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Abstract

After a timetable has been made in which all trains run, enough seats need to be present for all
travelers on each trip. We are interested in buying new train units and are therefore solving a
train unit assignment problem (TUAP). This problem is NP-hard and therefore difficult to solve.
We solve it by first constructing a lower bound to this problem using Cacchiani et al. (2010) and
Cacchiani et al. (2019) by solving the problem to the peak period, a set of incompatible trips. Then,
the heuristic based on Cacchiani et al. (2019) is used for finding a solution to the original problem
using the found lower bound. The heuristic itself is also being modified to possibly improve their
results and lower the computational time in three different ways. One is changing the way that
train units are sorted. Another one is fixing the assignment of the train units of all trips in set S,
a set which contains incompatible trips. The last modification also fixes the assignment of all trips
in set S and also uses a tabu-search technique adapted from de Werra and Hertz (1989). In the
results, four instances are used. In all instances, the lower bound is never found in one heuristic.
However, good results are found in three instances. Moreover, two modifications lead to better
results for three instances, while also having a lower computational time. And therefore, the two
modifications can be used in real-world instances to lower the computational time of the existing
algorithm by a lot while also obtaining better results than the original heuristic.



Contents

1 Introduction

2 Problem statement

3 Literature

4 Methodology

4.1 Determine set of incompatible trips . . . . . . . ... ... oL
4.2 Determine lower bound . . . . . . ...
4.3 Peak Period Heuristic . . . . . . . . . . . .

4.3.1 Initialization phase
4.3.2 Constructive phase

4.3.3 Feasibility phase . . . . . . . ...
4.3.4  Assigning trips . . . ..o
4.3.5  Assignment Problem . . . . . ... oo
4.3.6 Updatingsets C'and N . . . . . . . . . ..
5 Modifications to the existing heuristic
5.1 Updating sets C and N with tabusearch . . . ... ... ... ... .. ......
6 Results
6.1 Instances . . . . . . . . e
6.2 Maximum-weight stable set and lower bound . . . . . ... .. ... .. ......
6.3 Heuristic. . . . . . . . e
6.4 Modifications to the existing heuristic . . . . ... ... ... o000
6.5 Costs during each iteration . . . . . . .. ... oL Lo oo

6.6

Train Unit Combinations

7 Conclusion and discussion

A Programming code

I

ot

O © 000000~ OO

12
12
12
13
13
15
16

17

18



1 Introduction

Trains run using an already made timetable. In such a timetable, no information is given about
the train unit compositions of each train trip. Furthermore, on each trip enough seats should be
available for all passengers to prevent crowded trains and to keep the passengers satisfied. Since
platforms are not always long enough, a maximum length is given for each trip. We are interested in
buying new trains for a timetable like this, and assigning those train units to trips. Train units are
expensive and therefore train units perform multiple trips in sequence. However, no information is
given about the trip sequencing in a timetable. It is therefore useful to use a method which is able
to find combinations for all trips to perform trip sequencing and to reduce the overall total costs
of buying train units. However, passenger demand and length constraints should not be violated.

The TUAP is solved by first computing a lower bound to the problem, based on Cacchiani
et al. (2010). This lower bound is based on a subset of the original problem, a set of incompatible
trips. After that, a peak period heuristic is used to solve the whole problem using this lower bound,
developed in Cacchiani et al. (2019). This heuristic is modified three times to potentially reduce
the total costs and the computational time. One modification is sorting train units differently.
Another modification is fixing the train units that are in the set of incompatible trips. The last
modification extends the previous modification by using a tabu search technique described in
de Werra and Hertz (1989).

Four instances are used, which contain between 200 and 1010 trips. None of those instances are
able to find a combination which is equal to the obtained lower bound. However, two modifications
lead to lower computational times and better results than the original peak period heuristic. In
particular, the costs of the biggest instance are lowered by almost 5% in comparison with the
original heuristic while also being much faster in solving it. Therefore, the two modifications,
fixing set S with or without tabu search, can be used in real-world instances.

To solve this problem, we first describe a more precise problem statement including some
notation in Section 2. Then, we come up with already done literature about this subject in Section
3. After that, we describe our used methods in Section 4, which contains the methods to find a
set of incompatible trips (Section 4.1) and the corresponding lower bound (Section 4.2). It also
contains a heuristic which is related to the already found lower bound (Section 4.3). This heuristic
is modified in Section 5 to find results with lower costs or results with similar costs that are obtained
much faster. After that, the results are given in Section 6. The results of the instances are given
at first (Section 6.1) and after that the other obtained results using the described methodology.
We end with a conclusion and discussion in Section 7.



2 Problem statement

After a timetable for the arriving and departing trains has been made, train unit are assigned to
this timetable. Assigning train units to this timetable is solving a train unit assignment problem
(TUAP) and is NP-hard.

The given timetable consists of different trips, which are denoted as set T' = {1,2,... ,n}.
Every trip ¢ has a departure d; and arrival time a; (Vt € T'). They also have a passenger demand,
pt, which must be met for every trip. Furthermore, all trips have a maximum length which are
different for each line, due to the fact that some train stations have a shorter platform than other
train station, which are denoted as l; (V¢ € T'). Different train unit types can be bought, which are
denoted in set U = {1,2,... ,m}. Every train unit type, b (b € U), has its own cost (c), number
of seats (sp) and length (gp).

The goal is to buy a combination of train units which have the lowest total cost, while the
seat demand is met. For each trip, multiple train units can be assigned to a trip to meet the seat
demand. It is even possible to combine different train unit types and there is no maximum amount
of combined train units for a trip. However, the combination of train units should never exceed the
maximum length given for each line since an arriving train can not be longer than any platform
on its trip.

A train unit can perform multiple trips in sequence if and only if the arrival time on a train
station plus 5 minutes is earlier than the departure time of the same station. Those 5 minutes
are used for shunting operations. If two different trips can not be performed in sequence, they are
considered incompatible. This, however, means that dead heading is not allowed.



3 Literature

A lot of research has been done about the railways. Multiple method to solve a TUAP have been
developed. Cacchiani et al. (2010) proposed a 3-step method to find a solution with low costs.
The first two steps, finding a lower bound to this problem, are used in our methods. The last step
uses column-generation. The results of this last step are promising. Cacchiani et al. (2013) use
the same method to find a lower bound to this problem. The last step is different: a Lagrangian
heuristic. This method turns out to be faster.

Similar problems are also being solved. Lin and Kwan (2014), for instance, proposed a two-
phase approach for the train unit scheduling problem (TUSP). The difference between a TUAP and
TUSP is that a TUSP also takes operational requirements into account when solving the problem.
The first phase in their method is to model the problem as a fixed-charge multicommodity flow
problem (FCMF) and solve it using a branch-and-price approach. The second phase is to model the
multidimensional matching problem as a mixed integer problem (MIP) and solve it with a column-
and-dependent-row generation. Lin and Kwan (2016) developed a branch-and-price approach for
solving the integer multicommodity flow problem. This resulted in schedules being better than
manual schedules.

In a timetable, employees should also be assigned to train units. Abbink et al. (2005) developed
a method for crew scheduling for the dutch railway operator NS. The new schedule reduces the
personnel costs by 1.2% per year, which could be even more.

One of the most important steps is building a timetable. Ghoseiri et al. (2004) solved a train
scheduling model using an objective function including both train fuel consumption and passenger-
time. Lowering the fuel consumption is advantageous for the railway company and passenger-time
for the travellers. This problem is solved using a two-phase approach.



4 Methodology

Solving a TUAP is NP-hard. To solve this problem, we first find a set of incompatible trips, the
peak period, and the corresponding lower bound based on the methods described in Cacchiani
et al. (2010), in Sections 4.1 and 4.2. After that, we describe a heuristic developed in Cacchiani
et al. (2019) in Section 4.3 to find a feasible solution to the original problem.

4.1 Determine set of incompatible trips

In order to compute a lower bound, we find a set of incompatible trips, which form the peak period.
This peak period corresponds with different and incompatible trips. Therefore, trips in the peak
period are assigned to different train units.

Consider the undirected graph G = (V, E), which contain all trips as vertices. When a trip
can be done in sequence by the same train unit, vertices ¢ and j are connected with edge (i, 7).
All 4 vertices (i € T') should be covered with at least p; paths. Those paths are the required seats
for trip 4. This means that we solve the minimum flow problem with demands to find the set of
incompatible trips.

To solve this problem, we construct a directed graph G’ = (V’, A) with the same vertices as in
graph G, however the edges in graph G become directed arcs, A, in graph G’. Furthermore, we
add 2 new vertices: A source, o, and a sink, 7. A vertex i without an incoming edge, receives an
incoming edge: The source o to vertex i. A vertex j without an outgoing edge, gets an outgoing
edge: vertex j to sink 7. To furthermore solve this problem, we minimize the outgoing flow of the
source. The flow of vertices are noted as fr with & € E’. Also, the flow entering vertex i, i € T
and the flow leaving vertex 4, i € T, are denoted as §~ and J* respectively. The formulation of
solving the minimum flow problem is:

min Z fs (1)

s€s
s.t. Z fa= Z fa VjeV'\{o, 7} (2)
Qo acsl,
Y fazpi vjeV'\{o,7} (3)
ae&(j)
fa 20 Va e A (4)

The objective, equation 1, is to minimize the flow leaving the source. Constraint 2 ensures that
all incoming flow of all vertices, except the source and sink, equals to all outgoing flow of those
vertices. Constraint 3 ensures that all vertices, except the source and sink, get at least enough
seats. All flow must be positive (constraint 4). Since all seat demands are integer, we get an integer
flow, because the constraint matrix is totally unimodular.

Let set S be the set with all trips that are in the peak period. After solving this problem, we
take a look at the dual variables of constraint 3. The set is build by the selected vertices of the
dual variables of this constraint. In particular, all dual variables that are > 1 are selected to be in
set S, all trips that are in the peak period. Those trips are used to determine the lower bound.

4.2 Determine lower bound

After we find all trips that build a maximum-weight stable set, we construct the corresponding
lower bound by calculating the number of train units needed for each trip. All trips in the found
set are incompatible and therefore trip sequencing is not possible. However, this lower bound is
not guaranteed feasible in the original problem because the used set is only a subset of the original
problem.

Denote variable n,;, as the total number of train unit types & which are assigned to trip j with
j € S and k € U. The lower bound is obtained when solving the IP problem as given in model



(5)-(8). This solution is a lower bound because all restrictions are modelled as hard constraints for
the peak period, a subset of the original problem.

min Z Z CLWjik (5)

keT jeS
s.t. Z SKWijk > Py jeSs (6)
keT
> awie <1 jeSs (7)
keT
w;r €N keT,je s (8)

The objective, equation 5, is to minimize the number of seats needed. Constraint 6 ensure that
enough seats are present for each trip. For all incompatible trips, the length of all train units
combined should not exceed the maximum length of that trip, which is ensured by constraint 7.
Constraint 8 ensure that the used train units are integer and at least 0, as train units can not be
cut and can not be negative.

4.3 Peak Period Heuristic

After computing the lower bound, we only have information about the minimum required train
units. It is therefore unknown which train units are assigned to which trip in the original problem.
We then need to solve the original problem with use of this obtained lower bound. With the use of
all train unit types needed in the lower bound, we use a method which tries to find a combination
to only assign the used train units found in the lower bound. If a feasible solution is found, which
means that all trips are assigned using only these train units, then the lower bound is found. If
this does not give a feasible solution, a best solution is found by assigning all trips to additional
train units.

For the heuristic, we can use two elements that are calculated before: the value of the lower
bound (all different train unit types needed) and the set of incompatible trips (set S). If we find
a combination in the heuristic which has the same costs as the lower bound, the found solution
is optimal. To find this combination, we use, in particular, the total number of different train
unit types used in the lower bound. Let dp (b € U) be the number of train unit types used.
If this combination gives a feasible solution, then the algorithm can be executed. To find this
combination, we also use the second element, the set of incompatible trips determined in Section
4.1. Those trips match the peak period and, therefore, are considered critical trips. Only trips that
are hard to assign end up in the set of critical trips. Consequently, the heuristic starts assigning
train units to those trips.

The heuristic is an iterative process which consists of 3 different phases: the initialization phase
(Section 4.3.1), the constructive phase (Section 4.3.2) and the feasibility phase (Section 4.3.3).
After the initialization phase has been finished, the constructive and feasibility phase alternate,
until a feasible solution has been found with costs equal to the lower bound or the maximum
iterations have been reached or the heuristic runs out of time. The algorithm about the peak
period heuristic is given below. We also give some additional information about assigning trips
(Section 4.3.4), the assignment problem (Section 4.3.5) and updating sets C' and N (Section 4.3.6).
For the algorithm given below, we use n;;., = 20.



Algorithm 1 Peak Period Heuristic

1: Start Initialization Phase

2: h+1

3: while not done do

4: Start Constructive Phase

5: if Feasibile Solution has been found in Constructive Phase then
6: Return feasibile solution found

7 break

8: Start Feasibility Phase

9: if Better solution has been found in Feasibility Phase then
10: Update best solution found

11: if Heuristic running over 12 hours or h > n;., then

12: Return best solution found

13: break

14: h+<h+1

15: Update critical and uncritical tripsets

4.3.1 Initialization phase

In the initialization phase, we use the two elements: the lower bound and set of incompatible trips.
All trips are either in the set of the critical trips or in the sets of uncritical trips. Let set C be
all critical trips and set N be all uncritical trips, with C C T, N C T and U = T'\ C. In both
sets, the trips are initially ordered based on their departure time. That changes, however, for set
C' during the Constructive phase (Section 4.3.2). Moreover, the best solution costs are initialized
as oo and we use n. = 10.

4.3.2 Constructive phase

The constructive phase tries to find a combination such that the already found lower bound is a
feasible solution to the problem. It only uses the train units dj, (b € U). If a combination leads to
a feasible solution. The heuristic can stop as it found the lower bound and so the optimal solution
to this problem. When assigning train units to trips, we first assign train units to trips that are
in set C and after that in set N. If no combination has been found that gives a feasible solution,
then some trips remain uncovered. The uncovered trips are being assigned during the Feasibility
phase.

4.3.3 Feasibility phase

If all trips are covered, this means only dj, train units are used, then the found solution is optimal.
However, if not all trips have been covered, the feasibility phase is being executed. As we have to
buy trains, we do not have restrictions on the total number of trains needed. This ends up always
finding a feasible solution during this phase if at least one train unit combination exist for each trip
that does not violate the length or demand constraint. Furthermore, the feasibility phase keeps
track of the best found solution in this phase. This solution is only replaced by another solution if
a better solution has been found. This best feasible solution is returned if the maximum iterations
has been reached or when running for more than 12 hours.

4.3.4 Assigning trips

During the phases, trips have to be assigned. Assigning trips is the most important step during
all the three phases. Therefore, we provide the algorithm for assigning trips in Algorithm 2, which
can be found below.



Algorithm 2 Assigning trips

1: uncov < all to be assigned trips, bool < true, i < 0
2: while ¢ < n. and uncov is not empty do
3: uncov < all to be assigned trips

4 for All to be assigned trips do

5 Get all feasible train unit combinations for the current trip

6: Sort all train unit combinations based on their total seats

7 while Combinations can be tested and current trip is not assigned do

8 Consider the first combination

9: Solve Assignment Problem for all train units with this combination
10: if feasible combination has been found or no maximum train units are used then
11: Current trip is assigned with the current combination
12: else
13: Remove current combination

14: if Critical Trips are assigned then

15: t+1+1

16: if ¢ > n. and not all trips are assigned and bool then

17: i+ 0, bool + false

18: Change the order in which all trips will be assigned in the next iteration
19: else
20: 14 Ne
21: if not all trips are covered and i < n. then
22: Remove all assigned combinations from current solution

In line 1, the set uncov is made which contains all to be assigned trips, a Boolean variable is set to
true and the iteration counter ¢ is set to 0. In lines 3, the uncov set is set back to its original. In
line 4, all to be assigned trips are visited in the order they are given. In lines 5 and 6, train unit
combination are sorted based on their seat demand. It is sorted on seats to prevent over-covering
a trip. In lines 7 till 13, the combinations are visited one by one until a feasible combination has
been found or all combinations have been visited. In line 9, the assignment problem is solved to
test whether or not the current combination is feasible, for all train unit types, which is described
much more in detail in Section 4.3.5.

In line 10, the current combination is only accepted if the combination is feasible or when
assigning without maximum number of train units. The maximum number of train units being
used is not used during the Feasibility phase, but is used during the Constructive phase. The
current combination is removed if the combination is not feasible and the maximum number of
train units is used. Then, try the next combination if any is left. Otherwise, visit the next trip
that should be assigned and leave the current trip uncovered. In line 14 till 17, when assigning
to critical trips only, the iteration counter is incremented by 1. In case that some trips are left
uncovered and the iteration counter is equal to n. and the Boolean variable is true, the iteration
counter, 1, is set back to 0. In addition, the Boolean variable is set to false. In line 18, the order
in which the trips are being visited in the next iteration is based on the Boolean variable. If the
Boolean variable is true: all uncovered trips € S are assigned first in the next iteration, then all
other trips € S. After that, all uncovered trips ¢ S, and finally all covered trips ¢ S. If the
Boolean variable is false, the order is the same except that all uncovered trips ¢ S are considered
before all covered trips € S. In lines 19 and 20, if not assigning to critical trips, set i to n.. In lines
21 and 22, remove the assigned combinations from the current solution if not all trips are covered
and this is not the last iteration.

4.3.5 Assignment Problem

In line 9 of Algorithm 2, the assignment problem is solved. This problem determines how many
train units of a specific type are needed. Therefore, a graph G(V", A’) is build for each train unit



type, b € U, containing all trips that are done by train unit b, with V" all trips train unit b has
to do and A’ all arcs between every (i, j)-pair (i € U, j € U). If train unit b is assigned more than
once for a specific trip, then for every trip that has to be done by train unit b, a new vertex is
created. For instance, trip ¢ needs 3 train units of the current type. Then this graph is build with
3 vertices of the current trip. Denote the costs of arc (i,5) ((¢,5) € A’) as ¢g(4,5). The costs of
g(i,7) are set to 0 if trip j can be done after trip ¢ during a day, (i, € T'). The arc (4, 7) is set to 1
otherwise. Denote binary variable y;;, (¢, € T') which is 1 if arc (¢, j) is used and 0 otherwise. To
find the minimum train units needed for this problem, we solve the following assignment problem:

min Z gij yij (9)

(i.j)€A”

st > =1 jev” (10)
eV

> yi=1 iV’ (11)
jEV”

Yij = 0 1 V”,j ev” (12)

The objective, equation 9, minimize the number of train units needed. Equations 10 and 11 ensure
that all trips are entered and left by a train unit once, respectively. Equation 12 ensure that
¥i; is binary, the binary restriction is not needed because of the constraint matrix being totally
unimodular.

4.3.6 Updating sets C' and N

Using the three phases, which are described above, the critical trips are considered in the order
given by the previous iteration, while the uncritical trips are ordered based on their departure
time. In addition, the set of critical trips, set C, is updated at the end of the constructive phase
with all unassigned trips that are not in set C at the moment. The unassigned trips are added to
set C after all elements that are already in this set. This is important for the main execution since
critical trips are ordered based on the previous iteration.

5 Modifications to the existing heuristic

To improve the existing heuristic, three modifications are tested. The first two are given below
and the last one is given in Section 5.1. That one is based on a tabu-search technique described in
de Werra and Hertz (1989).

The first modification is changing the way the train units are sorted in line 6 of algorithm 2.
In the current heuristic, train units are sorted based on their total seats. In this problem, the goal
is to minimize the total costs. The price of a train unit is not only depended on the number of
seats, but also depended on, for instance, the length of a specific train unit and the material of a
train unit. This can lead to train unit combinations with more seats while it costs less. Therefore,
we modify line 6 of Algorithm 2 from sorting all train unit combinations based on their total seats
to sorting all train unit combinations based on their total costs.

The second modification is using a third element that is computed before: the assignment of
the train units of the trips in set S (Equations (5)-(8)). The lower bound can only be found as
solution to the original problem if the assignment of train units of the trips belonging to set S are
fixed to that solution. Therefore, all trips that do not belong to set .S are put initially in the set
of uncritical trips, and the trips that do belong to set S are assigned to the found solution (and
are not put in the set of critical trips). This means that set C' is initialized as: C' = {}. The
assignment of all other trips are then built around the assignment of trips in set .S. Furthermore,
line 18 of algorithm 2 needs a change with this modification and is therefore modified to: randomize
the order for the next iteration and assign all trips € uncov before the other trips.

10



5.1 Updating sets (' and N with tabu search

The third modification is the way sets C' and N are updated, with the use of the second modi-
fication. In particular, this modification is extended. This extended use a tabu search method.
Initialize set tabu, which contains all trips that are tabu to become critical again. Trips that are
in set tabu can not become a critical trip for the current and two additional iterations. This will
prevent trips becoming critical and uncritical, alternating. We use a combination of removing trips
being critical and a tabu search technique to prevent a large amount of trips being critical: being
critical should be something more special, rather than being assigned first. Trips are removed from
set C if they are not left uncovered after the constructive phase. With the use of this tabu search
technique, all trips get a chance to become critical. A maximum of |S| trips are in set C' during
the whole heuristic. To do this, we use algorithm 3 including a tabu search technique.

Algorithm 3 Update sets C' and N with tabu search

: Update tabu
newC <+ {0}
: for all trips t € C' do
if t € uncov then
Add trip t to newC and remove trip t from uncov
else
Add trip to t to tabu and add trip t to N
. for all trips t € uncov \ tabu do
if |newC| > |S| then
break
Add trip t to newC

: C +— newC

© X DGR wh e

=
= O

=
N

In line 1, update tabu: All trips that are in tabu for 3 iterations are removed from tabu. In line 2,
the set newC' is initialized empty. In lines 3 till 7, all trips in the current set C are being visited.
All trips that remain uncovered are put in newC and removed from uncov. All covered trips are
added to tabu for the current and 2 additional iterations and to N. In lines 8 till 11, if newC' is
full, the forloop stops and every uncovered trips ¢, t ¢ tabu, are added to newC. In line 12, C
becomes the temporarily set newC.

11



6 Results

The results about the used instances are given at first in Section 6.1. After that, the results
obtained about the maximum-weight stable set and the lower bound are presented in Section
6.2. After that, the results about the original heuristic (Section 6.3) and the modifications to the
heuristic (Section 6.4) are presented. Then, we present some information about the varying costs
during each iterations in Section 6.5. We end the results with the different train unit combination
that form the best solution in Section 6.6 of all methods.

6.1 Instances

The railways have three different type of trains. Each with different characteristics, which are
shown in Table 1. The costs per seat are the cheapest for type OC (€460 costs/seats) and the
most expensive for type OH (€527,78 costs/seats). The costs per meter train are also the cheapest
for type OC (€2300 costs/meter), but the most expensive for type OT (€2640 costs/meter).
However, OT has the most seats per meter train: 5,12 seats per meter, while OH has the least:
4,8 seats per meter.

Table 1: All available train unit types with their characteristics

Train unit type | Costs/year (€) | Seats | Length (meters)
oC 230,000 500 100
OH 190,000 360 75
oT 330,000 640 125

The railways have 12 different lines in which train units will be assigned to. Each line has a
different maximum length in meters. The lowest maximum length is 200 meter, while the highest
maximum length is 400 meter. This means that a maximum of 5 train units can be combined to
perform a trip with a maximum length of 400 meter consisting of either 5 OH train units or 4 OH
and 1 OC train units.

In the provided data set, we are given four instances. Each instance contains the following
information about each trip: The number of trip, the departure and arrival times, the starting-
and end locations, the demand i and o, and the line. We are given two different types of demand.
Demand g is the minimum amount of seats that should be available during each trip and demand
o can be added to demand p to guarantee that all passengers can sit on a seat during each trip.
However, demand o is optional and only satisfying passenger demand p is sufficient. Furthermore,
the 4 instances have 200, 318, 564 and 1010 trips respectively and the first train will depart at 5:02
and the latest will arrive at 13:05. Moreover, we are given 13 different stations where trains can
start and end.

6.2 Maximum-weight stable set and lower bound

Table 2 shows the minimum flowing leaving the source for all different instances and the number
of trips that build the maximum-weight stable set (set S). The flow corresponds with seats: 1 flow
is 1 seat. This minimum flow is therefore the minimum required seats. In addition to this, the
time to solve for each instance is given. This problem is solved using CPLEX.

Table 2: Results about the maximum-weight stable set

Instance | Flow | #Trips || Time (sec)
1 95,295 110 0.00
2 98,815 115 0.06
3 116,039 136 0.22
4 271,100 349 0.84
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Table 3 shows the total costs for each instance belonging to the trips that build the maximum-
weight stable set. For all instances, the required seats in the lower bound and the computation
times are given. This problem is solved using AIMMS.

Table 3: Results about the lower bound

Instance | Costs (€) Seats || Time (sec)
1 50,910,000 | 101.520 0.27
2 52,780,000 | 105.320 0.39
3 61,780,000 | 123.320 0.56
4 144,800,000 | 289.900 1.02

The maximum-weight stable sets are build between 24.11% and 55% of all trips in the original
problem. The increase in seats between the flow and the lower bound is always between 6 and 7%.
The computational times are low, but increasing if the number of trips increase.

6.3 Heuristic

The heuristic solved the problem for each instance and those results can be found in table 4. The
best found solution is given in costs and seats. Also, the computational times are given. Some
instances ran out of time as the heuristic needed more than 12 hours to solve it. Those instances
were forced to terminate when their iteration was done. The computational time is given in bold, if
was forced to terminate. Moreover, the gap in costs and seats are given to compare with the found
lower bound. The difference between costs and seats is that those numbers are not necessarily the
same, because the costs per seats, when only comparing costs with seats, is not the same for each
train unit type as described in Section 6.1. Furthermore, this problem is solved using CPLEX.

Table 4: Results about the heuristic without a modification

Instance | Costs (€) #Seats || Time (hours) | ner | Gap costs | Gap seats
1 56,470,000 | 112,800 3.23 20 9.85% 10.00%
2 62,650,000 | 124,840 8.03 20 15.75% 15.63%
3 79,540,000 | 158,900 12.81 9 22.33% 22.39%
4 178,370,000 | 357,080 14.43 2 18.82% 18.81%

None of the instances found their corresponding lower bound. Furthermore, instances 3 and 4 ran
out of time, more details about the consequences of that can be found in Section 6.5. The gap in
costs and seats are increasing for the first 3 instance and are decreased for the last instance. This
might happen, because the minimum number of seats is a bit low for instance 3 compared with
instance 4 in the lower bound. However, a big gap is used for

The computational times increase exponentially when the number of trips increase. The last
iteration of instance 4 was at least over 2.5 hours, but seems to be more than 7 hours if each
iteration has the same computation time. That is at least 2 times the computation time of instance
1. The computation time increase can be explained by the fact that the last instance contains more
trips in set S than trips in the first instance. All trips in set S are also in set C, which has a much
longer computational time than set IV, because it assigns all trips up to 20 times during 1 iteration of
the constructive phase. Furthermore, the computational time of the assignment problem increases
by a lot if more trips needs to be assigned.

6.4 Modifications to the existing heuristic

Tables 5, 6 and 7 contain the information about the outcomes about the 3 modifications that are
made to the existing heuristic. The tables contain the same information as that of the heuristic,
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including the time given in bold if it does run out of time. In addition, when an instance found a
better solution than the heuristic without modifications, then the gap costs and seats are given in

bold.

Table 5: Results about the heuristic with sorting on seats replaced by sorting on costs

Instance | Costs (€) | #Seats || Time (hours) | ne | Gap costs | Gap seats
1 58,840,000 | 117,740 16.34 20 13.48% 13.78%
2 64,330,000 | 128,280 12.44 19 17.95% 17.90%
3 79,870,000 | 159,160 16.09 6 22.65% 22.52%
4 198,450,000 | 397,480 29.24 2 27.03% 27.07%

Sorting the train unit combinations based on their costs instead of their seats lead to worse results
than the original heuristic. In particular, the costs are increased between 0.41% and 11.26% when
compared with the original heuristic. Also, the computational time is increased by a lot. Instance 4
was more than twice as slow using this modification. This improvement is therefore not successful.

Table 6: Results about the heuristic with set S being fixed

Instance | Costs (€) | #Seats || Time (hours) | ner | Gap costs | Gap seats
1 54,470,000 | 108,660 1.17 20 6.54% 6.57%
2 62,010,000 | 123,420 5.36 20 14.88% | 14.67%
3 82,020,000 | 163,880 12.43 13 24.68% 24.75%
4 173,230,000 | 344,280 18.95 3 16.41% 15.80%

Fixing set .S allows the heuristic to become more quickly, which can easily be seen when comparing
the computational times with the original heuristic. Furthermore, only instance 3 did not manage
to find a better solution with this modification than the heuristic. This method has costs which
are around 3% lower than the costs of the normal heuristic. Instance 3 has costs which are 3%
higher. Therefore, this heuristic is good to use, especially for bigger instances. Even when the
computational time of instance 4 is larger than the normal heuristic, this method is able to get an
additional iteration.

Table 7: Results about the heuristic with set S being fixed and the use of tabu search

Instance | Costs (€) #Seats || Time (hours) | nje- | Gap costs | Gap seats
1 54,950,000 | 109,520 0.48 20 7.35% 7.30%
2 62,510,000 | 124,560 1.85 20 15.57% 15.45%
3 79,890,000 | 159,820 8.11 20 22.67% 22.84%
4 169,750,000 | 339,720 17.22 3 14.70% 14.67%

The results of using tabu search are a bit worse for small instances when compared without using
tabu search. Those results, however, are still slightly better than the results of the original heuris-
tic. For bigger instances, tabu search turned out to get better results than without tabu search,
including much shorter computational times. Tabu search is therefore also a lot faster than the
original heuristic. Furthermore, the costs of instance 4 are much better than the original heuristic
(4.83% lower). Only instance 3 did not get a better result, however it found a similar solution.
Therefore, this heuristic is good, because it is faster while also getting better results.

The difference between the gap in costs and seats do not differ a lot, meaning that if the costs
are close to value of the lower bound, then the seats are also close to its minimum value. Moreover,
none of the two gaps is always lower than the other. This also holds for the heuristic in which
sorting on seats is replaced by sorting on costs.
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6.5 Costs during each iteration

Some instances ran out of time. To find out if that is a big problem, we consider all instances that
did not run out of time. The graphs of the original heuristic and 3 modifications can be found
below, in Figure 1.
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Figure 1: Costs after each iteration

The standard heuristic had its minimum at iteration 10 and 13 for instances 1 and 2 respectively.
Therefore, the heuristic is likely to get better results for instances 3 and 4 if the heuristic would
run longer. It is therefore somewhat problematic that it did not run more iterations. For the first
modification, instance 1 found its minimum at iteration 17. Since instance 2 has 19 iterations, it is
likely that it found a minimum. However, instances 3 and 4 are likely to find a combination with
lower costs if they run longer. Modification 2 found the minimum costs at iteration 10 and 3 for,
respectively, instance 1 and 2. Therefore, instance 3 did find its lowest costs, but instance 4 could
possibly find lower costs if it performed some more iterations. The last modification, only did not
finish all iterations for instance 4. Instances 1, 2 and 3 found their minimum costs at iteration 9, 2
and 4 respectively. If this heuristic did at least 10 iterations, it is likely to find a better minimum.

In all instances of fixing set .S with and without using tabu search, the costs stabilize at a higher
costs than the minimum, after finding its minimum. This is only compared with instances 1 and
2 of the original heuristic and the first modification. The other two heuristics fluctuate a lot, even
after finding a minimum.
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6.6 Train Unit Combinations

Some train units are more preferred than others. To find out if all train units are used and if one
is preferred over others, we consider the combinations of the best results. The results about the
used train units can be found below, in Figure 2. The figures contain the combination for the lower
bound, the original heuristic, the modification with sorting on costs, the modification with set S

fixed and the modification with set S fixed and tabu search method.

Train units needed

Train units needed

Train unit type OH seems to be the most used train unit. This seems logical since the lower bound
also use that type the most. Furthermore, this is the sequence in increasing costs, length and
seats. Therefore, smaller trains with less seats are preferred over longer trains with more seats.
Another noticeable thing is that the distribution among all train unit types are pretty similar for
each instance. That distribution has the same pattern for the lower bound, the heuristic and all
modifications to the heuristic.
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7 Conclusion and discussion

We are interested in a method that provides the assignment of train unis with the lowest possible
costs. This assignment should have enough seats for each trip, but the combination of train units
must not exceed the maximum platform length. Different train units can be bought with different
characteristics, which can all be combined to perform one trip. This problem, a TUAP, is solved
based on earlier research about this topic. We also tried to improve the existing heuristic.

The existing heuristic found an assignment for only 1 instance that is never improved by any
modification. Moreover, those improved results are obtained much faster than the results obtained
using the original heuristic if at least set S is fixed. The costs are reduced by almost 5% for the
biggest instance, with the use of tabu search. Therefore, a modification with at least set S fixed
is recommended to use. It is much better for bigger instances in combination with tabu search:
lower costs, while also being much faster than when set S is fixed only. Therefore, using set S
fixed in combination with tabu search is very effective for real-world instances with over thousand
trips because it is fast and has very good results.

Concluding, for small instances (<500 trips), the heuristic with only set S fixed is recommended,
while it is recommended to also use tabu search for bigger instances (>500 trips).

Instance 3 always has gaps over 20%, therefore sorting train units, based on costs or seats, is
not effective for that instance. Even instance 4 is able to get a gap below 15%. Consequently, a
new method should be developed, which may also give better results for other instances as well.

Further research can be done about the effect of shunting operation which takes more time.
That could be beneficial, because a timetables become more robust to some small delays. Research
can also be done about the number of iterations a trip can not become critical, as this influence
the algorithm. Also, the fixed size of set C' can be analyzed: more or less than the cardinality of
set S. And, at last for the last modification, the influence of randomizing the order in which trips
can be assigned to set C' instead of departure time can be analyzed.
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A Programming code

The zip-file contains 5 folders. I will shortly explain (1 sentence max for each file) what everything
does:

Calculating subset contains 5 files. DirectedGraph stores the information about the graph that
is built. DirectedGraphArc stores the information about all arcs in the graph. Location stores the
information about all trips, including the demand, arrival, departure, from and to locations. Main
is the main program to execute the code, which needs all input from a specific instance and give
the dual values as output. Model is the main program for CPLEX to solve the minimum flow
problem with demand.

Step 3 without modification also contains 5 files. DirectedGraph, DirectedGraphArc, Location
have exactly the same purposes as in "Calculating subset". However, it is used for the assignment
problem instead. Main is the main program which contains the algorithm for the peak period
heuristic, assigning trips and updating sets C and N, which give the results about the trips and
costs as output. Model is the main program for CPLEX to solve the Assignment Problem.

Main Modification 1, Main Modification 2 and Main Modification 3 contain respectively
the main programs for the first, second and third modification. The other programs are exactly
the same as used in "Step 3 without modification".
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