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Abstract

This thesis investigates the estimation of the parameters of a mixed logit model. We

use maximum simulated likelihood estimation where we compare two methods to

evaluate the integrals in the simulated log likelihood of the mixed logit model. The

first method is the pseudo-random Monte Carlo (PMC) method, which uses pseudo-

random numbers to evaluate the integrals. The second method is the quasi-random

Monte Carlo (QMC) method, which uses Halton draws to evaluate the integrals.

We compare the performance of both methods with numerical experiments using

data about ketchup brand choices. We find that the QMC method provides better

accuracy, although the difference with the PMC method is small. We also considered

a latent class mixed logit (LCML) model as an extension of the mixed logit model.

However, based on the Bayesian information criterion we found that for our data set

the mixed logit model is preferred over the LCML model.
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1 | Introduction

The mixed logit model is a discrete choice model that, for example, can be used to analyze

preferences of individuals or to predict behaviour. This model is a lot more flexible than

the multinomial logit (MNL) model. The MNL model can be restrictive in modeling

behaviour because e.g. individuals are assumed to have the same preferences. The mixed

logit model, on the other hand, accounts for unobserved preference heterogeneity, which

means that some individuals might value certain variables differently than others.

Another model that also accounts for unobserved preference heterogeneity is the

latent clas logit model. In this model, it is assumed that there is a specific amount of

classes and within such a class the individuals are assumed to be homogeneous. However,

it could still be possible to have some heterogeneity within a class. To reveal additional

dimensions of preference heterogeneity within a class, we construct a latent class mixed

logit (LCML) model as described in Greene and Hensher (2013).

The estimation of the mixed logit and LCML model is however less straightforward

than for the MNL model. It is therefore very useful to know what the best and most

efficient estimation methods are for these models. We could estimate the parameters of

these models by optimizing the corresponding log likelihood function. However, this log

likelihood function consists of integrals and the number of integrals depends on the number

of independent variables. One could imagine that, if the number of independent variables

increases, optimizing the log likelihood function becomes really hard and time-consuming.

Fortunately, we can use simulation methods to evaluate the integrals in the log likelihood.

With these simulation methods, we are able to approximate the real log-likelihood using

the simulated log-likelihood. The simulation methods that we investigate in this thesis,

are the pseudo-random Monte Carlo (PMC) method and the Quasi-random Monte Carlo

(QMC) method. For the first method, we use pseudo-random draws and for the latter

method, we construct Halton draws.

In the first part of this thesis, we review the methods based on accuracy and

estimation speed using numerical experiments. The data, we use to investigate the

estimation methods, contains information about ketchup brand choices from 300 households

with a total of 2798 observations in Springfield, Missouri (Jain et al., 1994). In the second
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part of this thesis, we use the method that seems to provide the best accuracy in three

different empirical applications with our data set. We consider here a mixed logit model

with either normal distributed dependent or independent coefficients and the latent class

logit model with normal distributed independent coefficients.

We find, based on the numerical experiments, that the accuracy provided by the

PMC and the QMC method improves if the number of draws increases. We find that

the PMC method with 25 draws provides better accuracy than the QMC method with

25 draws. If the number of draws is equal to 50 or more, the QMC method provides,

depending on the number of draws, about 1 to 5% better accuracy compared to the

PMC method. These results are not consistent with earlier research about this topic,

like Bhat (2001), where they concluded that the QMC method provides a considerably

better accuracy with much fewer draws than the PMC method needs to achieve the same

accuracy.

We find, for our data set, that the mixed logit model, where the coefficients are

assumed to be independent and follow the normal distribution, is preferred over the

mixed logit model where the coefficients are assumed to be correlated and follow the

multivariate normal distribution. The mixed logit model with independent, normal

distributed coefficients is also preferred over the latent class mixed logit model with

independent, normal distributed coefficients.

Many researchers can potentially benefit from the results of this thesis. Unobserved

heterogeneity is a frequent occurring phenomenon and it is therefore essential to have a

model that is able to best capture this. With the results of this thesis, it becomes clear

what the best approach is to estimate these models. Hence, researchers are less prone to

making errors and they could save time by using the most efficient and fastest estimation

method.

The structure of the thesis is as follows. Section 2 gives an overview of some of

the existing literature on this topic. Section 3 explains the data we use in our research.

Section 4 describes the methods in our research in more detail and Section 5 gives the

results. Finally, in Section 6 we give a conclusion.
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2 | Literature

The mixed logit model is an often used model and is being used for quite some time

now. Therefore, much literature is available on this topic. The mixed logit model was

introduced in Boyd and Mellman (1980) and Cardell and Dunbar (1980). Due to an

increase in computer power since this time period, this model became more popular and

researchers were able to make better use of this model because simulation went a lot

faster.

The starting point of our research is Bhat (2001). In this paper, the author compares

three different methods to evaluate the integrals in the likelihood function of a mixed logit

model. The methods he compares are the polynomial-based cubature (PBC) method, the

pseudo-random Monte Carlo (PMC) method and the quasi-random Monte Carlo (QMC)

method. The author uses data on intercity travel mode choices. The independent variables

he is using in the model comes from actual field data. The choice process, however, is

generated by simulating normal distributed random coefficients. The author finds that the

QMC method provides better accuracy in a lot less computation time than the PBC and

PMC method. Furthermore, the QMC method needs much fewer draws than the PMC

method to reach the same accuracy. Just like Bhat (2001), we also compare the PMC

and the QMC method. The difference, however, is that we also consider coefficients that

are assumed to be multivariate normal distributed instead of only independent normal

distributed coefficients.

Train (2000) find similar results as in Bhat (2001) in another application. However,

the author also warns us that there is much that remains to be investigated when using

Halton draws for estimating a mixed logit model. The author explains that there might

be a relationship between the number of draws used per observation and the primes

that are used to create the Halton draws. One of the questions that stays unsolved here

is if this is desirable or not. Bhat (2003) describes a solution for such a relationship,

namely scrambled Halton draws. The author finds that the use of scrambled Halton draws

improves the efficiency and the estimation speed of the QMC method compared to the

use of regular Halton draws in a model with high dimensions (i.e. ≥ 10). However, we

only consider models with low dimensions (i.e. ≤ 10) and therefore we do not need to use
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scrambled Halton draws.

Hensher and Greene (2003) discusses the mixed logit model and the experiences of

active researchers working on the mixed logit model at the time of publishing. They found

that the main challenge the researchers face with the mixed logit model comes from the

data they use. The mixed logit model demands better quality data than the multinomial

logit model. They argue that better quality data is needed to better understand the true

behavioural variability between individuals.

We also consider the latent class mixed logit (LCML) model, described in Greene

and Hensher (2013). This is an extension to the latent class model. The LCML model

also allows preference heterogeneity within each class in contrast to a latent class model

where preference homogeneity is usually assumed within a class. They argue that the

gains of allowing random parameters in a latent class model, probably depends on the

data-set. Therefore, they conclude that more research should be done on this model with

more data sets. Using our data set of ketchup brand choices, we can thus contribute to

their research.

3 | Data

The data we use for our research is panel data describing purchases of ketchup of households

in Springfield, Missouri in a time period of about two years (Jain et al., 1994). We have

information about 300 households with a total of 2798 observations. The data contains

information about two brands of ketchup, namely Heinz and Hunts. Heinz sells three

different sizes of 41, 32 and 28 ounces and Hunts is selling only one size of 32 ounces. We

have information on all four products about the price, if the product is on display and if

there is a newspaper feature advertisement for the product at the time of purchase.

Table 1 summarizes the characteristics of the dependent and explanatory variables

for the four products. In the table, we see that Heinz (32 oz.) has the highest market share

of 52.1%. This product has also the lowest average price and was on display the most of

all four products. Heinz (28 oz.) has the most feature advertisements in the newspaper

and is on display and has a feature at the same time the most of all four products.

Furthermore, the data shows us that the average price of Heinz (41 oz.) has a
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Table 1: Characteristics of the dependent variable and explanatory variables for two ketchup
brands with varying sizes

Variables Heinz (41 oz.) Heinz (32 oz.) Heinz (28 oz.) Hunts (32 oz.)

Choice percentage 0.065 0.521 0.304 0.110

Average price (US$/oz.) 0.113 0.098 0.154 0.105
% display onlya 2.14 8.61 6.15 3.54
% feature onlyb 3.14 5.22 5.36 3.65
% feature and displayc 0.11 1.32 1.50 0.93

Notes:
a Percentage of purchase occasions when a brand was on display only
b Percentage of purchase occasions when a brand was featured only.
c Percentage of purchase occasions when a brand was on display and featured.

standard deviation of about 0.011. The minimum average price of Heinz (41 oz.) is $0.049

and the maximum $0.176. The standard deviation of the average price of Heinz (32 oz.)

is about 0.017 and has a minimum and maximum average price of respectively $0.009 and

$0.134. The standard deviation of the average price of Heinz (28 oz.) is about 0.027 and

has a minimum and maximum average price of respectively $0.004 and $0.429. Lastly,

the standard deviation of the average price of Hunts (32 oz.) is about 0.017 and has a

minimum and maximum average price of respectively $0.009 and $0.272.

4 | Methodology

4.1 Mixed logit model

The mixed logit model is a discrete choice model that, as mentioned before, accounts for

unobserved preference heterogeneity. The notations and derivations used in this section

come from Train (2009). The general form of the mixed logit model can be derived from

the utility. The utility function for individual i of alternative j at choice time t is given

as:

Uijt = β
′

ixijt + εijt (4.1)

where xijt is a (K × 1) vector of K observed independent variables for individual i for

alternative j at choice time t. βi is a vector of K coefficients specific to individual i with
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density f(βi|θ), where θ represents the parameters of this density function . Furthermore,

εijt is a random term which is i.i.d. type 1 extreme value distributed. Moreover, we have

that i ∈ {1, ..., N}, j ∈ {1, ..., J} and t ∈ {1, ..., Ti}. Individual i then chooses alternative

j at choice time t if and only if Uijt > Uilt ∀l 6= j.

The mixed logit formula, which gives us the unconditional probability that individual

i chooses alternative j at choice time t, is then given as:

Pijt(θ) =

∫
Lijt(βi)f(βi|θ)dβi (4.2)

where Lijt(βi) is the logit probability conditional on βi and is given as:

Lijt(βi) =
exp(β

′
ixijt)∑L

l=1 exp(β
′
ixilt)

(4.3)

such that the mixed logit probability can be written as:

Pijt(θ) =

∫
exp(β

′
ixijt)∑L

l=1 exp(β
′
ixilt)

f(βi|θ)dβi (4.4)

The mixing distribution f(βi|θ) can be either discrete or continuous. The normal, log-

normal, triangular or uniform distribution are often used distributions for the mixed

logit model. In our research, we only focus on the univariate and multivariate normal

distribution.

4.1.1 Parameter estimation

To get the estimates of the parameters of the mixed logit model, one can use maximimum

likelihood estimation. The likelihood contribution for individual i may be written as:

`i =

∫ Ti∏
t=1

J∏
j=1

Lijt
δijtf(βi|θ)dβi =

∫ Ti∏
t=1

J∏
j=1

[
exp(β

′
ixijt)∑L

l=1 exp(β
′
ixilt)

]δijt
f(βi|θ)dβi (4.5)
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where δijt is a dummy equal to 1 if individual i chooses alternative j at choice time t and

zero otherwise. The likelihood function is then defined as:

L =
N∏
i=1

`i =
N∏
i=1

∫ Ti∏
t=1

J∏
j=1

[
exp(β

′
ixijt)∑L

l=1 exp(β
′
ixilt)

]δijt
f(βi|θ)dβi (4.6)

and the log likelihood can then be written as:

L =
N∑
i=1

ln

∫ Ti∏
t=1

J∏
j=1

[
exp(β

′
ixijt)∑L

l=1 exp(β
′
ixilt)

]δijt
f(βi|θ)dβi

 (4.7)

Due to the fact that the log likelihood in (4.7) contains multiple integrals, it can be

very hard and time consuming to optimize this expression. Therefore, we use maximum

simulated likelihood estimation (MSLE) to get the parameter estimates. The simulated

log likelihood (SLL) is given by:

SLL =
N∑
i=1

ln

 1

R

R∑
r=1

 Ti∏
t=1

J∏
j=1

[
exp(βr

′
i xijt)∑L

l=1 exp(β
r′
i xilt)

]δijt (4.8)

with R equal to the number of draws used in the optimization of this function.

The pseudo-random Monte Carlo (PMC) method and the quasi-random Monte Carlo

(QMC) method can be used to generate the R draws {βri }Rr=1 for every i ∈ {1, ..., N}. If

we let βi be independent and follow the normal distribution, such that βi,k ∼ N (µk, σ
2
k),

we can write:

βri,k = µk + σks
r
i,k (4.9)

where sri,k is a standard normal variate, generated with the PMC or QMC method.

If we allow the coefficients to be correlated, such that the coefficients follow the

multivariate normal distribution, we have that βi ∼ N (µ,Σ). This means that:

βri = µ+ Lsri (4.10)

where L is the Choleski factor of Σ, such that LL′
= Σ and sri is a (K × 1) vector of

standard normal variates.
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In both situations, we can optimize the SLL using the BFGS method, such that

we get the estimates µ̂k and σ̂k if the coefficients are independent and µ̂ and Σ̂ if the

coefficients are correlated.

The difference between the PMC and the QMC method lies in the way how matrix

Si is generated. The PMC method directly generates a (R×K) matrix Si of standard

normal random numbers for every individual i. We then optimize (4.8) where sri,k is the

element at position (r, k) of matrix Si specific to individual i.

The QMC method generates matrix Si for individual i using Halton draws. By

taking the inverse cumulative normal of a Halton draw, one can obtain a standard normal

variate needed in matrix Si. Halton draws are said to span the M-dimensional unit cube

in a more equal way than random draws from the uniform distribution with parameters

0 and 1. One can see in Figure 1 that the pseudo-random sequence, generated from a
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(a) Pseudo-random sequence
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(b) Halton sequence

Figure 1: 1000 draws from a pseudo-random sequence and from a Halton
sequence in two dimensions

uniform distribution with parameters 0 and 1, are more clumped together and provide a

less even coverage along the two-dimensional space than the Halton sequence.

We can create a Halton sequence by first choosing a prime p. Then, we can iteratively

9



create a Halton sequence, where the sequence is defined at iteration t+ 1 as:

ht+1 = {ht, ht +
1

pt
, ht +

2

pt
, ..., ht +

p− 1

pt
} (4.11)

with h1 = {0}. We are now able to create a matrix Si for every individual i using Halton

draws. We need K different primes to create K Halton sequences with each N ∗ R + c

Halton draws, where c is the maximum value of the K primes. We then discard the first

c elements of all Halton sequences to prevent that there is correlation between the K

sequences. We then merge all Halton sequences to create one matrix and we call this the

Halton matrix which has dimension (N ∗R)×K. Now, we can make matrix Si for every

individual i if we split the Halton matrix into N different submatrices with dimension

R×K and taking the inverse cumulative normal of every element in these matrices. Now

that we have a matrix Si for every individual, we can again optimize the SLL.

Maximimum simulated likelihood (MSL) is consistent, asymptotically normal and

efficient and asymptotically equivalent to maximum likelihood if the number of draws R

rises faster than sample size S. If R rises slower than sample size S, MSL is still consistent

but not asymptotically normal. Finally, if R is fixed, the simulation bias will rise as S

rises and therefore MSL is inconsistent in this situation. This means that if the number

of draws rises faster than the sample size, the MSL estimator θ̂ is distributed as follows:

θ̂
a∼ N (θ,−H−1/S) (4.12)

where θ are the true parameters and the information matrix:

−H = −E

(
∂2SLL(θ)

∂θ∂θ′

)
(4.13)

with SLL(θ) equal to the SLL evaluated at parameters θ. The standard error of the jth

estimated parameter θ̂j can then be calculated as
√
−ĥ

−1

jj /S where ĥjj is the jth diagonal

element of the information matrix evaluated at estimated parameters θ̂.
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4.1.2 Parameter interpretation

Now that we estimated the parameters, the question remains how to interpret these results.

If we assume that βi,k is independent and follows the normal distribution, we get from

the estimation of the mixed logit model that βi,k ∼ N (µ̂k, σ̂
2
k) for all k ∈ {1, ..., K}. With

the cumulative distribution function (CDF) of the normal distribution with parameters

µ̂k and σ̂k, we can calculate the probability that β̂i,k has a value less than zero. If this

probability is equal to p, we know that the share of individuals, for which an increase of

variable k for alternative j has a negative effect on the probability of choosing alternative

j, is equal to p. Hence, the share of individuals, for which an increase of variable k for

alternative j has a positive effect on the probability of choosing alternative j, is equal to

p− 1. If we assume that the coefficients are correlated and follow the multivariate normal

distribution, we can find similar results if we use the CDF of the multivariate normal

distribution. We can then calculate P(βi ≤ b), with b a vector of values. Since we are

interested in the probability that a parameter is less than zero, we set the corresponding

element in vector b to zero and the remaining elements to +∞. Likewise, we can also

calculate the probability that multiple parameters are less than zero. These probabilities

are numerically estimated as described in Botev (2017).

4.2 Latent class mixed logit model

As an extension to the latent class model, Greene and Hensher (2013) came up with the

latent class mixed logit model. This model reveals additional dimensions of preference

heterogeneity. In a latent class model, as described in Greene and Hensher (2003), we

assume that there are Q groups in the population. Within such a group, the individuals

are homogeneous and share the same interests, but the groups are different from each

other. In a latent class mixed logit model, however, it is also possible to have heterogeneity

within a group.

It is unknown to the researcher in which class an individual belongs. However, we

do know that the probability that an individual is in class q is given by:

P (class = q) = πq, q = 1, ..., Q (4.14)
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with 0 ≤ πq ≤ 1 ∀q and
∑

q πq = 1.

The probability that individual i chooses alternative j at choice time t is now given

as:

Pijt(θ) =

Q∑
q=1

πq

∫
exp(β

′
iqxijt)∑L

l=1 exp(β
′
iqxilt)

f(βiq|θ)dβiq (4.15)

where f(βiq|θ) is the density function and θ represents the parameters of this density.

4.2.1 Parameter estimation

To estimate the parameters of this model, we again use MSLE and the SLL is now given

as:

SLL =
N∑
i=1

ln

 Q∑
q=1

πq
1

R

R∑
r=1

 Ti∏
t=1

J∏
j=1

[
exp(βr

′
iqxijt)∑L

l=1 exp(β
r′
iqxilt)

]δijt (4.16)

with δijt again a dummy equal to 1 if individual i chooses alternative j at choice time

t and zero otherwise and R is equal to the number of draws used in the optimization.

Furthermore, we now only assume that βiq follows the normal distribution for every

i ∈ {1, ..., N} and q ∈ {1, ..., Q}, such that βiq,k ∼ N (µq,k, σ
2
q,k). Thus, we can write:

βriq = µq,k + σq,ks
r
i,k (4.17)

where sri,k is a standard normal variate. With the PMC or QMC method, we can generate

the R draws {βriq}Rr=1 for every i ∈ {1, ..., N} and q ∈ {1, ..., Q}, in a similar way as for

the mixed logit model. Optimizing (4.16) then gives us the parameter estimates π̂q, µ̂q,k

and σ̂q,k for every j ∈ {1, ..., J}, q ∈ {1, ..., Q} and k ∈ {1, ..., K}. The standard errors

can again be calculated as described in subsection 4.1.1

Since it is unknown what the optimal number of classes should be in the model,

we have to estimate the parameters with a different number of classes. Based on the

Bayesian Information Criterion (BIC) (Schwarz et al., 1978), we then choose what the

optimal number of classes should be.
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4.2.2 Parameter interpretation

The interpretation of the parameters for the LCML model is similar to the interpretation

of the parameters of the mixed logit model. From the estimation of the model, we now

find that βiq,k ∼ N (µ̂q,k, σ̂
2
q,k) for all k ∈ {1, ..., K} and q ∈ {1, ..., Q}. Again, with the

cumulative distribution function (CDF) of the normal distribution with parameters µ̂q,k

and σ̂q,k, we can calculate the probability that βiq,k has a value less than zero. If this

probability is equal to p, we know that the share of individuals in class q, for which an

increase of variable k for alternative j has negative effect on the probability of choosing

alternative j, is equal to p. Hence, the share of individuals in class q, for which an increase

of variable k for alternative j has a positive effect on the probability of choosing alternative

j, is equal to p− 1.

5 | Results

5.1 Comparison of the PMC and QMC method

To compare the performance of the PMC and the QMC method on the estimation of the

mixed logit model, we do numerical experiments. To do this, we use the data as described

in Section 3. However, we now use simulated choices instead of the actual choices made

by the individuals. To simulate these choices, we calculate the utilities for every choice

alternative per observation for every individual based on (4.1). The variables that we

use to calculate the utility are price, display (i.e. dummy equal to 1 if the product is on

display) and feature (i.e. dummy equal to 1 if the product has newspaper feature).

The coefficients for each individual are here assumed to be independent and are

drawn from a normal distribution. The coefficient for price is drawn for every individual

from a normal distribution with mean -1.5 and standard deviation 1. The coefficient for

display is drawn with mean 1 and standard deviation 0.75 and the coefficient for feature

is also drawn with mean 1 and standard deviation 0.75. Furthermore, the alternative

specific constants are also drawn from a normal distribution, except the alternative specific

constant for Hunts (32 oz.) which is set to zero for identification. The mean and standard
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deviation of the intercept for Heinz (41 oz.) are 1.25 and 0.9 respectively. The mean and

standard deviation of the intercept for Heinz (32 oz.) are 1.5 and 1 respectively. The mean

and standard deviation of the intercept for Heinz (28 oz.) are 2.5 and 1.8 respectively.

The means are based on the parameter estimates when estimating the parameters of a

conditional logit model with the data with the true choices. The standard deviations

are approximately three-fourths of the corresponding means. Finally, the error terms are

generated from the standard type I extreme value distribution.

The utilities for every individual for every alternative at every choice time are then

calculated based on these randomly drawn coefficients and the choice alternative with the

highest utility is then set as the chosen alternative.

We can now compare the performance of the PMC and QMC method based on the

simulated choices. This is done by estimating the parameters of the mixed logit model

using 25, 50, 100, 250 and 500 random draws per individual for the PMC method and

with the same number of Halton draws per individual for the QMC method. For every

number of draws, we estimate the parameters a hundred times using a different matrix Si

for every individual each estimation. For the PMC method, this is done by generating a

new matrix Si by generating its elements from a standard normal distribution. To obtain

a different matrix Si using the QMC method, we use a different combination without

replacement of the first six primes to create Halton draws and then generating matrix Si

each estimation. The SLL was programmed in C++ and using the RCPP package then

optimized in R. The optimization was done on a computer with an Intel Core i7 3.20 GHz

processor with 16GB of RAM.

The performance is based on the proximity of the estimated parameters to the

true parameters. This is done by evaluating the root mean square error (RMSE) of the

parameters and is calculated as follows:

RMSE =

√∑M
m=1(θ̂m − θ)2

M
(5.1)

where θ̂m is the estimated parameter of the mth estimation, θ is the true parameter and

M is the number of times the parameter is estimated, which in our case equal to hundred.

The RMSE for every parameter for every different number of draws for both methods
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can be found in A.1. In Table 2, the sum of all RMSE’s for both methods is given, which

makes it easier to interpret the results. Furthermore, the average time to convergence is

also given.

Table 2: RMSE for the pseudo-random Monte Carlo method and Quasi-random Monte Carlo method.

Pseudo-random Monte
Carlo method

Quasi-random Monte
Carlo method

Number of draws Number of draws
25 50 100 250 500 25 50 100 250 500

RMSE 3.882 3.610 3.289 2.997 2.880 3.900 3.575 3.136 2.900 2.773

Average time to
convergence (min.) 0.62 1.20 2.18 5.26 9.88 0.62 1.19 2.20 4.97 9.64

Table 2 shows us that an increase in the number of draws leads to a lower RMSE

for both estimation methods. Furthermore, the QMC method always has a lower RMSE

compared to the PMC method if the number of draws is the same, except if the number

of draws is equal to 25. However, the differences are small. We find that if the number of

draws is 50 or larger, the QMC method results in a RMSE which is about 1 to 5% lower

than the PMC method. Furthermore, the time to convergence is similar for both methods

if the same number of draws is used.

5.2 Empirical applications

5.2.1 Mixed logit model with independent normal coefficients

To get a better insight into the mixed logit model, we consider the original data about

ketchup brand choices. It is now assumed that the coefficients are independent and follow

the normal distribution. We estimate the parameters of this model using the QMC method

with 500 Halton draws per individual since this method resulted in the lowest RMSE

according to our numerical experiment. Of course, adding more draws per individual will

probably decrease the RMSE even more. However, according to theory, using 500 Halton

draws will result in asymptotically consistent and efficient estimators for our data and

therefore using 500 Halton draws is sufficient. The parameter estimates can be found in

Table 3.
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Table 3: Parameter estimates.

Variables µ σ

Intercepts
Heinz(41 oz.) 1.948*** 0.641

(0.183) (0.394)
Heinz(32 oz.) 1.734*** 1.747***

(0.144) (0.075)
Heinz(28 oz.) 3.204*** 1.263***

(0.165) (0.110)

Marketing variables
Display 1.119*** 0.750*

(0.145) (0.420)
Feature 1.277*** 0.751*

(0.167) (0.440)
Price -2.097*** 1.152***

(0.117) (0.089)

SLL -2082.4
BIC 4260.0
Time to
convergence (min.) 11.9

Notes:
*** significant at the 1% level, ** significant
at the 5% level, * significant at the 10% level.
The standard errors are given in parentheses.
Hunts(32 oz.) is used as base brand.

First, we examine the marketing variables and how to interpret these results. Based

on the estimates, we find that for roughly 97% of the individuals, an increase in the price

of a product has a negative effect on the choice probability of this product. Hence, an

increase of the price of a product has a positive effect on the choice probability of this

product for 3% of individuals. Furthermore, for roughly 96% of individuals a newspaper

feature for a product has a positive impact on the choice probability on choosing this

product. Finally, a display for a product has positive impact on the choice probability of

this product on about 93% of individuals

Secondly, we examine the intercepts, since they can give us information about the

preference for a certain product if all marketing variables are equal for every product.
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Since Hunts (32 oz.) is used as base brand, the preferences are relative to this brand. The

probability that the intercept of Heinz (28 oz.) is lower than zero is smaller than 1%,

meaning that less than 1% of individuals prefer Hunts (32 oz.) over Heinz (28 oz.) if their

marketing variables are the same. With similar analysis, we find that roughly 16% of

individuals prefers Hunts (32 oz.) over Heinz (32 oz.). Since the standard deviation of

the intercept of Heinz (41 oz.) is not significantly different from zero at the 10% level, it

seems that there always is a preference for Heinz (41 oz.) over Hunts (32 oz.).

5.2.2 Mixed logit model with multivariate normal coefficients

We now consider the mixed logit model, where the coefficients are assumed to be correlated

and follow the multivariate normal distribution. We again estimate the parameters of this

model with the QMC method with 500 Halton draws per individual for the same reasons

as given before, such that we find βi ∼ N (µ̂, Σ̂). The estimates µ̂ are given in Table 4

and given that Σ̂ = L̂L̂
′ , we find that:

Σ̂ =



4.174 4.057 4.483 0.732 −0.087 0.369

4.057 6.627 3.665 1.917 −0.595 0.281

4.483 3.665 5.693 −0.051 −0.190 −0.355

0.732 1.917 −0.051 1.190 0.115 0.459

−0.087 −0.595 −0.190 0.115 0.619 0.137

0.369 0.281 −0.355 0.459 0.137 1.365


with estimated L̂ and corresponding standard errors given in A.2.

With these results, it is now possible to calculate the share of individuals whose

brand choice is either positively or negatively affected by a certain marketing variable.

We now find that a product on display positively affects the choice probability of this

product for about 86% of individuals. Furthermore, a product with a newspaper feature

positively affects the choice probability of this product for about 96% of individuals and

an increase of the price of a product has a negative impact on the choice probability of

this product for about 97% of individuals. These results are similar to what we find for

the mixed logit model with independent coefficients.

By examining the intercepts, we can obtain information about the preference of

a product if the marketing variables are the same for every product. Hunts (32 oz.) is
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Table 4: Parameter estimates.

Variables µ

Intercepts
Heinz(41 oz.) 2.844***

(0.271)
Heinz(32 oz.) 2.513***

(0.243)
Heinz(28 oz.) 4.134***

(0.269)

Marketing variables
Display 1.162***

(0.159)
Feature 1.347***

(0.180)
Price -2.177***

(0.129)

SLL -2028.3
BIC 4271.0
Time to
convergence (min.) 44.8

Notes:
*** significant at the 1% level, **
significant at the 5% level, * sig-
nificant at the 10% level.
The standard errors are given in
parentheses.
Hunts(32 oz.) is used as base
brand.

used as base brand and the preferences are therefore relative to this brand. We find that

Heinz (41 oz.) is preferred over Hunts (32 oz.) by about 92% of individuals, Heinz (32

oz.) by about 84% and Heinz (28 oz.) by about 96% if all marketing variables are equal.

These results are also similar to what we find for the mixed logit model with independent

coefficients.

This model, however, results in a higher BIC than the model with independent

normal distributed coefficients. This means that the model with independent coefficients

is preferred over this model with correlated coefficients.
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5.2.3 Latent class mixed logit model

We now consider the latent class mixed logit model on our data, where the coefficients

are assumed to be independent and normal distributed. To see what the optimal number

of classes in the model should be, we examine the BIC for the LCML with a different

number of classes. The estimation is again done using the QMC method with 500 Halton

draws per individual. We start by estimating the parameters of a model with two classes.

Then, we estimate the parameters with three classes. If the BIC is lower for the model

with three classes, we estimate the parameters with four classes and so forth. Table 5

shows these results.

Table 5: Results for LCML models with different
number of classes.

Number of classes
2 3 4

SLL -2045.0 -2028.3 -2027.6
BIC 4288.4 4358.2 4460.0
Parametersa 25 38 51
Time to
convergence (min.) 80.3 247.8 584.6

Notes:
a Number of parameters in the model to be esti-
mated

The latent class mixed logit model with two classes has the lowest BIC, with a value

of 4288.4. Table 6 shows the parameter estimates of this model. Based on these estimates,

the effects of a change of a variable on the choice probability of a product can again be

calculated in both classes. It seems, for example, that a product on display has no impact

on the choice probability of this product for individuals in class 2, while it does have a

positive effect on the choice probability for individuals in class 1. Furthermore, it seems

that almost all individuals in class 1 prefer any size of Heinz ketchup over Hunts (32 oz.)

if all marketing variables are the same. Individuals in class 2, on the other hand, seem to

prefer Hunts (32 oz.) over Heinz (32 oz.) and are indifferent between Heinz (41 oz.) and

Hunts (32 oz.) if the marketing variables are the same.

We can compare the BIC of the LCML model with the BIC of the mixed logit
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Table 6: Parameter estimates of LCML model with 2 classes.

Class
1 2

Variables µ σ µ σ
Intercepts

Heinz(41 oz.) 2.945***
(0.260)

0.447
(0.852)

0.023
(0.558)

0.726
(1.113)

Heinz(32 oz.) 2.760***
(0.219)

1.704***
(0.096)

-0.511**
(0.224)

0.547
(0.631)

Heinz(28 oz.) 4.053***
(0.239)

0.936***
(0.177)

1.560***
(0.472)

1.838***
(0.216)

Marketing variables

Display 1.428***
(0.164)

0.009
(19.277)

-0.117
(0.362)

0.009
(24.522)

Feature 1.407***
(0.202)

0.564
(0.736)

1.017**
(0.448)

0.377
(2.778)

Price -1.932***
(0.143)

1.060***
(0.116)

-2.459***
(0.265)

0.011
(16.877)

π 0.801 0.199

Notes:
*** significant at the 1% level, ** significant at the 5% level, * significant
at the 10% level.
The standard errors are given in parentheses. Hunts(32 oz.) is used as
base brand. π denotes the share of individuals in the corresponding class.

model with independent coefficients, which can be seen as a LCML model with just one

class. The BIC of the mixed logit model is 4260.0, which is lower than the BIC of the

LCML model with two classes. Hence, the mixed logit model fits the data better than

the LCML model. Furthermore, the time to convergence is much more compared to the

mixed logit model and every class that we add to the model drastically increases the time

to convergence. This can be explained with the fact that we add thirteen new parameters

to the model to be estimated if we increase the number of classes by one.

6 | Conclusion

In this research, we evaluated the integrals of the log likelihood function of the mixed logit

model with two different methods, i.e. the pseudo-random Monte Carlo and Quasi-random
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Monte Carlo method. We compared both methods based on their accuracy using numerical

experiments. Based on these numerical experiments, we find that the accuracy of both

methods increases if the number of draws increases. Furthermore, we find that the QMC

method has a better accuracy than the PMC method if the number of draws is the same,

but larger than 50. The QMC method provides in this situation between 1 to 5% better

accuracy.

In conclusion, we can say that although the QMC method provides a better accuracy,

our results are not completely consistent with earlier research about this topic, like Bhat

(2001). According to this paper, we should find that the QMCmethod provides considerably

better accuracy with much fewer draws needed than the PMC method to obtain the same

accuracy, which is not the case in our research. This means that the actual benefits of

using the QMC method might depend on the data set and this should thus be investigated

in more detail.

In the second part of this research, we considered three models with the data set

about ketchup brand choices. We considered a mixed logit model with normal distributed

independent coefficients, a mixed logit model with multivariate normal distributed coef-

ficients and a latent class class mixed logit model with normal distributed independent

coefficients. In all three applications, it seems that a product on display has a positive

effect on the choice probability of this product for a majority of individuals. A newspaper

feature also has a positive effect and an increase in price a negative effect on the choice

probability of a product for the majority of individuals in all three models. Finally, we find

that the mixed logit model with independent normal distributed coefficients is preferred

based on the Bayesian Information Criterion.
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A | Appendix

A.1 RMSE for the PMC and QMC method

Table 7: RMSE for parameters based on the PMC method.

Number of draws
25 50 100 250 500

Variables µ σ µ σ µ σ µ σ µ σ

Intercepts
Heinz(41 oz.) 0.364 0.527 0.393 0.423 0.419 0.262 0.448 0.135 0.457 0.128
Heinz(32 oz.) 0.084 0.203 0.072 0.125 0.060 0.090 0.045 0.049 0.038 0.044
Heinz(28 oz.) 0.422 0.135 0.389 0.100 0.352 0.089 0.317 0.054 0.308 0.039

Marketing variables
Display 0.214 0.660 0.236 0.687 0.253 0.658 0.261 0.664 0.264 0.675
Feature 0.033 0.631 0.054 0.604 0.067 0.560 0.076 0.490 0.080 0.402
Price 0.391 0.218 0.346 0.182 0.311 0.170 0.286 0.171 0.276 0.167

Table 8: RMSE for parameters based on the QMC method.

Number of draws
25 50 100 250 500

Variables µ σ µ σ µ σ µ σ µ σ

Intercepts
Heinz(41 oz.) 0.364 0.575 0.403 0.473 0.419 0.236 0.443 0.115 0.460 0.132
Heinz(32 oz.) 0.075 0.252 0.061 0.114 0.053 0.061 0.037 0.044 0.038 0.036
Heinz(28 oz.) 0.425 0.122 0.374 0.102 0.320 0.067 0.302 0.047 0.300 0.035

Marketing variables
Display 0.229 0.659 0.246 0.659 0.258 0.650 0.265 0.657 0.267 0.660
Feature 0.044 0.581 0.064 0.556 0.072 0.547 0.081 0.465 0.084 0.324
Price 0.370 0.204 0.333 0.191 0.295 0.158 0.280 0.164 0.271 0.167
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A.2 Estimation and standard errors of L

L̂ =



−2.043 ∗ ∗∗ 0 0 0 0 0

−1.986 ∗ ∗∗ −1.638 ∗ ∗∗ 0 0 0 0

−2.194 ∗ ∗∗ 0.422 ∗ ∗∗ −0.836 ∗ ∗∗ 0 0 0

−0.358 −0.736 ∗ ∗∗ 0.630 ∗ ∗∗ 0.351 0 0

0.042 0.312 0.273 0.534∗ −0.401 0

−0.181 0.048 0.923 ∗ ∗∗ −0.431 ∗ ∗ −0.269 −0.468 ∗ ∗


where *** denotes a parameter significant at the 1% level. ** significant at the 5% level

and, * significant at the 10% level. The standard errors are given by:

0.282 0 0 0 0 0

0.248 0.167 0 0 0 0

0.254 0.144 0.137 0 0 0

0.219 0.189 0.220 0.283 0 0

0.223 0.237 0.299 0.323 0.409 0

0.147 0.130 0.121 0.172 0.195 0.184


The element at position (1,1) is the standard error corresponding to the element at position

(1,1) in L̂. The element at position (2,1) is the standard error corresponding to the element

at position (2,1) in L̂. Likewise, the standard errors of the remaining elements are given.
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B | Programming code

Table 9: Description of the codes used in this thesis

Code/file name Description
haltonDraws creates Halton matrix for given primes

Numerical experiment

ML with halton draws with CPP Optimizes the SLL 100 times with Halton
draws and calculates the RMSE.

ML with random draws with CPP Optimizes the SLL 100 times with random
draws and calculates the RMSE.

SLL_ML_random Function of the SLL calculated using
random draws.

SLL_ML Function of the SLL calculated using
Halton draws.

Mixed logit with independent coefficients

ML with halton draws with CPP Optimizes the SLL with Halton draws
for the true data.

SLL_ML Function of the SLL calculated using
Halton draws.

Mixed logit with dependent coefficients

ML with MVN Optimizes the SLL with Halton draws
for the true data with dependent coefficients.

SLL_MVN Function of the SLL calculated using Halton
draws with dependent coefficients.

Latent class mixed logit

LCML with halton draws with CPP Optimizes the SLL of the latent class mixed
logit model with Halton draws .

SLL_cpp Function of the SLL of the latent class mixed
logit model calculated using Halton draws.
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