

fac_trainAdj_spca = fac_Adj_spca[:-1, :]

fac_testAdj_spca = fac_Adj_spca[-1, :]

resid_trainAdj = resid_train - np.mean(resid_train)

# do EN on residual

y_hat_train_pcaen, minBeta_pcaen = cv_en(resid_trainAdj, fac_trainAdj)

# forecast

y_hat_test_pcaen = fac_testAdj.dot(minBeta_pcaen) + y_hat_test_ar

# BMA

beta_pcbma0 = do_bma(300, 1000, resid_train, fac_train, 0)
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beta_pcbma1 = do_bma(300, 1000, resid_train, fac_train, 1)

y_hat_test_pcabma0 = beta_pcbma0 @ fac_test + y_hat_test_ar

y_hat_test_pcabma1 = beta_pcbma1 @ fac_test + y_hat_test_ar

# EN SPCA

y_hat_train_pcaen_spca, minBeta_pcaen_spca = cv_en(resid_trainAdj,

fac_trainAdj_spca)

y_hat_test_pcaen_spca = fac_testAdj_spca.dot(minBeta_pcaen_spca) +

y_hat_test_ar

# BMA SPCA

beta_pcbma0_spca = do_bma(300, 1000, resid_train, fac_train_spca, 0)

beta_pcbma1_spca = do_bma(300, 1000, resid_train, fac_train_spca, 1)

y_hat_test_pcabma0_spca = beta_pcbma0_spca @ fac_test_spca + y_hat_test_ar

y_hat_test_pcabma1_spca = beta_pcbma1_spca @ fac_test_spca + y_hat_test_ar

# save forecasts and check parameter

e_coll[0][i, lag_cons] = y_hat_test_ar - y_test

e_coll[1][i, lag_cons] = y_hat_test_pcaen - y_test

e_coll[2][i, lag_cons] = y_hat_test_pcabma0 - y_test

e_coll[3][i, lag_cons] = y_hat_test_pcabma1 - y_test

e_coll[4][i, lag_cons] = y_hat_test_pcaen_spca - y_test

e_coll[5][i, lag_cons] = y_hat_test_pcabma0_spca - y_test

e_coll[6][i, lag_cons] = y_hat_test_pcabma1_spca - y_test

for_fill = np.zeros(15)

e_stats = [np.copy(for_fill), np.copy(for_fill), np.copy(for_fill),

np.copy(for_fill), np.copy(for_fill),

np.copy(for_fill), np.copy(for_fill)]
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for set in range(7):

# stats: 5 means, 5 medians, 5 stds, for all: all 5 for ar, then for en, ...

e_stats[set][0: 6 - hlag] = np.mean(e_coll[set][:, 0], axis=0)

e_stats[set][5: 11 - hlag] = np.median(e_coll[set][:, 0], axis=0)

e_stats[set][10: 6 - hlag] = np.std(e_coll[set][:, 0], axis=0)

if hlag > 1:

for iter in range(1, hlag):

e_stats[set][5 - hlag + iter] = np.mean(e_coll[set][:, iter], axis=0)

e_stats[set][10 - hlag + iter] = np.median(e_coll[set][:, iter], axis=0)

e_stats[set][15 - hlag + iter] = np.std(e_coll[set][:, iter], axis=0)

return e_stats

def simulation(reps=25, T=200, nvars=51, nfactors=2, xlen=100, ar_spec=2,

maxfaclag=1, hlag=1, delta1=0, delta2=0,

a_errors=0, b_errors=0):

import numpy as np

import matplotlib.pyplot as plt

np.random.seed(2)

maxarlag = 4

maxhlag = 5

xlen = T - 12

# import pandas as pd

# data_df = pd.read_excel(’testdata.xlsx’)

# # data_df = data_df.drop([’Eq Guinea’, ’Liberia’], axis = 1)

# T = data_df.shape[0]

# xlen = 170

errors_ar = np.zeros((reps, T - xlen - maxarlag - maxhlag + 2))
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errors_pcaen = np.zeros((reps, T - xlen - maxarlag - maxhlag + 2))

errors_pcabma0 = np.zeros((reps, T - xlen - maxarlag - maxhlag + 2))

errors_pcabma1 = np.zeros((reps, T - xlen - maxarlag - maxhlag + 2))

errors_reg = np.zeros((reps, T - xlen - maxarlag - maxhlag + 2))

arlag_coll = np.zeros((reps, T - xlen - maxarlag - maxhlag + 2))

inclfactors_coll = np.zeros((reps, T - xlen - maxarlag - maxhlag + 2))

nonzerobetaPcaEn_coll = np.zeros((reps, T - xlen - maxarlag - maxhlag + 2))

nonzerobetaPcaBma0_coll = np.zeros((reps, T - xlen - maxarlag - maxhlag + 2))

nonzerobetaPcaBma1_coll = np.zeros((reps, T - xlen - maxarlag - maxhlag + 2))

if ar_spec == 0:

if nfactors == 3:

factor_coefs = np.array([0.8, 0.65, -0.7])

else:

factor_coefs = np.array([0.8, 0.65, -0.7, 0.7, -0.8])

elif ar_spec == 1:

if nfactors == 3:

factor_coefs = np.array([0.3, 0.2, -0.25])

else:

factor_coefs = np.array([0.3, 0.2, -0.25, 0.25, -0.3])

else:

if nfactors == 3:

factor_coefs = np.array([[0.6, 0.5, -0.5], [0.2, 0.3, -0.2],

[0.1, -0.2, 0.3]])

else:

factor_coefs = np.array(

[[0.6, 0.5, -0.5, 0.3, -0.4], [0.2, 0.3, -0.2, 0.55, -0.4],

[0.1, -0.2, 0.3, 0.1, -0.1]])

if nfactors == 3:

factodep = np.array([0.8, -0.5, 0.7])
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else:

factodep = np.array([0.8, -0.5, 0.7, 0.9, -0.55])

factovar = np.random.normal(size=(nfactors, nvars))

for repitition in range(reps):

print(repitition)

factorerrors = np.random.normal(0, 1, size=(T + 9, nfactors))

factors = np.zeros((T + 11, nfactors))

factors[: 3, :] = 5 + np.random.normal(3, 1, (3, nfactors))

for i in range(3, T + 11):

if ar_spec < 2:

factors[i, :] = factors[i - 1, :] @ factor_coefs + factorerrors[i - 2, :]

else:

factors[i, :] = factors[i - 1, :] @ factor_coefs[0] +

factors[i - 2, :] @ factor_coefs[1] \

+ factors[i - 3, :] @ factor_coefs[2] +

factorerrors[i - 2, :]

factors = factors[11:, :]

etas = np.random.normal(0, 1, (T, nvars + 1))

delta0 = 1 / (1 - delta1 - delta2)

vs = np.zeros((T, nvars + 1))

sigmassq = np.zeros((T, nvars + 1))

sigmassq[0, :] = 1

vs[0, :] = np.multiply(sigmassq[0, :], etas[0, :])

for vsi in range(1, T):

sigmassq[vsi, :] = delta0 + delta1 * sigmassq[vsi - 1, :] + delta2 *

np.square(vs[vsi - 1, :])

vs[vsi, :] = np.multiply(np.sqrt([sigmassq[vsi, :]]), etas[vsi, :])
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variserrors = np.zeros((T, nvars + 1))

for varsj in range(nvars):

variserrors[0, varsj] = (1 + b_errors ** 2) * vs[0, varsj]

+ b_errors * vs[0, varsj + 1] +b_errors * vs[ 0, varsj - 1]

variserrors[0, -1] = (1 + b_errors ** 2) * vs[0, -1] + b_errors * vs[0, 0] +

b_errors * vs[0, -2]

for varsi in range(1, T):

for varsj in range(nvars):

variserrors[varsi, varsj] = a_errors * variserrors[varsi - 1, varsj]

+ (1 + b_errors ** 2) * vs[varsi, varsj] + b_errors

* vs[varsi, varsj + 1] + b_errors * vs[varsi, varsj - 1]

variserrors[varsi, -1] = a_errors * variserrors[varsi - 1, -1]

+ (1 + b_errors ** 2) * vs[

varsi, -1] + b_errors * vs[varsi, 0]

+ b_errors * vs[varsi, -2]

errorsy = variserrors[:, 0] # .reshape((T, 1))

errorsXX = variserrors[:, 1:]

if nfactors == 1:

XX = np.outer(factors, factovar) + errorsXX

y = factors @ factodep + errorsy

else:

XX = factors @ factovar + errorsXX

y = factors @ factodep + errorsy

y_tested = np.zeros(T - xlen - maxarlag - maxhlag + 2)

y_hats_ar = np.zeros(T - xlen - maxarlag - maxhlag + 2)

y_hats_pcaen = np.zeros(T - xlen - maxarlag - maxhlag + 2)

y_hats_pcabma0 = np.zeros(T - xlen - maxarlag - maxhlag + 2)

y_hats_pcabma1 = np.zeros(T - xlen - maxarlag - maxhlag + 2)

y_hat_reg = np.zeros(T - xlen - maxarlag - maxhlag + 2)
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for i in range(T - xlen - maxarlag - maxhlag + 2):

# print(i)

# recursive estimation

y_use = np.copy(y[:i + xlen + maxarlag + maxhlag - 2])

ar_lag = ar_sel(y_use[maxarlag + maxhlag - 2:], maxarlag)

y_train, betas_train, y_hat_train_ar, y_hat_test_ar =

ar_reg(y_use, ar_lag, hlag, maxarlag, maxhlag)

y_test = np.copy(y[i + xlen + maxarlag + maxhlag - 2])

X_use = np.copy(XX[maxarlag + maxhlag - maxfaclag - hlag:

maxhlag + maxarlag + i + xlen - 1 - hlag, :])

# do PCA

nr_factors_pca = nr_included_factors_pca(X_use)

eigval, eigvec, facs = do_pca(X_use, nr_factors_pca)

# facs = sort_factors(facs, maxfaclag)

# test and train variables, non-adjusted

resid_train = y_train - y_hat_train_ar

fac_train = facs[:-1, :]

fac_test = facs[-1, :]

# standardize and center, test and train variables, adjusted

fac_Adj = standardize(facs)

fac_trainAdj = fac_Adj[:-1, :]

fac_testAdj = fac_Adj[-1, :]

resid_trainAdj = resid_train - np.mean(resid_train)

# do EN on residual

y_hat_train_pcaen, minBeta_pcaen = cv_en(resid_trainAdj, fac_trainAdj)
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# forecast

y_hat_test_pcaen = fac_testAdj.dot(minBeta_pcaen) + y_hat_test_ar

# BMA

beta_pcbma0 = do_bma(300, 1000, resid_train, fac_train, 0)

beta_pcbma1 = do_bma(300, 1000, resid_train, fac_train, 1)

y_hat_test_pcabma0 = beta_pcbma0 @ fac_test + y_hat_test_ar

y_hat_test_pcabma1 = beta_pcbma1 @ fac_test + y_hat_test_ar

# save forecasts and check parameters

y_tested[i] = y_test

y_hats_ar[i] = y_hat_test_ar

y_hats_pcaen[i] = y_hat_test_pcaen

y_hats_pcabma0[i] = y_hat_test_pcabma0

y_hats_pcabma1[i] = y_hat_test_pcabma1

y_hat_reg[i] = y_hat_test_reg

arlag_coll[repitition, i] = ar_lag

inclfactors_coll[repitition, i] = nr_factors_pca

nonzerobetaPcaEn_coll[repitition, i] = np.sum(minBeta_pcaen != 0)

nonzerobetaPcaBma0_coll[repitition, i] = np.sum(beta_pcbma0 != 0)

nonzerobetaPcaBma1_coll[repitition, i] = np.sum(beta_pcbma1 != 0)

errors_ar[repitition, :] = y_tested - y_hats_ar

errors_pcaen[repitition, :] = y_tested - y_hats_pcaen

errors_pcabma0[repitition, :] = y_tested - y_hats_pcabma0

errors_pcabma1[repitition, :] = y_tested - y_hats_pcabma1

return [arlag_coll, inclfactors_coll, nonzerobetaPcaEn_coll,

nonzerobetaPcaBma0_coll, nonzerobetaPcaBma1_coll,
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errors_ar, errors_pcaen, errors_pcabma0, errors_pcabma1]

def all_simulations():

# run all simulations in this paper

import pickle

import numpy as np

Ts = [50, 100, 400]

nvars = 50

nfactors = [3, 5]

results1 = list()

results5 = list()

for ti in Ts:

print(ti)

for nfactorsi in nfactors:

print(nfactorsi)

for ar_lagsi in range(3):

print(ar_lagsi)

results1.append(

simulation(reps=100, T=ti, nvars=50, nfactors=nfactorsi,

xlen=20, ar_spec=ar_lagsi, maxfaclag=1,

hlag=1, delta1=0, delta2=0, a_errors=0, b_errors=0))

with open(’simulation_lag1static.pickle’, ’wb’) as output:

pickle.dump(results1, output)

for ti in Ts:

print(ti)

for nfactorsi in nfactors:
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print(nfactorsi)

for ar_lagsi in range(3):

print(ar_lagsi)

results5.append(

simulation(reps=100, T=ti, nvars=50, nfactors=nfactorsi, xlen=20,

ar_spec=ar_lagsi, maxfaclag=1,hlag=5, delta1=0, delta2=0,

a_errors=0, b_errors=0))

with open(’simulation_lag5static.pickle’, ’wb’) as output:

pickle.dump(results5, output)

for ti in Ts:

print(ti)

for nfactorsi in nfactors:

print(nfactorsi)

for ar_lagsi in range(3):

print(ar_lagsi)

results1.append(

simulation(reps=100, T=ti, nvars=50, nfactors=nfactorsi,

xlen=20, ar_spec=ar_lagsi, maxfaclag=1,hlag=1, delta1=0.25,

delta2=0.05, a_errors=0.1, b_errors=0.2))

with open(’simulation_lag1staticCorrHet.pickle’, ’wb’) as output:

pickle.dump(results1, output)

for ti in Ts:

print(ti)

for nfactorsi in nfactors:

print(nfactorsi)

for ar_lagsi in range(3):

print(ar_lagsi)
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results5.append(

simulation(reps=100, T=ti, nvars=50, nfactors=nfactorsi, xlen=20,

ar_spec=ar_lagsi, maxfaclag=1,hlag=5, delta1=0.25, delta2=0.05,

a_errors=0.1, b_errors=0.2))

with open(’simulation_lag5staticCorrHet.pickle’, ’wb’) as output:

pickle.dump(results5, output)

def smooth_data(X_use):

X = np.copy(X_use)

for j in range(X.shape[1]):

helper = np.copy(X[:, j])

cond = False

while cond == False:

hm = np.mean(helper)

hs = np.std(helper)

violations = 0

for i in range(X_use.shape[0]):

if helper[i] > hm + 3 * hs:

helper[i] = hm + 3 * hs

violations += 1

elif helper[i] < hm - 3 * hs:

helper[i] = hm - 3 * hs

violations += 1

if violations == 0:

cond = True

X[:, j] = helper

return X
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def sim_to_csv_wen():

# create a table from the simulation results

hlags = [1, 3, 5]

Ts = [50, 100, 400]

nfactors = [1, 5]

ar_configs = [’Config. 1’, ’Config. 2’, ’Config. 3’]

numbers = np.zeros((54, 12))

models = [’AR’, ’EN’, ’BMA0’, ’BMA1’, ’Reg’]

best_model = [’a’]*54

ar_config_used = [’a’] * 54

counter = 0

for hlagi in range(3):

filename = ’simulation_lag’ + str(hlags[hlagi]) + ’static.pickle’

with open(filename, ’rb’) as data:

dataset = pickle.load(data)

for ti in Ts:

for nfaci in nfactors:

for ar_lagsi in range(3):

dat = dataset[counter - hlagi * len(dataset)]

numbers[counter, 0] = hlags[hlagi]

numbers[counter, 1] = ti

numbers[counter, 2] = nfaci

ar_config_used[counter] = ar_configs[ar_lagsi]

for jl in range(6):

numbers[counter, jl + 3] = np.mean(np.mean(dat[jl]))

min_jl = 0

min_ratio = 1

comp = np.mean(np.mean(np.square(dat[5])))
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for jl in range(6, len(dat)):

numbers[counter, jl + 2] = np.mean(np.mean(

np.square(dat[jl]))) / comp

if np.mean(np.mean(np.square(dat[jl]))) / comp <= min_ratio:

min_jl = jl - 5

best_model[counter] = models[min_jl]

counter += 1

simu_results = pd.DataFrame(numbers, columns = [’hlag’, ’T’, ’# factors’,

’mean lags’, ’mean PCA facs’,’mean non-0 betas EN’, ’mean non-0 betas BMA0’,

’mean non-0 betas BMA1’, ’MSPE ratio EN’, ’MSPE ratio BMA0’,

’MSPE ratio BMA1’, ’MSPE ratio EN’])

simu_results[’AR Config’] = ar_config_used

simu_results[’Best model’] = best_model

simu_results = simu_results.iloc[:, [0, 1, 2, 12, 3, 4, 5, 6, 7, 13, 11, 8, 9, 10]]

simu_results.to_csv(’Simulation results.csv’)

def sim_to_csv_woen():

# table without elastic net

hlags = [1, 5]

Ts = [50, 100, 400]

nfactors = [3, 5]

ar_configs = [’Config. 1’, ’Config. 2’, ’Config. 3’]

numbers = np.zeros((36, 11))

models = [’AR’, ’EN’, ’BMA0’, ’BMA1’]

best_model = [’a’]*36

ar_config_used = [’a’] * 36

counter = 0

for hlagi in range(2):
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filename = ’simulation_lag’ + str(hlags[hlagi]) + ’staticCorrHet.pickle’

with open(filename, ’rb’) as data:

dataset = pickle.load(data)

for ti in Ts:

for nfaci in nfactors:

for ar_lagsi in range(3):

dat = dataset[counter - hlagi * len(dataset)]

numbers[counter, 0] = hlags[hlagi]

numbers[counter, 1] = ti

numbers[counter, 2] = nfaci

ar_config_used[counter] = ar_configs[ar_lagsi]

for jl in range(6):

numbers[counter, jl + 3] = np.mean(np.mean(dat[jl]))

min_jl = 0

min_ratio = 1

comp = np.mean(np.mean(np.square(dat[5])))

for jl in range(6, len(dat)):

numbers[counter, jl + 2] = np.mean(np.mean

(np.square(dat[jl]))) / comp

if np.mean(np.mean(np.square(dat[jl]))) / comp <= min_ratio:

min_jl = jl - 5

best_model[counter] = models[min_jl]

counter += 1

simu_results = pd.DataFrame(numbers, columns = [’hlag’, ’T’, ’# factors’,

’mean lags’, ’mean PCA facs’,’mean non-0 betas EN’, ’mean non-0 betas BMA0’,

’mean non-0 betas BMA1’,’MSPE ratio EN’, ’MSPE ratio BMA0’, ’MSPE ratio BMA1’])

simu_results[’AR Config’] = ar_config_used
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simu_results[’Best model’] = best_model

simu_results = simu_results.iloc[:, [0, 1, 2, 11, 3, 4, 5, 6, 7, 12, 8, 9, 10]]

simu_results.to_csv(’Simulation results.csv’)

def transformed_data():

# create a data series with the adjusted data set

data_df1 = pd.read_excel(’research_data.xlsx’, index_col=’year’, parse_dates=[0])

data = data_df1.to_numpy()

data = smooth_data(data)

data_df = pd.DataFrame(data, index=data_df1.index, columns=data_df1.columns)

data_df.to_csv(’adjustd_data.csv’)

def cv_tables():

# create the csv tables

import pickle

import numpy as np

with open(’cv_pca_staticforec.pickle’, ’rb’) as data:

stats_coll = pickle.load(data)

print(stats_coll[1])

nums = np.zeros((90, 5))

nums_short = np.zeros((36, 5))

nums_mid = np.zeros((54, 5))

facmeths = [’a’]*90

facmeths_short = [’a’]*36

facmeths_mid = [’a’] * 54
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mlmeths = [’a’] * 90

mlmeths_short = [’a’] * 36

mlmeths_mid = [’a’] * 54

facmeths_list = [’PCA’, ’SPCA’]

mlmeths_list = [’EN’, ’BMA0’, ’BMA1’]

counter = 0

counter_short = 0

counter_mid = 0

for i in range(5):

for j in range(i + 1):

for k in range(6):

nums[counter, 0] = i+1

nums[counter, 1] = j

nums[counter, 2] = stats_coll[k+1][i, 4 - i + j]

nums[counter, 3] = stats_coll[k+1][i, 9 - i + j]

nums[counter, 4] = stats_coll[k+1][i, 14 - i + j]

facmeths[counter] = facmeths_list[np.floor(k / 3).astype(int)]

mlmeths[counter] = mlmeths_list[int(k % 3)]

counter += 1

if ((i == 0) | (i == 4)):

nums_short[counter_short, 0] = i + 1

nums_short[counter_short, 1] = j

nums_short[counter_short, 2] = stats_coll[k+1][i, 4 - i + j]

nums_short[counter_short, 3] = stats_coll[k+1][i, 9 - i + j]

nums_short[counter_short, 4] = stats_coll[k+1][i, 14 - i + j]

facmeths_short[counter_short] = facmeths_list[np.floor(k / 3).
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astype(int)]

mlmeths_short[counter_short] = mlmeths_list[int(k % 3)]

counter_short += 1

else:

nums_mid[counter_mid, 0] = i + 1

nums_mid[counter_mid, 1] = j

nums_mid[counter_mid, 2] = stats_coll[k + 1][i, 4 - i + j]

nums_mid[counter_mid, 3] = stats_coll[k + 1][i, 9 - i + j]

nums_mid[counter_mid, 4] = stats_coll[k + 1][i, 14 - i + j]

facmeths_mid[counter_mid] = facmeths_list[np.floor(k / 3).astype(int)]

mlmeths_mid[counter_mid] = mlmeths_list[int(k % 3)]

counter_mid += 1

cv_res_short = pd.DataFrame(nums_short, columns = [’$h$’, ’gap’, ’Mean’,

’Median’, ’Std. Dev.’])

cv_res_short[’factor method’] = facmeths_short

cv_res_short[’ML method’] = mlmeths_short

cv_res_short = cv_res_short.iloc[:, [0, 5, 6, 1, 2, 3, 4]]

cv_res_short.to_csv(’CVResShort.csv’)

cv_res = pd.DataFrame(nums, columns=[’$h$’, ’gap’, ’Mean’, ’Median’, ’Std. Dev.’])

cv_res[’factor method’] = facmeths

cv_res[’ML method’] = mlmeths

cv_res = cv_res.iloc[:, [0, 5, 6, 1, 2, 3, 4]]

cv_res.to_csv(’CVRes.csv’)

cv_res_mid = pd.DataFrame(nums_mid, columns=[’$h$’, ’gap’, ’Mean’,

’Median’, ’Std. Dev.’])

cv_res_mid[’factor method’] = facmeths_mid
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cv_res_mid[’ML method’] = mlmeths_mid

cv_res_mid = cv_res_mid.iloc[:, [0, 5, 6, 1, 2, 3, 4]]

cv_res_mid.to_csv(’CVResMid.csv’)

def forecast_comp():

# create the forecast tables

import pickle

import pandas as pd

import numpy as np

import numpy as np

with open(’static_res_forecasts_break38.pickle’, ’rb’) as data:

forecasts = pickle.load(data)

imf_df = pd.read_excel(’imf estimates.xlsx’, index_col = [0], parse_dates = [0])

print(imf_df)

data_df = pd.read_excel(’research_data.xlsx’, index_col=’year’, parse_dates=[0])

all_forecasts = np.zeros((25, 11))

all_ferrors = np.zeros((10, 10))

best_model = [’a’]*10

fmodels = [’IMF’, ’AR’, ’PCA EN’, ’PCA BMA0’, ’PCA BMA1’, ’SPCA EN’,

’SPCA BMA0’, ’SPCA BMA1’]

counter = 0

e_counter = 0

for i in range(5):

print(i)

for j in range(5):

all_forecasts[counter, 0] = i + 1

all_forecasts[counter, 1] = 2014 + i + j

if i + j < 4:
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all_forecasts[counter, 2] = data_df.iloc[-4 + (i+j), 0]

all_forecasts[counter, 3] = imf_df.iloc[i+j, i]

for k in range(7):

all_forecasts[counter, 4 + k] = forecasts[k][i, j]

counter += 1

if i+j < 4:

all_ferrors[e_counter, 0] = i + 1

all_ferrors[e_counter, 1] = 2014 + i + j

all_ferrors[e_counter, 2] = data_df.iloc[-4 + (i+j), 0] -

imf_df.iloc[i + j, i]

for k in range(7):

all_ferrors[e_counter, 3 + k] = data_df.iloc[-4 + (i+j), 0] -

forecasts[k][i, j]

best_model[e_counter] = fmodels[np.argmin(np.abs(

all_ferrors[e_counter, 2:]))]

e_counter += 1

all_forecasts_df = pd.DataFrame(all_forecasts, columns =

[’$h$’, ’forecast for’, ’act. value’,’IMF estimate’, ’AR’, ’PCA EN’, ’PCA BMA0’,

’PCA BMA1’, ’SPCA EN’, ’SPCA BMA0’, ’SPCA BMA1’])

all_forecasts_df.replace(0, np.nan, inplace=True)

all_forecasts_df.to_csv(’forecast_comp.csv’)

all_ferrors_df = pd.DataFrame(all_ferrors,

columns=[’$h$’, ’forecast for’, ’IMF estimate’, ’AR’, ’PCA EN’,

’PCA BMA0’, ’PCA BMA1’, ’SPCA EN’, ’SPCA BMA0’, ’SPCA BMA1’])

all_ferrors_df[’best model’] = best_model

all_ferrors_df.to_csv(’ferrors_comp.csv’)
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def corr_heatmap():

# create teh correlation hatmap

import pandas as pd

import seaborn as sns

import matplotlib.pyplot as plt

import matplotlib

matplotlib.rc(’font’, size=5.5)

matplotlib.rc(’lines’, linewidth=1)

matplotlib.rcParams[’figure.figsize’] = (10, 7)

data_df1 = pd.read_excel(’research_data.xlsx’, index_col = ’year’, parse_dates=[0])

data = data_df1.to_numpy()

data = smooth_data(data)

data_df = pd.DataFrame(data, index = data_df1.index, columns = data_df1.columns)

corr = data_df.corr()

print(corr[’USA’])

ax = sns.heatmap(corr, vmin = -1, vmax = 1, center = 0, cmap =

sns.diverging_palette(10, 133,n = 200), square = True)

ax.set_xticklabels(ax.get_xticklabels(), rotation = 45, horizontalalignment =

’right’)

plt.show()

def corr_geomap():

# create the African correlation maps

import geopandas as gpd

import pandas as pd

shapefile = ’/Users/dominik/Downloads/ne_110m_admin_0_countries/

ne_110m_admin_0_countries.shp’
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gdf = gpd.read_file(shapefile)[[’ADMIN’, ’ADM0_A3’, ’geometry’]]

gdf.columns = [’country’, ’country_code’, ’geometry’]

#print(gdf.sort_values(’country’).country_code)

data_df1 = pd.read_excel(’research_data.xlsx’, index_col=’year’, parse_dates=[0])

data = data_df1.to_numpy()

data = smooth_data(data)

data_df = pd.DataFrame(data, index=data_df1.index, columns=data_df1.columns)

data_df = data_df.drop([’World’, ’USA’, ’Oil’, ’Gold’, ’Copper’, ’Rubber’, ’Coffee’],

axis=1)

corr = data_df.corr()

corr = corr.iloc[:, [0]]

names = pd.read_excel(’country_labels.xlsx’, index_col=0)

corr[’code’] = names.Code

corr.columns = [’Correlation’, ’Code’]

import numpy as np

to_add = pd.DataFrame({’Correlation’: [’No data’, ’No data’, ’No data’, ’No data’,

’No data’, ’No data’],’Code’: [’ERI’, ’SOM’, ’SWZ’, ’SOL’, ’SAH’, ’SDS’]},

index=[’Eritrera’,’Somalia’,’Swaziland’, ’Somalialand’,

’Western Sahara’, ’South Sudan’])

corr = corr.append(to_add)

merged = gdf.merge(corr, left_on=’country_code’, right_on=’Code’, how = ’inner’)

import json

merged_json = json.loads(merged.to_json())

json_data = json.dumps(merged_json)

from bokeh.io import output_notebook, show, output_file

from bokeh.plotting import figure
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from bokeh.models import GeoJSONDataSource, LinearColorMapper, ColorBar

#from bokeh.palettes import brewer

#from bokeh import palettes

geosource = GeoJSONDataSource(geojson=json_data)

palette = [’#005a32’, ’#238443’, ’#41ab5d’, ’#78c679’, ’#addd8e’, ’#d9f0a3’,

’#fdd49e’, ’#fdbb84’,’#fc8d59’,’#ef6548’,’#d7301f’, ’#990000’]

palette = palette[::-1]

color_mapper = LinearColorMapper(palette=palette, low=-1, high=1,

nan_color = ’#d9d9d9’)

color_bar = ColorBar(color_mapper=color_mapper, label_standoff=8,

width=500, height=20,border_line_color=None, location=(0, 0),

orientation=’horizontal’)

p = figure(plot_height=600, plot_width=950, toolbar_location=None)

p.xgrid.grid_line_color = None

p.ygrid.grid_line_color = None

p.patches(’xs’, ’ys’, source=geosource, fill_color={’field’: ’Correlation’,

’transform’: color_mapper},line_color=’black’, line_width=0.25, fill_alpha=1)

p.add_layout(color_bar, ’below’)

show(p)

def plot_y():

# plot the GDP growth

import pandas as pd

import matplotlib.pyplot as plt

import matplotlib

matplotlib.rc(’font’, size=8)

matplotlib.rc(’lines’, linewidth=1.5)

matplotlib.rcParams[’figure.figsize’] = (9, 6)
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data_df1 = pd.read_excel(’research_data.xlsx’, index_col=’year’, parse_dates=[0])

data = data_df1.to_numpy()

data = smooth_data(data)

data_df = pd.DataFrame(data, index=data_df1.index, columns=data_df1.columns)

data_df.iloc[:, 0].plot()

plt.ylabel(’annual real percentage growth’)

plt.show()

def spca_graph():

# create the SPCA graphs

import pandas as pd

import matplotlib.pyplot as plt

import pandas as pd

import matplotlib.pyplot as plt

import matplotlib

import numpy as np

matplotlib.rc(’font’, size=7)

matplotlib.rc(’lines’, linewidth=10)

matplotlib.rcParams[’figure.figsize’] = (10, 7)

data = pd.read_excel(’research_data.xlsx’, index_col=’year’, parse_dates=[0])

lambdas = pd.read_csv(’Lambdas.csv’, index_col = [0])

lambdas.index = data.columns[1:]

lambdas = lambdas.iloc[:, [-1, -2, -3]]

lambdas.columns = [’First SPC’, ’Second SPC’, ’Third SPC’]

for i in range(3):

lambdas.iloc[:, i] /= np.sum(lambdas.iloc[:, i])

ax = lambdas.loc[np.sum(lambdas, axis = 1) > 0, :].transpose().
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plot(kind = ’bar’, stacked = True)

#plt.legend(loc=’above’)#, bbox_to_anchor=(1.07, 0.5))

ax.set_xticklabels(ax.get_xticklabels(), rotation=45, horizontalalignment=’right’)

ax.legend(loc=’upper center’, bbox_to_anchor=(0.5, 1.12), ncol=8)

plt.show()

def pca_heatmap():

# create the PCA heatmap

import pandas as pd

import seaborn as sns

import matplotlib.pyplot as plt

import matplotlib

import numpy as np

matplotlib.rc(’font’, size=5.5)

matplotlib.rc(’lines’, linewidth=1)

matplotlib.rcParams[’figure.figsize’] = (15, 6)

data = pd.read_excel(’research_data.xlsx’, index_col=’year’, parse_dates=[0])

eigvec = pd.read_csv(’Eigvec.csv’, index_col=[0])

eigvec.index = data.columns[1:]

eigvec = eigvec.iloc[:, -np.arange(1, 28)]

colnames = []

for i in range(27):

if (i > 9) & (i < 14):

pcname = str(i + 1) + ’th PC’

elif i % 10 == 0:

pcname = str(i + 1) + ’st PC’

elif i % 10 == 1:

pcname = str(i + 1) + ’nd PC’
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elif i % 10 == 2:

pcname = str(i + 1) + ’rd PC’

else:

pcname = str(i + 1) + ’th PC’

colnames.append(pcname)

eigvec.columns = [colnames]

for i in range(27):

eigvec.iloc[:, i] /= np.sum(np.abs(eigvec.iloc[:, i]))

ax = sns.heatmap(eigvec.transpose(), vmin = -0.1, vmax = 0.1, center = 0,

cmap = sns.diverging_palette(10, 133, n = 200), square = True)

ax.set_xticklabels(ax.get_xticklabels(), rotation = 45,

horizontalalignment = ’right’)

plt.ylabel(’ith PC’)

plt.show()

def pca_eigval():

# show the PCA eigenvalues

import pandas as pd

import seaborn as sns

import matplotlib.pyplot as plt

import matplotlib

import numpy as np

matplotlib.rc(’font’, size=5.5)

matplotlib.rc(’lines’, linewidth=1)

matplotlib.rcParams[’figure.figsize’] = (10, 7)

data = pd.read_excel(’research_data.xlsx’, index_col=’year’, parse_dates=[0])

eigval_help = pd.read_csv(’Eigval.csv’, index_col=[0])
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eigval = np.zeros(28)

for i in range(27):

eigval[i] = eigval_help.iloc[-i].copy()

#eigval[:-1] = np.copy(eigval_help.iloc[-np.arange(1, 28)])

eigval[-1] = np.sum(eigval_help[:-28])

sum_keep = np.sum(eigval)

for i in range(28):

eigval[i] /= sum_keep

colnames = []

for i in range(27):

if (i > 9) & (i < 14):

pcname = str(i + 1) + ’th PC’

elif i % 10 == 0:

pcname = str(i + 1) + ’st PC’

elif i % 10 == 1:

pcname = str(i + 1) + ’nd PC’

elif i % 10 == 2:

pcname = str(i + 1) + ’rd PC’

else:

pcname = str(i + 1) + ’th PC’

colnames.append(pcname)

colnames.append(’rest’)

eigval = pd.DataFrame({’fraction of explained correlation’: eigval},

index = colnames)

ax = eigval.plot(kind = ’bar’, legend=False)

ax.set_xticklabels(ax.get_xticklabels(), rotation=45, horizontalalignment=’right’)

plt.show()
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def component_comparison():

# tables for PCA and SPCA comparison

import pandas as pd

import matplotlib.pyplot as plt

import matplotlib

import numpy as np

matplotlib.rc(’font’, size=5.5)

matplotlib.rc(’lines’, linewidth=1)

matplotlib.rcParams[’figure.figsize’] = (10, 7)

data = pd.read_excel(’research_data.xlsx’, index_col=’year’, parse_dates=[0])

eigvec = pd.read_csv(’Eigval.csv’, index_col=[0])

lambdas = pd.read_csv(’Lambdas.csv’, index_col=[0])

for i in range(eigvec.shape[1]):

eigvec.iloc[:, i] /= np.sum(eigvec.iloc[:, i])

for i in range(lambdas.shape[1]):

lambdas.iloc[i, :] /= np.sum(lambdas.iloc[:, i])

pc_fac = data.iloc[:, 1:].to_numpy() @ eigvec.to_numpy()[:, -1]

spc_fac = data.iloc[:, 1:].to_numpy() @ lambdas.to_numpy()[:, -1]

component_comp = data.iloc[:, :1]

component_comp.loc[:, ’First PC’] = pc_fac

component_comp.loc[:, ’First SPC’] = spc_fac

component_comp.to_csv(’princomps.csv’)

corr = component_comp.corr()

corr.to_csv(’pca_spca_corr’)

component_comp.plot()

plt.ylabel(’percentage annual growth’)

plt.show()
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def plot_autocorr():

# create the autocorrelation plots

import pandas as pd

import matplotlib.pyplot as plt

import matplotlib

import numpy as np

from statsmodels.graphics.tsaplots import plot_acf

matplotlib.rc(’font’, size=5.5)

matplotlib.rc(’lines’, linewidth=1)

matplotlib.rcParams[’figure.figsize’] = (10, 7)

res_df = pd.read_csv(’ferrors1.csv’, index_col=[0])

#matplotlib.pyplot.acorr(res_df.loc[:, ’PCA BMA1’], normed = False)

#plt.plot(10000 / (res_df.shape[0]**0.5), ’r’)

#autocorrelation_plot(res_df.loc[:, ’PCA BMA1’])

plot_acf(res_df.loc[:, ’PCA BMA1’].to_numpy(), lags = 20)

plt.xlabel(’lag’)

plt.ylabel(’autocorrelation’)

plt.show()

def plot_forecasts():

# plot the forecasts

import pandas as pd

import matplotlib

import numpy as np

import matplotlib.pyplot as plt

matplotlib.rc(’font’, size=7)
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matplotlib.rc(’lines’, linewidth=2)

matplotlib.rcParams[’figure.figsize’] = (10, 7)

forecasts_df = pd.read_csv(’forecast_comp.csv’, index_col = 2)

forecasts_df.index = pd.to_datetime(forecasts_df.index.astype(int), format=’%Y’)

import pickle

with open(’cv_pca_staticforec.pickle’, ’rb’) as data:

stats_coll = pickle.load(data)

errors_ar = np.zeros(25)

errors_pcabma1 = np.zeros(25)

errors_spcaen = np.zeros(25)

for i in range(5):

errors_ar[5*i: 5*(i+1)] = stats_coll[0][i, -5:]

errors_pcabma1[5*i: 5*(i+1)] = stats_coll[3][i, -5:]

errors_spcaen[5*i: 5*(i+1)] = stats_coll[4][i, -5:]

forecasts_df[’low_ar’] = forecasts_df[’AR’] - errors_ar

forecasts_df[’high_ar’] = forecasts_df[’AR’] + errors_ar

forecasts_df[’low_bma’] = forecasts_df[’PCA BMA1’] - errors_pcabma1

forecasts_df[’high_bma’] = forecasts_df[’PCA BMA1’] + errors_pcabma1

forecasts_df[’low_en’] = forecasts_df[’SPCA EN’] - errors_spcaen

forecasts_df[’high_en’] = forecasts_df[’SPCA EN’] + errors_spcaen

print(forecasts_df.columns)

for i in range(5):

ax = forecasts_df.iloc[5*i :5*(i+1), [2, 3, 4, 7, 8, 11, 12, 13, 14, 15, 16]].

plot(color =[’xkcd:black’, ’xkcd:steel blue’, ’xkcd:scarlet’,

’xkcd:sky blue’, ’xkcd:emerald green’,’xkcd:tomato red’, ’xkcd:tomato red’,

’xkcd:light blue’, ’xkcd:light blue’, ’xkcd:medium green’,’xkcd:medium green’],

style = [’.’, ’.’, ’-’, ’-’, ’-’, ’-.’, ’-.’, ’-.’, ’-.’, ’-.’, ’-.’])

fco = forecasts_df.columns
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ax.legend([fco[2], fco[3], fco[4], fco[7], fco[8], ’_nolegend_’,

’_nolegend_’, ’_nolegend_’, ’_nolegend_’,’_nolegend_’, ’_nolegend_’])

import datetime

datemin = forecasts_df.iloc[5*i :5*(i+1), :].index[0] - pd.Timedelta(days = 365)

datemax= forecasts_df.iloc[5*i :5*(i+1), :].index[-1] + pd.Timedelta(days = 366)

ax.set_xlim(datemin, datemax)

#ax.set_xticks = [’2014’, ’2015’, ’2016’, ’2017’, ’2018’]

plt.xlabel(’Year’)

plt.ylabel(’DRC Percentage annual real GDP growth’)

plt.show()

110


