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Abstract

While recommendation systems have been a hot topic for a long time now due to its success in

business applications, it is still facing substantial challenges. As grocery shopping is most often

considered as a real drudgery, many online stores provide a shopping recommendation system

for their customers to facilitate this purchase process. However, there is still a large majority

of people who still hesitate from doing their groceries online even though this form of shopping

provides consumers with distinct advantages. Therefore, the goal of this paper is to investigate

whether traditional collaborative filtering techniques are applicable in the domain of grocery

shopping, and further improve its recommendations using extensive models and machine learning

techniques. Hence, various CF-based models have been constructed including your traditional

similarity-based collaborative filtering models, a basket-sensitive random walk model, and a

basket-sensitive factorization machine. Here, we found that our basket-sensitive factorization

machine comes out on top when it comes to recommending less popular items. However, due to

its computational time, it remains to be a question whether this model is applicable in practical

use.

The views stated in this thesis are those of the author and not necessarily those of Erasmus

school of Economics or Erasmus University Rotterdam.
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1 Introduction

Over the last decades modeling choices of con-

sumers have become of greater importance in

the marketing field of econometrics. The chasm

between online retail and its brick-and-mortar

counterpart keeps expanding in numbers, and

people’s shopping preferences are evolving in

turn, leaving retailers with little choice but to

adapt. However, this has led to online gro-

cery shopping becoming more and more promi-

nent, and therefore, resulted in radical adjust-

ments within the marketing decision framework

of many retailers (Kurnia and Chien, 2003).

In a recent report of Deloitte (2015), 81%

of the people have said that personal recom-

mendations, including those from social-media

circles, played a primary role in their pur-

chase decision rather than promotional adver-

tisements. In fact, retailer-sponsored content

−advertisements, sales promotions, social me-

dia, etc.− are losing out to user-generated con-

tent as the predominant factor of customer’s pur-

chase decisions (Krumm et al., 2008). Similarly,

Wolfinbarger and Gilly (2001) reports that con-

sumers feel more comfortable searching online

and reading others’ opinions as a first step in

gathering initial information. Therefore, online

shopping results in giving consumers a substan-

tially increased sense of freedom and control as

compared to shopping in the local stores.

However, as grocery shopping is most often

considered as a real drudgery, many online stores

provide a shopping recommendation system for

their customers to facilitate this purchase pro-

cess. These recommendation systems are based

on data filtering algorithms that make use of ad-

vanced machine learning techniques and histor-

ical transaction data to automatically identify

items that are new to the individual consumer,

but are likely of interest to them. Especially now

with the growing amount of information on the

internet and with a significant rise in the num-

ber of users, it is becoming more prevalent for

retailers to gather a large amount of data and

provide them with relevant chunk of information

according to their preferences and tastes. There-

fore, if set up and configured properly, it can sig-

nificantly boost revenues, conversions, and other

important metrics of retailers as well as having

positive effects on the user experience in general.

For this paper, this research is an attempt

to recreate and solidify a previous study of Li

et al. (2009) by using their proposed Basket-

Sensitive Random Walk model. Therefore, we

investigate whether traditional collaborative fil-

tering techniques are applicable in the domain

of grocery shopping. Additionally, further refine-

ment of the study is being attempted by adopting

different hybrid and model-based methods. Here,

we found that the extensive factorization ma-

chine performed better than the memory-based

4



approach. However, a clear conclusion cannot be

drawn of which model is best for practical use.

The outline of this paper is as follows: We

start by reviewing the literature of similar meth-

ods and the major challenges it has in section

2. This is followed by a data description in sec-

tion 3, after which we discuss the methodology

and results of our models in sections 4 and 5.

Finally, in section 6 we discuss the results and

draw a conclusion based on our findings which is

then followed by section 7 where we discuss all

the limitations we came across.

2 Literature

2.1 Related Work

In the past, studies have been mainly focused

on recommendation systems of leisure products

without repetitive purchases. Despite all the dif-

ferent approaches, however, the filtering method

has always remained to be a key part of the al-

gorithm.

2.1.1 Collaborative Filtering

The item-based Collaborative Filtering (CF) has

been demonstrated to be an effective framework

to generate recommendations and is not without

reason one of the most popular recommendation

algorithms nowadays (Breese et al., 1998). Due

to its simplicity and relatively good performance

it is able to identify the potential preferences of a

consumer for a new product solely based on the

information collected from other consumers. The

item-based CF is a similarity algorithm that as-

sumes that customers are likely to accept prod-

uct recommendations that are similar to what

they have bought in the past. As opposed to

the content-based approach in Balabanović and

Shoham (1997), there is no need for the item-

based CF to apply more complicated −and some-

times less reliable− content analysis techniques

due to its utilization of classical distance and sim-

ilarity measures. In fact, Sarwar et al. (2001)

shows that the item-based CF can achieve a pre-

diction accuracy that is comparable to −or even

better than− its user-based counterpart.

2.1.2 Random Walk Model

Until now, the vast majority of studies on the

random walk model have only been applied on

leisure product recommendations, e.g. movies,

with non-repeated purchases (Wijaya and Bres-

san, 2008). For instance, Bogers (2010) used the

random walk algorithm to rank movies in order

of importance based on the structure of the net-

work that best represents the data, i.e. movie

genres, producers, tags, actors. This allowed the

authors to create a system that is able to generate

movie recommendations based on both the net-

work structure and the rating of the movies. As
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for online grocery shopping, however, the prod-

uct preferences are not available as explicit rat-

ings in the shopping basket data, and therefore,

it is not immediately clear how this can be ap-

plied in the field of online grocery shopping (Li

et al., 2009). More importantly, the algorithm of

the authors depends on the user-based approach

described in Huang et al. (2004) which makes it

less favorable for large-scale applications in terms

of heavy computation load.

2.1.3 Matrix Factorization

Another approach which has become more pop-

ular in recent years is the model-based matrix

factorization method which combines good scal-

ability with predictive accuracy. Previous stud-

ies have been adopting this model mainly for ex-

plicit feedback data such as Netflix recommen-

dations in Koren et al. (2009). However, it has

been shown by Le et al. (2017) that it is also able

to give accurate personal recommendations using

grocery shopping data. This is due to its abil-

ity to incorporate "hidden" features when gener-

ating recommendations. More importantly, this

method offers much more flexibility for modeling

various real-life situations (Bouguettaya et al.,

2017). By using latent vectors this approach is

able to effectively reduce and working with fewer

dimensions which makes it less computational

heavy whilst retaining its performances.

2.2 Major Challenges

Even though the CF techniques have shown rel-

atively good results in previous studies, its per-

formance, however, is still very limited.

2.2.1 Cold-Start

As for all pairwise distance or similarity met-

rics, the item-based CF is unable to explore sim-

ilarities between the items that have never been

co-purchased but share the same neighborhoods

nevertheless (Deshpande, 2004). This problem is

known as the cold-start problem and occurs when

new users or new items appear in the transaction

data. Classic recommender systems like the CF

assumes that the rating of each user or item can

be approximated based on the ratings of similar

users, even if those ratings are unavailable. For

new users or items, however, there is no trans-

action data available for them whatsoever. As

a result, simple matrix multiplication to fill this

gap will not work in this case.

2.2.2 Data Sparsity

On top of the cold-start problem discussed previ-

ously, another major issue challenging the useful-

ness of the CF-based techniques is the so-called

data sparsity problem where a high level of spar-

sity is present. In general, similarity measure re-

quires some sort of overlapping values to be able

to compare two sparse vectors. As a result, how-
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ever, the lower the amount of overlapping values

the lower the reliability of these measures will be

(Grčar et al., 2005). Therefore, the CF is un-

able to form any reliable neighborhoods which

in turn affects its performances negatively. Ad-

ditionally, there will potentially be many inac-

tive users and unrated items (see cold-start), and

therefore, have to be omitted from the CF pro-

cess.

2.2.3 Popularity Bias

Many recommender systems in the past have suf-

fered from the popularity bias problem: popu-

lar items are always recommended regardless of

whether they are related to users’ preferences

while less popular, niche items are being ne-

glected (Zhao et al., 2013). However, it is likely

that users already made conscious decisions re-

garding these popular items. Therefore, this kind

of recommendation rarely leads users to addi-

tional purchases which for retailers is an impor-

tant matter for obvious reasons and cannot sim-

ply be ignored (Oh et al., 2011).

2.2.4 Grey Sheep

Another well-known challenge in the CF frame-

work is its inability to give accurate recommen-

dations to the so-called grey sheep users. This is

a group of users who may neither agree or dis-

agree with the majority of the users (Zheng et al.,

2017). In the field of grocery shopping these users

can be seen as outliers whose purchases consist

of mainly less popular, niche items, and there-

fore, may introduce difficulties to produce accu-

rate collaborative recommendations.

2.2.5 Implicit Feedback

It is often the case that explicit feedback in which

a user explicitly states its preference over an item

is unavailable. However, due to the abundant

availability of implicit data over the years, it has

become more important that recommender sys-

tems are designed to be able to work with im-

plicit feedback datasets (Hu et al., 2008). Im-

plicit feedback such as purchase history or time

spent which indirectly reflects users’ behavior is

typically represented by a densely filled dataset.

However, this makes it harder for a recommender

system to deduce a user’s exact preference level.

Therefore, the system has to work differently, i.e.

with cruder binary representations of the prob-

ability that a user likes an item or not. Fortu-

nately, there are various ways in order to tackle

down implicit feedback with CF techniques.

3 Data

The grocery shopping data that we used in this

paper originates from TaFeng, a Chinese grocery

store, which contains all transaction details from

November 2000 to February 2001. It consists of
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all kinds of information on age, quantity, prod-

uct, product subclass as well as the total billed

price for each customer represented at a categor-

ical level. All the relevant information is subse-

quently defined as vectors of purchase frequen-

cies sorted by its category index. However, be-

fore the historical transaction data could be used

to build a model, further adjustments have to be

made first in order to reproduce the research of

Li et al. (2009).
First, as described in Li et al. (2009), we split

the training and testing data sets longitudinally

over time. This allows us to tackle down the

temporal nature of grocery shopping, and let us

always train on earlier baskets as well as test-

ing later ones which, in addition, avoids possible

artificial dependencies between earlier and later

baskets. However, in Li et al. (2009) they do not

explicitly state how they clean the data. There-

fore, even though we are taking table 1 in Li

et al. (2009) as our baseline (see appendix A),

the choices we make in this process may very

likely deviate from theirs. Thus, for consistency

purposes, we take the same number of unique

items by selecting only the baskets containing

the 1093 most popular items. This allows us to

simultaneously deal with the data sparsity prob-

lem (see section 2.2.2). This is followed by taking

the same number of training baskets in Li et al.

(2009) in chronological order, and selecting the

remainder as our testing set. Furthermore, all

Table 1: Data Summary

Train Test Full

Data Characteristics

No of baskets 85684 11437 108496

No of unique users 22812 6869 30581

No of unique items 1093 1093 2012

Most Popular Item

No of item ID_100205 14474 2544 18077

Least Popular Item

No of item ID_560341 19 5 27

test baskets with less than four items are removed

from the testing set. This is required for the

leave-three-out protocol which will be discussed

later in the paper. A summary of the data is

shown in table 1. Additionally, for each customer

the training set will be aggregated into a single

basket to maximize the information content, and

as a result, reducing the data sparsity problem

even further. The testing set, however, remains

to be non-aggregated to maintain the simulation

of a live shopping scenario. Furthermore, all bas-

kets purchases by customers not in the training

set are filtered out from the testing set in order to

make personalized recommendations. By making

personalized recommendations allows us to take

care of the cold-start problem as well as the grey

sheep problem to a lesser extent both discussed in

section 2.2. Finally, the purchase frequency will

be converted to log(frequency+ 1) which allows

us to reduce the problem of overestimating the

item relevance caused by extreme high values.

8



4 Methodology

While recommendation systems have become a

popular research topic over recent years, not

many of them are applicable for online grocery

shopping because of its repetitive nature. What

is more, most existing recommendation tech-

niques are based on user-ratings, and therefore

require preferences to be explicitly represented

as ratings. As for online grocery shopping, how-

ever, only a mere reflection of consumer’s prefer-

ences is observable, i.e. through purchase history.

Hence, preferences can only be conveyed implic-

itly in the transaction data instead (see section

2.2.5). In general, implicit feedback is not a re-

liable source regarding which items a customer

likes or not (Hu et al., 2008). Therefore, as pro-

posed by Li et al. (2009), an improved algorithm

is built under the CF framework, which is better

suited to the characteristics of grocery shopping

data. This is then followed by an extension in

which we evaluate several model-based methods.

Afterward, various evaluation metrics are being

conducted in order to evaluate and compare the

performances of all the different models.

4.1 Memory-Based Approach

The memory-based approach utilizes the entire

user-item database to generate recommendations

based on the similarity between users or items.

These systems make use of CF techniques to find

a set of items or users that have a history of

agreeing with the target. In this paper, we will

be using the item-based CF which allows us to

evaluate and filter similar items based on others’

preferences.

4.1.1 Item-Based Collaborative Filtering

As previously stated, the item-based CF, in par-

ticular, has been shown to be an effective frame-

work to produce reliable recommendations and

is in general preferred over the user-based ap-

proach. Unlike its user-based counterpart, the

item-based approach looks into the set of items

the target user has rated and computes how sim-

ilar they are to the target item we are interested

in. Therefore, the item-based CF resolves many

problems −rapidly changing users’ preferences,

large number of users, etc.− the user-based ap-

proach has. Hence, an item-to-item based filter-

ing process has been adopted by first building a

model using various similarity matrices and find

the affinity between all pairs of items.

4.1.1.1 Cosine Based Similarity

The effectiveness of item-based CF greatly de-

pends on the quality of how the similarity ma-

trices are estimated. One of the most commonly

utilized similarity measures is the cosine based

similarity matrix. The cosine based similarity

between items i and j is given by:

9



simcos(i, j) =
R∗,i ·R∗,j
|R∗,i||R∗,j |

, (1)

where R is the n x m user-item matrix. The

underlying assumption is that two items are

thought of as two vectors in the m dimensional

user-space, and hence, the similarity is mea-

sured by computing the cosine of the angle be-

tween these two vectors. The cosine similarity

is advantageous because −unlike the Euclidean

distance− it allows us to efficiently compute

similarities over high-dimensional positive spaces

(Aggarwal et al., 2001). In fact, due to its low

complexity in which only the non-zero dimen-

sions need to be considered, it is an excellent

choice when working with sparse data.

4.1.1.2 Conditional Probability Based

Similarity

Despite the cosine based similarity having many

advantages, it has one important drawback: the

difference in implicit feedback between different

users is not taken into account (Sarwar et al.,

2001). Therefore, the conditional probability

based similarity is being conducted as well, as

proposed by Deshpande (2004). In this case, all

similarities are already normalized by default.

The conditional probability based similarity is

calculated as follows:

simcp(i, j) =

∑
∀q:Rq,j>0Rq,i

Freq(i)Freq(j)α
, (2)

where R is the normalized n x m user-item ma-

trix, Freq(·) the number of users that have pur-

chased items i and j and the control variable

α ∈ [0, 1] used to penalize popular items based

on the number of users who purchased item j.

4.1.1.3 Bipartite Network

Even though the conditional probability based

similarity alleviated the problem of cosine hav-

ing non-normalized similarities, this method is

being calculated from arbitrary measures, and

possibly infeasible as it requires numerous esti-

mates of chances (Blok et al., 2002). Therefore,

a more rational approach would be to calculate

the similarities directly from a graph that is able

to represent the data. In this case, a bipartite

network has been adopted to describe the shop-

ping basket data in which there are two types of

nodes: consumers and items. In addition, each

edge in the network represents a consumer’s pur-

chase frequency of an item. As a result, the simi-

larities can be defined as the transition probabil-

ity between each item and is expressed as follows:

simbn(i, j) =

|C|∑
k=1

Pr(pj |ck) Pr(ck|pi), (3)

with

Pr(pj |ck) =
f(ck, pj)

(
∑
f(ck, ·))α

, (4)

Pr(ck|pi) =
f(ck, pi)

(
∑
f(·, pi))α

, (5)

where C = c1, c2, ..., c|C| is the set of customers

and P = p1, p2, ..., p|P | the set of items, F =

10



f(1, 1), f(1, 2), ..., f(|C|, |P |) the set of purchase

frequencies and α ∈ [0, 1] the control factor to

penalize consumers that have a large number of

purchases and items that are purchased often.

Since the computation is made of a single tran-

sition from the original item node to the target

item node, Eq.[3] can be considered as a first-

order similarity between item i and j.

The key advantage of adopting the

item-based CF is that −unlike customer’s

preferences− ratings on a given item will gen-

erally stay the same throughout the year (Sar-

war et al., 2001). This allows us to calculate

the item-item based similarity matrices offline,

and therefore, the real-time predictions itself re-

quire little to no computational cost. However, a

major flaw within the CF framework, described

as the cold-start problem discussed in section

2.2.1, is its inability to explore transitive associ-

ations between the items that have never been

co-purchased but share the same neighborhoods

nevertheless. Hence, similarity measures such as

the bipartite network based similarity tend to

suffer when data is sparse.

4.1.2 Basket-Sensitive Random Walk

One way to tackle down the nature of CF and

its limitations discussed previously is to adopt a

Basket-Sensitive Random Walk model (BSRW),

proposed by Li et al. (2009). In general, the sim-

ilarity matrices are too sparse to capture actual

dependencies between the items. For example,

an item i that has not been rated by any user

who has rated item j does not necessarily imply

that there are no similarities between them. In

fact, these items would be found as close to each

other, if there was another item t similar to both

of them. Therefore, a basket-sensitive random

walk model has been constructed to further ex-

plore these transitive associations by incorporat-

ing the current shopping context into the model,

which can be expressed as follows:

Rbasket = d · P ·Rbasket + (1− d) · Ubasket, (6)

where Rbasket is the basket-based importance

score used for ranking all the items in the basket,

P the transition matrix, Ubasket the personaliza-

tion vector used to bias towards the items already

in the basket, m the number of items currently

in the basket and d ∈ (0, 1) the damping factor.

This approach is a stochastic process in which

the initial state is known and the next state de-

pends on the transition probability matrix that

dictates the likelihood of jumping from item i to

item j. However, real-time predictions may re-

quire heavy computational cost due to the large

number of item permutations, especially for gro-

cery shopping where the content of the basket

is likely to change very often. Therefore, an ap-

proximation of Rbasket is proposed instead, which
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is given by:

R̂basket =
∑

pi∈basket
Ritemi , (7)

Ritemi = d · P ·Ritemi + (1− d) · Uitemi , (8)

where Ritemi is the item-based importance score

and Uitemi the personalization vector which sets

the ith element to one and the rest of the ele-

ments to zero. In addition, Ritemi can be further

simplified as

Ritemi = (I − dP )−1 · (1− d) Uitemi . (9)

This approach allows us to calculate real-time

predictions more efficiently. To be more precise,

the item-based importance score Ritem can be

pre-computed offline for each item, and there-

fore, R̂basket can easily be obtained by summing

up all the Ritemi in the current basket. The un-

derlying assumption is that Rbasket in Eq.[6] can

be rewritten as follows:

Rbasket = (I − dP )−1 · (1− d) Ubasket,

= (I − dP )−1 · (1− d)
∑

pi∈basket

Uitemi

m
,

=
1

m

∑
pi∈basket

Ritemi =
R̂basket
m

,

wherem is the total number of items currently in

the basket, and Ubasket can now be interpreted as

a weighted combination of the elements of Uitem.

Hence, it is straightforward to see from Eq.[3]

that R̂basket is proportional to Rbasket as they

both lead to the same rank-ordered list of rec-

ommendations.

4.1.3 Personalized Recommendations

So far, the recommendation system has been

solely based on item similarities without taking

the purchase history into account for every con-

sumer. Therefore, in order to make the algo-

rithm more personalized and to further enhance

the performances, different weights will be as-

signed to the prediction computation in section

4.1.4. As proposed by Li et al. (2009), the weight-

ing vector is calculated as follows:

wi,j = P (pj |ck) ·Ritem, (10)

where P (pj |ck) is the consumer preference calcu-

lated in Eq.[4] and Ritem the item-based impor-

tance score calculated in Eq.[8] which allows us

to smooth the weightings and avoid zero proba-

bilities. This transformation is necessary in order

to make the recommendation systems more sen-

sitive to the current basket contents.

4.1.4 Prediction Computation

The most important step in the CF framework is

to generate the output interface in terms of pre-

diction (Sarwar et al., 2001). For the previously

discussed models, a weighted sum has been ap-

plied in order to compute the predictions. This

approach allows us to make a rank-ordered list
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of recommendations based on the sum of the rat-

ings weighted by its corresponding weight factor.

This can be expressed as follows:

Pu,j =

∑
∀j:Ru,j>0 si,jwu,jRu,j∑
∀j:Ru,j>0 |si,j |

(11)

where si,j is the similarity between item i and j,

R the user-item matrix and wi,j the correspond-

ing weights calculated in Eq.[10]. The underlying

assumption behind the weighted sum is that it

tries to capture how all the active users rate the

similar items. This is then followed by a weighted

sum scaled by the personalized sum of the simi-

larity terms which varies for each consumer.

4.2 Model-Based Approach

While the memory-based approach computes the

rank-ordered recommendations by accessing the

database directly, the model-based approach,

however, generate its recommendations by cre-

ating a model based on users’ ratings (Bobadilla

et al., 2013). As opposed to the arithmetic oper-

ations, e.g. cosine-based similarities, the mod-

eling process is conducted by various machine

learning techniques in order to get the optimal

hyperparameters. Among the many different ap-

proaches to model-based methods, we will only

be discussing a few Matrix Factorization mod-

els as well as combining both memory-based and

model-based approaches into a hybrid model.

4.2.1 Alternating Least Square

The main advantage of the model-based ap-

proach is that it is capable of handling the prob-

lem of sparsity and scalability better than its

memory-based counterpart (Aditya et al., 2016).

In this case, the Alternating Least Square based

Matrix Factorization model (ALS) allows us to

efficiently compute recommendation by decom-

posing the large user-item matrix into smaller

dimensional user and item features. The under-

lying assumption is that the user-item matrix R

can be approximated by

R ≈ UT · V, (12)

where U and V are the corresponding weights

of each hidden feature for every item and user.

Instead of using arithmetic operations, the ALS

method adopts the idea of turning the non-

convex optimization problem into Eq.[12] by it-

eratively alternating between optimizing U and

fixing V, and vice versa. In this paper, the ALS

model is based on Hu et al. (2008) which has

shown great results when dealing with implicit

data sets. First, this approach makes use of pref-

erence p(·) of a user u or item i in order to com-

pute its confidence cu,i by calculating the number

of purchased items in each basket. This can be

expressed as follows:

cu,i = 1 + αru,i, (13)
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where ru,i the number of purchased items i of

user u, and α ∈ (0, 1) its corresponding linear

scaling factor. Hence, we can derive the corre-

sponding quadratic loss function as

Loss = min
∑
u,i

cu,i(pu,i − xTu yi)2

+ λ(
∑
u

||xu||2 +
∑
i

||yi||2),

(14)

with the following minima xu and yi after deriva-

tion:

xu = (Y TCuY + λI)−1Y TCup(u), (15)

yi = (XTCiX + λI)−1XTCip(i), (16)

where X and Y are the randomly initialized user

and item matrices respectively, Cu and Ci its cor-

responding confidence values, λ ∈ (0, 1) used to

penalize overfitting, and p(u) and p(i) the binary

preference for an item which takes value one if an

item has been purchased and 0 otherwise. There-

fore, alternating and iterating the two equations

above results in a user and item vector which we

can then use to generate recommendations with

its corresponding similarity score:

Pu,∗ = Ui · V T , (17)

where Ui is the user vector and V T the transpose

of our item vector after convergence.

4.2.2 Basket-Sensitive Factorization Ma-

chine

On top of the ALS model described previously,

we will also be discussing the Basket-Sensitive

Factorization Machine (BSFM) proposed by Le

et al. (2017). This approach can be seen as a

more extensive model among the model-based

factorization methods and has been proven to be

an extremely powerful tool in combining both re-

gression and factorization models (Rendle, 2010).

Unlike the matrix factorization models −such as

our ALS which can only predict the relation be-

tween two variables− the BFSM allows us to

model feature-rich datasets by including multi-

ple higher-order interactions between variables of

larger domain. As a result, the BSFM is able

to estimate reliable parameters even in highly

sparse data, and therefore, is an excellent choice

in overcoming the sparsity problem.

In this paper, we assume that items currently

in a basket share some association based on an

underlying latent need −ingredients for a spe-

cific recipe, spare parts for a device, etc.−, and

therefore, it is important that a recommended

item is relevant to both users and items currently

in the basket. Hence, the BSFM model will

be constructed by incorporating various types of

basket-level associations within the grocery shop-

ping data. But in order to do so, we first trans-

form all baskets into binary features via one-hot
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encoding which allows us to efficiently apply ma-

chine learning techniques later on (He and Chua,

2017). As a result, we are given a set of binary

tuples T , where each tuple t can be expressed as

ht = 〈ui, Bi, vj , δ〉 ∈ T,

where ui connotes a user holding basket Bi, and

δ takes value 1 if the user purchases target item

vj and -1 otherwise. This allows us to model

recommendation as a function of four types of

associations:

user - target item

γ1 =

N∑
i=1

N+M∑
j=N+1

hihj(φ
T
i φj), (18)

basket item - target item

γ2 =
N+M∑
i=N+1

p∑
j=N+M+1

hihj(φ
T
i φj), (19)

basket item - basket item

γ3 =

p∑
i=N+M+1

p∑
j=i+1

hihj(φ
T
i φj), (20)

user - basket item

γ4 =

N∑
i=1

p∑
j=N+M+1

hihj(φ
T
i φj), (21)

where φi ∈ RK is a K-dimensional latent vector

associated with the ith component. Therefore,

adding a bias term µ0 as well as a simple regres-

sion model we can derive the following model:

F (h; Θ) = µ0 +

p∑
i=1

µihi+γ1 +γ2 +γ3 +γ4, (22)

where γ1, γ2, γ3 and γ4 are calculated in Eq.[18]-

Eq.[21], and µi, φi ∈ Θ are parameters to be

learned. Hence, it is straightforward to see that

the previous model in Eq.[22] can be further sim-

plified into a second-order factorization machine:

F (h) = µ0 +

p∑
i=1

µihi +

p∑
i=1

p∑
j=i+1

hihj(φ
T
i φj),

in which we are able to estimate the parame-

ters in Θ by minimizing the following logistic loss

function:

argmin
Θ

[∑
t∈T
−ln(σ(F (h; Θ)δ)) +

∑
θ∈Θ

λθθ
2
]
(23)

where σ(x) = 1
1+e−x is the sigmoid function, and

λθ ∈ R+ the regularization factor for θ. The

underlying assumption is that all parameters in

Θ should converge to a value such that F (h; Θ)

is high when δ = 1, and F (h; Θ) low otherwise.

For this purpose, we apply the Adaptive Gradient

Descent (AdaGrad) which is a modified Stochas-

tic Gradient Descent (SGD) proposed by Duchi

et al. (2011) and allows us to adapt the learning

rate for sparser parameters. As shown in Dean

et al. (2012) the AdaGrad had been greatly im-

proving the robustness of the SGD by using dif-

ferent learning rates for every θi, and therefore,

is well-suited for dealing with sparse datasets.

Hence, in order to learn the optimal param-

eters, we induce positive tuples in the form of

t = 〈ui, Bi, vj , 1〉 for each item vj not in the bas-

ket after removing the item we are trying to pre-
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dict. This is then followed by the same amount

of negative tuples t′ = 〈ui, B′i, v′j ,−1〉 with bas-

ket B′i 6= Bi and target item v′j 6= vj . Here, we

randomly pick a target item v′j that has never

been purchased before by the user. The same

goes for basket B′i which contains items that

have never been picked by the user. As a re-

sult, however, this method can be seen as a com-

putational heavy model as the amount of input

which has to be evaluated is multiplied by over a

thousand. Nevertheless, it has been shown in Le

et al. (2017) that it is able to generate accurate

recommendations due to it being both sensitive

to the basket as well as the user. At last, once

the parameters have been optimized we are able

to make a rank-ordered recommendation based

on the value of F (h) in which vj is preferred over

v′j when F (ui, Bi, vj ; Θ) > F (ui, Bi, v
′
j ; Θ).

4.2.3 Hybrid Model Using ALS & BSRW

The use of the hybrid model is heavily inspired by

Hu et al. (2008) as well as code and concepts from

Johnson (2016) where we transform the item vec-

tor obtained from ALS into an item-based simi-

larity framework. In order to do so, we compute

the dot-product between our item vector V ob-

tained from ALS in section 4.2.1. This can be

expressed as follows:

simALS = V · V T , (24)

which we can now apply your conventional item-

based CF methods on. This, followed by incorpo-

rating a BSRW model discussed in section 4.1.2

results in the hybrid model based on ALS and

the BSRW model of Li et al. (2009).

4.3 Performance Measures

Once the baseline of the recommendation sys-

tems has been constructed, we can start laying

the foundation for measuring the performance of

the models. Due to the complexity of evaluat-

ing the performance of recommendation systems

in general, it is fundamental to determine an ap-

propriate evaluation protocol to ensure that the

evaluation results are representative of live, in-

teractive behavior. Therefore, as proposed by Li

et al. (2009), we will be using multiple perfor-

mance measurements: binary hit rates based on

the leave-three-out protocol as well as different

weighted hit rates based on leave-one-out cross-

validation protocol.

4.3.1 Binary Hit Rates

Based on the previous results of Sordo-Garcia

et al. (2007) the popularity-based approach was

the only one that ranked the recommendation

algorithms consistently with their live perfor-

mance. In this evaluation protocol, the items

in each test basket are being split into two seg-

ments: targets and evidence. Therefore, based

16



on the leave-three-out protocol, the binary hit

rate is calculated as the proportion of test baskets

having at least one out of three target items pre-

dicted correctly. For the popularity based pro-

tocol, bHR(pop), the three least popular items

are selected as the targets, whereas the remain-

der is chosen for the evidence which will be used

during the test procedure trying to predict the

target items. This can be expressed as follows:

bHR(pop) =
HIT (xi)

#total test baskets
, (25)

where xi is the target item, and hit(xi) = 1 if xi

is predicted correctly and 0 otherwise. Therefore,

this allows us to simulate a real-time scenario of

marketing promotion: increasing the visibility of

less popular items. In addition, in order to check

for robustness, a bHR(rnd) has been adopted as

well where the three target items are selected ran-

domly instead.

4.3.2 Weighted Hit Rates

Despite the popularity based protocol having a

consistently high performance based on the re-

sults in Sordo-Garcia et al. (2007), only a mere

subset of the items in each basket has been evalu-

ated. Therefore, an additional performance mea-

sure will be introduced which weighs each correct

prediction inversely proportional to its popular-

ity, and more importantly, it makes use of all

the items available. Based on the leave-one-out

cross-validation this approach involves iteratively

using a single basket item as the target and the

remaining basket items as evidence. This proto-

col continues until every item has been used once

as the target item to be predicted, and therefore,

the weighted hit rate can be calculated as follows:

wHR(loo) =

∑
i(1− p(xi)) ∗HIT (xi)∑

i(1− p(xi))
, (26)

where p(xi) is the probability based on target

item i’s popularity. This is then followed by tak-

ing the average score over all the test baskets.

This allows us to bias the results towards per-

formance on less popular items. Additionally, a

macroHR(loo) weighted hit rate was also being

conducted, which can be expressed as follows:

macroHR(loo) =

∑
i(1− p(xi)) ∗HIT (xi)

# items in basket
, (27)

which take the average across all the items in the

current basket instead.

5 Results

In this section, we will evaluate the performances

of all the models we discussed previously. First, a

prior diagnostic has been conducted by evaluat-

ing the data and estimating the optimal parame-

ters of our random walk model. This is followed

by a comprehensive discussion of our memory-

based models in which we match our findings

with Li et al. (2009). Afterward, as an exten-

sion, the results will be compared with the per-
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formances of our model-based methods and hy-

brid models.

5.1 Preliminary Evaluation

Before we can start evaluating the performances

of our models, preliminary analysis has to be

done first in order to make accurate judgments

of our findings.

5.1.1 Data Evaluation

First, by looking at the way our target items

have been organized it allows us to have a bet-

ter grasp of how the baskets are structured and

look for possible inconsistencies. A distribution

of the target items pop and rnd obtained by the

leave-three-out protocol discussed in section 4.3

can be seen in figure 1 and 2 respectively. Here,

it shows the number of times an item appears as

the target item, and subsequently weighted by

its popularity. As we expected, figure 1 shows

that the target items based on pop are heavily

skewed towards less popular items. However, it

still appears that more popular items remain as

the vast majority of target items in pop. This,

followed by a moderately right-skewed distribu-

tion in figure 2, indicates that there is little to no

clustering presented in our data set. Hence, we

can deduce to a lesser extent that the less popu-

lar items are often paired together with the more

popular items in the baskets of our testing
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Figure 3: Distribution items in test basket

set. This, coupled with the fact that a vast ma-

jority of our evidence set consists of only one or

two items (see figure 3) may heavily undermine

the performances of similarity-based CF methods

in general.
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5.1.2 BSRW Parameters Evaluation

After we evaluated the data, the next step is

to start tuning our hyperparameters in order

to determine the optimal values of our bipar-

tite network and BSRW model. Therefore, a

grid search has been applied in which we try

the find the two optimal hyperparameters: α

and d both seen in Eq.[3]-Eq.[9]. Here, α is the

penalty factor in order to punish larger number

of purchases and items that are purchased often,

and d is the damping factor corresponding to the

BSRWmodel. Therefore, as proposed by Li et al.

(2009), all possible combinations of d ∈ (0, 1)

and α ∈ {0.5, 0.7, 0.9} are evaluated in terms of

bHR(pop) and macroHR(loo) shown in figure 4

and 5. Here, we can see that higher values of α

and (1−d) are generally preferred. Therefore, we

can conclude to a lesser extent that a higher value

of α tends to bias the model towards less popu-

lar items. Similarly, for higher values of (1 − d)

in which it positively influences the importance

scores of less popular items. However, unlike the

results shown in Li et al. (2009) (see appendix

B), the performance of α = 0.7 and α = 0.9

for both bHR(pop) and macroHR(loo) generally

stays the same over all d. More importantly, for

α = 0.5 it initially has no prediction power for

higher values of d whatsoever, and only tends

to have better performances when d gets lower.

This inconsistency can be explained
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due to our data not being clustered as well as

our models being personalized as opposed to the

non-personalized results of Li et al. (2009). Nev-

ertheless, the outcome stays the same, and we

select α = 0.7 and d = 0.1 as our optimal hyper-

parameters.

19



5.2 Performance Evaluation

Once we have obtained the optimal parameters

α and d for our bipartite network and BSRW

model, we can start to benchmark the BSRW

model against other item-based CF models also

discussed in Li et al. (2009). The results are

shown in table 2. Here, we include three types

of models: the standard CF models, the BSRW

based CF models, and the model-based methods

which will be in the extension.

5.2.1 Comparing Memory-Based Meth-

ods

First, a simple pop model is being conducted

whose recommendation is the most popular item

not in the basket. This will be used as a guide-

line to benchmark our models. We can then

compare the performances of the memory-based

models: the CF (·) models and its correspond-

ing CF (·) + BSRW extension. First of all,

table 2 shows that there is little difference in

performance between the memory-based models.

More importantly, all the results have signifi-

cantly lower performance compared to the per-

sonalized results in Li et al. (2009) seen in table

3. As already mentioned in section 5.1.1, this

can be due to our baskets not being clustered

which heavily undermine the performances of our

similarity-based CF models. This is further illus-

trated by comparing the performances of pop in

Table 2: Performance comparison

Methods
L-3-O L-1-O

bHR(pop) bHR(rnd) wHR(loo)

pop 0.43 16.80 2.65

CF(cos) 16.72 31.62 5.65

CF(cp) 16.46 30.84 5.67

CF(bn) 16.75 31.88 5.79

CF(cos) + BSRW 16.63 31.70 5.67

CF(cp) + BSRW 16.46 30.80 5.71

CF(bn) + BSRW 16.75 31.84 5.78

ALS 15.28 26.28 4.34

BSFM 20.17 19.21 2.25*

Hybrid 15.28 26.36 4.32
where the cosine, the conditional probability and the bi-
partite network based similarity CF models are referred
to as CF (cos), CF (cp) and CF (bn) respectively. The
BSRW based CF models are noted as BSRW for their
respective CF models. As for the model-based methods,
the same notations follow as discussed in the methodol-
ogy section 4.2.

Table 3: Performances of Li et al. (2009)

Methods
L-3-O L-1-O

bHR(pop) bHR(rnd) wHR(loo)

pop 7.99 16.57 2.28

CF(cos) 25.66 28.09 5.27

CF(cp) 25.49 29.21 5.09

CF(bn) 26.42 28.66 4.61

CF(cos) + BSRW 25.30 28.75 5.09

CF(cp) + BSRW 25.45 28.64 5.04

CF(bn) + BSRW 26.63 30.01 5.28

where CF (cos), CF (cp), CF (bn) and their respective
BSRW model are taken from table 3 and pop taken from
table 2 in Li et al. (2009).

tables 2 and 3. We can clearly see that our pop

has little to no predictive power for less popular

items as opposed to the result of pop in table 3
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based on bHR(pop). Therefore, we can assume

that the data set presented in Li et al. (2009)

have been clustered to a lesser extent, and mod-

erately more biased towards popular items.

Nevertheless, we can still see that the CF (bn)

as well as its CF (bn) +BSRW extension comes

out on top in all three evaluation metrics, and

therefore, is consistent with the findings of Li

et al. (2009). In fact, given the results of

bHR(rnd) and wHR(loo) all results are consis-

tently very close to −or even better than− the

personalized results seen in table 3. Additionally,

there is little to no difference between the tradi-

tional CF (·) methods and the CF (·) + BSRW

methods. Therefore, we can say to a lesser ex-

tent that the target items are insensitive to the

items currently in the basket, just as in Li et al.

(2009).

5.2.2 Comparing Model-Based Methods

While the memory-based methods have shown

reasonably good performance, its performance is

still not on par with the more extensive model-

based methods. In this section, we will be evalu-

ating the standard ALS model, a more extensive

BSFM model, and a hybrid model combining the

ALS model with BSRW approach.

5.2.2.1 Evaluation ALS & Hybrid Model

Using the latent factor K = 5 as proposed by

Hu et al. (2008), we can clearly see in table 2

that its performance is rather weak compared to

the other models. The ALS model is designed

for dealing with sparse data. However, due to

the training set being aggregated, and therefore,

losing out on information, makes the structure

of our research less favorable for the ALS model.

This is also the case for our hybrid model which

is based on the ALS model but more biased to-

wards the current basket items. Therefore, the

result is not far different from our ALS model.

5.2.2.2 Evaluation BSFM Model

As opposed to the ALS method, the BSFM

model shows outstanding performances using the

same number of latent factors as the ALS model.

However, a subset of 10% of the testing had to

be taken instead due to its computational heavy

nature. As a result, wHR(loo) is not representa-

tive due to its low number of test sets, and very

limited time available. This is much less the case

for bHR(pop) and bHR(rnd) as it requires less

computational resources. Despite its outstand-

ing performances in bHR(pop), its bHR(rnd) fell

short compared to the other models. This can be

explained due to the nature of BSFM using one-

hot-encoding which disregards the frequency or

popularity of the items in the basket. Therefore,

there is little to no difference between bHR(pop)

and bHR(rnd), and as a result, this model has

no additional prediction power for popular items.

21



6 Conclusion

While recommendation systems have been a hot

topic for a long time now due to its success in

business applications, it is still facing substantial

challenges such as the cold-start problem and al-

leviating the data sparsity. Therefore, this pa-

per was an attempt to replicate and further de-

velop the research done by Li et al. (2009) in

which we tried to answer the research question

of whether different models under the CF frame-

work can be applied in the field of grocery shop-

ping. In order to do so, additional data prepara-

tion had to be done to overcome the cold-start,

data sparsity, grey sheep as well as the implicit

feedback problem discussed in section 2. As men-

tioned in section 3, we tried to filter and clean the

data in a similar fashion as explained in Li et al.

(2009). However, the authors did not specify ex-

actly how they prepared the data; some assump-

tions had to be made. Therefore, a subset of bas-

kets which contains only the 1093 most popular

items is taken instead. This, followed by person-

alized recommendations, allowed us to deal with

the majority of challenges described in section 2.

In addition to that, various CF models have

been constructed using both memory-based and

model-based methods. First, using the transac-

tion data of TaFeng for November 2000 to Febru-

ary 2001 we replicate the experiment of Li et al.

(2009) by evaluating the traditional CF mod-

els as well as the proposed random walk model.

Here, we can see that the performances of our

models differ from Li et al. (2009). As described

in section 5.1.1, we found that there is little to no

clustering presented within our data as opposed

to Li et al. (2009). Nevertheless, based on the

various leave-three-out and leave-one-out cross-

validation protocols the same conclusion can be

drawn. Explicitly, we concluded that the pro-

posed basket sensitive random walk model based

on a bipartite network has consistently outper-

formed the traditional CF models. In fact, it

is shown here that incorporating a random walk

model allows us to consistently improve the per-

formances of our CF models.
Once we evaluated the memory-based meth-

ods of Li et al. (2009), we explored other ap-

proaches as well to answer the same research

question. These models will be referred to as

’extensions’ henceforth. The first extension of Li

et al. (2009) was to adopt a traditional model-

based ALS model as opposed to our memory-

based methods. Unfortunately, its performances

fell short compared to the other methods due to

the training baskets being aggregated, and there-

fore, losing out on relevant information in order

to obtain the optimal latent factors.

However, as for the BSFM model which can

be seen as a more advanced ALS model, its per-

formances have exceeded our expectations and

outshines other models in terms of accurately
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predicting less popular items. However, as seen

in the results, its computational heavy load can

not be overlooked, and therefore, remains to be

a question whether this model can be used in

practice.

As our third extension, we adopted a hybrid

model by incorporating the BSRW model into

our ALS model. However, this had little to no

additional predictive power to our ALS model,

and therefore, we were not able to improve our

results with the hybrid model.

Hence, based on our results we can conclude

that traditional CF models have a reasonable

good performance in accurately recommending

less popular items, and therefore, are applicable

in the field of grocery shopping. More impor-

tantly, incorporating a BSRW model allows us

to further enhance their performances. This is in

line with the results as written in Li et al. (2009).

Moreover, despite the great performances of our

BSFM model, its computational heavy nature

makes it debatable whether this advanced model

can be used in practice.

7 Limitations & Further Re-

search

Given the scope of this study and the limited

amount of time available, the choice was made

to use a subset for the BSFM model. This com-

putational heavy method would have had to run

for many days in order to get the results of all

three evaluation metrics. This is due to the fact

that the algorithm uses an extensive second-order

factorization machine which requires many alge-

braic operations in order to calculate a single

value. More importantly, AdaGrad has to con-

sider all its positive and negative tuples for each

iteration in order to learn the optimal parame-

ters which puts a heavy workload on the CPU.

This, coupled with the fact that this process has

to be repeated for every individual, makes it a

very time-consuming algorithm. Furthermore,

we were not able to get a desirable result for the

wHR(loo) due to the long computational time.

Therefore, further research would be to find a

way to reduce the computational time of the

BSFM, i.e. using the LIBfm algorithm of Rendle

(2012). Another aspect in which our research fell

short was not taking data clustering into account

as opposed to Li et al. (2009). Therefore, further

research would be to investigate various cluster-

ing techniques and evaluate to what extent this

affects our results.
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9 Appendix A

Figure 6: Summary data of Li et al. (2009)

10 Appendix B

Figure 7: Grid search of BN and BSRW of Li et al. (2009)
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11 Appendix C

[ INITIALIZE ] Load All Packages

1 packages <- c("dplyr", "data.table", "recommenderlab", "lsa", "Matrix", "rlist", "devtools", "reticulate", "ggplot2", "

plotly")

2 if (length(setdiff(packages , rownames(installed.packages ()))) > 0) {

3 install.packages(setdiff(packages , rownames(installed.packages ())))

4 }

5

6 library(dplyr)

7 library(data.table)

8 library(recommenderlab)

9 library(lsa)

10 library(Matrix)

11 library(rlist)

12 library(reticulate)

13 library(ggplot2)

14 library(plotly)

15

16 source_python("fm_gd.py")

[ DATA ] Load data & transform into user-item matrix

1 data <- read.csv(file = "ta_feng_all_months_merged.csv")

2

3 df <- data.frame(customer_ID = as.character(data$CUSTOMER_ID),

4 transaction_date = as.factor(data$TRANSACTION_DT),

5 product_subclass = as.factor(data$PRODUCT_SUBCLASS),

6 product_ID = as.factor(data$PRODUCT_ID),

7 frequencies = as.numeric(data$AMOUNT))

8

9 setDT(df)

10 df_matrix <- as.data.frame(dcast(df, transaction_date + customer_ID ~ product_subclass , value.var = "frequencies"))

11

12 popularity <- names(colSums(df_matrix[, c(3: ncol(df_matrix))])[order(colSums(df_matrix[, c(3: ncol(df_matrix))]),

decreasing = TRUE)]) #get all names sorted by popularity

13 df_matrix <- cbind(df_matrix[, c(1:2)], df_matrix[, popularity ]) #sort by popularity

14 df_matrix <- df_matrix[rowSums(df_matrix[, c(1096: ncol(df_matrix))]) == 0, c(1:1095)] #select the 1093 most popular items

15 df_matrix <- df_matrix[order(as.Date(df_matrix$transaction_date , format="%d/%m/%Y")), c(1:1095)] #chronological order

16

17 head(df_matrix)

[ DATA ] Split data into training & testing set

1 # split baskets longitudinally

2 df_train <- df_matrix[c(1:85684) , ]

3 df_test <- df_matrix[c(85685: nrow(df_matrix)), ]

[ DATA ] Aggregate training set

1 # Aggregate training baskets

2 df_train2 <- df_train %>% group_by(customer_ID) %>% summarize_at(2:( ncol(df_train) -1), sum)

3 df_train2 <- df_train2 %>% mutate(count = rowSums(df_train2[, c(2: ncol(df_train2))]!=0))

4 df_train2 <- df_train2[!(df_train2$count < 2), c(1:( ncol(df_train2) -1))]

5

6 for (i in 2:ncol(df_train2)){
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7 df_train2 [[i]] <- as.numeric(log(df_train2 [[i]] + 1))

8 }

9

10 head(df_train2)

[ DATA ] Transform testing set & filter

1 # Filter out test baskets with less than 4 items

2 df_test2 <- df_test %>% mutate(count = rowSums(df_test[, c(3: ncol(df_test))]!=0))

3 df_test2 <- df_test2[!(df_test2$count < 4), c(1:( ncol(df_test2) -1))]

4 df_test2 <- df_test2[df_test2$customer_ID %in% df_train2$customer_ID , ]

5

6 for (i in 3:ncol(df_test2)){

7 df_test2[[i]] <- as.numeric(log(df_test2[[i]] + 1))

8 }

9

10 head(df_test2)

[ DATA ] Prepare evidence and target items POP & RND

1 set.seed (1234)

2

3 df_test2_pop_evidence <- list()

4 df_test2_pop_target <- list()

5 df_test2_rnd_evidence <- list()

6 df_test2_rnd_target <- list()

7 pb <- txtProgressBar(min = 0, max = nrow(df_test2), style = 3)

8 for (i in 1:nrow(df_test2)){

9 basket <- df_test2[i, ]

10 basket_products <- colnames(basket[, -c(1:2)][, basket[, -c(1:2)] > 0])

11

12 #split the already sorted baskets by popularity

13 df_test2_pop_target [[i]] <- basket_products [( length(basket_products) -2):length(basket_products)]

14 df_test2_pop_evidence [[i]] <- basket

15 df_test2_pop_evidence [[i]][, df_test2_pop_target [[i]]] <- 0

16

17 #create random sample

18 rnd <- sample(length(basket_products), 3)

19 df_test2_rnd_target [[i]] <- basket_products[rnd]

20 df_test2_rnd_evidence [[i]] <- basket

21 df_test2_rnd_evidence [[i]][, df_test2_rnd_target [[i]]] <- 0

22

23 setTxtProgressBar(pb , i)

24 }

25 df_test2_pop_evidence <- as.data.frame(rbindlist(df_test2_pop_evidence))

26 df_test2_rnd_evidence <- as.data.frame(rbindlist(df_test2_rnd_evidence))

[ DATA ] Prepare evidence and target items in leave-one-out cross-validation protocol

1 df_test2_weighted <- list()

2 df_test2_weighted_customer_ID <- list()

3 pb <- txtProgressBar(min = 0, max = nrow(df_test2), style = 3)

4 for (i in 1:nrow(df_test2)){

5 basket <- df_test2[i, ]

6 basket_products <- colnames(basket[, -c(1:2)][, basket[, -c(1:2)] > 0])

7

8 # loop through all basket items in which we take out a single target item for each iteration
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9 df_test2_weighted_temp <- list()

10 for(j in 1: length(basket_products)){

11 df_test2_weighted_temp$target [[j]] <- basket_products[j]

12 df_test2_weighted_temp$evidence [[j]] <- basket

13 df_test2_weighted_temp$evidence [[j]][, df_test2_weighted_temp$target [[j]]] <- 0

14 }

15 # store all evidence and target items into a list

16 df_test2_weighted [[i]] <- df_test2_weighted_temp

17 df_test2_weighted_customer_ID[[i]] <- as.data.frame(basket$customer_ID)

18

19 setTxtProgressBar(pb , i)

20 }

21 df_test2_weighted_customer_ID <- cbind(index = c(1: length(df_test2_weighted_customer_ID)), customer_ID = rbindlist(df_

test2_weighted_customer_ID))

22 df_test2_weighted [[i]]
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[ METHODOLOGY ] SIMILARITY MATRICES

[ SIM ] Cosine similarity

1 R_item <- lsa:: cosine(as.matrix(df_train2[, c(2: ncol(df_train2))]))

2 head(R_item)

[ SIM ] Conditional Probability similarity

1 R_item2 <- matrix(NA, nrow = nrow(R_item), ncol = ncol(R_item), dimnames = list(colnames(R_item), colnames(R_item)))

2

3 df_train3 <- df_train2[, c(2: ncol(df_train2))]

4 df_train3 <- df_train3 / rowSums(df_train3)

5

6 freq <- colSums(df_train3 != 0)

7 alpha <- 1

8

9 pb <- txtProgressBar(min = 0, max = nrow(R_item2), style = 3)

10 for (i in 1:nrow(R_item2)){

11 R_item2[i, ] <- colSums(df_train3[which(df_train3[, i] > 0), ]) / (freq[i] * freq^alpha)

12 setTxtProgressBar(pb , i)

13 }

14

15 head(R_item2)

[ SIM ] Bipartite Network Similarity

1 alpha_full <- c(0.5, 0.7, 0.9)

2

3 df_train3 <- df_train2[, c(2: ncol(df_train2))]

4

5 P_transition_list <- list()

6 for (n in 1: length(alpha_full)){

7 alpha <- alpha_full[n]

8

9 P_pc_top <- df_train3

10 P_pc_bot <- rowSums(df_train3)^alpha

11 P_pc <- P_pc_top / P_pc_bot

12

13 P_cp_top <- df_train3

14 P_cp_bot <- colSums(df_train3)^alpha

15 P_cp <- matrix(NA, nrow = nrow(df_train3), ncol = ncol(df_train3), dimnames = list(row.names(df_train3), colnames(df_

train3)))

16 for (i in 1:ncol(df_train3)){

17 P_cp[, i] <- as.matrix(P_cp_top[, i] / P_cp_bot[i])

18 }

19

20 pb <- txtProgressBar(min = 0, max = nrow(R_item), style = 3)

21 P_transition <- matrix(NA, nrow = nrow(R_item), ncol = ncol(R_item), dimnames = list(colnames(R_item), colnames(R_item))

)

22 for (i in 1:nrow(R_item)){

23 P_transition[i, ] <- colSums(P_pc * P_cp[, i])

24 setTxtProgressBar(pb , i)

25 }

26 P_transition_list[[n]] <- t(P_transition)

27 }

28 head(t(P_transition))
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[ METHODOLOGY ] Basket Sensitive Random Walk

[ FUNCTIONS ] Used formulas in methodology (self explanatory)

1 personalized_weight <- function(a, n){

2 df_train3 <-df_train2[, -1]

3 P_pc_top <- df_train3

4 P_pc_bot <- rowSums(df_train3)^a

5 P_pc <- P_pc_top / P_pc_bot

6 row.names(P_pc) <- df_train2$customer_ID

7

8 if (a == 0.5){

9 w <- as.matrix(P_pc) %*% as.matrix(R_bsrw_bn_0.5[[n]])

10 } else if (a == 0.7){

11 w <- as.matrix(P_pc) %*% as.matrix(R_bsrw_bn_0.7[[n]])

12 } else {

13 w <- as.matrix(P_pc) %*% as.matrix(R_bsrw_bn_0.9[[n]])

14 }

15 row.names(w) <- df_train2$customer_ID

16

17 return(w)

18 }

19

20 prediction_weighted_sum <- function(sim , basket , weight , customer_ID , evidence){

21 output <- sim %*% c(basket) / rowSums(sim) * c(weight[row.names(weight) == customer_ID, ])

22 output <- output[order(output , decreasing = TRUE), ]

23 output <- output[!(names(output) %in% evidence)]

24

25 return (names(output))

26 }

27

28 bHR <- function(type , n, input_list , name , boolean=TRUE){

29 if (type == "pop"){

30 target_list <- df_test2_pop_target #pop

31 } else{

32 target_list <- df_test2_rnd_target #rnd

33 }

34

35 counter <- 0

36 for (i in 1:n){

37 if (any(input_list[[i]][1:3] %in% target_list[[i]]) == TRUE){

38 counter <- counter + 1

39 }

40 }

41

42 output <- counter / n

43 if (boolean == TRUE){

44 output <- paste(name , counter / n, sep = ": ")

45 }

46

47 return (output)

48 }

49

50 wHR <- function(recommendation , target , pop){

51 output <- data.frame(target = recommendation , value = as.numeric(recommendation == target))

52 pop <- data.frame(target = names(pop), boolean = (1 - pop))

53 output <- merge(x = output , y = pop , all = TRUE)

54

55 return (( output$value %*% output$boolean) / sum(output$boolean))
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56 }

57

58 macroHR <- function(recommendation , target){

59 output <- data.frame(target = recommendation , value = as.numeric(recommendation == target))

60

61 return(sum(output$value) / length(output$value))

62 }

[ BSRW ] Calculate R-item matrix offline

1 d <- seq(0.1, 0.9, by = 0.1)

2

3 test <- length(d)

4

5 R_bsrw_bn_0.5 <- list()

6 R_bsrw_bn_0.7 <- list()

7 R_bsrw_bn_0.9 <- list()

8 pb <- txtProgressBar(min = 0, max = test , style = 3)

9 for (i in 1:test){

10

11 R_bsrw_bn_0.5[[i]] <- solve(diag(1, nrow = nrow(R_item)) - d[i]*P_transition_list [[1]]) %*% t((1-d[i])*diag(1, nrow =

nrow(R_item)))

12 R_bsrw_bn_0.7[[i]] <- solve(diag(1, nrow = nrow(R_item)) - d[i]*P_transition_list [[2]]) %*% t((1-d[i])*diag(1, nrow =

nrow(R_item)))

13 R_bsrw_bn_0.9[[i]] <- solve(diag(1, nrow = nrow(R_item)) - d[i]*P_transition_list [[3]]) %*% t((1-d[i])*diag(1, nrow =

nrow(R_item)))

14

15 colnames(R_bsrw_bn_0.5[[i]]) <- colnames(R_item)

16 colnames(R_bsrw_bn_0.7[[i]]) <- colnames(R_item)

17 colnames(R_bsrw_bn_0.9[[i]]) <- colnames(R_item)

18

19 setTxtProgressBar(pb , i)

20 }

[ BSRW ] Grid search bHR(pop) for optimal α and d

1 test <- nrow(df_test2)

2

3 d <- seq(0.1, 0.9, by = 0.1)

4

5 trace_0.5 <- list()

6 trace_0.7 <- list()

7 trace_0.9 <- list()

8

9 for (n in 1: length(d)){

10

11 recommendations_bsrw_bn_0.5 <- list()

12 recommendations_bsrw_bn_0.7 <- list()

13 recommendations_bsrw_bn_0.9 <- list()

14

15 w_0.5 <- personalized_weight (0.5, n)

16 w_0.7 <- personalized_weight (0.7, n)

17 w_0.9 <- personalized_weight (0.9, n)

18

19 pb <- txtProgressBar(min = 0, max = test , style = 3)

20 for (i in 1:test){

21 basket_test <- df_test2_pop_evidence[i, -c(1:2)]

22 basket_test_products <- names(basket_test)[which(basket_test > 0, arr.ind = TRUE)[, "col"]]
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23

24 # use the offline R_item matrix , and select the corresponding columns and sum it up

25 R_bsrw_basket_0.5 <- rowSums(cbind(R_bsrw_bn_0.5[[n]][, basket_test_products], 0))

26 R_bsrw_basket_0.7 <- rowSums(cbind(R_bsrw_bn_0.7[[n]][, basket_test_products], 0))

27 R_bsrw_basket_0.9 <- rowSums(cbind(R_bsrw_bn_0.9[[n]][, basket_test_products], 0))

28

29 # calculate the recommendations of BSRW for the appropriate parameters

30 recommendations_bsrw_bn_0.5[[i]] <- prediction_weighted_sum(P_transition_list [[1]], R_bsrw_basket_0.5, w_0.5, df_test2

_pop_evidence[i, ]$customer_ID , basket_test_products)

31 recommendations_bsrw_bn_0.7[[i]] <- prediction_weighted_sum(P_transition_list [[2]], R_bsrw_basket_0.7, w_0.7, df_test2

_pop_evidence[i, ]$customer_ID , basket_test_products)

32 recommendations_bsrw_bn_0.9[[i]] <- prediction_weighted_sum(P_transition_list [[3]], R_bsrw_basket_0.9, w_0.9, df_test2

_pop_evidence[i, ]$customer_ID , basket_test_products)

33

34 setTxtProgressBar(pb , i)

35 }

36

37 # store the results

38 trace_0.5[[n]] <- bHR("pop", test , recommendations_bsrw_bn_0.5, "", FALSE)

39 trace_0.7[[n]] <- bHR("pop", test , recommendations_bsrw_bn_0.7, "", FALSE)

40 trace_0.9[[n]] <- bHR("pop", test , recommendations_bsrw_bn_0.9, "", FALSE)

41

42 }

43 cbind(trace_0.5, trace_0.7, trace_0.9)

[ BSRW ] Grid search macroHR(loo) for optimal α and d

1 test <- length(df_test2_weighted)

2

3 d <- seq(0.1, 0.9, by = 0.1)

4

5 trace_0.5 <- list()

6 trace_0.7 <- list()

7 trace_0.9 <- list()

8

9 for (n in 1: length(d)){

10

11 recommendations_bsrw_bn_0.5 <- list()

12 recommendations_bsrw_bn_0.7 <- list()

13 recommendations_bsrw_bn_0.9 <- list()

14

15 w_0.5 <- personalized_weight (0.5, n)

16 w_0.7 <- personalized_weight (0.7, n)

17 w_0.9 <- personalized_weight (0.9, n)

18

19 pb <- txtProgressBar(min = 0, max = test , style = 3)

20 for (i in 1:test){

21

22 hit <- list()

23 for (j in 1: length(df_test2_weighted [[i]]$target)){

24 basket_test <- df_test2_weighted [[i]]$evidence [[j]][, -c(1:2)]

25 basket_test_products <- names(basket_test)[which(basket_test > 0, arr.ind = TRUE)[, "col"]]

26

27 # use the offline R_item matrix , and select the corresponding columns and sum it up

28 R_bsrw_basket_0.5 <- rowSums(cbind(R_bsrw_bn_0.5[[n]][, basket_test_products], 0))

29 R_bsrw_basket_0.7 <- rowSums(cbind(R_bsrw_bn_0.7[[n]][, basket_test_products], 0))

30 R_bsrw_basket_0.9 <- rowSums(cbind(R_bsrw_bn_0.9[[n]][, basket_test_products], 0))

31
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32 # calculate the recommendations of BSRW for the appropriate parameters

33 hit$bsrw_bn_0.5[j] <- prediction_weighted_sum(P_transition_list [[1]] , R_bsrw_basket_0.5, w_0.5, df_test2_weighted [[i

]]$evidence [[j]]$customer_ID, basket_test_products)[1]

34 hit$bsrw_bn_0.7[j] <- prediction_weighted_sum(P_transition_list [[2]] , R_bsrw_basket_0.7, w_0.7, df_test2_weighted [[i

]]$evidence [[j]]$customer_ID, basket_test_products)[1]

35 hit$bsrw_bn_0.9[j] <- prediction_weighted_sum(P_transition_list [[3]] , R_bsrw_basket_0.9, w_0.9, df_test2_weighted [[i

]]$evidence [[j]]$customer_ID, basket_test_products)[1]

36 }

37

38 # get the corresponding macroHR evaluation metrics

39 recommendations_bsrw_bn_0.5[i] <- macroHR(hit$bsrw_bn_0.5, df_test2_weighted [[i]]$target)

40 recommendations_bsrw_bn_0.7[i] <- macroHR(hit$bsrw_bn_0.7, df_test2_weighted [[i]]$target)

41 recommendations_bsrw_bn_0.9[i] <- macroHR(hit$bsrw_bn_0.9, df_test2_weighted [[i]]$target)

42

43 setTxtProgressBar(pb , i)

44 }

45

46 # store the results

47 trace_0.5[[n]] <- sum(unlist(recommendations_bsrw_bn_0.5)) / length(recommendations_bsrw_bn_0.5)

48 trace_0.7[[n]] <- sum(unlist(recommendations_bsrw_bn_0.7)) / length(recommendations_bsrw_bn_0.7)

49 trace_0.9[[n]] <- sum(unlist(recommendations_bsrw_bn_0.9)) / length(recommendations_bsrw_bn_0.9)

50 }

51 cbind(trace_0.5, trace_0.7, trace_0.9)
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[ RESULTS ] Results of replication part

[ OUTPUT ] Popularity based hit rates - bHR(pop)

1 d <- seq(0.1, 0.9, by = 0.1)

2 test <- nrow(df_test2)

3 n <- 1

4

5 w <- personalized_weight (0.7, n)

6

7 recommendations_pop <- list()

8 recommendations_cos <- list()

9 recommendations_cp <- list()

10 recommendations_bn_0.7 <- list()

11 recommendations_bsrw_cos <- list()

12 recommendations_bsrw_cp <- list()

13 recommendations_bsrw_bn_0.7 <- list()

14

15 pb <- txtProgressBar(min = 0, max = test , style = 3)

16 for (i in 1:test){

17 basket_test <- df_test2_rnd_evidence[i, -c(1:2)]

18 basket_test_products <- names(basket_test)[which(basket_test > 0, arr.ind = TRUE)[, "col"]]

19

20 # calculate recommendations of pop

21 recommendations_pop[[i]] <- colnames(basket_test[, !(colnames(basket_test) %in% basket_test_products)])

22

23 # calculate recommendations of traditional CF models

24 recommendations_cos[[i]] <- prediction_weighted_sum(t(R_item), t(basket_test), w, df_test2_pop_evidence[i, ]$customer_ID

, basket_test_products)

25 recommendations_cp[[i]] <- prediction_weighted_sum(t(R_item2), t(basket_test), w, df_test2_pop_evidence[i, ]$customer_ID

, basket_test_products)

26 recommendations_bn_0.7[[i]] <- prediction_weighted_sum(P_transition_list [[2]], t(basket_test), w, df_test2_pop_evidence[

i, ]$customer_ID , basket_test_products)

27

28 # calculate recommendations of respective BSRW models

29 R_bsrw_basket_0.7 <- rowSums(cbind(R_bsrw_bn_0.7[[n]][, basket_test_products], 0))

30

31 recommendations_bsrw_cos[[i]] <- prediction_weighted_sum(t(R_item), R_bsrw_basket_0.7, w, df_test2_pop_evidence[i, ]$

customer_ID, basket_test_products)

32 recommendations_bsrw_cp[[i]] <- prediction_weighted_sum(t(R_item2), R_bsrw_basket_0.7, w, df_test2_pop_evidence[i, ]$

customer_ID, basket_test_products)

33 recommendations_bsrw_bn_0.7[[i]] <- prediction_weighted_sum(P_transition_list [[2]], R_bsrw_basket_0.7, w, df_test2_pop_

evidence[i, ]$customer_ID, basket_test_products)

34

35 setTxtProgressBar(pb , i)

36 }

37

38 # print results

39 bHR("pop", test , recommendations_pop , "pop")

40 bHR("pop", test , recommendations_cos , "cos")

41 bHR("pop", test , recommendations_cp, "cp")

42 bHR("pop", test , recommendations_bn_0.7, "bn")

43 bHR("pop", test , recommendations_bsrw_cos , "cos_bsrw")

44 bHR("pop", test , recommendations_bsrw_cp , "cp_bsrw")

45 bHR("pop", test , recommendations_bsrw_bn_0.7, "bn_bsrw")

[ OUTPUT ] Random based hit rates - bHR(rnd)

1 d <- seq(0.1, 0.9, by = 0.1)
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2 test <- nrow(df_test2)

3 n <- 1

4

5 w <- personalized_weight (0.7, n)

6

7 recommendations_rnd <- list()

8 recommendations_cos <- list()

9 recommendations_cp <- list()

10 recommendations_bn_0.7 <- list()

11 recommendations_bsrw_cos <- list()

12 recommendations_bsrw_cp <- list()

13 recommendations_bsrw_bn_0.7 <- list()

14

15 pb <- txtProgressBar(min = 0, max = test , style = 3)

16 for (i in 1:test){

17 basket_test <- df_test2_rnd_evidence[i, -c(1:2)]

18 basket_test_products <- names(basket_test)[which(basket_test > 0, arr.ind = TRUE)[, "col"]]

19

20 # calculate recommendations of pop

21 recommendations_rnd[[i]] <- colnames(basket_test[, !(colnames(basket_test) %in% basket_test_products)])

22

23 # calculate recommendations of traditional CF models

24 recommendations_cos[[i]] <- prediction_weighted_sum(t(R_item), t(basket_test), w, df_test2_rnd_evidence[i, ]$customer_ID

, basket_test_products)

25 recommendations_cp[[i]] <- prediction_weighted_sum(t(R_item2), t(basket_test), w, df_test2_rnd_evidence[i, ]$customer_ID

, basket_test_products)

26 recommendations_bn_0.7[[i]] <- prediction_weighted_sum(P_transition_list [[2]], t(basket_test), w, df_test2_rnd_evidence[

i, ]$customer_ID , basket_test_products)

27

28 # calculate recommendations of respective BSRW models

29 R_bsrw_basket_0.7 <- rowSums(cbind(R_bsrw_bn_0.7[[n]][, basket_test_products], 0))

30

31 recommendations_bsrw_cos[[i]] <- prediction_weighted_sum(t(R_item), R_bsrw_basket_0.7, w, df_test2_rnd_evidence[i, ]$

customer_ID, basket_test_products)

32 recommendations_bsrw_cp[[i]] <- prediction_weighted_sum(t(R_item2), R_bsrw_basket_0.7, w, df_test2_rnd_evidence[i, ]$

customer_ID, basket_test_products)

33 recommendations_bsrw_bn_0.7[[i]] <- prediction_weighted_sum(P_transition_list [[2]], R_bsrw_basket_0.7, w, df_test2_rnd_

evidence[i, ]$customer_ID, basket_test_products)

34

35 setTxtProgressBar(pb , i)

36 }

37

38 # print results

39 bHR("rnd", test , recommendations_rnd , "pop")

40 bHR("rnd", test , recommendations_cos , "cos")

41 bHR("rnd", test , recommendations_cp, "cp")

42 bHR("rnd", test , recommendations_bn_0.7, "bn")

43 bHR("rnd", test , recommendations_bsrw_cos , "cos_bsrw")

44 bHR("rnd", test , recommendations_bsrw_cp , "cp_bsrw")

45 bHR("rnd", test , recommendations_bsrw_bn_0.7, "bn_bsrw")

[ OUTPUT ] Weighted hit rate - wHR(loo)

1 d <- seq(0.1, 0.9, by = 0.1)

2 test <- nrow(df_test2)

3 n <- 1

4

5 w <- personalized_weight (0.7, n)
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6

7 recommendations_pop <- list()

8 recommendations_cos <- list()

9 recommendations_cp <- list()

10 recommendations_bn_0.7 <- list()

11 recommendations_bsrw_cos <- list()

12 recommendations_bsrw_cp <- list()

13 recommendations_bsrw_bn_0.7 <- list()

14

15 popularity <- t(colSums(exp(df_train2[, -1]) -1) / sum(colSums(exp(df_train2[, -1]) -1)))

16

17 pb <- txtProgressBar(min = 0, max = test , style = 3)

18 for (i in 1:test){

19 hit <- list()

20 for (j in 1: length(df_test2_weighted [[i]]$target)){

21 basket_test <- df_test2_weighted [[i]]$evidence [[j]][, -c(1:2)]

22 basket_test_products <- names(basket_test)[which(basket_test > 0, arr.ind = TRUE)[, "col"]]

23

24 # calculate recommendation of pop based model

25 hit$pop[j] <- colnames(basket_test[, !(colnames(basket_test) %in% basket_test_products)])[1]

26

27 # calculate recommendations of traditional models

28 hit$cos[j] <- prediction_weighted_sum(t(R_item), t(basket_test), w, df_test2_weighted [[i]]$evidence [[j]]$customer_ID ,

basket_test_products)[1]

29 hit$cp[j] <- prediction_weighted_sum(t(R_item2), t(basket_test), w, df_test2_weighted [[i]]$evidence [[j]]$customer_ID ,

basket_test_products)[1]

30 hit$bn_0.7[j] <- prediction_weighted_sum(P_transition_list [[2]] , t(basket_test), w, df_test2_weighted [[i]]$evidence [[j

]]$customer_ID , basket_test_products)[1]

31

32 # calculate recommendations of the respective BSRW based models

33 R_bsrw_basket_0.7 <- rowSums(cbind(R_bsrw_bn_0.7[[n]][, basket_test_products], 0))

34

35 hit$bsrw_cos[j] <- prediction_weighted_sum(t(R_item), R_bsrw_basket_0.7, w, df_test2_weighted [[i]]$evidence [[j]]$

customer_ID, basket_test_products)[1]

36 hit$bsrw_cp[j] <- prediction_weighted_sum(t(R_item2), R_bsrw_basket_0.7, w, df_test2_weighted [[i]]$evidence [[j]]$

customer_ID, basket_test_products)[1]

37 hit$bsrw_bn_0.7[j] <- prediction_weighted_sum(P_transition_list [[2]], R_bsrw_basket_0.7, w, df_test2_weighted [[i]]$

evidence [[j]]$customer_ID , basket_test_products)[1]

38 }

39

40 # store the wHR evaluation of pop based models

41 recommendations_pop[i] <- wHR(hit$pop , df_test2_weighted [[i]]$target , popularity[, colnames(popularity) %in% hit$pop])

42

43 # store the wHR evaluation of the traditional based models

44 recommendations_cos[i] <- wHR(hit$cos , df_test2_weighted [[i]]$target , popularity[, colnames(popularity) %in% hit$cos])

45 recommendations_cp[i] <- wHR(hit$cp, df_test2_weighted [[i]]$target , popularity[, colnames(popularity) %in% hit$cp])

46 recommendations_bn_0.7[i] <- wHR(hit$bn_0.7, df_test2_weighted [[i]]$target , popularity[, colnames(popularity) %in% hit$

bn_0.7])

47

48 # store the wHR evaluation of the respective BSRW based models

49 recommendations_bsrw_cos[i] <- wHR(hit$bsrw_cos , df_test2_weighted [[i]]$target , popularity[, colnames(popularity) %in%

hit$bsrw_cos])

50 recommendations_bsrw_cp[i] <- wHR(hit$bsrw_cp , df_test2_weighted [[i]]$target , popularity[, colnames(popularity) %in% hit

$bsrw_cp])

51 recommendations_bsrw_bn_0.7[i] <- wHR(hit$bsrw_bn_0.7, df_test2_weighted [[i]]$target , popularity[, colnames(popularity)

%in% hit$bsrw_bn_0.7])

52

53 setTxtProgressBar(pb , i)

54 }
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55 # print results

56 print(paste("pop", sum(unlist(recommendations_pop)) / length(recommendations_pop), sep = ": "))

57 print(paste("cos", sum(unlist(recommendations_cos)) / length(recommendations_cos), sep = ": "))

58 print(paste("cp", sum(unlist(recommendations_cp)) / length(recommendations_cp), sep = ": "))

59 print(paste("bn_0.7", sum(unlist(recommendations_bn_0.7)) / length(recommendations_bn_0.7), sep = ": "))

60

61 print(paste("bsrw_cos", sum(unlist(recommendations_bsrw_cos)) / length(recommendations_bsrw_cos), sep = ": "))

62 print(paste("bsrw_cp", sum(unlist(recommendations_bsrw_cp)) / length(recommendations_bsrw_cp), sep = ": "))

63 print(paste("bsrw_bn_0.7", sum(unlist(recommendations_bsrw_bn_0.7)) / length(recommendations_bsrw_bn_0.7), sep = ": "))
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[ EXTENSION ] Model-based approach

[ FUNCTIONS ] Used formulas and built-in packages - PYTHON CODE

1 import tensorflow as tf

2 import numpy as np

3 import random

4 import pandas as pd

5

6 import scipy.sparse as sparse

7 from scipy.sparse.linalg import spsolve

8 from sklearn.preprocessing import MinMaxScaler

9 from scipy.sparse import csr_matrix

10

11

12 def FM_GD(data):

13

14 df = data

15 x_data = np.matrix(df.drop(’target ’, 1))

16 y_data = np.array(df[[’target ’]])

17

18 n, p = x_data.shape

19

20 # number of latent factors

21 k = 5

22

23 # design matrix

24 X = tf.placeholder(’float’, shape=[n, p])

25 # target vector

26 y = tf.placeholder(’float’, shape=[n, 1])

27

28 # bias and weights

29 w0 = tf.Variable(tf.zeros ([1]))

30 W = tf.Variable(tf.zeros ([p]))

31

32 # interaction factors , randomly initialized

33 V = tf.Variable(tf.random_normal ([k, p], stddev =0.01))

34

35 # estimate of y, initialized to 0.

36 y_hat = tf.Variable(tf.zeros ([n, 1]))

37

38 linear_terms = tf.add(w0, tf.reduce_sum(tf.multiply(W, X), 1, keep_dims=True))

39 interactions = (tf.multiply (0.5, tf.reduce_sum(tf.subtract(tf.pow( tf.matmul(X, tf.transpose(V)), 2),tf.matmul(tf.pow(X,

2), tf.transpose(tf.pow(V, 2)))), 1, keep_dims=True)))

40 y_hat = tf.add(linear_terms , interactions)

41

42 # L2 regularized sum of squares loss function over W and V

43 lambda_w = tf.constant (0.001 , name=’lambda_w’)

44 lambda_v = tf.constant (0.001 , name=’lambda_v’)

45

46 l2_norm = (tf.reduce_sum(

47 tf.add(

48 tf.multiply(lambda_w, tf.pow(W, 2)),

49 tf.multiply(lambda_v, tf.pow(V, 2)))))

50

51 #error = tf.reduce_mean(tf.square(tf.subtract(y, y_hat)))

52 error = tf.reduce_sum(tf.math.negative(tf.math.log(tf.math.sigmoid(tf.math.multiply(y_hat , y)))))

53 loss = tf.add(error , l2_norm)

54
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55 eta = tf.constant (0.1)

56 optimizer = tf.train.AdagradOptimizer(eta).minimize(loss)

57

58 N_EPOCHS = 1000

59 # Launch the graph.

60 init = tf.global_variables_initializer ()

61 with tf.Session () as sess:

62 sess.run(init)

63

64 for epoch in range(N_EPOCHS):

65 indices = np.arange(n)

66 np.random.shuffle(indices)

67 x_data , y_data = x_data[indices], y_data[indices]

68 sess.run(optimizer , feed_dict={X: x_data , y: y_data})

69

70 weight_opt = sess.run(W, feed_dict={X: x_data , y: y_data})

71 latent_opt = sess.run(V, feed_dict={X: x_data , y: y_data})

72 predictions = sess.run(y_hat , feed_dict={X: x_data , y: y_data})

73 loss_value = sess.run(loss , feed_dict={X: x_data , y: y_data})

74

75 output = [w0, weight_opt , latent_opt]

76

77 return(output)

78

79

80 def FM_value(data , phi , mu, M, p):

81

82 data = np.matrix(data)

83 phi = np.matrix(phi)

84

85 output = []

86 for i in range(len(data)):

87 F_2 = np.sum(np.multiply(np.dot(np.transpose(data[i, 0:M]), data[i, M:p]),

88 np.dot(np.transpose(phi[:, 0:M]), phi[:, M:p])))

89 F_3 = 0

90 for j in range(M, p-1):

91 F_3 = np.add(F_3, np.sum(np.multiply(np.dot(np.transpose(data[i, j]), data[i, (j+1):p]),

92 np.dot(np.transpose(phi[:, j]), phi[:, (j+1):p]))))

93 F = np.sum(np.multiply(mu, np.transpose(data[i, :]))) + F_2 + F_3

94 output.append(F)

95

96 return(output)

97

98

99 def implicit_als(sparse_data , alpha_val=40, iterations =10, lambda_val=0.1, features =10):

100

101 sparse_data = sparse.csr_matrix(np.matrix(sparse_data))

102

103 # Calculate the foncidence for each value in our data

104 confidence = sparse_data * alpha_val

105

106 # Get the size of user rows and item columns

107 user_size , item_size = sparse_data.shape

108

109 # We create the user vectors X of size users -by-features , the item vectors

110 # Y of size items -by-features and randomly assign the values.

111 X = sparse.csr_matrix(np.random.normal(size = (user_size , features)))

112 Y = sparse.csr_matrix(np.random.normal(size = (item_size , features)))

113
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114 #Precompute I and lambda * I

115 X_I = sparse.eye(user_size)

116 Y_I = sparse.eye(item_size)

117

118 I = sparse.eye(features)

119 lI = lambda_val * I

120

121 # Start main loop. For each iteration we first compute X and then Y

122 for i in range(iterations):

123 print (’iteration %d of %d’ % (i+1, iterations))

124

125 # Precompute Y-transpose -Y and X-transpose -X

126 yTy = Y.T.dot(Y)

127 xTx = X.T.dot(X)

128

129 # Loop through all users

130 for u in range(user_size):

131

132 # Get the user row.

133 u_row = confidence[u,:]. toarray ()

134

135 # Calculate the binary preference p(u)

136 p_u = u_row.copy()

137 p_u[p_u != 0] = 1.0

138

139 # Calculate Cu and Cu - I

140 CuI = sparse.diags(u_row , [0])

141 Cu = CuI + Y_I

142

143 # Put it all together and compute the final formula

144 yT_CuI_y = Y.T.dot(CuI).dot(Y)

145 yT_Cu_pu = Y.T.dot(Cu).dot(p_u.T)

146 X[u] = spsolve(yTy + yT_CuI_y + lI, yT_Cu_pu)

147

148

149 for i in range(item_size):

150

151 # Get the item column and transpose it.

152 i_row = confidence [:,i].T.toarray ()

153

154 # Calculate the binary preference p(i)

155 p_i = i_row.copy()

156 p_i[p_i != 0] = 1.0

157

158 # Calculate Ci and Ci - I

159 CiI = sparse.diags(i_row , [0])

160 Ci = CiI + X_I

161

162 # Put it all together and compute the final formula

163 xT_CiI_x = X.T.dot(CiI).dot(X)

164 xT_Ci_pi = X.T.dot(Ci).dot(p_i.T)

165 Y[i] = spsolve(xTx + xT_CiI_x + lI, xT_Ci_pi)

166

167 return Y.todense ()
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[ SIM ] Calculate optimal latent factor - ALS

1 item_factors <- implicit_als(as.matrix(df_train2[, -1]))

2

3 R_als <- item_factors %*% t(item_factors)

4 colnames(R_als) <- colnames(R_item)

5 row.names(R_als) <- colnames(R_item)

6 head(R_als)

[ OUTPUT ] Popularity based hit rates - bHR(pop)

1 d <- seq(0.1, 0.9, by = 0.1)

2 test <- nrow(df_test2)

3 n <- 1

4

5 w <- personalized_weight (0.7, n)

6

7 recommendations_als <- list()

8 recommendations_bsrw_als <- list()

9

10 pb <- txtProgressBar(min = 0, max = test , style = 3)

11 for (i in 1:test){

12 basket_test <- df_test2_pop_evidence[i, -c(1:2)]

13 basket_test_products <- names(basket_test)[which(basket_test > 0, arr.ind = TRUE)[, "col"]]

14

15 # calculate recommendation of ALS based model

16 recommendations_als[[i]] <- prediction_weighted_sum(R_als , t(basket_test), w, df_test2_pop_evidence[i, ]$customer_ID ,

basket_test_products)

17

18 # calculate recommendations of hybrid model

19 R_bsrw_basket_0.7 <- rowSums(cbind(R_bsrw_bn_0.7[[n]][, basket_test_products], 0))

20

21 recommendations_bsrw_als[[i]] <- prediction_weighted_sum(R_als , R_bsrw_basket_0.7, w, df_test2_pop_evidence[i, ]$

customer_ID, basket_test_products)

22

23 setTxtProgressBar(pb , i)

24 }

25 # print results

26 bHR("pop", test , recommendations_als , "als")

27 bHR("pop", test , recommendations_bsrw_als , "als_bsrw")

[ OUTPUT ] Random based hit rates - bHR(rnd)

1 d <- seq(0.1, 0.9, by = 0.1)

2 test <- nrow(df_test2)

3 n <- 1

4

5 w <- personalized_weight (0.7, n)

6

7 recommendations_als <- list()

8 recommendations_bsrw_als <- list()

9

10 pb <- txtProgressBar(min = 0, max = test , style = 3)

11 for (i in 1:test){

12 basket_test <- df_test2_rnd_evidence[i, -c(1:2)]

13 basket_test_products <- names(basket_test)[which(basket_test > 0, arr.ind = TRUE)[, "col"]]

14

15 # calculate recommendation of ALS based model
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16 recommendations_als[[i]] <- prediction_weighted_sum(R_als , t(basket_test), w, df_test2_rnd_evidence[i, ]$customer_ID ,

basket_test_products)

17

18 # calculate recommendations of hybrid model

19 R_bsrw_basket_0.7 <- rowSums(cbind(R_bsrw_bn_0.7[[n]][, basket_test_products], 0))

20

21 recommendations_bsrw_als[[i]] <- prediction_weighted_sum(R_als , R_bsrw_basket_0.7, w, df_test2_rnd_evidence[i, ]$

customer_ID, basket_test_products)

22

23 setTxtProgressBar(pb , i)

24 }

25 # print results

26 bHR("rnd", test , recommendations_als , "als")

27 bHR("rnd", test , recommendations_bsrw_als , "als_bsrw")

[ OUTPUT ] Weighted hit rates - wHR(loo)

1 d <- seq(0.1, 0.9, by = 0.1)

2 test <- nrow(df_test2)

3 n <- 1

4

5 w <- personalized_weight (0.7, n)

6

7 recommendations_als <- list()

8 recommendations_bsrw_als <- list()

9

10 popularity <- t(colSums(exp(df_train2[, -1]) -1) / sum(colSums(exp(df_train2[, -1]) -1)))

11

12 pb <- txtProgressBar(min = 0, max = test , style = 3)

13 for (i in 1:test){

14 hit <- list()

15 for (j in 1: length(df_test2_weighted [[i]]$target)){

16 basket_test <- df_test2_weighted [[i]]$evidence [[j]][, -c(1:2)]

17 basket_test_products <- names(basket_test)[which(basket_test > 0, arr.ind = TRUE)[, "col"]]

18

19 # calculate recommendation of ALS based model

20 hit$als[j] <- prediction_weighted_sum(R_als , t(basket_test), w, df_test2_weighted [[i]]$evidence [[j]]$customer_ID ,

basket_test_products)[1]

21

22 R_bsrw_basket_0.7 <- rowSums(cbind(R_bsrw_bn_0.7[[n]][, basket_test_products], 0))

23

24 # calculate recommendations of hybrid model

25 hit$bsrw_als[j] <- prediction_weighted_sum(R_als , R_bsrw_basket_0.7, w, df_test2_weighted [[i]]$evidence [[j]]$customer_

ID, basket_test_products)[1]

26 }

27 # store the wHR evaluation of the ALS based model

28 recommendations_als[i] <- wHR(hit$als , df_test2_weighted [[i]]$target , popularity[, colnames(popularity) %in% hit$als])

29

30 # store the wHR evaluation of the hybrid model

31 recommendations_bsrw_als[i] <- wHR(hit$bsrw_als , df_test2_weighted [[i]]$target , popularity[, colnames(popularity) %in%

hit$bsrw_als])

32

33 setTxtProgressBar(pb , i)

34 }

35 # print results

36 print(paste("als", sum(unlist(recommendations_als)) / length(recommendations_als), sep = ": "))

37 print(paste("bsrw_als", sum(unlist(recommendations_bsrw_als)) / length(recommendations_bsrw_als), sep = ": "))
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[ OUTPUT ] BSFM popularity & random based hit rates - bHR(pop) & bHR(rnd)

1 # initialize one -hot encoding tuples

2

3 N <- 1

4 M <- nrow(R_item)

5 p <- 2*M

6

7 h_user <- matrix(0, nrow = N, ncol = 1, dimnames = list("customer_ID"))

8 h_target <- matrix(0, nrow = M, ncol = 1, dimnames = list(paste("target", row.names(R_item), sep = "_")))

9 h_basket <- matrix(0, nrow = M, ncol = 1, dimnames = list(paste("basket", row.names(R_item), sep = "_")))

10 h <- t(rbind(rbind(h_user , h_target), h_basket))

11

12 set.seed (1234)

13

14 test <- nrow(df_test2)*0.1

15 target_list <- list()

16 predictions_list <- list()

17 target_list_rnd <- list()

18 predictions_list_rnd <- list()

19 counter <- 0

20 pb <- txtProgressBar(min = 0, max = test , style = 3)

21 for (i in 1:test){

22 customer_unique <- unique(df_test2[, "customer_ID"])[i]

23 basket_train <- df_train2[df_train2$customer_ID == customer_unique , ]

24 basket_train_products <- colnames(basket_train[, 2:ncol(basket_train)][, c(basket_train[, 2:ncol(basket_train)]) > 0])

25

26

27 # generate tuples for training for each customer

28 tuple_pos <- list()

29 tuple_neg <- list()

30 for (t in 1: length(basket_train_products)){

31 target_train <- basket_train_products[t]

32 evidence_train <- basket_train_products[-t]

33

34 input <- h

35 input[, 1] <- customer_unique

36 input[, colnames(input) %in% paste("basket", evidence_train , sep = "_")] <- 1

37 input[, colnames(input) %in% paste("target", target_train , sep = "_")] <- 1

38 tuple_pos[[t]] <- as.data.frame(input)

39 tuple_pos[[t]]$target <- 1

40

41 sample <- sample(colnames(R_item)[!(colnames(R_item) %in% basket_train_products)], length(basket_train_products) + 1)

42 input2 <- h

43 input2[, 1] <- customer_unique

44 input2[, colnames(input2) %in% paste("basket", sample [1: length(basket_train_products)], sep = "_")] <- 1

45 input2[, colnames(input2) %in% paste("target", sample[length(basket_train_products) + 1], sep = "_")] <- 1

46 tuple_neg[[t]] <- as.data.frame(input2)

47 tuple_neg[[t]]$target <- -1

48 }

49 tuple_pos_matrix <- as.data.frame(rbindlist(tuple_pos))

50 tuple_neg_matrix <- as.data.frame(rbindlist(tuple_neg))

51 training_set <- rbind(tuple_pos_matrix , tuple_neg_matrix)

52

53 # perform AdaGrad called from Python file in order to learn the parameters

54 params <- FM_GD(training_set[-1])

55

56 # obtain values of the factorization machine for every tuple

57 basket_test_all <- df_test2[df_test2$customer_ID %in% customer_unique , ]
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58 for (j in 1:nrow(basket_test_all)){

59 counter <- counter + 1

60 basket_test <- basket_test_all[j, ]

61 basket_test_products <- colnames(basket_test[, 3:ncol(basket_test)][, c(basket_test[, 3:ncol(basket_test)]) > 0])

62

63 # calculate all test tuple values corresponding for bHR(pop)

64 evidence_test <- basket_test_products [1:( length(basket_test_products) - 3)]

65 target_list[[ counter ]] <- as.data.frame(basket_test_products [( length(basket_test_products) -2):length(basket_test_

products)])

66 tuple_test <- matrix(0, nrow = ncol(R_item) - length(evidence_test), ncol = 2*M, dimnames = list(NULL , colnames(h)

[-1]))

67 tuple_test[, colnames(tuple_test) %in% paste("basket", evidence_test , sep = "_")] <- 1

68 tuple_test[, !(colnames(tuple_test) %in% paste("target", evidence_test , sep = "_") | colnames(tuple_test) %like% "

basket")] <- diag(1, nrow = nrow(tuple_test))

69 testing_set <- as.data.frame(tuple_test)

70 testing_set$target <- 1

71 testing_set <- cbind(customer_ID = customer_unique , testing_set)

72

73 # convert to python code in order to speeden things up as R is very slow in matrix multiplications

74 output <- FM_value(as.matrix(testing_set[, -c(1, ncol(h))]), as.matrix(params [[3]]) , as.matrix(params [[2]]) , as.

integer(M), as.integer(p))

75 output <- as.data.frame(t(unlist(output , use.names=FALSE)))

76 colnames(output) <- colnames(R_item)[!(colnames(R_item) %in% evidence_test)]

77

78 predictions <- colnames(output[, order(output , decreasing = TRUE)])

79 predictions_list[[ counter ]] <- as.data.frame(predictions [1:3])

80

81 # calculate all test tuple values corresponding for bHR(rnd)

82 rnd <- sample(length(basket_test_products), 3)

83 evidence_test_rnd <- basket_test_products[-c(rnd)]

84 target_list_rnd[[ counter ]] <- as.data.frame(basket_test_products[c(rnd)])

85 tuple_test_rnd <- matrix(0, nrow = ncol(R_item) - length(evidence_test_rnd), ncol = 2*M, dimnames = list(NULL ,

colnames(h)[-1]))

86 tuple_test_rnd[, colnames(tuple_test_rnd) %in% paste("basket", evidence_test_rnd , sep = "_")] <- 1

87 tuple_test_rnd[, !(colnames(tuple_test_rnd) %in% paste("target", evidence_test_rnd , sep = "_") | colnames(tuple_test_

rnd) %like% "basket")] <- diag(1, nrow = nrow(tuple_test_rnd))

88 testing_set_rnd <- as.data.frame(tuple_test_rnd)

89 testing_set_rnd$target <- 1

90 testing_set_rnd <- cbind(customer_ID = customer_unique , testing_set_rnd)

91

92 # convert to python code in order to speeden things up as R is very slow in matrix multiplications

93 output_rnd <- FM_value(as.matrix(testing_set_rnd[, -c(1, ncol(h))]), as.matrix(params [[3]]) , as.matrix(params [[2]]) ,

as.integer(M), as.integer(p))

94 output_rnd <- as.data.frame(t(unlist(output_rnd , use.names=FALSE)))

95 colnames(output_rnd) <- colnames(R_item)[!(colnames(R_item) %in% evidence_test_rnd)]

96

97 predictions_rnd <- colnames(output_rnd[, order(output_rnd , decreasing = TRUE)])

98 predictions_list_rnd[[ counter ]] <- as.data.frame(predictions_rnd [1:3])

99 }

100 setTxtProgressBar(pb , i)

101 }

[ OUTPUT ] BSFM Weighted hitrate - wHR(loo)

1 # initialize one -hot encoding tuples

2

3 N <- 1

4 M <- nrow(R_item)
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5 p <- 2*M

6

7 h_user <- matrix(0, nrow = N, ncol = 1, dimnames = list("customer_ID"))

8 h_target <- matrix(0, nrow = M, ncol = 1, dimnames = list(paste("target", row.names(R_item), sep = "_")))

9 h_basket <- matrix(0, nrow = M, ncol = 1, dimnames = list(paste("basket", row.names(R_item), sep = "_")))

10 h <- t(rbind(rbind(h_user , h_target), h_basket))

11

12 test <- nrow(df_test2)*0.01

13 target_list <- list()

14 predictions_list <- list()

15 target_list_rnd <- list()

16 predictions_list_rnd <- list()

17

18 # initialize popularity based chance p(x)

19 popularity <- t(colSums(exp(df_train2[, -1]) -1) / sum(colSums(exp(df_train2[, -1]) -1)))

20

21 counter <- 0

22 pb <- txtProgressBar(min = 0, max = test , style = 3)

23 for (i in 1:test){

24 customer_unique <- unique(df_test2[, "customer_ID"])[i]

25 basket_train <- df_train2[df_train2$customer_ID == customer_unique , ]

26 basket_train_products <- colnames(basket_train[, 2:ncol(basket_train)][, c(basket_train[, 2:ncol(basket_train)]) > 0])

27

28 # generate tuples for training for each customer

29 tuple_pos <- list()

30 tuple_neg <- list()

31 for (t in 1: length(basket_train_products)){

32 target_train <- basket_train_products[t]

33 evidence_train <- basket_train_products[-t]

34

35 input <- h

36 input[, 1] <- customer_unique

37 input[, colnames(input) %in% paste("basket", evidence_train , sep = "_")] <- 1

38 input[, colnames(input) %in% paste("target", target_train , sep = "_")] <- 1

39 tuple_pos[[t]] <- as.data.frame(input)

40 tuple_pos[[t]]$target <- 1

41

42 sample <- sample(colnames(R_item)[!(colnames(R_item) %in% basket_train_products)], length(basket_train_products) + 1)

43 input2 <- h

44 input2[, 1] <- customer_unique

45 input2[, colnames(input2) %in% paste("basket", sample [1: length(basket_train_products)], sep = "_")] <- 1

46 input2[, colnames(input2) %in% paste("target", sample[length(basket_train_products) + 1], sep = "_")] <- 1

47 tuple_neg[[t]] <- as.data.frame(input2)

48 tuple_neg[[t]]$target <- -1

49 }

50 tuple_pos_matrix <- as.data.frame(rbindlist(tuple_pos))

51 tuple_neg_matrix <- as.data.frame(rbindlist(tuple_neg))

52 training_set <- rbind(tuple_pos_matrix , tuple_neg_matrix)

53

54 # call Python code to learn the optimal parameters

55 params <- FM_GD(training_set[-1])

56

57 # loop all factorzation machine value of all basket items in order to calculate wHR(loo)

58 user_index <- df_test2_weighted_customer_ID[df_test2_weighted_customer_ID$customer_ID %in% customer_unique , ]$index

59 for (q in 1: length(user_index)){

60 index <- user_index[q]

61 hit <- list()

62 counter <- counter + 1

63 for (j in 1: length(df_test2_weighted [[ index]]$target)){
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64 basket_test <- df_test2_weighted [[index ]]$evidence [[j]][, -c(1:2)]

65 basket_test_products <- names(basket_test)[which(basket_test > 0, arr.ind = TRUE)[, "col"]]

66

67 # generate test tuples

68 evidence_test <- basket_test_products

69 tuple_test <- matrix(0, nrow = ncol(R_item) - length(evidence_test), ncol = 2*M, dimnames = list(NULL , colnames(h)

[-1]))

70 tuple_test[, colnames(tuple_test) %in% paste("basket", evidence_test , sep = "_")] <- 1

71 tuple_test[, !(colnames(tuple_test) %in% paste("target", evidence_test , sep = "_") | colnames(tuple_test) %like% "

basket")] <- diag(1, nrow = nrow(tuple_test))

72 testing_set <- as.data.frame(tuple_test)

73 testing_set$target <- 1

74 testing_set <- cbind(customer_ID = customer_unique , testing_set)

75

76 # convert to python code in order to speeden things up as R is very slow in matrix multiplications

77 output <- FM_value(as.matrix(testing_set[, -c(1, ncol(h))]), as.matrix(params [[3]]) , as.matrix(params [[2]]) , as.

integer(M), as.integer(p))

78 output <- as.data.frame(t(unlist(output , use.names=FALSE)))

79 colnames(output) <- colnames(R_item)[!(colnames(R_item) %in% evidence_test)]

80

81 predictions <- colnames(output[, order(output , decreasing = TRUE)])

82 hit$predictions[j] <- predictions [1]

83 }

84 # calculate wHR(loo)

85 predictions_list[[ counter ]] <- wHR(hit$predictions , df_test2_weighted [[index ]]$target , popularity[, colnames(

popularity) %in% hit$predictions ])

86 }

87

88 setTxtProgressBar(pb , i)

89 }
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