
ERASMUS UNIVERSITY ROTTERDAM
Erasmus School of Economics

Bachelor Thesis Econometrics and Operations Research

The Impact on Stock-Outs of Incorporating

Drones in the Supply Chain of Essential Drugs

in Zambia

Name student: Ingrid Pool
Student ID number: 432357

Supervisor: Rijn, L. van
Second assessor: prof.dr. A.P.M. Wagelmans

Date: July 05, 2019

The views stated in this thesis are those of the author and not necessarily those of Erasmus
School of Economics or Erasmus University Rotterdam.

Abstract

This research aims to replicate results obtained in a paper by Leung et al. con-
cerning stock-outs of essential medicines in Zambia and the effect of several inventory
policies on these stock-outs. The second goal of this study is to investigate the ben-
efits of incorporating drones in the distribution system of these medicines to lower
stock-outs. A simulation model is used as a method to perform the replication. This
simulation model is then extended to incorporate drones. This research concludes
that recommended inventory policies cause stock-outs by not properly accounting
for demand seasonality and lead time problems. It is shown that a drone system in
sub-Saharan countries is feasible and can reduce stock-outs and inventory levels at
health clinics. However, this research reveals several complicating factors regarding
the implementation of a drone system that need to be taken into consideration when
deciding on whether a drone system is the best way to lower stock-outs of essential
medicines.

1

Contents

1 Introduction 3

2 Data 5
2.1 Replication . 5
2.2 Drone Statistics . 6

3 Methods 7
3.1 Simulation . 7
3.2 Extension Incorporating Drones . 8

4 Results 8
4.1 Replication . 8
4.2 Extension . 12

5 Discussion 18

6 Conclusion 21

A Weekly Demand Estimates 25

B Simulation Code 25
B.1 Main . 25
B.2 Clinic . 33
B.3 Order . 43

2

1 Introduction

The (lack of) availability of medicines in sub-Saharan Africa received substantial at-
tention over the last decades, because the unavailability of essential medicines can lead
to preventable deaths (Cameron et al., 2009; Pasquet et al., 2010). Lower respiratory
tract infections, HIV/Aids, diarrhoeal diseases, malaria, and tuberculosis, which all are
preventable and treatable given adequate healthcare systems and resources, together
accounted for more 3.2 than million deaths (35.1% of all deaths) in sub-Saharan Africa
in 2016 (World Health Organization, Geneva, 2018).

Several causes of drug shortages have been addressed and researched. The first cause
being insufficient procurement financing and processes. This is critical to acquiring
sufficient medicines in the country in the first place. But even if there are enough
resources within the country, frequent stock-outs of medicines in local health clinics
remain a problem (Vledder et al., 2015a). A main contributor to local unavailability of
medicines is the distribution within countries.

Recently, multiple studies addressed several factors of the supply chain to determine
ways to improve the availability of essential drugs and to lower stock-outs. Researched
factors include financing, procurement, staff training, distribution capacity, information
systems and resupply frequency (Kangwana et al., 2009; Waako et al., 2009; Yadav,
2015). Specifically, Leung et al. (2016) researched the impact of inventory manage-
ment policies as recommended by the USAID | DELIVER project (USAID | DELIVER
PROJECT, 2011a,b; Watson et al., 2014).

The study by Leung et al. (2016) is the base of this research and the first part of
this paper is dedicated to replicating their results. Their research studies the stock-outs
of anti-malarial drugs (arthemether-lumefantrine) in Zambia. These are essential drugs
which need to be distributed to all health clinics and demand depends on the time of the
year. In Zambia drugs are first distributed from the national warehouse to the districts
and then from districts to local health clinics. The order quantities are determined by a
max-min inventory policy and orders are placed by the health clinics.

Leung et al. construct a simulation model to simulate demand, issues and deliveries
in a health clinic. This simulation model allows them to study inventory levels and
stock-outs under different inventory management policies recommended by USAID |
DELIVER (USAID | DELIVER PROJECT, 2011a,b). Using the simulation model they
also conduct sensitivity analysis regarding demand seasonality and delivery lead times.
Leung et al. conclude that stock-outs of essential medicines occurred in Zambia’s health
clinics, while these products were available in the national warehouse. Therefore, they
attribute these stock-outs to the max-min inventory control policy used in Zambia.

More specifically, they find three root causes of stock-outs with this policy. First,
the demand forecasts used fail to capture demand seasonality. Ignorance of predictable
changes in delivery lead times over time is identified as a second key driver of stock-outs.
Lastly, the replenishment targets are computed with past consumption data instead of
demand data. From sensitivity analysis Leung et al. find that simple changes in param-
eter values (degree of seasonality; lead times) or calculation methods (using historical

3

issues or demand; multiplication factor for estimated demand to calculate order quan-
tity) are limited in improving max-min inventory policies. Increasing the multiplication
factor used in calculating the replenishment target can improve service levels, but also
significantly increases average and maximum inventory levels. If these levels are even
feasible, they are inefficient and costly.

Instead of altering the max-min inventory policy another approach to reducing stock-
outs is to improve the factors that cause stock-outs with the current inventory policy.
As concluded by Leung et al. one of these factors is the varying delivery lead times.
The other factor is demand seasonality, which is also related to lead times because of the
following. The order quantity, which is already badly in tune with actual demand because
it insufficiently accounts for demand seasonality, is delivered later than the period for
which the order quantity was computed. The majority of the lead time consists of the
time it takes to transport medicines from district warehouses to local health clinics. The
medicines are mainly transported by trucks. In many sub-Saharan countries trucks and
roads are in poor condition and unfavourable weather conditions cause blocked roads. As
a consequence, lead times are long and highly uncertain. Regarding delivery lead times
in sub-Saharan Africa, several solutions have been proposed. These include a vehicle
maintenance project proposed by the Riders for Health, reorganization of the distribution
system, improving road infrastructure and improving communication (Bossert et al.,
2007; Chen et al., 2016; Vledder et al., 2015b; Yadav and Babaley, 2011).

In this research an alternative solution will be examined, namely the incorporation
of drones in the supply chain of essential drugs. Drones have several potential bene-
fits regarding the distribution of drugs in sub-Saharan countries. Firstly, drones can
reduce lead times of regional deliveries. Consequently, a placed order is received quicker
compared to truck delivery. Secondly, the variability in lead times will be much lower
compared to trucks. Drones can fly even if it rains and are not delayed by blocked roads
through for example unfavourable weather conditions. Lastly, the fact that lead times
are both shorter and more constant gives the opportunity to adjust the inventory policy
in a way that allows for more frequent deliveries. This might enable lower inventory
levels at the health clinics.

There are of course also a few possible downsides to the incorporation of drones.
The first point of caution is the limited range and cargo of the drones. Secondly, drone
stations have to be installed and people have to be trained, which can be costly and
time-consuming. Thirdly, drones have significant costs per flight.

This research aims to determine the extent of the potential benefits by characterizing
the impact of supply strategies that incorporate drones on stock-outs of essential drugs in
Zambia’s health clinics. Several studies have researched different applications of drones
for medical purposes. Tatham et al. (2017) find no insuperable challenges regarding
the use of long endurance remotely piloted aircraft systems to support the provision of
medical supplies to remote locations. Before that, Thiels et al. (2015) already suggested
that the use of unmanned aerial vehicles could be a viable mode for the transport of
medical products in times of critical shortage. In addition, there are other studies and
projects investigating the use of drones which take place in sub-Saharan African countries

4

(Haidari et al., 2016; Zipline). These examples show that it is possible to implement
these high-technology devices in low or middle income countries.

Zipline already uses drones daily in Rwanda and Ghana for the delivery of vital
products such as blood and vaccines (Zipline). When a medicine is needed, orders
can be placed through an app. The order then is packed and directly shipped with
the battery-powered drone within approximately 10 minutes from receiving the order.
When the drone arrives at its destination within 45 minutes it drops the package with
a parachute. The whole process from placing to receiving the order takes less than
an hour. When the drones return they are quickly prepared for the next flight, which
makes it possible to deliver hundreds of orders per day from each distribution center in
all weather conditions.

The main focus of this paper is to replicate the results obtained by Leung et al.
(2016). To achieve this, data published by Leung et al. will be used and a simulation
model is constructed. The second objective of this research is to characterize the impact
of incorporating drones in the supply strategies on stock-outs of essential drugs and to
analyze the effectiveness of this approach. Results of this study confirm the conclusions
stated by Leung et al.. Furthermore, it shows that incorporating drones in the distri-
bution of essential medicines is feasible and that it can reduce stock-outs while at the
same time reducing inventory levels at health clinics.

The rest of this paper is organized as follows. The paper will start with a description
of the data in Section 2. The first part of this section elaborates on the data needed for
the original analysis. The second part shows the additional data needed to investigate
the incorporation of drones. In Section 3 the methods used to replicate the results
from Leung et al. (2016) and extend this replication with drones will be explained.
Furthermore, the results of this research are stated in Section 4. Section 5 contains a
discussion of the results and in Section 6 final conclusions about this research are stated.

2 Data

To compare the research results, the same products will be investigated as in the study
by Leung et al. (2016). These products concern the four dosage forms (strips of 6, 12, 18
and 24 tablets) of artemether-lumefantrine (AL), an anti-malarial drug. Data regarding
these drugs is available over a one year period. Herein, a month is approximated by 4
weeks and consequently a year is approximated by a 48 week period.

2.1 Replication

Stock-levels of medicines in Zambia’s health clinics were reported by commodity planners
on stock cards. To gather the data, photographs of stock-cards were collected between
June 2009 and June 2010. Information on the stock card of a product consists of dates
and quantities of issues, deliveries and stock counts. This information is included in the
dataset for 11 districts and 152 health clinics.

The dataset also includes estimates of average weekly demand for a typical clinic.

5

Leung et al. (2016) adjusted the raw daily demand rates to correct for censored data.
After summing all four dosage forms of AL and averaging over 17 clinics from 5 different
districts they obtained an estimated average daily demand in a typical clinic (all four
dosage forms combined), from which the weekly averages can be derived. Leung et
al. conclude that weekly demand is best described by a lognormal distribution with
coefficient of variation equal to 50% and mean equal to the estimated average weekly
demand. These average weekly demand estimates are given in Table A1 in the Appendix.
Concerning demand values, Leung et al. define the seasonality factor as ‘ratio of peak
demand mean to average mean through the year’ and report a seasonality factor of 2.2
obtained from the data.

Distribution of medicines to local clinics in Zambia is divided into two stages. In the
primary stage the products are distributed from the national warehouse to the districts.
In the secondary stage, the products are further distributed from the district stores to
health clinics. The lead time of the primary distribution is assumed to be 2 weeks,
because it has a fixed monthly schedule and is reliable. The dataset contains a table
with delivery dates per district as well as delivery dates per health clinic. This historical
data can be used to estimate the secondary delivery times. These secondary delivery
times also include delay due to (weather-related) access problems. Clinic accessibility
probabilities per month are estimated by Leung et al. (2016) by averaging the weekly
subjective probabilities surveyed from clinic staff. The resulting monthly estimated
probabilities from January to December are 0.78, 0.76, 0.78, 0.85, 0.93, 0.97, 0.97, 0.98,
0.99, 0.99, 0.95 and 0.85. Leung et al. model the secondary lead times without access
problems as a geometric random variable. The mean is estimated from historical data
and is 3.8 weeks. This value is used as the first moment of the geometric random variable.

2.2 Drone Statistics

Data regarding the drones will be estimated by assuming the use of the Zipline drone
(Zipline). The newly introduced Zipline drones have a cruising speed of more than 100
kilometers per hour, can reach a distance of 160 kilometers (80 kilometers up and 80
kilometers back), and can carry up to 1.75 kilograms of cargo (3 units of blood) (Zipline).
The shipping box is estimated to have a volume of 10 × 20 × 30 = 6000 cm3. The 160
kilometer range means that one drone can cover an area of approximately 20,106 km2

within an hour. The average district size in Zambia is 10,170 km2 with a variance of
7,828 km2 (2012). This means that with approximately 1 drone station per district (and
if strategically placed possibly less) all healthcare centers can be reached. Zipline is a
commercial company that charges per delivery, and does not charge any costs for setting
up drone stations. The cost of a delivery is influenced by product weight as well as
urgency and distance of the delivery. Depending on these factors 15$ to 45$ is charged
per delivery (Wakefield, 2017). For example, Zipline will install four drone stations in
Ghana. With Ghana’s government, they agreed upon 600 deliveries per day for a four
year period. Zipline will be paid per successful delivery, which means that Ghana will
pay Zipline a total of about $12.5 million for their services (Asiedu, 2019).

A package of Coartem 24 (AL product with 24 tablets) is estimated to be 15 grams

6

with a volume of 11× 2× 4 = 88 cm3. Based on the maximum cargo weight, a Zipline
drone can carry up to 116 packages of Coartem 24. The volume of the packages, however,
restricts the maximum number of Coartem 24 packages carried by a single drone to
6000
88 ≈ 68 Coartem 24 packages, which is equal to 68 adult regimens.

3 Methods

3.1 Simulation

To investigate the stock-outs of AL products and the impact of the incorporation of
drones, a discrete-event simulation model will be used. Simulation is a convenient tool
to investigate differences in performance of a process when altering certain components
of the process as it allows the user to make adjustments and re-simulate the process
multiple times. In this simulation, the stock-levels of AL-products of a typical health
clinic will be simulated. This entails the simulation of replenishment orders, demand,
and order deliveries, while keeping track of stock-levels and outstanding replenishment
orders.

The simulation has time increments of a week. For each week, the following sequence
of steps is taken.

1. Replenishment orders to be received that week are processed, that is, the ordered
quantity is added to the inventory and the outstanding order quantity is updated;

2. A new order is placed if this week is the first week of the month. This means
that an order quantity is calculated according to the active inventory policy. The
average demand over the specified historical months is calculated and multiplied
by the multiplication factor. From this, the current and outstanding inventory is
subtracted, to obtain the order quantity. To find the delivery week of the order, a
random lead time is generated from the assumed primary distribution, geometric
secondary distribution and delay probabilities as described above in Section 2.1;

3. The last step is to process demand. Demand is generated from a lognormal dis-
tribution as described in Section 2.1 with the first moment equal to the average
weekly demand estimate for this week. This demand is then covered by issues for
as much as available inventory allows, and inventory is updated.

The key performance measure is service level, which is defined as the fraction of sat-
isfied demand over the total demand. This means that the service level is directly related
to the number and duration of stock-outs, since during a stock-out no demand can be
satisfied. To minimize the impact of the initial state of the simulation on the performance
measures, a warm-up period of two years is chosen. Over the three simulated years after
the warm-up period, data is collected to compute performance measures. Moreover, the
simulation contains several random variables. In order to obtain consistent results, each
simulation includes 100,000 replications, from which the collected data is averaged.

7

First, this simulation will be implemented with the inventory policies as recom-
mended by USAID | DELIVER PROJECT (2011a,b) (for Java code see Appendix B).
Inventory policies are described following a specific notation. General notation is as
follows: a×X[b,c]. The first number, a, represents the multiplication factor. X∈{I, D}
determines whether the historical average of issues (I) or demand (D) is used in calcu-
lating the replenishment target The interval [b,c] shows over which historical months
to calculate average issues/demand, and must be interpreted in relation to the current
month. Sensitivity analysis will be conducted for lead times and the seasonality fac-
tor. Results from the inventory policy analysis as well as the sensitivity analysis will be
compared with the reported results by Leung et al. (2016).

3.2 Extension Incorporating Drones

For the second part of this research, the simulation will be extended to incorporate
drones (Java code is included in Appendix B). A drone delivery takes less than an hour,
so in the simulation model this will be approximated by immediate delivery after the
order is placed. At the end of any week, after demand of this week has been processed, a
drone order can be placed if the inventory level is below a certain value and the maximum
frequency of drone usage (per week or month) has not yet been reached. The amount
of the drone order is the minimum of the needed medicines and maximum cargo. If
the maximum drone frequency allows for another drone order this week and the amount
of medicines needed cannot be carried by one drone, extra drone orders can be placed
until maximum drone frequency is reached or all needed medicines are ordered. The
total ordered amount is directly added to the inventory, so that it is available at the
beginning of the next week. Drone deliveries are independent from truck deliveries,
which still follow the same schedule.

To find the most effective way to incorporate drones a sensitivity analysis will be used.
This sensitivity analysis will entail allowed frequency of use, maximum transport capacity
and the inventory level value from below which placing a drone order is allowed (critical
inventory level). The simulation will then be used to obtain performance measures for
different parameter values. For all methods in the extension, the standard inventory
policy is applied. More specifically, all results are obtained with simulation of the 4×I[-
3,0] inventory policy. Based on the results, a few other inventory policies are selected to
simulate with the incorporation of drones. These inventory policies are selected based
on highest service level and lowest inventory levels.

4 Results

4.1 Replication

As a first step, the emergence of stock-outs is examined. Figure 1 shows how seasonality
in weekly demand values causes stock-outs of AL products for the 4×I[-3,0] policy,
which is the policy currently used in Zambia’s health clinics. Demand rises starting
from December through January and February and reaches its peak in April and May.

8

The order quantities at the moment of placing the order are approximately one month
behind, starting to rise in January and peaking in April. Because of the long lead time,
inventory levels only start to rise again from April onwards. This means that clinics suffer
from increased stock-outs around March and April, which corresponds to the observed
increased stock-outs in Q1 and Q2 of 2010.

Figure 1: Random simulated sample path of the 4×I[-3,0] policy with a warm-up period of 100 years.
The top graph shows the mean estimated demand, actual generated demand and unmet demand for all
AL products over a period of a year, starting in July. The bottom graph visualizes the order quantities
and inventory levels over the same period.

Average service level for the 4×I[-3,0] policy is approximately 93%. This is slightly
higher than the 88% reported by Leung et al. (2016) Furthermore, they report average
and maximum yearly inventory levels of 2.0 and 4.3 months of demand, respectively.
Results from the simulation in this research resulted in 1.9 months of demand for the
average yearly inventory level and 4.0 months of demand for the maximum yearly inven-
tory level. This means that on average the inventory levels are slightly lower than the
average inventory levels simulated by Leung et al.

9

As reported in Section 2.1, Leung et al. find a seasonality factor of 2.2. The weekly
average demand estimates as reported in Table A1, however, contain a seasonality factor
of 1.51, so this value is considered the ‘base’ in this paper. Accordingly, the seasonality
factors used for sensitivity analysis by Leung et al. are adjusted to match the alternative
‘base seasonality factor’ found here. The considered values for the seasonality factor in
this paper range from 1.0 to 2.02. For the 4×I[-3,0] policy, lowering the mean secondary
lead time from 3.8 weeks to 2.2 weeks, increases service level, average inventory level and
maximum inventory level to 97%, 2.3 months and 4.5 months respectively (Figures 2A,
2C and 2E). On the other hand, increasing mean secondary lead time with approximately
one week to 4.87 weeks decreases the simulated annual service level to 89%. This 4%
decrease is approximately of the same order of magnitude as the decrease from 88% to
83% as obtained by Leung et al. when increasing mean secondary lead time with one
week. Considering demand seasonality, service level decreases at a faster than linear
rate, when demand seasonality increases (Figure 2B). Maximum inventory level slightly
increases with demand seasonality for the 4×I[-3,0] policy, while average inventory level
stays approximately the same (Figures 2D and 2F). Concluding, demand seasonality and
lead times have substantial influence on the service level for the 4×I[-3,0] policy, but do
not impact average and maximum inventory levels very much. Both mean secondary lead
time and demand seasonality have less effect on the service level for higher multiplication
factors, since the higher multiplication factors, and thus higher inventory levels, create
a buffer for demand fluctuation or delivery delay. However, the impact on average
inventory level and maximum inventory level is larger.

In the current situation (mean secondary lead time of 3.8 weeks and demand sea-
sonality of 1.51), the 4×D[-12,-9] policy performs best in terms of service level out of
all inventory policies recommended by USAID | DELIVER PROJECT (2011a), with
a score of 98% (Figures 3A and 3B). Compared to the other inventory policies this
policy leads to a reasonable level of average and maximum inventory, namely 2.0 and
4.0 months respectively (Figures 3C- 3F). Using historical demand instead of historical
issues to compute replenishment targets increases service level for all policies, but the
improvements are small. Changing from the 4×I[-3,0] policy to 4×D[-3,0] only increases
service level with 0.6% (Figure 3A and 3B). All together, reorganizing inventory policies
improves service levels with maximum 5% and decreases service levels with at most less
than a percent (Figures 3A and 3B). Adjusting the historical monthly issues used in the
inventory policy decreases average inventory level with less than 0.1 months for 4×I[-
6,0], 4×I[-12,0] and 4×I[-12,-9]. The 4×I[-1,0] policy results in an increase of average
inventory level from 1.9 months to 2.4 months (Figures 3C and 3D). Similarly, for the
policies 4×I[-6,0], 4×I[-12,0] and 4×I[-12,-9] maximum inventory levels decrease from
4.0 months to 3.5, 3.2 and 3.9 months respectively, while 4×I[-1,0] results in a higher
maximum inventory level of 5.2 months (Figures 3E and 3F). All these results are com-
parable to the results obtained by Leung et al. (2016). This means that recommended
inventory policies have limited impact on the service level and that policies with higher
service levels also result in higher inventory levels.

Altering demand seasonality and mean secondary lead time seems to have the most

10

Figure 2: Results of sensitivity analysis for the I[-3,0] policies with multiplication factors ranging from
3 to 6. Subfigures A, C and E show the effect of changing the mean secondary lead time on service
level, average inventory level and maximum inventory level respectively for a fixed demand seasonality
of 1.51. Subfigures B, D and F show the effect of altering the demand seasonality on service level, average
inventory level and maximum inventory level respectively for a fixed mean secondary lead time of 3.8.

11

impact on inventory policies that use the previous three or six months to calculate re-
plenishment rates. Since these policies do not use demand or issues from the same month
a year ago to estimate future demand, they perform worse when demand seasonality in-
creases. Especially, increasing demand seasonality from 1.51 to 2.02 decreases service
level with 8%-15% to levels below 85% or even 80%. In contrast, increasing demand
seasonality has basically no impact on the performance of 4×I[-12,-9] and 4×D[-12,-9]
(Figures 3A and 3B).

4.2 Extension

When the allowed frequency of drone usage changes from none to the minimum frequency
of once a month, service level increases from 92.8% to 96.5% for the 4×I[-3,0] inventory
policy (Figure 4A). Assuming maximum drone capacity of 68 adult regimens and using a
critical inventory level of 0, unmet demand decreases with more than 50% for a maximum
of 1 drone delivery per month compared to no drone usage. Even though a frequency
of once a month is allowed, on average only 1.4 drone deliveries per year are used, with
a total of on average 91.4 adult regimens delivered by drone per year (Figures 4C and
4E). Allowing for a maximum frequency higher than four drone deliveries per month or
two per week does not result in higher service levels nor increases the average number of
drone deliveries per year or the average number of medicine doses delivered by drone per
year (Figures 4A, 4C and 4E). Operating a critical inventory level of 0 adult regimens
thus seems to limit the service level to 97.7%, even for unlimited drone usage (Figure
4B).

Service level can however be increased further when the critical inventory level is
raised. Allowing for drone deliveries from an inventory level below 40, which is close
to average weekly demand, instead of operating a critical inventory level of 0, increases
service level from 97.7% to 99.2% when there is no restriction on the frequency of drone
deliveries (Figure 4B). For critical inventory levels of 40 or higher the difference between
service level between unrestricted and restricted drone usage is negligible. However,
the average number of drone deliveries per year increases with between 0.98 and 1.26
deliveries for unrestricted drone usage in the range of critical inventory levels between
0 and 60 adult regimens (Figure 4D). Despite this, the average number of products
delivered by drone per year with restricted drone usage approaches the numbers obtained
with unrestricted drone usage when critical inventory level increases, similarly to service
levels (Figure 4F).

Apart from the rise in service level, drone usage also increases average and maximum
inventory levels (Figures 5A- 5D). A maximum drone delivery frequency of 2 per week
or 4 per month increases average inventory level from 1.9 to 2.1 months of demand.
Also, these frequencies increase the maximum inventory level from 4.0 to 4.3 months
of demand. Consistent with the stagnated increase of drone deliveries and delivered
products by drone in Figures 4C and 4E, allowance for more frequent drone usage does
not influence inventory levels (Figures 5A and 5C). Increased critical inventory levels lead
to higher inventory levels with little difference between restricted and unrestricted drone
usage. A critical inventory level of 40 adult regimens puts average inventory levels to 2.2

12

Figure 3: Results of sensitivity analysis for all historical policies with multiplication factor 4. Subfigures
A, C and E show the effect of changing the mean secondary lead time on service level, average inventory
level and maximum inventory level respectively for a fixed demand seasonality of 1.51. Subfigures B, D
and F show the effect of altering the demand seasonality on service level, average inventory level and
maximum inventory level respectively for a fixed mean secondary lead time of 3.8

13

Figure 4: Results for the 4×I[-3,0] inventory policy with standard seasonality and lead time values, when
it is possible to use drones for medicine transportation. The graph on the top left shows the effect of the
maximum number of drone usages per week/month per health clinic on service level. In the graph on the
top right, the service level is shown for different values for the critical inventory level. The four graphs
below state the corresponding average number of drone deliveries per year and the average number of
products delivered by drone per year. All results are obtained with a drone capacity of 68 adult regimens.
For the results in the graphs on the left a critical inventory level of 0 is used. For the restricted drone
usage the maximum is set to 1 drone per week and 4 drones per month.

14

months of demand and maximum inventory levels reach 4.5 months of demand (Figures
5B and 5D). This is an increase of only 0.1 and 0.2 months of demand respectively
compared to a critical inventory level of 0.

For a maximum drone delivery frequency of 1 per week and 4 per month, higher drone
capacity leads to on average less drone deliveries, but more products delivered by drone
per year (Figures 6D and 6E). Consequently, service level increases with drone capacity,
as do average and maximum inventory levels (Figures 6A-6C). Specifically, decreasing
drone capacity to 38 adult regimens per drone decreases service level with 0.8%, average
and maximum inventory levels with 0.1 months of demand, average number of products
delivered per year with 28.7 adult regimens, and increases the number of drone deliveries
with 0.55 per year. The other way around, increasing drone capacity to 98 increases
service level with 0.4%, average and maximum inventory levels with less than 0.1 months
of demand, average number of products delivered per year with 19.6 adult regimens, and
decreases the number of drone deliveries with 0.25 per year (Figure 6).

The results in Section 4.1 show that the 4×D[-12,-9] inventory policy scores highest
in terms of service level (98.2%), with average and maximum inventory levels of 2.0 and
4.0 months of demand respectively. The inventory policy with lowest inventory level is
3×I[-1,0] with a service level of 77.5% and average and maximum inventory levels of 0.8
and 2.3 months of demand respectively. In Figure 7 the results of the simulation are
shown when including drones in these two inventory policies. In this figure the results
of including drones in a combination of the two policies, that is 3×D[-12,-9], is included
as well. For a complete comparison the last inventory policy included in Figure 7 is
3×D[-12,-9] without the use of drones. In these simulations the standard drone capacity
of 68 adult regimens is applied. Drone usage frequency is restricted to avoid excessive
use of drones. The results in Section 4.1 show that a frequency higher than two drone
deliveries per week does not significantly increase service levels any further, so therefore
a maximum drone delivery frequency of two per week is chosen.

The service level of the 4×D[-9,-12] inventory policy was already high without drones
(Figure 3). Including drones further increases service level from 98.2% to 99.3-99.9%
depending on the critical inventory level (Figure 7A). This is accompanied with an
almost negligible increase in average and monthly inventory levels of less than 0.1 months
(Figures 7B and 7C). The average number of drone deliveries and delivered products by
drone per year range from 0.84 to 2.2 and from 42.50 to 73.08 respectively (Figures 7D
and 7E). Including drones in the 3×I[-3,0] inventory policy increases service level with
more than 17% to 95.1-99.2% (Figures 3 and 7A). This substantial increase is induced
by a high number of drone deliveries and products delivered by drone per year (Figures
7D and 7E). Even though average and maximum inventory levels increase compared to
this inventory policy without drones, they remain relatively low with levels of 1.24-1.39
and 2.97-3.18 months of demand respectively (Figures 7B and 7C). The 3×D[-12,-9]
inventory policy has a multiplication factor of 3, which resulted in low inventory levels
for the 3×I[-3,0] inventory policy, and uses historical demand of the next three months
as a demand forecast, which resulted in high service levels for the 4×D[-9,-12] inventory
policy. This results in a policy with a service level in between those of the 3×I[-3,0] and

15

Figure 5: Results for the 4×I[-3,0] inventory policy with standard seasonality and lead time values, when
it is possible to use drones for medicine transportation. The two graphs on the left show the effect of the
maximum number of drone usages per week/month per health clinic on average and maximum inventory
level in terms of months of demand. These results are obtained with a drone capacity of 68 adult regimens
and a critical inventory level of 0. The graphs on the right state average and maximum inventory levels
for different values for the critical inventory level and a drone capacity of 68 adult regimens. For the
restricted drone usage the maximum is set to 1 per week and 4 per month.

16

Figure 6: Effect of several drone capacity levels on service level (A), average inventory level (B), maximum
inventory level (C), average number of drone deliveries per year (D), and average number of products
delivered by drone per year (E) for the 4×I[-3,0] inventory policy. Standard seasonality and lead time
values are applied. Maximum drone usage is set to maximum 1 drone per week and 4 drones per month,
with a critical inventory level equal to 0.

17

4×D[-9,-12] inventory policies ranging from 97.1% to 99.6% (Figure 7A). Average and
maximum inventory levels are lower than for both 3×I[-3,0] and 4×D[-9,-12] (Figures 7B
and 7C). The average number of deliveries is approximately two deliveries less than for
3×I[-3,0], but 3-6 deliveries more than with the 4×D[-9,-12] inventory policy (Figure 7D).
In comparison, the 3×D[-12,-9] without drones even has lower average and maximum
inventory levels, but this comes with the cost of a service level of 91.7% which is 5.4%
to 7.9% lower (Figures 7A-7C).

From the inventory policies investigated here, the 3×D[-9,-12] policy is best suited
to incorporate drones, due to it’s unique combination of relatively high service level and
low inventory level.

5 Discussion

Simulation results for inventory policies recommended by USAID |DELIVER PROJECT
(2011a,b) slightly differ from the results obtained by Leung et al.. Weekly average de-
mand estimates contain a seasonality factor of 1.51, while Leung et al. find a seasonality
factor of 2.2. Possibly, Leung et al. computed the seasonality factor from daily average
demand estimates, since daily fluctuations are relatively larger than weekly fluctuations
in demand. This could, however, not be checked due to the unavailability of daily aver-
age estimated demand data. The different demand seasonality factor should not cause
different results from the simulation in the ’base case’. That is, for a seasonality factor of
1.51 (2.2 in Leung et al. (2016)) demand estimates are not adjusted since this is the nat-
ural level of seasonality observed from the data, so that the used weekly average demand
estimates used in the simulation are identical and results should be as well. However,
in this research slightly different results are observed. Generally, service level results in
this paper are slightly higher with differences of 2-6% depending on the inventory pol-
icy. Average and maximum inventory levels are slightly lower with 0.1-0.3 and 0.3-0.5
months of demand respectively. Maybe this is due to a slightly different interpretation
of how the simulation is implemented, since Leung et al. do not precisely specify every
step and calculation.

The results from this study clearly show benefits of incorporating drones in the
distribution of essential medicines on the district level induced by the fact that drone
deliveries have short and constant lead times. The main question is, however, if it is
feasible to implement a drone delivery system in a low-income, widespread country such
as Zambia. As mentioned earlier, factors to take into account include the limited range
and cargo of the drones, the (costs of) installation of drone stations and training of
personnel, and the costs per flight.

In Section 2.2 is explained how with less than one drone station per district, all of
Zambia can be covered by the drone delivery system. In that case, limited range is not a
problem and drones can even travel further by recharging at another drone station and
then continuing the trip. One additional factor to take into account is that sufficient
inventory is needed at the drone stations. However, drones allow inventory levels at
health clinics to be significantly lower, reducing costs at the health clinic level.

18

Figure 7: Results of performance measures from simulation are shown for different inventory policies and
critical inventory levels. Performance measures included are service level (A), average inventory level in
months of demand (B), maximum inventory level in months of demand (C), average number of drone
deliveries per year (D), and average number of products delivered by drone per year in adult regimens
(E). All policies include drones except for the ‘3×[-12,-9] - no drones’ policy. Results are obtained with
a drone capacity of 68 adult regimens and maximum drone delivery frequency of two per week.

19

To prevent the unavailability of drones and high costs due to overuse of drones, a
maximum drone delivery frequency per health clinic can be imposed. This research
shows that a maximum frequency of two per week works well for anti-malarial drugs,
improving service levels and keeping the number of drone orders limited. This means
that with a smartly chosen maximum drone delivery frequency, the maximum cargo of
the drones is not a problem.

The costs per drone delivery are about the same as for delivery by car, at least
in case of emergency and if the health care product has a short shelf life or is rarely
needed (Wakefield, 2017). This means that for the delivery of for example blood, drones
are more efficient, since they are much faster and do not cost significantly more than
trucks. However, for regular non-emergency medicines, such as anti-malarial drugs, one
could argue that drones are not necessary if demand forecasts are precise and delivery
is on time (Foth, 2017). Yet, this has shown to be a challenge, especially in low-income
countries and for health products with demand fluctuating over the year (Leung et al.,
2016). Programs trying to solve this cost multiple millions of dollars (Foth, 2017). Still,
many see drones as a quick fix, instead of solving the real problem: a lack of investment in
infrastructure. Solving this issue has benefits that reach far beyond better health product
availability, such as better access to markets, work and schools and the creation of jobs
(Asiedu, 2019; Foth, 2017). These opportunity costs should be taken into account when
considering the implementation of a drone delivery system in sub-Saharan countries.
Yet, many African governments remain interested in a drone delivery system, because
it is significantly more effective in the short to medium term compared to investing in
infrastructure (Asiedu, 2019).

Besides Zipline other commercial drone companies have shown interest to operate in
health care systems of sub-Saharan African countries (Bright and Stein, 2018). If this
interests starts to develop further, competition will probably lower prices. Among the
commercial drone companies, local companies start to pop up as well. If the governments
of sub-Saharan countries manage to work with these local companies, this will boost the
economy of their country. Besides competition, technical development is another factor
that might reduce drone delivery costs in the short term. This technical development
can for example show in better or cheaper batteries, longer travel distance and larger or
heavier cargo.

A last factor of concern might be communication. In the case of frequent drone
orders and immediate deliveries, clear communication is of critical importance. This
might seem an issue in low-income countries, but Zipline shows, for example in Rwanda,
that it is possible to achieve this via an online app or WhatsApp message.

One limitation of this study is the fact that the drone system is only used for anti-
malarial drugs. The effectiveness of the drone system, however, highly depends on the
combination with drone delivery of other health products. Another limitation to take
into account is the ignorance of extra inventory needed at the drone stations. If not
managed correctly this can be a limiting factor for the drone deliveries. Lastly, service
levels obtained for policies incorporating drones might actually be lower than they would
be in reality. For simplicity reasons, drone orders can only be placed at the end of each

20

week in the simulation model. In reality, this would not make sense, because whenever
an inventory level below the critical value is observed, a drone order can be placed. This
reduces the number of stock-outs between the time critical inventory levels are reached
and the time of the drone delivery.

6 Conclusion

This study confirms the conclusions stated by Leung et al. (2016). Simulation sample
paths show how stock-outs of essential medicines in Zambia’s health clinics can be ex-
plained by not correctly accounting for demand seasonality in the inventory policy and
long delivery lead times.

Despite the slight differences in results compared to Leung et al. (2016), most of the
conclusions are identical. Consistent with the findings of Leung et al. 4×D[-12,-9] is the
best performing inventory policy in terms of service level out of all recommended inven-
tory policies by USAID|DELIVER. Altogether, the ability of these inventory policies to
reduce stock-outs is limited, also because the higher service levels are paired with higher
inventory levels. One difference is however that, because of the higher service levels ob-
tained in this research, the 4×D[-12,-9] inventory policy reaches reasonable performance
with a service level of 98% and average and maximum inventory levels of 2.0 and 4.0
months of demand, which is an increase of less than 0.1 months of demand compared to
the 4×I[-3,0] policy.

Incorporating drones in the distribution of essential medicines to health clinics in
Zambia can raise service levels and lower stock-outs. Drones are incorporated by the
possibility to place a drone delivery order at the end of the week if inventory reaches
a critical level, and are complementary to the existing truck delivery schedule. Drone
orders are delivered before the start of the next week. For the inventory policy with
the highest service level (4×D[-12,-9]), the number of stock-outs can be reduced to
less than half by incorporating drones. For inventory policies with lower multiplication
factors, incorporating drones can extensively improve the service level, while maintaining
relatively low inventory levels at health clinics. However, arguably the best results are
obtained when combining these two outcomes.

Simulation results show that incorporating drones in the distribution process gives
the ability to maintain lower inventory levels in health clinics, while reaching a re-
spectable service level. This might be the biggest advantage of incorporating drones,
in combination with the fact that these results can be obtained with a limited number
of drone deliveries per health clinic. When implementing the 3×D[-12,-9] policy with
drones, a critical inventory level of minimally 30 results in service levels of 99% and
higher. This is under the assumption that drones have a cargo of 68 adult regimens and
operating a maximum drone delivery frequency of two per week. Average and maximum
inventory levels for this policy are 1.2 and 2.9 months of demand respectively, which is
well below the current inventory levels of the 4×I[-3,0] inventory policy. On average a
health clinic will order 5 to 8 drone deliveries per year, with a total of 237 to 270 adult
regimens delivered by drone.

21

All together, this research shows that it is feasible and in numerous ways beneficial to
incorporate drones in the distribution of essential medicines at district level in Zambia.
Whether this is the best solution for the country and its economy as a whole is hard to
say, because factors to be taken into account reach far beyond the number of stock-outs.
Firstly, a more extensive cost analysis should be conducted. But even then, decisions
on whether the drone system is worth the money are a consideration between short and
long term benefits. Another factor influencing the decision is how drone systems and
local drone companies develop over the next few years.

Although this research solely focuses on using drones to deliver anti-malarial drugs,
results will also to a large extent hold for other health care products suffering from
stock-outs at health clinics, especially for health care products with seasonal demand.
Results in this research show that only a few drone deliveries per health clinic per year
are needed to significantly improve availability of anti-malarial drugs. If a drone delivery
system is implemented, it seems logical to also use this system for the delivery of other
health products. This will lead to a much more efficient drone delivery system and is
therefore an interesting subject for future research.

The results of this research will also be relevant for regional distribution of essential
medicines in other low and middle income countries with bad road infrastructure and
rural populations, which is the case for most sub-Saharan countries.

References

Asiedu, K. G. (2019). An ambitious drone delivery health service in ghana is tackling key
logistics challenges. https://qz.com/africa/1604374/ziplines-drone-delivery-launches-
in-ghana-with-vaccines/.

Bossert, T. J., Bowser, D. M., and Amenyah, J. K. (2007). Is decentralization good for
logistics systems? evidence on essential medicine logistics in ghana and guatemala.
Health Policy and Planning, 22(2), pages 73–82.

Bright, J. and Stein, S. (2018). African experiments with drone
technologies could leapfrog decades of infrastructure neglect.
https://techcrunch.com/2018/09/16/african-experiments-with-drone-technologies-
could-leapfrog-decades-of-infrastructure-neglect/.

Cameron, A., Ewen, M., Ross-Degnan, D., Ball, D., and Laing, R. (2009). Medicine
prices, availability, and affordability in 36 developing and middle-income countries: a
secondary analysis. The lancet, 373(9659), pages 240–249.

Chen, L., Kim, S. H., and Lee, H. L. (2016). Enabling healthcare delivery through
vehicle maintenance. History.

Foth, J. (2017). We haven’t considered the true cost of drone delivery medical ser-
vices in africa. https://qz.com/africa/1090693/zipline-drones-in-africa-like-rwanda-
and-tanzania-have-an-opportunity-cost/.

22

Haidari, L. A., Brown, S. T., Ferguson, M., Bancroft, E., Spiker, M., Wilcox, A., ..., and
Lee, B. Y. (2016). The economic and operational value of using drones to transport
vaccines. Vaccine, 34(34), pages 4062–4067.

Kangwana, B. B., Njogu, J., Wasunna, B., Kedenge, S. V., Memusi, D. N., Goodman,
C. A., ..., and Snow, R. W. (2009). Malaria drug shortages in kenya: a major failure
to provide access to effective treatment. The American journal of tropical medicine
and hygiene, 80(5), pages 737–738.

Leung, N. H. Z., Chen, A., Yadav, P., and Gallien, J. (2016). The impact of inventory
management on stock-outs of essential drugs in sub-saharan africa: secondary analysis
of a field experiment in zambia. PloS one 11(5).

Pasquet, A., Messou, E., Gabillard, D., Minga, A., Depoulosky, A., Deuffic-Burban, S.,
., and Yazdanpanah, Y. (2010). Impact of drug stock-outs on death and retention
to care among hiv-infected patients on combination antiretroviral therapy in abidjan,
côte d’ivoire. PloS one, 5(10).

Tatham, P., Stadler, F., Murray, A., and Shaban, R. Z. (2017). Flying maggots: a smart
logistic solution to an enduring medical challenge. Journal of Humanitarian Logistics
and Supply Chain Management, 7(2), pages 172–193.

Thiels, C. A., Aho, J. M., Zietlow, S. P., and Jenkins, D. H. (2015). Use of unmanned
aerial vehicles for medical product transport. Air medical journal, 34(2), pages 104–
108.

USAID | DELIVER PROJECT (2011a). Guidelines for Managing the Malaria Supply
Chain: A Companion to the Logistics Handbook.

USAID | DELIVER PROJECT (2011b). The Logistics Handbook: A Practical Guide
for the Supply Chain Management of Health Commodities. Second edition.

Vledder, M., Friedman, J., Sjöblom, M., Brown, T., and Yadav, P. (2015a). Optimal
supply chain structure for distributing essential drugs in low income countries: results
from a randomized experiment. Ross School of Business Paper, (1269).

Vledder, M., Friedman, J., Sjöblom, M., Brown, T., and Yadav, P. (2015b). Optimal
supply chain structure for distributing essential drugs in low income countries: results
from a randomized experiment. Ross School of Business Paper, (1269).

Waako, P. J., Odoi-Adome, R., Obua, C., Owino, E., Tumwikirize, W., Ogwal-Okeng, J.,
..., and Aupont, O. (2009). Existing capacity to manage pharmaceuticals and related
commodities in east africa: an assessment with specific reference to antiretroviral
therapy. Human Resources for Health, 7(1).

Wakefield, J. (2017). Us drone company eyes tanzania for medical deliveries.
https://www.bbc.com/news/technology-40935773.

23

Watson, N., Bausell, L., Ingles, A., and Printz, N. (2014). Malaria seasonality and
calculating resupply: Applications of the look-ahead seasonality indices in zambia,
burkina faso, and zimbabwe. Technical report, USAID | DELIVER PROJECT.

World Health Organization, Geneva (2018). Global health estimates 2016: Deaths by
cause, age, sex, by country and by region, 2000-2016. Technical report.

Yadav, P.and Tata, H. L. and Babaley, M. (2011). The world medicines situation 2011.

Yadav, P. (2015). Health product supply chains in developing countries: diagnosis of the
root causes of underperformance and an agenda for reform. Health Systems Reform,
1(2), pages 142–154.

Zipline. https://www.flyzipline.com/.

24

Appendix

A Weekly Demand Estimates

Week Demand Week Demand Week Demand Week Demand

1 42.0 13 49.5 25 28.4 37 26.8
2 45.0 14 46.9 26 29.0 38 26.1
3 48.4 15 44.3 27 30.1 39 25.8
4 51.4 16 41.6 28 31.5 40 25.9
5 54.0 17 38.6 29 32.7 41 26.6
6 55.9 18 35.7 30 33.2 42 27.9
7 56.6 19 33.4 31 33.0 43 29.7
8 56.6 20 31.7 32 32.1 44 31.8
9 56.3 21 30.3 33 31.0 45 34.1
10 55.1 22 29.4 34 29.8 46 36.2
11 53.3 23 28.7 35 28.8 47 37.9
12 51.4 24 28.3 36 27.8 48 39.8

Table 1: Weekly demand estimates for AL products (adult doses) as estimated by Leung et al. Leung
et al. (2016). The week is defined as the week of the year, week 1 being the first week of January and
assuming 4 weeks per month.

B Simulation Code

B.1 Main

1 import java . u t i l . ArrayList ;
2 import java . u t i l . Arrays ;
3 import java . u t i l . L i s t ;
4

5 /∗∗
6 ∗ Simulates the inventory p o l i c y o f an average hea l th c l i n i c in Zambia
7 ∗ @author Ing r id Pool
8 ∗/
9 public class S imu la t i onC l in i c

10 {
11 public stat ic void main (St r ing [] a rgs)
12 {
13 // s e t t i n g s
14 int warmupPeriod = 2 ; // l ength o f warm−up per iod in years
15 int dataColPeriod = 3 ; // l ength o f data c o l l e c t i o n per iod in years
16 boolean issuesOrDemand = true ; // i s s u e s = true , demand = f a l s e
17 int t i m e I n t e r v a l S t a r t = −3; // f i r s t month o f h i s t o r i c a l i n t e r v a l f o r

↪→ c a l c u l a t i n g averages

25

18 int t imeIntervalEnd = 0 ; // next to l a s t month o f h i s t o r i c a l i n t e r v a l f o r
↪→ c a l c u l a t i n g averages

19 int m u l t i p l i c a t i o n F a c t o r = 4 ; // mul t ip l e o f average to c a l c u l a t e rep len i shment
↪→ t a r g e t

20 double s e a s o n a l i t y F a c t o r ; // r a t i o o f peak demand mean to average demand mean
21 double meanSecLeadTime ; // average number o f weeks i t takes to d e l i v e r from

↪→ d i s t r i c t c en te r to l o c a l c l i n i c
22 boolean useDrones ; // t rue i f the use o f drones i s al lowed , f a l s e o therwi se
23 double s t a n d a r d C r i t i c a l I n v L e v e l = 0 . 0 ; // value o f inventory below which a

↪→ drone order can be placed
24 double c r i t i c a l I n v L e v e l = s t a n d a r d C r i t i c a l I n v L e v e l ; // value o f inventory below

↪→ which a drone order can be placed
25 double standardMaxDroneCapacity = 6 8 . 0 ; // maximum number o f adul t regimens per

↪→ drone d e l i v e r y
26 double maxDroneCapacity = standardMaxDroneCapacity ; // maximum number o f adul t

↪→ regimens per drone d e l i v e r y
27 int standardMaxDronesPerMonth = 4 ; // maximum amount o f drone d e l i v e r i e s per

↪→ month
28 int maxDronesPerMonth = standardMaxDronesPerMonth ; // maximum amount o f drone

↪→ d e l i v e r i e s per month
29 int standardMaxDronesPerWeek = 1 ; // maximum amount o f drone d e l i v e r i e s per

↪→ week
30 int maxDronesPerWeek = standardMaxDronesPerWeek ; // maximum amount o f drone

↪→ d e l i v e r i e s per week
31

32 // I t e r a t e over mu l t ip l e s e a s o n a l i t y f a c t o r s and lead t imes without the use o f
↪→ drones

33 useDrones = fa l se ;
34 List<Double> s e a s o n a l i t y F a c t o r s = new ArrayList<Double>(Arrays . a s L i s t (1 . 0 ,

↪→ 1 . 17 , 1 . 34 , 1 . 51 , 1 . 68 , 1 . 85 , 2 . 0 2)) ;
35 double s tandardSeasona l i tyFacto r = 1 . 5 1 ;
36 List<Double> meanSecLeadTimes = new ArrayList<Double>(Arrays . a s L i s t (2 . 2 ,

↪→ 2 .7333 , 3 .2666 , 3 . 8 , 4 .3333 , 4 .8666 , 5 . 4)) ;
37 double standardMeanSecLeadTime = 3 . 8 ;
38 meanSecLeadTime = standardMeanSecLeadTime ;
39 for (int s = 0 ; s < s e a s o n a l i t y F a c t o r s . s i z e () ; s++)
40 {
41 s e a s o n a l i t y F a c t o r = s e a s o n a l i t y F a c t o r s . get (s) ;
42 System . out . p r i n t l n (” S e a s o n a l i t y f a c t o r : ” + s e a s o n a l i t y F a c t o r + ” , Mean

↪→ secondary lead−time : ” + meanSecLeadTime) ;
43

44 // 100.000 r e p l i c a t i o n s
45 per f o rmRep l i ca t i ons (warmupPeriod , dataColPeriod , issuesOrDemand ,

↪→ t ime In t e rva lS ta r t , t imeIntervalEnd , mu l t i p l i c a t i onFac to r ,
↪→ s ea sona l i t yFac to r , meanSecLeadTime , useDrones , c r i t i c a l I n v L e v e l ,
↪→ maxDroneCapacity , maxDronesPerMonth , maxDronesPerWeek) ;

46 }
47 System . out . p r i n t l n (””) ;
48 s e a s o n a l i t y F a c t o r = standardSeasona l i tyFacto r ;
49

50 for (int m = 0 ; m < meanSecLeadTimes . s i z e () ; m++)
51 {
52 meanSecLeadTime = meanSecLeadTimes . get (m) ;

26

53 i f (meanSecLeadTime != standardMeanSecLeadTime)
54 {
55 System . out . p r i n t l n (” S e a s o n a l i t y f a c t o r : ” + s e a s o n a l i t y F a c t o r + ” , Mean

↪→ secondary lead−time : ” + meanSecLeadTime) ;
56

57 // 100.000 r e p l i c a t i o n s
58 per f o rmRep l i ca t i ons (warmupPeriod , dataColPeriod , issuesOrDemand ,

↪→ t ime In t e rva lS ta r t , t imeIntervalEnd , mu l t i p l i c a t i onFac to r ,
↪→ s ea sona l i t yFac to r , meanSecLeadTime , useDrones , c r i t i c a l I n v L e v e l ,
↪→ maxDroneCapacity , maxDronesPerMonth , maxDronesPerWeek) ;

59 }
60 }
61 System . out . p r i n t l n (””) ;
62 meanSecLeadTime = standardMeanSecLeadTime ;
63

64 // I t e r a t e over d i f f e r e n t drone r u l e s with standard s e a s o n a l i t y f a c t o r and lead
↪→ time

65 useDrones = true ;
66 // I t e r a t e over maximum drones per month without weekly r e s t r i c t i o n
67 List<Integer> maxDronesPerMonthList = new ArrayList<>(Arrays . a s L i s t (0 , 1 , 2 , 3 ,

↪→ 4 , 5 , 6)) ;
68 for (int d = 0 ; d < maxDronesPerMonthList . s i z e () ; d++)
69 {
70 maxDronesPerMonth = maxDronesPerMonthList . get (d) ;
71 maxDronesPerWeek = maxDronesPerMonth ;
72 System . out . p r i n t l n (” S e a s o n a l i t y f a c t o r : ” + s e a s o n a l i t y F a c t o r + ” , Mean

↪→ secondary lead−time : ” + meanSecLeadTime + ” , Max drones per month :
↪→ ” + maxDronesPerMonth + ” , Max drones per week : ” + maxDronesPerWeek
↪→ + ” , C r i t i c a l inventory l e v e l : ” + c r i t i c a l I n v L e v e l + ” , Maximum
↪→ drone capac i ty : ” + maxDroneCapacity) ;

73

74 // 100.000 r e p l i c a t i o n s
75 per f o rmRep l i ca t i ons (warmupPeriod , dataColPeriod , issuesOrDemand ,

↪→ t ime In t e rva lS ta r t , t imeIntervalEnd , mu l t i p l i c a t i onFac to r ,
↪→ s ea sona l i t yFac to r , meanSecLeadTime , useDrones , c r i t i c a l I n v L e v e l ,
↪→ maxDroneCapacity , maxDronesPerMonth , maxDronesPerWeek) ;

76 }
77 System . out . p r i n t l n (””) ;
78 maxDronesPerMonth = standardMaxDronesPerMonth ;
79 maxDronesPerWeek = standardMaxDronesPerWeek ;
80

81 // I t e r a t e over maximum drones per week without monthly r e s t r i c t i o n
82 List<Integer> maxDronesPerWeekList = new ArrayList<>(Arrays . a s L i s t (0 , 1 , 2 , 3 ,

↪→ 4 , 5 , 6)) ;
83 for (int w = 0 ; w < maxDronesPerWeekList . s i z e () ; w++)
84 {
85 maxDronesPerWeek = maxDronesPerWeekList . get (w) ;
86 maxDronesPerMonth = 4∗maxDronesPerWeek ;
87 System . out . p r i n t l n (” S e a s o n a l i t y f a c t o r : ” + s e a s o n a l i t y F a c t o r + ” , Mean

↪→ secondary lead−time : ” + meanSecLeadTime + ” , Max drones per month :
↪→ ” + maxDronesPerMonth + ” , Max drones per week : ” + maxDronesPerWeek
↪→ + ” , C r i t i c a l inventory l e v e l : ” + c r i t i c a l I n v L e v e l + ” , Maximum
↪→ drone capac i ty : ” + maxDroneCapacity) ;

27

88

89 // 100.000 r e p l i c a t i o n s
90 per f o rmRep l i ca t i ons (warmupPeriod , dataColPeriod , issuesOrDemand ,

↪→ t ime In t e rva lS ta r t , t imeIntervalEnd , mu l t i p l i c a t i onFac to r ,
↪→ s ea sona l i t yFac to r , meanSecLeadTime , useDrones , c r i t i c a l I n v L e v e l ,
↪→ maxDroneCapacity , maxDronesPerMonth , maxDronesPerWeek) ;

91 }
92 System . out . p r i n t l n (””) ;
93 maxDronesPerMonth = standardMaxDronesPerMonth ;
94 maxDronesPerWeek = standardMaxDronesPerWeek ;
95

96 // I t e r a t e over c r i t i c a l inventory l e v e l s f o r us ing drones with standard or
↪→ adjusted weekly or monthly r e s t r i c t i o n s

97 List<Double> c r i t i c a l I n v L e v e l L i s t = new ArrayList<>(Arrays . a s L i s t (0 . 0 , 10 . 0 ,
↪→ 20 . 0 , 30 . 0 , 40 . 0 , 50 . 0 , 6 0 . 0)) ;

98 for (int c = 0 ; c < c r i t i c a l I n v L e v e l L i s t . s i z e () ; c++)
99 {

100 // p o s s i b l y ad jus t drone f requency r e s t r i c t i o n s
101 maxDronesPerWeek = 2 ;
102 maxDronesPerMonth = 4∗maxDronesPerWeek ;
103 c r i t i c a l I n v L e v e l = c r i t i c a l I n v L e v e l L i s t . get (c) ;
104 System . out . p r i n t l n (” S e a s o n a l i t y f a c t o r : ” + s e a s o n a l i t y F a c t o r + ” , Mean

↪→ secondary lead−time : ” + meanSecLeadTime + ” , Max drones per month :
↪→ ” + maxDronesPerMonth + ” , Max drones per week : ” + maxDronesPerWeek
↪→ + ” , C r i t i c a l inventory l e v e l : ” + c r i t i c a l I n v L e v e l + ” , Maximum
↪→ drone capac i ty : ” + maxDroneCapacity) ;

105

106 // 100.000 r e p l i c a t i o n s
107 per f o rmRep l i ca t i ons (warmupPeriod , dataColPeriod , issuesOrDemand ,

↪→ t ime In t e rva lS ta r t , t imeIntervalEnd , mu l t i p l i c a t i onFac to r ,
↪→ s ea sona l i t yFac to r , meanSecLeadTime , useDrones , c r i t i c a l I n v L e v e l ,
↪→ maxDroneCapacity , maxDronesPerMonth , maxDronesPerWeek) ;

108 }
109 System . out . p r i n t l n (””) ;
110 maxDronesPerMonth = standardMaxDronesPerMonth ;
111 maxDronesPerWeek = standardMaxDronesPerWeek ;
112 c r i t i c a l I n v L e v e l = s t a n d a r d C r i t i c a l I n v L e v e l ;
113

114 // I t e r a t e over drone capac i ty with weekly and monthly r e s t r i c t i o n s
115 List<Double> droneCapac i tyLis t = new ArrayList<>(Arrays . a s L i s t (3 8 . 0 , 48 . 0 ,

↪→ 58 . 0 , 68 . 0 , 78 . 0 , 88 . 0 , 9 8 . 0)) ;
116 for (int p = 0 ; p < maxDronesPerWeekList . s i z e () ; p++)
117 {
118 maxDroneCapacity = droneCapac i tyLis t . get (p) ;
119 System . out . p r i n t l n (” S e a s o n a l i t y f a c t o r : ” + s e a s o n a l i t y F a c t o r + ” , Mean

↪→ secondary lead−time : ” + meanSecLeadTime + ” , Max drones per month :
↪→ ” + maxDronesPerMonth + ” , Max drones per week : ” + maxDronesPerWeek
↪→ + ” , C r i t i c a l inventory l e v e l : ” + c r i t i c a l I n v L e v e l + ” , Maximum
↪→ drone capac i ty : ” + maxDroneCapacity) ;

120

121 // 100.000 r e p l i c a t i o n s
122 per f o rmRep l i ca t i ons (warmupPeriod , dataColPeriod , issuesOrDemand ,

↪→ t ime In t e rva lS ta r t , t imeIntervalEnd , mu l t i p l i c a t i onFac to r ,

28

↪→ s ea sona l i t yFac to r , meanSecLeadTime , useDrones , c r i t i c a l I n v L e v e l ,
↪→ maxDroneCapacity , maxDronesPerMonth , maxDronesPerWeek) ;

123 }
124 maxDronesPerMonth = standardMaxDronesPerMonth ;
125 maxDronesPerWeek = standardMaxDronesPerWeek ;
126 }
127

128 /∗∗
129 ∗ Performs a s e t number o f r e p l i c a t i o n s with the g iven parameters and computes and

↪→ p r i n t s s t a t i s t i c a l r e s u l t s .
130 ∗ @param warmupPeriod , per iod in years used to e l i m i n a t e e f f e c t s o f the i n i t i a l

↪→ s t a t e o f the s imu la t i on system .
131 ∗ @param dataColPeriod , per iod in years a f t e r the warmupPeriod from which data i s

↪→ c o l l e c t e d .
132 ∗ @param issuesOrDemand , t rue i f h i s t o r i c a l i s s u e s are used in computing the

↪→ rep len i shment target , f a l s e i f demand i s used .
133 ∗ @param t ime In t e rva lS ta r t , s t a r t o f the i n t e r v a l from which h i s t o r i c a l va lue s are

↪→ used in computing the rep len i shment t a r g e t
134 ∗ @param timeIntervalEnd , end o f the i n t e r v a l from which h i s t o r i c a l va lue s are

↪→ used in computing the rep len i shment t a r g e t
135 ∗ @param mul t i p l i c a t i onFac to r , f a c t o r by which the average o f h i s t o r i c a l va lue s i s

↪→ m u l t i p l i e d to compute the rep len i shment t a r g e t
136 ∗ @param sea sona l i t yFac to r , measure o f f l u c t u a t i o n in demand va lue s .
137 ∗ @param meanSecLeadTime , mean secondary l ead time .
138 ∗ @param useDrones , t rue i f the use o f drones i s al lowed , f a l s e o therw i se .
139 ∗ @param c r i t i c a l I n v L e v e l , l e v e l from below which drone orde r s can be placed .
140 ∗ @param maxDroneCapacity , maximum cargo o f a drone
141 ∗ @param maxDronesPerMonth , maximum number o f drone orde r s that can be placed per

↪→ month f o r a hea l th c l i n i c .
142 ∗ @param maxDronesPerWeek , maximum number o f drone orde r s that can be placed per

↪→ week f o r a hea l th c l i n i c .
143 ∗/
144 public stat ic void per f o rmRep l i ca t i ons (int warmupPeriod , int dataColPeriod , boolean

↪→ issuesOrDemand , int t ime In t e rva lS ta r t , int t imeIntervalEnd , int
↪→ mul t ip l i c a t i onFac to r , double s ea sona l i t yFac to r , double meanSecLeadTime ,
↪→ boolean useDrones , double c r i t i c a l I n v L e v e l , double maxDroneCapacity , int
↪→ maxDronesPerMonth , int maxDronesPerWeek)

145 {
146 List<Double> s e r v i c e L e v e l s = new ArrayList<Double>() ;
147 List<Double> avgInventoryLeve l s = new ArrayList<Double>() ;
148 List<Double> maxInventoryLevels = new ArrayList<Double>() ;
149 List<Double> avgDemandPerMonth = new ArrayList<Double>() ;
150 List<Double> avgLeadTimes = new ArrayList<Double>() ;
151 List<Double> avgNrsDroneDel iver iesYear = new ArrayList<Double>() ;
152 List<Double> avgNrsProductsDeliveredDroneYear = new ArrayList<Double>() ;
153 for (int replNr = 1 ; replNr <= 100000; replNr++)
154 {
155 int s tar tYear = 2009 ; // s t a r t y e a r o f s imu la t i on
156 int startWeek = 21 ; // s t a r t week o f year o f s imu la t i on
157 List<Double> per fMeasures = new ArrayList<Double>() ;
158 per fMeasures = runSimulat ion (warmupPeriod , dataColPeriod , startYear ,

↪→ startWeek , issuesOrDemand , t ime In t e rva lS ta r t , t imeIntervalEnd ,
↪→ mul t ip l i c a t i onFac to r , s ea sona l i t yFac to r , meanSecLeadTime , useDrones ,

29

↪→ c r i t i c a l I n v L e v e l , maxDroneCapacity , maxDronesPerMonth ,
↪→ maxDronesPerWeek) ;

159 s e r v i c e L e v e l s . add (per fMeasures . get (0) / per fMeasures . get (1)) ;
160 avgInventoryLeve l s . add (per fMeasures . get (2) /48 . 0) ;
161 maxInventoryLevels . add (per fMeasures . get (3)) ;
162 avgDemandPerMonth . add (per fMeasures . get (4)) ;
163 avgLeadTimes . add (per fMeasures . get (5)) ;
164 avgNrsDroneDel iver iesYear . add (per fMeasures . get (6)) ;
165 avgNrsProductsDeliveredDroneYear . add (per fMeasures . get (7)) ;
166 }
167

168 // compute s t a t i s t i c a l r e s u l t s
169 double s e r v i c e L e v e l = computeAverage (s e r v i c e L e v e l s) ;
170 double avgInventoryLeve l = computeAverage (avgInventoryLeve l s) ;
171 double maxInventoryLevel = computeAverage (maxInventoryLevels) ;
172 double demandPerMonth = computeAverage (avgDemandPerMonth) ;
173 double avgLeadtime = computeAverage (avgLeadTimes) ;
174 double avgNrDroneDel iver iesYear = computeAverage (avgNrsDroneDel iver iesYear) ;
175 double avgNrProductsDeliveredDroneYear = computeAverage (

↪→ avgNrsProductsDeliveredDroneYear) ;
176

177 // p r in t r e s u l t s
178 System . out . p r i n t l n (” S e r v i c e l e v e l : ” + s e r v i c e L e v e l) ;
179 System . out . p r i n t l n (”Average inventory l e v e l : ” + avgInventoryLeve l) ;
180 System . out . p r i n t l n (”Maximum inventory l e v e l : ” + maxInventoryLevel) ;
181 System . out . p r i n t l n (”Average demand per month : ” + demandPerMonth) ;
182 System . out . p r i n t l n (”Average l ead time : ” + avgLeadtime) ;
183 System . out . p r i n t l n (”Average number o f drone d e l i v e r i e s per year : ” +

↪→ avgNrDroneDel iver iesYear) ;
184 System . out . p r i n t l n (”Average number o f products d e l i v e r e d by drone per year : ” +

↪→ avgNrProductsDeliveredDroneYear) ;
185 }
186

187 /∗∗
188 ∗ Simulates a s i n g l e hea l th c l i n i c with the g iven parameters
189 ∗ @param warmupPeriod , per iod in years used to e l i m i n a t e e f f e c t s o f the i n i t i a l

↪→ s t a t e o f the s imu la t i on system .
190 ∗ @param dataColPeriod , per iod in years a f t e r the warmupPeriod from which data i s

↪→ c o l l e c t e d .
191 ∗ @param startYear , year in which the s imu la t i on s t a r t s .
192 ∗ @param startWeek , week o f the year in which the s imu la t i on s t a r t s .
193 ∗ @param issuesOrDemandI , t rue i f h i s t o r i c a l i s s u e s are used in computing the

↪→ rep len i shment target , f a l s e i f demand i s used .
194 ∗ @param t i m e I n t e r v a l S t a r t I , s t a r t o f the i n t e r v a l from which h i s t o r i c a l va lue s

↪→ are used in computing the rep len i shment t a r g e t
195 ∗ @param timeIntervalEndI , end o f the i n t e r v a l from which h i s t o r i c a l va lue s are

↪→ used in computing the rep len i shment t a r g e t
196 ∗ @param m u l t i p l i c a t i o n F a c t o r I , f a c t o r by which the average o f h i s t o r i c a l va lue s

↪→ i s m u l t i p l i e d to compute the rep len i shment t a r g e t
197 ∗ @param s e a s o n a l i t y F a c t o r I , measure o f f l u c t u a t i o n in demand va lue s .
198 ∗ @param meanSecLeadTimeI , mean secondary l ead time .
199 ∗ @param useDronesI , t rue i f the use o f drones i s al lowed , f a l s e o therw i s e .
200 ∗ @param c r i t i c a l I n v L e v e l I , l e v e l from below which drone o rde r s can be placed .

30

201 ∗ @param maxDroneCapacityI , maximum cargo o f a drone
202 ∗ @param maxDronesPerMonthI , maximum number o f drone orde r s that can be placed per

↪→ month f o r a hea l th c l i n i c .
203 ∗ @param maxDronesPerWeekI , maximum number o f drone orde r s that can be placed per

↪→ week f o r a hea l th c l i n i c .
204 ∗ @return a l i s t o f performance measures obta ined from the dataColPeriod .
205 ∗/
206 public stat ic List<Double> runSimulat ion (int warmupPeriod , int dataColPeriod , int

↪→ startYear , int startWeek , boolean issuesOrDemandI , int t i m e I n t e r v a l S t a r t I ,
↪→ int t imeIntervalEndI , int m u l t i p l i c a t i o n F a c t o r I , double s e a s o n a l i t y F a c t o r I ,
↪→ double meanSecLeadTimeI , boolean useDronesI , double c r i t i c a l I n v L e v e l I ,
↪→ double maxDroneCapacityI , int maxDronesPerMonthI , int maxDronesPerWeekI)

207 {
208 C l i n i c s i m u l a t i o n C l i n i c = new C l i n i c () ;
209 s i m u l a t i o n C l i n i c . s e t P o l i c y (issuesOrDemandI , t i m e I n t e r v a l S t a r t I ,

↪→ t imeIntervalEndI , m u l t i p l i c a t i o n F a c t o r I , s e a s o n a l i t y F a c t o r I ,
↪→ meanSecLeadTimeI , startWeek , useDronesI , c r i t i c a l I n v L e v e l I ,
↪→ maxDroneCapacityI , maxDronesPerMonthI , maxDronesPerWeekI) ;

210 int currentSimulationWeek = 1 ;
211 int currentWeek = startWeek ;
212 int currentYearFromStartYear = 1 ;
213 int currentYear = star tYear ;
214

215 // s imulate warm−up per iod
216 while (currentSimulationWeek <= warmupPeriod ∗48)
217 {
218 int currentMonth = (int) Math . c e i l (currentWeek / 4 . 0) ;
219

220 // d e l i v e r rep len i shment order i f scheduled to be d e l i v e r e d t h i s week
221 s i m u l a t i o n C l i n i c . r e ce iveOrder (currentSimulationWeek) ;
222

223 // in f i r s t week o f ca l endar month p lace order
224 i f (currentWeek%4 == 1)
225 {
226 s i m u l a t i o n C l i n i c . p laceOrder (currentSimulationWeek , currentMonth ,

↪→ currentYearFromStartYear) ;
227 }
228

229 // generate demand
230 s i m u l a t i o n C l i n i c . generateDemand (currentWeek , currentMonth ,

↪→ currentYearFromStartYear , currentSimulationWeek) ;
231

232 // update s imu la t i on to next week
233 currentWeek += 1 ;
234 currentSimulationWeek += 1 ;
235 i f (currentWeek%48 == 1)
236 {
237 currentYear += 1 ;
238 currentWeek = 1 ;
239 currentYearFromStartYear += 1 ;
240 }
241 }
242

31

243 // s imulate data−c o l l e c t i o n per iod
244 s i m u l a t i o n C l i n i c . resetPerformanceMeasures () ;
245 while (currentSimulationWeek <= (warmupPeriod+dataColPeriod) ∗48)
246 {
247 int currentMonth = (int) Math . c e i l (currentWeek / 4 . 0) ;
248

249 // d e l i v e r rep len i shment order i f scheduled to be d e l i v e r e d t h i s week
250 s i m u l a t i o n C l i n i c . r e ce iveOrder (currentSimulationWeek) ;
251

252 // in f i r s t week o f ca l endar month p lace order
253 i f (currentWeek%4 == 1)
254 {
255 s i m u l a t i o n C l i n i c . p laceOrder (currentSimulationWeek , currentMonth ,

↪→ currentYearFromStartYear) ;
256 }
257

258 // generate demand
259 s i m u l a t i o n C l i n i c . generateDemand (currentWeek , currentMonth ,

↪→ currentYearFromStartYear , currentSimulationWeek) ;
260

261 // update s imu la t i on to next week
262 currentWeek += 1 ;
263 currentSimulationWeek += 1 ;
264 i f (currentWeek%48 == 1)
265 {
266 currentYear += 1 ;
267 currentWeek = 1 ;
268 currentYearFromStartYear += 1 ;
269 }
270 }
271

272 // update performance measures
273 double sat i s f iedDemand = s i m u l a t i o n C l i n i c . g e t I s s u e s (warmupPeriod , dataColPeriod

↪→) ;
274 double totalDemand = s i m u l a t i o n C l i n i c . getDemand (warmupPeriod , dataColPeriod) ;
275 double sumInventory = s i m u l a t i o n C l i n i c . ge t Inventory (dataColPeriod) ;
276 double maxInventory = s i m u l a t i o n C l i n i c . getMaxInventory (warmupPeriod ,

↪→ dataColPeriod) ;
277 double avgDemandMonth = s i m u l a t i o n C l i n i c . getAverageDemandPerMonth (warmupPeriod ,

↪→ dataColPeriod) ;
278 double avgLeadTime = s i m u l a t i o n C l i n i c . getAverageLeadTimes () ;
279 double avgNrDroneDel iver iesYear = s i m u l a t i o n C l i n i c . getAvgNrDroneDel iver ies (

↪→ dataColPeriod) ;
280 double avgNrProductsDeliveredDroneYear = s i m u l a t i o n C l i n i c .

↪→ getAvgNrProductsDeliveredDrone (dataColPeriod) ;
281

282 List<Double> per fMeasures = new ArrayList<Double>() ;
283 per fMeasures . add (sat i s f iedDemand) ;
284 per fMeasures . add (totalDemand) ;
285 per fMeasures . add (sumInventory) ;
286 per fMeasures . add (maxInventory) ;
287 per fMeasures . add (avgDemandMonth) ;
288 per fMeasures . add (avgLeadTime) ;

32

289 per fMeasures . add (avgNrDroneDel iver iesYear) ;
290 per fMeasures . add (avgNrProductsDeliveredDroneYear) ;
291

292 return per fMeasures ;
293 }
294

295 /∗∗
296 ∗ Computes the average o f a l i s t o f s t a t i s t i c a l r e s u l t s
297 ∗ @param l i s t , a l i s t o f va lue s from which the average must be computed .
298 ∗ @return the average o f the va lue s in l i s t .
299 ∗/
300 public stat ic double computeAverage (Lis t<Double> l i s t)
301 {
302 double sum = 0 ;
303 double s i z e = l i s t . s i z e () ;
304 for (int j = 0 ; j < s i z e ; j++)
305 {
306 sum += l i s t . get (j) ;
307 }
308

309 double r e s u l t = sum/ s i z e ;
310 return r e s u l t ;
311 }
312 }

B.2 Clinic

1 import java . u t i l . ArrayList ;
2 import java . u t i l . Arrays ;
3 import java . u t i l . L i s t ;
4 import java . u t i l . Random ;
5

6 /∗∗
7 ∗ The C l i n i c c l a s s a l l ows to keep track o f the s t a t e o f the hea l th c l i n i c .
8 ∗ @author Ing r id Pool
9 ∗/

10 public class C l i n i c
11 {
12 private double inventory = 0 ; // number o f products in s tock
13 private double outs tand ingInventory = 0 ; // number o f products ordered , but not yet

↪→ d e l i v e r e d
14 private List<Order> outstandingOrders = new ArrayList<Order>() ;
15 private List<Double> sat i s f iedDemand = new ArrayList<Double>() ;
16 private List<Double> totalDemand = new ArrayList<Double>() ;
17 private List<Double> totalUnmetDemand = new ArrayList<Double>() ;
18 private double sumInventory = 0 ; // sum of i n v e n t o r y l e v e l s
19 private double d e l i v e r i e s = 0 ; // counter f o r the number o f o rde r s d e l i v e r e d
20 private double l eadt imes = 0 ; // sum of the l ead t imes o f o rde r s d e l i v e r e d .
21 private List<Double> maxInventory = new ArrayList<Double>() ;
22 private boolean issuesOrDemand ; // i s s u e s = true , demand = f a l s e
23 private int t i m e I n t e r v a l S t a r t ; // f i r s t month o f h i s t o r i c a l i n t e r v a l f o r

↪→ c a l c u l a t i n g averages

33

24 private int t imeIntervalEnd ; // next to l a s t month o f h i s t o r i c a l i n t e r v a l f o r
↪→ c a l c u l a t i n g averages

25 private double m u l t i p l i c a t i o n F a c t o r ; // mu l t ip l e o f average to c a l c u l a t e
↪→ rep len i shment t a r g e t

26 private double s e a s o n a l i t y F a c t o r ; // r a t i o o f peak demand mean to average demand
↪→ mean

27 private double meanSecLeadTime ; // average number o f weeks i t takes to d e l i v e r from
↪→ d i s t r i c t c en te r to l o c a l c l i n i c

28 private List<Double> histor ica lDemand = new ArrayList<Double>(Arrays . a s L i s t (1 8 6 . 8 ,
↪→ 223 .1 , 216 .0 , 182 .3 , 139 .4 , 116 .8 , 118 .9 , 131 .0 , 117 .3 , 104 .5 , 116 .0 , 147 . 9)
↪→) ;

29 private List<Double> unmetDemand = new ArrayList<Double>() ;
30 private List<Double> h i s t o r i c a l I s s u e s = new ArrayList<Double>(Arrays . a s L i s t (1 8 6 . 8 ,

↪→ 223 .1 , 216 .0 , 182 .3 , 139 .4 , 116 .8 , 118 .9 , 131 .0 , 117 .3 , 104 .5 , 116 .0 , 147 . 9)
↪→) ;

31 private List<Double> d e l a y P r o b a b i l i t i e s = new ArrayList<Double>(Arrays . a s L i s t
↪→ (0 . 7 7 9 , 0 . 765 , 0 . 781 , 0 . 846 , 0 . 927 , 0 . 969 , 0 . 974 , 0 . 984 , 0 . 986 , 0 . 99 , 0 . 946 ,
↪→ 0 .848)) ;

32 private List<Double> demandWeek = new ArrayList<Double>(Arrays . a s L i s t (4 2 . 0 , 45 . 0 ,
↪→ 48 . 4 , 51 . 4 , 54 . 0 , 55 . 9 , 56 . 6 , 56 . 6 , 56 . 3 , 55 . 1 , 53 . 3 , 51 . 4 , 49 . 5 , 46 . 9 ,
↪→ 44 . 3 , 41 . 6 , 38 . 6 , 35 . 7 , 33 . 4 , 31 . 7 , 30 . 3 , 29 . 4 , 28 . 7 , 28 . 3 , 28 . 4 , 29 . 0 ,
↪→ 30 . 1 , 31 . 5 , 32 . 7 , 33 . 2 , 33 . 0 , 32 . 1 , 31 . 0 , 29 . 8 , 28 . 8 , 27 . 8 , 26 . 8 , 26 . 1 ,
↪→ 25 . 8 , 25 . 9 , 26 . 6 , 27 . 9 , 29 . 7 , 31 . 8 , 34 . 1 , 36 . 2 , 37 . 9 , 3 9 . 8)) ;

33 private boolean useDrones ;
34 private double c r i t i c a l I n v L e v e l ;
35 private double maxDroneCapacity ;
36 private int maxDronesPerMonth ;
37 private int dronesThisMonth = 0 ;
38 private int maxDronesPerWeek ;
39 private int nrDroneDe l ive r i e s = 0 ;
40 private int nrProductsDel iveredDrone = 0 ;
41

42 /∗∗
43 ∗ I n i t i a l i z e s the c l i n i c
44 ∗ @param issuesOrDemandI , compute rep len i shment t a r g e t based o f h i s t o r i c a l i s s u e s

↪→ (t rue) or demand (f a l s e)
45 ∗ @param t i m e I n t e r v a l S t a r t I , s t a r t o f i n t e r v a l from which to use h i s t o r i c a l va lue s
46 ∗ @param timeIntervalEndI , end o f i n t e r v a l from which to use h i s t o r i c a l va lue s
47 ∗ @param m u l t i p l i c a t i o n F a c t o r I , mu l t ip l e o f t imes the average o f h i s t o r i c a l va lue s

↪→ has to be r e p l e n i s h e d to
48 ∗ @param s e a s o n a l i t y F a c t o r I , f a c t o r r e p r e s e n t i n g the v a r i a b i l i t y o f the demand

↪→ va lue s over the year
49 ∗ @param meanSecLeadTimeI , average amount o f weeks to d e l i v e r from d i s t r i c t to

↪→ hea l th c l i n i c
50 ∗ @param startWeek , week o f the year in which the s imu la t i on s t a r t s .
51 ∗ @param useDronesI , t rue i f the use o f drones i s al lowed , f a l s e o therw i s e .
52 ∗ @param c r i t i c a l I n v L e v e l I , l e v e l from below which drone o rde r s can be placed .
53 ∗ @param maxDroneCapacityI , maximum cargo o f a drone
54 ∗ @param maxDronesPerMonthI , maximum number o f drone orde r s that can be placed per

↪→ month f o r a hea l th c l i n i c .
55 ∗ @param maxDronesPerWeekI , maximum number o f drone orde r s that can be placed per

↪→ week f o r a hea l th c l i n i c .
56 ∗/

34

57 public void s e t P o l i c y (boolean issuesOrDemandI , int t i m e I n t e r v a l S t a r t I , int
↪→ t imeIntervalEndI , int m u l t i p l i c a t i o n F a c t o r I , double s e a s o n a l i t y F a c t o r I ,
↪→ double meanSecLeadTimeI , int startWeek , boolean useDronesI , double
↪→ c r i t i c a l I n v L e v e l I , double maxDroneCapacityI , int maxDronesPerMonthI , int
↪→ maxDronesPerWeekI)

58 {
59 // Set the s e t t i n g s f o r the p o l i c y
60 issuesOrDemand = issuesOrDemandI ;
61 t i m e I n t e r v a l S t a r t = t i m e I n t e r v a l S t a r t I ;
62 t imeIntervalEnd = t imeInterva lEndI ;
63 m u l t i p l i c a t i o n F a c t o r = m u l t i p l i c a t i o n F a c t o r I ;
64 s e a s o n a l i t y F a c t o r = s e a s o n a l i t y F a c t o r I ;
65 meanSecLeadTime = meanSecLeadTimeI ;
66 useDrones = useDronesI ;
67 c r i t i c a l I n v L e v e l = c r i t i c a l I n v L e v e l I ;
68 maxDroneCapacity = maxDroneCapacityI ;
69 maxDronesPerMonth = maxDronesPerMonthI ;
70 maxDronesPerWeek = maxDronesPerWeekI ;
71

72 // f i l l unmetDemand array
73 for (int index = 0 ; index < histor ica lDemand . s i z e () ; index++)
74 {
75 unmetDemand . add (histor ica lDemand . get (index) − h i s t o r i c a l I s s u e s . get (index)) ;
76 }
77

78 // Adjust the demand va lue s accord ing to the s e a s o n a l i t y f a c t o r
79 boolean week = true ;
80 boolean month = fa l se ;
81 double sum = 0 ;
82 double sumWeek = 0 ;
83 double sumMonth = 0 ;
84 double maxDemand = 0 ;
85 double maxDemandWeek = 0 ;
86 double maxDemandMonth = 0 ;
87 double d i v i d e r = 0 . 0 ;
88 for (int index = 0 ; index < demandWeek . s i z e () ; index++)
89 {
90 double demandValue = demandWeek . get (index) ;
91 sumWeek += demandValue ;
92 i f (demandValue > maxDemandWeek)
93 {
94 maxDemandWeek = demandValue ;
95 }
96 }
97 for (int index = 0 ; index < histor ica lDemand . s i z e () ; index++)
98 {
99 double demandValue = histor ica lDemand . get (index) ;

100 sumMonth += demandValue ;
101 i f (demandValue > maxDemandMonth)
102 {
103 maxDemandMonth = demandValue ;
104 }
105 }

35

106 i f (week == true)
107 {
108 d i v i d e r = 4 8 . 0 ;
109 sum = sumWeek ;
110 maxDemand = maxDemandWeek ;
111 }
112 i f (month == true)
113 {
114 d i v i d e r = 1 2 . 0 ;
115 sum = sumMonth ;
116 maxDemand = maxDemandMonth ;
117 }
118

119 double averageDemand = sum/ d i v i d e r ;
120 double maxDemandTarget = averageDemand∗ s e a s o n a l i t y F a c t o r ;
121 double gapAvgTarget = maxDemandTarget − averageDemand ;
122 double gapAvgMax = maxDemand − averageDemand ;
123 double neededMul t ip l i c a t i on = gapAvgTarget/gapAvgMax ;
124 double averageDemandMonth = sumMonth / 1 2 . 0 ;
125 for (int i = 0 ; i < histor ica lDemand . s i z e () ; i++)
126 {
127 double demandValue = histor ica lDemand . get (i) ;
128 double gap = demandValue − averageDemandMonth ;
129 histor ica lDemand . s e t (i , averageDemandMonth + gap∗ neededMul t ip l i c a t i on) ;
130 h i s t o r i c a l I s s u e s . s e t (i , averageDemandMonth + gap∗ neededMul t ip l i c a t i on) ;
131 }
132

133 double averageDemandWeek = sumWeek / 4 8 . 0 ;
134 for (int j = 0 ; j < demandWeek . s i z e () ; j++)
135 {
136 double demandValue = demandWeek . get (j) ;
137 double gap = demandValue − averageDemandWeek ;
138 demandWeek . s e t (j , averageDemandWeek + gap∗ neededMul t ip l i c a t i on) ;
139 }
140

141 // i f s tartweek i s not at beg inning o f year , ad jus t h i s t o r i c a l demand
142 int dupl icateMonths = (int) Math . f l o o r (startWeek /4) ;
143 for (int i = 12 ; i < dupl icateMonths +12; i++)
144 {
145 histor ica lDemand . add (histor ica lDemand . get (i −12)) ;
146 h i s t o r i c a l I s s u e s . add (h i s t o r i c a l I s s u e s . get (i −12)) ;
147 }
148 }
149

150 /∗∗
151 ∗ Finds the order that i s d e l i v e r e d next from the l i s t o f outstanding orde r s
152 ∗ @return the next order to be d e l i v e r e d
153 ∗/
154 private Order getNextOrder ()
155 {
156 Order nextOrder = null ;
157 for (int i =0; i<outstandingOrders . s i z e () ; i++)
158 {

36

159 Order th i sOrder = outstandingOrders . get (i) ;
160 i f (nextOrder == null | | th i sOrder . de l iveryTime < nextOrder . de l iveryTime)
161 {
162 nextOrder = th i sOrder ;
163 }
164 }
165 return nextOrder ;
166 }
167

168 /∗∗
169 ∗ Rece ives the o rde r s that are d e l i v e r e d at week t and update the inventory

↪→ s t a t i s t i c s
170 ∗ @param t cur rent week o f the s imu la t i on
171 ∗/
172 public void r ece iveOrder (int t)
173 {
174 // update performance measures inventory l e v e l
175 sumInventory += inventory ;
176 double currentMaxInventory = 0 ;
177 i f (maxInventory . s i z e () == Math . c e i l (t /48 . 0))
178 {
179 currentMaxInventory = maxInventory . get ((int) Math . c e i l (t /48 . 0) − 1) ;
180 }
181 else
182 {
183 maxInventory . add (0 . 0) ;
184 }
185 i f (inventory > currentMaxInventory)
186 {
187 maxInventory . s e t ((int) Math . c e i l (t /48 . 0)−1, inventory) ;
188 }
189

190 // r e c e i v e order
191 while (getNextOrder () != null && getNextOrder () . de l iveryTime == t)
192 {
193 Order nextOrder = getNextOrder () ;
194 inventory += nextOrder . quant i ty ;
195 outs tand ingInventory −= nextOrder . quant i ty ;
196 outstandingOrders . remove (nextOrder) ;
197 }
198 }
199

200 /∗∗
201 ∗ Places a new order with quant i ty based o f rep len i shment target , inventory and

↪→ outstanding inventory
202 ∗ @param currentSimulationWeek , cur rent week o f the s imu la t i on
203 ∗ @param currentMonth , cur rent month o f the year
204 ∗ @param currentYearFromStartYear , cur rent year o f the s imu la t i on
205 ∗/
206 public void placeOrder (int currentSimulationWeek , int currentMonth , int

↪→ currentYearFromStartYear)
207 {
208 // compute order quant i ty

37

209 double rep len i shmentTarget = 0 . 0 ;
210 List<Double> h i s t o r i c a l V a l u e s = new ArrayList<Double>() ;
211 i f (issuesOrDemand == true)
212 {
213 h i s t o r i c a l V a l u e s = h i s t o r i c a l I s s u e s ;
214 }
215 else i f (issuesOrDemand == fa l se)
216 {
217 h i s t o r i c a l V a l u e s = histor ica lDemand ;
218 }
219 for (int month = t i m e I n t e r v a l S t a r t ; month < t imeIntervalEnd ; month++)
220 {
221 rep len i shmentTarget += h i s t o r i c a l V a l u e s . get (month+currentMonth−1+12∗

↪→ currentYearFromStartYear) ;
222 }
223 rep len i shmentTarget = replen i shmentTarget /(t imeIntervalEnd−t i m e I n t e r v a l S t a r t) ∗

↪→ m u l t i p l i c a t i o n F a c t o r ;
224 double orderQuantity = Math . round (rep len i shmentTarget − inventory −

↪→ outs tand ingInventory) ;
225

226 // p lace order
227 i f (orderQuantity > 0)
228 {
229 Order order = new Order () ;
230 order . setQuant i ty (orderQuantity) ;
231 double d e l a y P ro b a b i l i t y = d e l a y P r o b a b i l i t i e s . get (currentMonth−1) ;
232 order . setDel iveryTime (currentSimulationWeek , de layProbab i l i ty ,

↪→ meanSecLeadTime) ;
233 outs tand ingInventory += orderQuantity ;
234

235 // update outstandingOrders
236 outstandingOrders . add (order) ;
237 d e l i v e r i e s += 1 ;
238 l eadt imes += order . del iveryTime−currentSimulationWeek ;
239 }
240 }
241

242 /∗∗
243 ∗ Generates random demand f o r week currentSimulationWeek , f u l f i l l s t h i s demand i f

↪→ p o s s i b l e and updates the s t a t i s t i c s
244 ∗ @param currentWeekOfYear , cur rent week o f the year
245 ∗ @param currentMonth , cur rent month o f the year
246 ∗ @param currentYearFromStartYear , cur rent year o f the s imu la t i on
247 ∗ @param currentSimulationWeek , cur rent week o f the s imu la t i on
248 ∗/
249 public void generateDemand (int currentWeekOfYear , int currentMonth , int

↪→ currentYearFromStartYear , int currentSimulationWeek)
250 {
251 // Generate demand with lognormal d i s t r i b u t i o n
252 double generatedDemand ;
253 double meanDemand = demandWeek . get (currentWeekOfYear−1) ;
254 double stdDevDemand = 0.5∗meanDemand ;
255 Random r = new Random() ;

38

256 double stdNorm = r . nextGaussian () ;
257 double mu = Math . l og (Math . pow(meanDemand , 2 . 0) /Math . s q r t (Math . pow(stdDevDemand

↪→ , 2 . 0) + Math . pow(meanDemand , 2 . 0))) ;
258 double s igmaSqrt = Math . l og (1+Math . pow(stdDevDemand , 2 . 0) /Math . pow(meanDemand ,

↪→ 2 . 0)) ;
259 generatedDemand = Math . round ((Math . exp (stdNorm∗Math . s q r t (s igmaSqrt)+mu))) ;
260

261 // f u l f i l l demand from inventory
262 double i s s u e s = Math . min (generatedDemand , inventory) ;
263 inventory = inventory − i s s u e s ;
264

265 // update h i s t o r i c a l i s s u e s , h i s t o r i c a l demand and unmet demand
266 updateH i s to r i ca lVa lue s (histor icalDemand , currentMonth , currentYearFromStartYear

↪→ , generatedDemand) ;
267 updateH i s to r i ca lVa lue s (h i s t o r i c a l I s s u e s , currentMonth , currentYearFromStartYear

↪→ , i s s u e s) ;
268 updateH i s to r i ca lVa lue s (unmetDemand , currentMonth , currentYearFromStartYear ,

↪→ generatedDemand−i s s u e s) ;
269

270 // update performance measures
271 double oldSat is f iedDemand = 0 ;
272 double oldTotalDemand = 0 ;
273 double oldTotalUnmetDemand= 0 ;
274 i f (sat i s f iedDemand . s i z e () == Math . c e i l (currentSimulationWeek /48 .0))
275 {
276 oldSat is f iedDemand = sat is f iedDemand . get ((int) Math . c e i l (

↪→ currentSimulationWeek /48 .0) − 1) ;
277 oldTotalDemand = totalDemand . get ((int) Math . c e i l (currentSimulationWeek

↪→ /48 .0) − 1) ;
278 oldTotalUnmetDemand = totalUnmetDemand . get ((int) Math . c e i l (

↪→ currentSimulationWeek /48 .0) − 1) ;
279 }
280 else
281 {
282 sat i s f iedDemand . add (0 . 0) ;
283 totalDemand . add (0 . 0) ;
284 totalUnmetDemand . add (0 . 0) ;
285 }
286 sat i s f iedDemand . s e t ((int) Math . c e i l (currentSimulationWeek /48 .0)−1,

↪→ oldSat is f iedDemand + i s s u e s) ;
287 totalDemand . s e t ((int) Math . c e i l (currentSimulationWeek /48 .0)−1, oldTotalDemand +

↪→ generatedDemand) ;
288 totalUnmetDemand . s e t ((int) Math . c e i l (currentSimulationWeek /48 .0)−1,

↪→ oldTotalUnmetDemand + generatedDemand−i s s u e s) ;
289

290 // i f c r i t i c a l inventory l e v e l i s reached , i f p o s s i b l e p lace and r e c e i v e drone
↪→ d e l i v e r y

291 int dronesThisWeek = 0 ;
292 i f (currentWeekOfYear%4==1)
293 {
294 dronesThisMonth = 0 ;
295 }

39

296 i f (useDrones == true && inventory <= c r i t i c a l I n v L e v e l && dronesThisMonth <
↪→ maxDronesPerMonth)

297 {
298 int nextWeek = (currentWeekOfYear+1)%48;
299 i f (nextWeek == 0)
300 {
301 nextWeek = 48 ;
302 }
303 int nextNextWeek = (currentWeekOfYear+2)%48;
304 i f (nextNextWeek == 0)
305 {
306 nextNextWeek = 48 ;
307 }
308 double expectedDemandNextTwoWeeks = demandWeek . get (nextWeek−1) + demandWeek

↪→ . get (nextNextWeek−1) ;
309 double extraInventoryNeeded = expectedDemandNextTwoWeeks−inventory ;
310 while (extraInventoryNeeded > 0 && dronesThisMonth < maxDronesPerMonth &&

↪→ dronesThisWeek < maxDronesPerWeek)
311 {
312 double orderQuantity = Math . min (extraInventoryNeeded , maxDroneCapacity)

↪→ ;
313 inventory += orderQuantity ;
314 extraInventoryNeeded −= orderQuantity ;
315 dronesThisMonth += 1 ;
316 dronesThisWeek += 1 ;
317 nrDroneDe l ive r i e s += 1 ;
318 nrProductsDel iveredDrone += orderQuantity ;
319 }
320 }
321 }
322

323 /∗∗
324 ∗ Updates the l i s t with h i s t o r i c a l va lue s per month by adding addValue to the

↪→ value o f the appropr ia te month
325 ∗ @param List , the l i s t to be updated
326 ∗ @param currentMonth , cur rent month o f the year
327 ∗ @param currentYearFromStartYear , cur rent year o f the s imu la t i on
328 ∗ @param addValue , va lue to add to the cur rent value o f the month
329 ∗/
330 public void updateH i s to r i ca lVa lue s (Li s t<Double> List , int currentMonth , int

↪→ currentYearFromStartYear , double addValue)
331 {
332 i f (L i s t . s i z e () == currentMonth+12∗currentYearFromStartYear)
333 {
334 double oldValue = L i s t . get (currentMonth−1+12∗currentYearFromStartYear) ;
335 L i s t . s e t (currentMonth−1+12∗currentYearFromStartYear , (oldValue + addValue))

↪→ ;
336 }
337 else
338 {
339 L i s t . add (addValue) ;
340 }
341 }

40

342

343 /∗∗
344 ∗ Resets the performance measures to 0 .
345 ∗/
346 public void resetPer formanceMeasures ()
347 {
348 sumInventory = 0 ;
349 d e l i v e r i e s = 0 ;
350 l eadt imes = 0 ;
351 nrDroneDe l ive r i e s = 0 ;
352 nrProductsDel iveredDrone = 0 ;
353 }
354

355 /∗∗
356 ∗ Computes the average amount o f i s s u e s per year f o r dataColPeriod
357 ∗ @param warmupPeriod , per iod in years the s imu la t i on runs be f o r e c o l l e c t i n g data
358 ∗ @param dataColPeriod , per iod in years over which data i s c o l l e c t e d from the

↪→ s imu la t i on
359 ∗ @return average amount o f i s s u e s per year over the data c o l l e c t i o n per iod
360 ∗/
361 public double g e t I s s u e s (int warmupPeriod , int dataColPeriod)
362 {
363 double sumSatisfiedDemand = 0 ;
364 double to ta lYear s = dataColPeriod ;
365 for (int i = warmupPeriod ; i < sat i s f iedDemand . s i z e () ; i++)
366 {
367 sumSatisfiedDemand += sat is f iedDemand . get (i) ;
368 }
369 return sumSatisfiedDemand/ to ta lYear s ;
370 }
371

372 /∗∗
373 ∗ Computes the average amount o f demand per year f o r dataColPeriod
374 ∗ @param warmupPeriod , per iod in years the s imu la t i on runs be f o r e c o l l e c t i n g data
375 ∗ @param dataColPeriod , per iod in years over which data i s c o l l e c t e d from the

↪→ s imu la t i on
376 ∗ @return average amount o f demand per year over the data c o l l e c t i o n per iod
377 ∗/
378 public double getDemand (int warmupPeriod , int dataColPeriod)
379 {
380 double sumTotalDemand = 0 ;
381 double to ta lYear s = dataColPeriod ;
382 for (int i = warmupPeriod ; i < totalDemand . s i z e () ; i++)
383 {
384 sumTotalDemand += totalDemand . get (i) ;
385 }
386 return sumTotalDemand/ to ta lYear s ;
387 }
388

389 /∗∗
390 ∗ Computes the average amount o f inventory per year f o r dataColPeriod
391 ∗ @param warmupPeriod , per iod in years the s imu la t i on runs be f o r e c o l l e c t i n g data

41

392 ∗ @param dataColPeriod , per iod in years over which data i s c o l l e c t e d from the
↪→ s imu la t i on

393 ∗ @return average amount o f inventory per year over the data c o l l e c t i o n per iod
394 ∗/
395 public double get Inventory (int dataColPeriod)
396 {
397 double to ta lYear s = dataColPeriod ;
398 return sumInventory / to ta lYear s ;
399 }
400

401 /∗∗
402 ∗ Computes the average o f the maximum inventory per year f o r dataColPeriod
403 ∗ @param warmupPeriod , per iod in years the s imu la t i on runs be f o r e c o l l e c t i n g data
404 ∗ @param dataColPeriod , per iod in years over which data i s c o l l e c t e d from the

↪→ s imu la t i on
405 ∗ @return average maximum inventory per year over the data c o l l e c t i o n per iod
406 ∗/
407 public double getMaxInventory (int warmupPeriod , int dataColPeriod)
408 {
409 double sumMaxInventory = 0 ;
410 double to ta lYear s = dataColPeriod ;
411 for (int i = warmupPeriod ; i < maxInventory . s i z e () ; i++)
412 {
413 sumMaxInventory += maxInventory . get (i) ;
414 }
415 return sumMaxInventory/ to ta lYear s ;
416 }
417

418 /∗∗
419 ∗ Computes the average demand per month f o r dataColPeriod
420 ∗ @param warmupPeriod , per iod in years the s imu la t i on runs be f o r e c o l l e c t i n g data
421 ∗ @param dataColPeriod , per iod in years over which data i s c o l l e c t e d from the

↪→ s imu la t i on
422 ∗ @return average demand per month over the data c o l l e c t i o n per iod
423 ∗/
424 public double getAverageDemandPerMonth (int warmupPeriod , int dataColPeriod)
425 {
426 double sumDemand = getDemand (warmupPeriod , dataColPeriod) ∗dataColPeriod ;
427 return sumDemand/(dataColPeriod ∗12) ;
428 }
429

430 /∗∗
431 ∗ Computes the average l ead time f o r dataColPeriod
432 ∗ @param warmupPeriod , per iod in years the s imu la t i on runs be f o r e c o l l e c t i n g data
433 ∗ @param dataColPeriod , per iod in years over which data i s c o l l e c t e d from the

↪→ s imu la t i on
434 ∗ @return average l ead time over the data c o l l e c t i o n per iod
435 ∗/
436 public double getAverageLeadTimes ()
437 {
438 double average = leadt imes / d e l i v e r i e s ;
439 return average ;
440 }

42

441

442 /∗∗
443 ∗ computes the average number o f drone d e l i v e r i e s per year
444 ∗ @param dataColPeriod , per iod in years over which data i s c o l l e c t e d from the

↪→ s imu la t i on
445 ∗ @return the average number o f drone d e l i v e r i e s per year
446 ∗/
447 public double getAvgNrDroneDel iver ies (int dataColPeriod)
448 {
449 double to ta lYear s = dataColPeriod ;
450 double average = nrDroneDe l ive r i e s / to ta lYear s ;
451 return average ;
452 }
453

454 /∗∗
455 ∗ Computes the average number o f products d e l i v e r e d by drone per year
456 ∗ @param dataColPeriod , per iod in years over which data i s c o l l e c t e d from the

↪→ s imu la t i on
457 ∗ @return the average number o f productes d e l i v e r e d by drone per year
458 ∗/
459 public double getAvgNrProductsDeliveredDrone (int dataColPeriod)
460 {
461 double to ta lYear s = dataColPeriod ;
462 double average = nrProductsDel iveredDrone / to ta lYear s ;
463 return average ;
464 }
465 }

B.3 Order

1 /∗∗
2 ∗ The Order c l a s s keeps t rack o f the quant i ty and d e l i v e r y time o f an order .
3 ∗ @author Ing r id Pool
4 ∗/
5 public class Order
6 {
7 double quant i ty ;
8 int del iveryTime ;
9

10 /∗∗
11 ∗ Sets the quant i ty o f the order equal to orderQuantity
12 ∗ @param orderQuantity , quant i ty o f the order
13 ∗/
14 public void setQuant i ty (double orderQuantity)
15 {
16 quant i ty = orderQuantity ;
17 }
18

19 /∗∗
20 ∗ Computes the l ead time o f the order (weeks) and s e t s the week o f d e l i v e r y
21 ∗ @param currentSimulationWeek , cur rent week o f the s imu la t i on
22 ∗ @param de layProbab i l i ty , p r o b a b i l i t y that in t h i s month the order i s NOT delayed

43

23 ∗ @param meanSecLeadTimeI , average l ead time (weeks) o f the secondary s tage o f
↪→ d e l i v e r y

24 ∗/
25 public void setDel iveryTime (int currentSimulationWeek , double de layProbab i l i ty ,

↪→ double meanSecLeadTimeI)
26 {
27 int primaryLeadTimeWeeks = 2 ;
28

29 // generate secondary l ead time in weeks without a c c e s s problems with geometr ic
↪→ d i s t r i b u t i o n

30 int secondaryLeadTimeWeeks = 1 ;
31 double meanSecLeadTimeWeeks = meanSecLeadTimeI ;
32 double p r o b a b i l i t y = 1.0/ meanSecLeadTimeWeeks ;
33 boolean stop = fa l se ;
34 while (! stop)
35 {
36 double rand = Math . random () ;
37 i f (rand <= p r o b a b i l i t y)
38 {
39 stop = true ;
40 break ;
41 }
42 else
43 {
44 secondaryLeadTimeWeeks += 1 ;
45 }
46 }
47

48 // generate s ea sona l a c c e s s problems f o r secondary l ead time with b e r n o u l l i
↪→ d i s t r i b u t i o n

49 int secondaryLeadTimeWeeksAccessProblems = 0 ;
50 double rand2 = Math . random () ;
51 i f (rand2 >= d e l a y P ro b a b i l i t y)
52 {
53 secondaryLeadTimeWeeksAccessProblems += 1 ;
54 }
55

56 del iveryTime = currentSimulationWeek + primaryLeadTimeWeeks +
↪→ secondaryLeadTimeWeeks + secondaryLeadTimeWeeksAccessProblems ;

57 }
58 }

44

