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Abstract

In this thesis, we discuss different solution approaches for the train unit assignment problem (TUAP).
The TUAP covers the aspect of distributing train units over a known timetable. The goal is to
minimise the costs of the used train units while the capacity of the train units must exceed the

estimated demand. In this paper, we first discuss a mixed-integer linear program which could solve the
TUAP exactly. Afterwards, we discuss the peak period heuristic as introduced by Cacchiani et al.

(2019). This heuristic defines the peak period of a timetable as a set of so-called incompatible trips and
iteratively tries to search for the least cost solution. Then we come up with a heuristic which is similar
to the exact formulation of the set cover problem. However, instead of considering all possible routes,

we only use a smaller subset of ’significant’ routes, such that the problem is also solvable for larger
instances within sufficient time. Finally, we come up with a local search algorithm which can improve
the outcome of any given feasible solution. This local search technique checks for a randomly chosen

trip, whether there is an alternative composition of train units, which decreases the total costs until no
further improvements can be found. We compare these heuristics with the exact formulation and

observe that the performance of the peak period heuristic is relatively poor. The results of the set cover
heuristic and local search are decent. However, the exact formulation still solves the instances optimally

within an acceptable time.
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1 Introduction

A frequent train traveller faces various problems during their journey. From undesirable departure times

to excessive delays, a passenger can find their experienced train trips far from perfect. However, the

constructing of a train schedule is a time-consuming process, when at the same time taking the interests

of all involved parties into account. Yearly, almost 30 billion passengers travel over approximately 800,000

kilometres of train lines (UIC, 2018). Therefore, satisfying all the passengers’ interests would be like

squaring the circle for railway companies.

What will railway companies do to satisfy the passengers as much as possible and what factors or

preferences of passengers will they take into account when determining the train schedule? As stated in

Caprara (2015), railway planning can be divided into four smaller subproblems: train timetabling, train

platforming, train-unit assignment and crew assignment problem. The first step of a complex process is

the determination of arrival and departure times at each station, labelled as train timetabling problem.

This process has already been proven to be NP-hard (Caprara et al., 2002). Next, the entrance and exit

routes of trains and the allocation of platforms must be determined. This so-called train platforming

problem is closely related to the train unit assignment problem (TUAP), where various train units are

combined to satisfy the demand for a specific train trip. Finally, crew assignment problem decides the

working plan for each employee. Such a complicated process needs to be executed as perfect as possible,

while an incorrect implementation of one of the stages could lead to high costs for the railway company

or dissatisfaction by the passengers.

In this thesis, the main focus is on the train-unit assignment problem: the determination of train units

over all the trips. The arrival and departure times and stations of all trips, the demand and the set of

train units are assumed to be given. Train units are used to satisfy the given demand for every trip.

The goal is to minimise the total costs of the assignment of the used train units. However, the context

introduced by Cacchiani et al. (2019) is ”that of a competitive bid process whereby a train operator

competes to win a contract for providing rolling stock circulation in a regional railway network.” By

estimating the yearly costs for the usage of train units, a train operator can give their best valuation of

the proposed contract. An overestimation of the costs will probably not lead to winning the bid, while

an (infeasible) underestimation will probably lead to winning the bid, but eventually to plausible losses.

However, Cacchiani et al. (2019) prove that the problem is NP-hard.

This research aims is to analyse the implemented method used in Cacchiani et al. (2019) and replicate

these results with comparable data sets. The authors propose a heuristic based on the peak period, such

that it can approximate the yearly costs for using train units. The paper of the authors includes a real-

world application for a train operator in the North of Italy, and their results show decent performance

and computational time.

Before we explain the peak period heuristic, we introduce an integer linear program which is able to solve

instances exactly. Furthermore, we introduce two new proposed heuristics to solve the TUAP. Firstly,

we propose a set cover heuristic, which is similar to the well-known set cover formulation. The difference

is that we do not consider every possible route as usually, but we use a smaller subset of ’significant’

routes. Furthermore, we will add a weight factor to each route to emphasise its significance. Lastly, we

introduce a local search technique, which is meant to improve any given feasible solution. It does this for

every trip by finding a cheaper composition of train units for that trip.
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Whereas Cacchiani et al. (2019) conclude that the peak period heuristic performs well within decent

computational time, our results show that the algorithm is slow and the outcomes are far from the optimal

solution. The integer linear program can obtain the optimal solution, although it takes more time for

bigger instances. The set cover heuristic is a speedy algorithm, which has, especially when including

weight factors, excellent results compared to the peak period heuristic. The local search approach seems

to improve any given solution significantly, and in combination with the set cover heuristic and using

weight factors, we obtain the best results.

This thesis is organised as follows. The related literature is reviewed in Chapter 2. Afterwards, we

start to explain the train unit assignment problem in Chapter 3. Then we propose an integer linear

program which could solve the TUAP exactly in Chapter 4, followed by the proposed solution approach

in Cacchiani et al. (2019) in Chapter 5. We clearly explain the defined lower bound and the proposed

heuristic to tackle the TUAP in respectively Chapters 5.1 and 5.2. Afterwards, we introduce our proposed

set cover heuristic in Chapter 6. Chapter 7 describes the functioning of the local search algorithm. With

the explanation of all our used solution approaches, we present our results in Chapter 8. Lastly, we end

this thesis by summarising and concluding our mentioned results in Chapter 9.

2 Literature Review

This chapter reviews some previous findings of related research. Firstly, we introduce some interesting

articles about general railway planning. Secondly, we inspect different points of view about the train unit

assignment problem, which is just a small subproblem of railway planning.

2.1 Railway Planning

As already mentioned, Caprara (2015) states that the railway planning exists of four smaller categories:

train timetabling, train platforming, train-unit assignment and the crew assignment problem. However,

some argue that railway planning consists of seven subproblems, as stated in Goossens et al. (2006). They

add two stages before and one stage after the already introduced railway planning of Caprara (2015). The

long-term estimates of the demand and the line planning process are both stages ahead of the already

introduced four categories. Both these stages are strategic decisions, which have a time horizon of five

till fifteen years (Ghoseiri et al., 2004). The line planning consists for the main part the determining

of currently non-existing train rails to build or to demolish currently existing train rails. Nowadays,

this process is expensive and therefore, negligibly profitable. The seventh and last stage is shunting and

maintenance planning, which does not have a major influence on the final result of railway planning.

Cordeau et al. (1998) show an overview of optimisation formulations for different train problems. Al-

though their article does not contain the most recent up-to-date developments, it summarises different

solution approaches for different transportation problems. Also, Fang et al. (2015) show a clear overview

of different procedures, although this article is more focused on the rescheduling in railway networks.

There are over 100 references to other papers and it reveals that most of the referenced papers use a

mixed-integer linear programming formulation.
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When a train schedule has been made, the duty of a railway company does not stop. The reality is that

possible delays and maintenance cause other problems the company has to deal with. Another article

of Cacchiani and Toth (2012) describes the so-called nominal and robust train schedules. A nominal

train schedule does only incorporate the given constraints, while robust train schedules also take possible

disruptions into account. For this reason, nominal train schedules approach the optimal scenario, while

robust train schedules reach reality.

2.2 Train Unit Assignment Problem

The TUAP is a strongly NP-hard problem, as it has been proven in Cacchiani et al. (2010), even in

the case when all the trips overlap in time. In their paper, they introduce an integer linear program,

where one decision variable corresponds to a feasible trip schedule for one train unit type. Based on this

formulation, the authors propose a so-called diving heuristic. However, due to its time-consuming process,

they propose another approach in Cacchiani et al. (2013). The definition of the variable of this integer

linear program changed to one pair of trips assigned in a sequence to one train unit. The Lagrangian

relaxation of this formulation is less time consuming than the diving heuristic formulated in Cacchiani

et al. (2010). Cacchiani et al. (2019) compare these two methods with another introduced peak period

heuristic. As noted, we will discuss this peak period algorithm in more detail in Chapter 5.

The train unit assignment problem is similar to the rolling stock circulation problem as discussed in

Fioole et al. (2006). The addition of the authors to this problem is the consideration of the order of train

units during a trip. By doing this, it performs a more realistic combining and splitting of trains during a

sequence of trips. A mixed-integer formulation is solved to compute its results. This method is compared

with a column and row generation approach described in Haahr et al. (2016).

Lin and Kwan (2014) describe a complicated process, as it also includes the shunting process at train

stations. It is a two-phase approach where it starts with a similar solution concept as in Cacchiani et al.

(2010) to solve the train unit scheduling. On top of that, their article comes up with a mixed-integer

linear programming formulation to solve the railway shunting problem. It furthermore considers the

rescheduling of train units as a result of possible delays or maintenance. Also, Cadarso and Maŕın (2011)

address shunting operations in combination with the railway rolling stock circulation. They suggest

a mixed-integer linear program where it penalises shunting operations like deadheading and rotation

maneuvres. Based on this formulation, Cadarso and Maŕın (2014) present another robust formulation to

tackle this problem. It uses a Benders decomposition in combination with their proposed heuristic.
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3 Problem Description

In this section, we give a general description of the TUAP and introduce the constraints and parameters.

For the sake of simplicity, we adopt as much as possible to the same notation as introduced in Cacchiani

et al. (2019).

Given is a set of timetabled train trips T = {1, ..., n}. Each trip t ∈ T has a departure time st and an

arrival time ft, and both corresponding to their respective train station. We introduce a set of nodes V

in which each station corresponds to one of the nodes i ∈ V . Furthermore, each trip has a given positive

deterministic demand rt of passenger seats, and every train track has a maximum train length lt. Also,

a set of different train unit types K = {1, ..., p} is presented. Each type k ∈ K has a yearly cost ck, a

capacity Rk of passenger seats and a length Lk in meters.

Some specific operational requirements are needed to direct to possible solutions. First of all, the demand

for passenger seats rt must be satisfied for every trip. To do this, we connect different train units such

that their total capacity exceeds the estimated demand. Secondly, for each trip, the length of a train unit

combination
∑
k∈K L

k cannot be higher than the given maximum train length lt. Lastly, two trips i and

j can be performed in sequence by a train unit if and only if sj ≥ fi + tij , where tij is the transfer time

between the arrival location of trip i and the departure location of trip j. Our goal is to minimise the

total costs required to cover all the trips. In this paper, there is no restriction to the maximum amount

of train units and neither to specific train unit combinations which can be combined.

Concluding, we can define the TUAP as the minimisation of costs of used train units, such that the

capacity of the used train unit combination exceeds the estimated demand for every trip. Furthermore,

the length of the train unit composition cannot exceed the maximum train length. Lastly, train units can

be used for multiple trips whenever these trips can be sequenced. This applies if and only if sj ≥ fi + tij .

The opportunity of deadheading will be excluded from this paper. However, train unit combinations

can be expanded and broken into smaller combinations. While deadheading is not possible, tij can be

interpreted as the time it takes to (un)load passengers and to connect or disconnect train units from a

combination. It also implies that trip j can only be performed after trip i if the departure station of i is

the same as the arrival station of trip i.
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4 Integer Linear Program

Before we move on to the peak period heuristic described in Chapter 5, we start by introducing an

integer linear program which can solve our proposed problem exactly. We, therefore, introduce a vehicle

scheduling formulation in which we define the decision variable based on the number of train units used

at an arbitrary arc. This model is based on the path formulation presented in Cacchiani et al. (2010).

We represent every trip in an instance as a node, and we include an arc between two nodes i, j, whenever

these two trips can be sequenced (sj ≥ fi + tij) after each other.

Therefore, we introduce an undirected graph G = (V,A), where the set V consists of all trips t ∈ T .

Two nodes i, j ∈ V are connected as an arc whenever sj ≥ fi + tij , such that it meets the sequencing

constraint. An arc is defined as (i, j) ∈ A, where A is the set of all arcs. By introducing an artificial

source θ and an artificial sink τ , we obtain the graph G′ = (V̄ , Ā), where V̄ = V ∪{θ}∪ {τ} and Ā is the

set A combined with introduced arcs between the source, the sink and other nodes. Every node from the

set V can be connected to θ as well as to τ . The flow ’starts’ at the source and ’ends’ at the sink. Besides

that, we introduce the decision variable xkij , which is equal to the number of train units of type k, which

perform trip j in sequence of trip i. Note that the variable xkij is only defined for arcs between i and j,

which are defined as described above. Putting this all together, we can create the following integer linear

program:

min
∑
k∈K

∑
j∈V

ckxkθj , (1)

s.t.
∑

i∈V ∪{τ}

xkij =
∑

i∈V ∪{θ}

xkji, k ∈ K, j ∈ V, (2)

∑
k∈K

∑
i∈V ∪{θ}

Rkxkij ≥ rj , j ∈ V, (3)

∑
k∈K

∑
i∈V ∪{θ}

Lkxkij ≤ lj , j ∈ V, (4)

xkij ∈ Z≥, k ∈ K, (i, j) ∈ A. (5)

The goal (1) is to minimise the costs of the used train units. Since every train units ’starts’ at the

source θ, it is sufficient to minimise the costs of the train units coming out of the source. Constraint (2)

makes sure the same amount of train units arrive and depart from a train station. Restrictions (3) and

(4) require that the demand and the maximum length constraints are satisfied. Lastly, restriction (5)

imposes xkij to be a positive integer.
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5 Peak Period Heuristic

The peak period heuristic is introduced in Cacchiani et al. (2019). Its goal was to construct an algorithm

to tackle the TUAP into rapidly, qualitative results, especially compared to the methods described in

Cacchiani et al. (2010) and Cacchiani et al. (2013). Firstly, we present the description of the lower bound

in Chapter 5.1. Secondly, Chapter 5.2 explains the heuristic itself including the upper bound.

5.1 Lower Bound

The computation of the lower bound is divided into two stages. Firstly, we determine the set of so-called

incompatible trips, which is the largest subset of trips which cannot be sequenced with other trips in

this set. Secondly, we use this subset to incorporate the maximum train length and the usage of train

units, such that it creates a lower bound. The outcome is a decomposition of train units over the set of

incompatible trips. This result can be defined as a lower bound because we only consider a subset of all

the given trips.

5.1.1 First stage

In this first stage, we want to determine the largest subset of trips which cannot be sequenced with

each other, the so-called set of incompatible trips S. Therefore, we introduce the same undirected graph

G′ = (V̄ , Ā) as introduced in Chapter 4. With that graph, we want to come up with a model which is

comparable to the minimum flow problem with demands. We therefore introduce the adjacency matrix of

graph G with aij , where aij = 1 if trip j can be assigned after trip i, and aij = 0 otherwise. Furthermore,

each node j ∈ V has weight rj , which must be strictly satisfied by the flow. Finally, we introduce the

continuous, positive decision variable xij , which represents the flow on the edge between node i and j and

where i 6= j. With the introduction of these variables, we can come up with the following mathematical

formulation:

min
∑
j∈V

xθj , (6)

s.t.
∑

i∈V ∪{τ}

xij =
∑

i∈V ∪{θ}

xji, j ∈ V, (7)

∑
i∈V ∪{θ}

xij ≥ rj , j ∈ V, (8)

0 ≤ xij ≤Maij , i ∈ V ∪ {θ}, j ∈ V ∪ {τ}. (9)

The objective function (6) minimises the total flow coming out of the source θ. Constraint (7) makes sure

that the flow at every node will not be lost or added. Restriction (8) imposes that the demand at every

node must be satisfied. Constraint (9) requires that the sequencing restriction must hold and therefore,

the parameter M must be at least as high as the highest possible flow. This restriction is in combination

with the fact that the flow must be non-negative. Since the imposed demand rj is integer, the decision

variable xij would also be integer (Cacchiani et al., 2019).

This above-described model minimises the flow coming out from the source θ, such that it provokes flow

between nodes within the set V . If we consider the dual formulation of the model (6)-(9), we can obtain

the set of incompatible trips S from the dual variables of Constraint (8). Whenever a dual variable of

this constraint is not equal to zero, it belongs to the set of incompatible trips.
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5.1.2 Second stage

Using the solution of Chapter 5.1.1, a set of so-called incompatible trips S can be defined. We can

construct a lower bound when we solve the optimal assignment of trips for this subset of incompatible

trips S. We do not have to consider sequencing, because trips within the set S cannot be sequenced with

each other. Therefore, we introduce the following decision variable wkj , where wkj serves as the number

of train units of type k ∈ K assigned to trip j ∈ S. The following model will lead to the lower bound:

min
∑
k∈K

∑
j∈S

ckwkj , (10)

s.t.
∑
k∈K

Rkwkj ≥ rj , j ∈ S, (11)∑
k∈K

Lkwkj ≤ lj , j ∈ S, (12)

wkj ∈ Z≥, k ∈ K, j ∈ S. (13)

The goal (10) is to minimise the costs of the used train units. The constraint (11) satisfies the given

required demand. Restriction (12) makes sure a combination of train units will not exceed the given

maximum train length of that track lj . The last constraint (13) verifies that wkj is a non-negative integer

variable. The objective function of this mathematical model presents the lower bound of the TUAP. The

used decomposition of train units can be represented as d̄k, where dk =
∑
j∈S w

k
j for every k ∈ K.

5.2 Heuristic Algorithm

Our goal is to compute an upper bound which coincides exactly with the decomposition d̄k as described

in Chapter 5.1.2. When this happens, an optimal solution has been found, because the lower bound

corresponds to the upper bound. The peak period heuristic is executed iteratively. Every iteration,

two phases need to be performed. Firstly, the constructive phase seeks to solve the minimisation of

costs with respect to the given constraints and in the meanwhile only using the d̄k train units for every

type k ∈ K. An optimal solution has been found whenever all trips are covered regarding the given

decomposition d̄k. Secondly, if there are still some trips left uncovered, the feasibility phase will try to

obtain a feasible solution. While in the constructive phase, the number of train units cannot exceed the

given decomposition d̄k, in the feasibility phase this is nonetheless possible. Therefore, a feasible, but

possibly not an optimal, solution is guaranteed.

A general overview of this heuristic can be found in Algorithm 1. Firstly, the initialisation process starts

and is covered in Chapter 5.2.1. Afterwards, the explanation of the constructive phase follows, where the

assignment of the critical and uncritical trips will be explained. Information regarding the assignment of

these different trips can be respectively found in Chapters 5.2.2.1 and 5.2.2.3. Chapter 5.2.2.2 covers the

assignment problem which is necessary for the assignment of trips. As can be seen in Step 1, if at the end

of the constructive phase, a feasible solution has been found, an iterative process is not needed. In that

case, we return the best found optimal solution. In the other case, we move on to the feasibility phase. In

this stage, as described in Chapter 5.2.3, we assign the trips which were not covered in the constructive

phase. Step 3 is needed whenever a solution has not been found in the first iteration, which means that

some updates are needed before we repeat the constructive phase. Although more iterations will give a

better solution, we decided to set a maximum of niter iterations principally due to time constraints.
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Algorithm 1: General Overview of Peak Period Heuristic

Step 0: Initialisation;
- CJ ← S;
- UJ ← J \ CJ ;
- BestSolution←∞;

Step 1: Constructive Phase;
- Assignment of critical trips CJ ;
- Assignment of uncritical trips UJ ;
- If feasible solution has been found, STOP: go to Step 4; Else, continue to Step 2;

Step 2: Feasibility Phase;
- Assignment of uncovered trips;
- If feasible solution found C < BestSolution, then update BestSolution← C;
- If h ≥ niter, STOP go to Step 4; Else, continue to Step 3;

Step 3: Update;
- h← h + 1;
- CJ ← CJ ∪ {uncovered trips};
- Return to Step 1;

Step 4: Termination;
- Return the best (optimal) solution found;

5.2.1 Initialisation

Before this upper bound heuristic can start, the computation of the lower bound as described in Chapter

5.1 is necessary. We want to separate the given trips j ∈ J into two sets: the set of critical trips CJ and

the set of uncritical trips UJ = J \CJ , wherein each set the trips are ordered according to their departure

times. The set CJ will be initialised as CJ = S, where the set S is the set of incompatible trips, obtained

during the computation of the lower bound. Furthermore, the decomposition d̄k is assumed to be given.

5.2.2 Constructive Phase

As already discussed, the goal of the constructive phase is to converge to the computed decomposition

d̄k of train units, although, because of the composed restrictions, there is no guarantee. If no solution

has been found, the feasibility phase will be executed. We have two different solution approaches for the

critical CJ and uncritical trips UJ . The constructive phase is a complex stage, so it has been divided

into multiple paragraphs in which we describe the process as clearly as possible.

5.2.2.1 Assignment of Critical Trips

The assignment of critical trips is a complex process and we will explain it as clearly as possibly with the

help of Algorithm 2. The input of the heuristic is the set of critical CJ and uncovered trips UNCOV .

The algorithm will be repeated for nc iterations or in case there are no uncovered critical trips left

(line 1-4 ). For every iteration, we consider all the critical trips to be uncovered. For every critical trip

j ∈ CJ , we search for all the subsets of train units which satisfy the given demand and the maximum

length restriction. The set of all subsets of train units is named FSEL(j) (line 6-9 ). Then, we consider

every subset TU ∈ FSEL(j) where we start with combinations which are as close, but also higher, than

the demand rj (line 10-11 ). For each train unit k, given a combination TU ∈ FSEL(j), we solve the

assignment problem AP (k), as Chapter 5.2.2.2 discusses. If for one of the train units k, the costs of

AP (k) exceeds the given decomposition d̄k, the combination TU will not be used, and we return to line

10. If for every k ∈ TU , the costs of AP (k) do not exceed d̄k, we consider this composition and move on

9



to line 20 (line 12-19). If we advance to line 20, we found a train unit composition TU for trip j. For

this reason, we exclude this trip from the set of uncovered trips, and we go back to line line 6, where we

consider the next trip (line 20-25 ).

If we have considered every trip, we end up at lines 26 - 28. Here, we increase the number of iterations

by one. At the same time, we change the trip order in the set of critical trips CJ , where we consider the

following order for every u ∈ CJ respectively:

1. Every uncovered trip where u ∈ S, in random order;

2. Every covered trip where u ∈ S, in random order;

3. Every uncovered trip where u /∈ S, in chronological order;

4. Every covered trip where u /∈ S, in chronological order;

If we have still some trips left uncovered or i < nc, we start another assignment of critical trips as

described above, starting at line 4. If we end up without a solution after nc iterations, we set the

iteration counter to zero and start another nc iterations. However, during the second event of iterations,

we move the uncovered trips before the covered trips, no matter whether a trip belongs to the set S. If,

even after this change, there are still critical trips left uncovered, we start the procedure for uncritical

trips and afterwards the feasibility phase.

Algorithm 2: Assignment of Critical Trips

Result: The assignment of the critical trips with eventually some uncovered trips left over
1 CJ : set of critical trips;
2 UNCOV : set of the uncovered trips;
3 i← 0;
4 while i < nc and UNCOV 6= ∅ do
5 UNCOV ← CJ ;
6 for j ∈ CJ do
7 cover(j)← FALSE;
8 FSEL(j)← set of all the subsets of train units with sum of the capacities ≥ rj and ≤ lj ;
9 while FSEL(j) 6= ∅ and cover(j) =FALSE do

10 accept← TRUE;
11 select a subset TU ∈ FSEL(j) of train units for j;
12 for k ∈ TU do
13 solve AP (k);
14 if cost(AP (k)) > d̄k then
15 accept← FALSE;
16 FSEL(j)← FSEL(j) \ {TU};
17 break;
18 end
19 end
20 if accept then
21 cover(j)← TRUE;
22 UNCOV ← UNCOV \ {j};
23 end
24 end
25 end
26 i← i + 1;
27 change the trip order in CJ ;
28 end
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5.2.2.2 Assignment Problem Solution

The goal of the assignment problem is to determine the optimal sequence of a train unit type k. Therefore,

we introduce the following graph GAP = (V ′, A), where V ′ consists of nodes for each trip where train

unit type k has been used. If a trip is assigned to multiple train units of type k, then the same number

of identical nodes are included in the graph. For example: if a trip is assigned to two train units of type

k, there are two identical nodes for this trip. Arcs A between the nodes have different costs gij assigned

to them, where gij = 0 if trip j can be performed in sequence after trip i by the same train unit and 1

otherwise. Furthermore, we introduce the decision variable yij , which equals 1 if trip j is performed in

sequence after trip i by the same unit and 0 otherwise. With this information, we achieve the following

AP-model:

min
∑

(i,j)∈A

gijyij , (14)

s.t.
∑
i∈V ′

yij = 1, j ∈ V ′, (15)∑
j∈V ′

yij = 1, i ∈ V ′, (16)

yij ≥ 0, (i, j) ∈ A. (17)

Our goal (14) is to minimise the number of train units to execute all the given trips. Constraints (15) and

(16) make sure each node has been visited and departed exactly once. Because the constraint matrix is

totally unimodular, it is technically unnecessary to define yij to be binary (Cacchiani et al., 2019). This

formulation is comparable to the assignment problem, although it can also be seen as a vehicle scheduling

problem. In this case, we add a source and a sink, in a similar way as described in Chapter 5.1.1. We

then minimise the number of train units coming out of the source.

5.2.2.3 Assignment of Uncritical Trips

The set of uncritical trips UJ is also considered in chronological order. We follow a nearly identical

procedure as with the critical trips. The only difference is the absence of line 26 - 28 of Algorithm 2,

because iterations will not be necessary to derive a feasible solution for the uncritical trips.

5.2.3 Feasibility Phase

In case a feasible, and so an optimal, solution has not been found in the constructive phase, the feasibility

phase will follow. In this stage, the uncovered trips are assigned to the remaining train units, such that

the new composition will exceed the composition d̄k. The used procedure will be the same as described

in Chapter 5.2.2.3. Since there is no restriction to the maximum of train units used, a feasible solution

is guaranteed.
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6 Set Covering Heuristic

In this section, we introduce a heuristic based on the set covering formulation. With a set covering

model, all possible combinations between trips are considered with the goal to find the minimum number

of combinations or minimum amount of costs to cover all trips. Since determining all possible routes

and solving those is nearly impossible for bigger instances, we come up with a smaller subset of possible

combinations which are acknowledged as promising. We start by presenting the set cover formulation,

where we will use a subset of all possible trips. Afterwards, we continue with determining this subset of

important trips and eventually determining their respective weights. Lastly, we determine the cheapest

way to sequence different combinations of trips with each other.

6.1 Set Cover Formulation

We start by introducing the set cover formulation which we will use. We define the set F as the set of

all possible combinations of trips, where we mention a possible combination f ∈ F as a route. However,

since we use a subset of all possible routes, we introduce the set F̄ ⊆ F , which is the set of significant

routes. Our main goal is to minimise the costs of the used train units, and we thereby prefer more

significant, more plausible routes. The weight factor Cf is the penalisation of choosing route f in the

optimal solution. In Chapter 6.2, we describe more precisely which routes are included in F̄ and how the

weight factor is computed. We introduce the parameter bjf , which is equal to 1 when trip j is part of

route f and otherwise bjf = 0. As discussed, ck is the cost of using a train unit of type k. Having that

in mind, we can introduce the decision variable xkf . This variable is equal to the number of times route

f needs to be performed for a train unit of type k. Finally, we come up with the following set covering

formulation:

min
∑
k∈K

∑
f∈F̄

(ck + Cf ) xkf , (18)

s.t.
∑
k∈K

Rk
∑
f∈F̄

bjfx
k
f ≥ rj , j ∈ V, (19)

∑
k∈K

Lk
∑
f∈F̄

bjfx
k
f ≤ lj , j ∈ V, (20)

xkf ∈ Z≥, f ∈ F̄ , k ∈ K. (21)

The objective function (18) minimises the total cost of the used train units while taking the penalties Cf

into account. Restrictions (19) and (20) make sure that every trip j does not exceed its maximum given

train length and its train capacity is at least larger than the given demand rj . Lastly, the last constraint

(21) imposes the decision variable xkf to be a positive integer, because a train unit type k can be chosen

multiple times for trip f .
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6.2 Determination of Significant Routes

The determination of the set of significant trips and their weights is the most intuitive step. If we include

all possible routes F and solve this with the set covering formulation, we obtain the optimal solution.

However, the set F may become too big when the given data sets become too big. Therefore, we introduce

the subset F̄ ⊆ F . F̄ is the set of routes considered ’significant’ enough to be considered for the set cover

problem. To incorporate the significance of a specific route f ∈ F̄ even further, we can use a weight

factor Cf to determine the significance or more plausible chance of picking a route f in comparison to

other routes. This weight factor Cf could also be seen as a penalty factor for less important trips.

Although there is no perfect prescription for every instance, there are certain factors to take into account.

First of all, to guarantee a feasible solution, we add a route with only trip j in it to the set F̄ and do

this for every j ∈ V . Besides that, our goal is to find routes of trips which are similar in characteristics

and will probably have the same or similar composition of train units. To give a concrete example, let

us consider the train stations map as a star graph as represented in Figure 1. The blue and red circles

represent train stations and the black lines illustrate train tracks between them. In such a train network,

every trip will arrive or depart at the central station (the red circle). That means that lots of train units

will frequent the central station and that the other ’outer’ stations will not have a large stock of train

units. Therefore, we prefer a trip leaving an ’outer’ station to have a similar composition as a trip just

arriving before that leaving trip, such that no additional train units will be required. For this reason,

adding such a combination of two trips can be considered as a significant route.

Figure 1: A star graph, where the red circle rep-
resents the central station, the blue circles represent
the ’outer’ stations and the black lines represent trail
tracks between these stations

Another thing to mention is the number of trips

that will be included in a route. If this number is

high, the heuristic will try as much as possible to

combine train units between these trips. However,

this implies that other compositions will not be

encouraged and thus leading to inefficient combin-

ations. Therefore, try to keep the number of trips

on a route as low as possible. In conclusion, the

layout of the train stations and their train tracks,

and the number of trips on a route are the most

crucial factors in determining the set F̄ .

When a route f is chosen to be included in the set F̄ , a penalty factor Cf can be given if necessary. Also,

for this weight factor, there is no explicit general instruction for every data set, although a few factors are

considered as essential in penalising a route. As already mentioned, a high number of trips in a route will

increase the number of same train units used for multiple trips, but it will decrease the flexibility of the

heuristic. Let nf be the number of trips in a route f . When nf equals one or when nf is relatively high,

a route should be penalised in some sort. Furthermore, one of the most crucial factors is the transfer

time between two different trips. The most straightforward approach is to take the difference between

the arrival time of trip i and the departure time of trip j: sj − fi or
∑
i=1,...,nf−1

(si+1 − fi) whenever

nf > 2. Moreover, the minimum demand rt can be considered valuable. We want to penalise routes

whenever a route covers a trip with a deficient demand and one with extremely high demand. Similarly,

the maximum length of a train of a trip Lt can be compared with other trips within a given route.
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The computation of Cf can be any combination of these mentioned factors, for example using a summa-

tion, but also by a product of different factor. Also, the essence of some factors can be emphasised by

multiplying it with a large number or taking its square. Keep in mind that Cf must not approach the

value of mink c
k, because our primary goal is still to minimise the number of used train units.

We want to explain the essence of including a weight factor Cf by an example. Let us consider one trip

arriving at an ’outer’ station at 8:00, named trip A. Furthermore, two trips leave the ’outer’ station at

8:10 and 8:15, called respectively trip B and C. Two questions arise: which routes should be included in F̄

and which penalty factor should be given to these routes? A route of trip A and B seems more significant

than a trip of route A and C because its transfer time is lower. However, if we exclude the route of A

and C, no train units of trip A can be used for trip C. If, for example, trip A needs two carriages of

type k and trip B and C only one of that same type, both routes can be travelled once. Therefore, we

both include these routes in the set of significant routes. To emphasise our preference for route A and B

above route A and C because of the lower transfer time, we use a higher penalty factor for the second

mentioned route.

Note that examining whether a route belongs to the set of significant routes is just as important as

determining the penalty value Cf of such a route. Not only excluding significant routes from the set F̄ ,

but also specifying incorrect weight factors will be harmful to the outcome of this algorithm. However,

the problem of including insignificant routes in the set F̄ can be tackled by penalising them extremely.

Nevertheless, proper analysis and trying multiple points of view on the approach will improve the quality

of this heuristic.

6.3 Sequencing

The formulation as described above does not consider combining or splitting train units within a route

f ∈ F̄ . Also, it should theoretically possible that two routes f1 and f2 can be sequenced, such that the

first route f1 is performed and afterwards route f2 without violating any constraints. The last phase will

incorporate these problems. To do this, we will execute the AP(k)-model as described in Chapter 5.2.2.2.

In order to achieve this, we must determine the number of used train units at every trip wkj from the

solution of the set covering formulation. If trip j is part of route f , we set wkj ← wkj + xkf whenever

xkf > 0. Then we can compute the costs of only using train unit type k. We do this by constructing

graph GAP based on the trips wherefore wkj > 0. When this is done for every k ∈ K, we can sum the

costs of every AP(k)-model in order to obtain the total costs for the used train units.
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7 Local Search

The goal of local search is to improve the objective value of any given feasible solution. To do this, we

arbitrarily consider every trip. For every trip t we analyse every possible and feasible combination of

train units to see if we end up with a better solution. If this is not the case, we consider another trip

until no further improvements are possible.

A general overview of the local search algorithm can be found in Algorithm 3. Before we can start with

the heuristic, we need a feasible composition of train units and its total costs (line 1-2 ). Each time we

consider a arbitrarly trip t ∈ T . Then, we consider the set of all the subsets of train units, which satisfy

the maximum length and capacity constraints, for that random trip t (line 5-7 ). We do this arbitrary

such that we do not always end up with the same solution for this heuristic. If we obtain the set FSEL(t),

we consider every subset TU ∈ FSEL(t). For that composition of train units we compute its costs by

executing the AP (k)-model as described in Chapter 5.2.2.2 (line 9-14 ). If we found a better solution,

we update it and in any case remove the set TU from FSEL(t) (line 15-19 ). We do this until no better

solution can be found (line 3 ).

The selection of a trip t of set T is done randomly. However, a trip t cannot be chosen twice when in the

meanwhile no better solution has been found. Whenever a better solution is found, the improvement

boolean becomes true, and we can randomly start selecting all the trips in the set T . We only end the

process whenever every trip t ∈ T has been considered (Line 5 ) and no better solution has been found.

Algorithm 3: Local Search

Result: A possible improvement of the given solution
1 A feasible composition of train units;
2 BestSolution;
3 while improvement do
4 improvement ← FALSE;
5 for t ∈ T do
6 select a random trip t;
7 FSEL(t)← set of all the subsets of train units with sum of the capacities ≥ rt and ≤ lt;
8 while FSEL(t) 6= ∅ do
9 select a subset TU ∈ FSEL(t) of train units for t;

10 costsTU ← 0;
11 for k ∈ TU do
12 solve AP (k);
13 costsTU ← cost(AP (k)) + costsTU ;
14 end
15 if costsTU < BestSolution then
16 BestSolution ← costsTU ;
17 improvement ← TRUE;
18 end
19 FSEL(t)← FSEL(t) \ {TU};
20 end
21 end
22 end

Because we randomly select a trip for consideration, we could execute the local search algorithm for

multiple iterations. If we do this, the heuristic will most likely return a different train unit composition

and therefore possibly a different minimisation value. Since we search in the set of feasible solutions, we

could end at a local minimum. One way to ’leave’ this local minimum is instead selecting one random

trip (line 6 ), to select two random trips and find a different, cheaper composition for these two trips.

Since this process is time-consuming, we stick to selecting only one random trip.
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8 Results

Before we move on to the results of our integer linear program and the presented heuristics, we will first

describe our four given instances. The layout of the train stations is similar to a star graph, as is shown

in Figure 1. As a result, every train trip either departs or arrives at the central station. Furthermore, we

have three different types of train units, noted as type A, B and C. The characteristics of each of these

train units are presented in Table 1. The instances consists of respectively 200, 318, 564 and 1010 trips.

Table 1: Characteristics of the train units

Train Unit Type Costs/year Number of Seats Length (in meters)
Type A 230,000 500 100
Type B 190,000 360 75
Type C 330,000 640 125

Notice that the used currency is unknown, the length is represented in meters and we use minutes to

express time. Furthermore, we set the value of tij , the minimum time for a train unit to perform trip j

after trip i, to 5 minutes, unless stated differently. With that being said, we first start by introducing the

results of the integer linear program in Chapter 8.1. Afterwards, in Chapter 8.2 and 8.3, we respectively

present the outcomes of the peak period period and the set cover heuristic. In both these chapters, we

present the results of these two heuristics while executing the local search technique.

8.1 Integer Linear Program

We start by introducing the results of the integer linear program, as explained in Chapter 4. The outcomes

are obtained by using a commercial solver called CPLEX. The results of this model can be seen in Table 2.

For each considered instance, we provide the composition and total amount of train units, the total costs

and the time it took to compute. The composition represents the number of train units of respectively

type A, B and C. The total number of train units is simply the summation of this composition. Lastly,

the total costs and the computational time are respectively given in millions and seconds. These total

costs can also be computed manually as a summation for every train unit type of the costs per year

(Table 1) multiplied by the composition amount (Table 2).

Table 2: The results of the integer linear program

Instance Composition Total Train Units
Total Costs
(in millions)

Time
(in s)

1 [121, 65, 31] 217 50.41 1.64
2 [126, 70, 32] 228 52.84 7.16
3 [146, 85, 42] 273 63.59 107.05
4 [319, 198, 107] 624 146.30 328.05

It is remarkable that the computational time is relatively low, especially for smaller instances. For larger

instances, the computing time seems to grow exponentially. Also, it is noteworthy that a train unit of

type A is the most chosen one. If we inspect the characteristics of the train units more closely, one

possible reason seems logical. We compute the costs per year for one seat for only one train unit or stated

differently: dividing the costs/year by the number of seats. We then obtain respectively for type A, B

and C the following (rounded) values: 460, 528 and 516. In conclusion, the seats of a train unit of type

A are relatively the cheapest, such that it would be more convenient to use them.
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Furthermore, we want to examine whether changing the ’transfer time’ of a train unit tij will influence

the total costs substantively. Therefore, we computed the total costs for every integer 0 <= tij <= 30.

Figure 2 shows the total costs for every value of tij , for instances 1, 2 and 3. We excluded instance 4

because it does not particularly fit in this graph, because its total costs are significantly larger than the

other three instances. The lines are (obviously) non-decreasing when tij is increasing. The total costs

seem to increase more rapidly for instances with more trips. When we compare the adjustment of tij = 5

to tij = 20, instances 1 and 2 ’only’ have a percentage increase of 14.2% and 15.7%, while instance 3 and

4 increase by 18.0% and 18.3%. The average difference in percentage when we increase the value of tij

by one, is respectively 0.92%, 1.03%, 1.08% and 1.08% for instances 1 to 4.

Figure 2: This figure captions the total costs of instance 1, 2 and 3 when we change the value of tij

8.2 Peak Period Heuristic

Before we start to present the upper bound results of the heuristics, we start by showing the lower bound

as computed in Chapter 5.1. These results can be seen in Table 3. Our main point of interest, the

difference between the lower bound and the exact model, is outstanding, while the gap to the solution is

only a few percent. Furthermore, it is also remarkable to see how close the number of used train units

of the lower bound are in comparison to the integer linear program, with respectively only 1, 2, 8 and 6

train unit(s) difference. Also the computational time is noteworthy, especially for the smaller cases where

the computed time is only a few seconds. We will use this lower bound as comparison for all the other

heuristics.

Table 3: The results of the lower bound

Instance Composition Total Train Units
Total Costs
(in millions)

Gap
(in %)

Time
(in s)

1 [119, 66, 31] 216 50.14 -0.54 0.9
2 [124, 71, 31] 226 52.24 -1.14 1.2
3 [146, 76, 43] 265 62.21 -2.17 2.4
4 [316, 195, 107] 618 145.04 -0.86 16.2
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For every instance, we will consider the results of that upper bound itself, but also the plausible better

solution computed by the local search approach (Chapter 7). Although the peak period heuristic provides

an outcome for every iteration, we only consider the local search technique for the lowest objective value

of all iterations. Since there is a trade-off between execution time and performance, we must decide an

adequate number of iterations. In Figure 3a, we performed 40 iterations of the local search technique

over one given solution of instance 1. It shows that the total costs fluctuate heavenly. Since the execution

time is high and the performance of the local search technique is decent, as we will see, we set the number

of iterations for this algorithm to 10. By doing this, we compute decent solutions within sufficient time.

(a) This figure displays the total costs for every ex-
ecuted iteration of the local search.

(b) This figure shows the total costs for 3 different
executions of the peak period heuristic.

Figure 3: Extensive analysis for the parameter setting

The first upper bound that we will consider is the peak period heuristic established by Cacchiani et al.

(2019). For the peak period heuristic we had to set two different parameter values: nc and niter. Their

paper decided to fix these values to nc = 10 and niter = 20. However, by extensive analysis we come to

another conclusion. The main goal in setting the value of nc is finding the largest number of trips to be

covered within nc iterations. The value nc = 10 seems reasonable, since increasing it would practically

never increase the performance of the heuristic, but increase its execution time. Lowering the value could

possibly harm the solution, but for convenience we stick to nc = 10.

In Figure 3b we display the objective values of each iteration, where each example is an execution of the

peak period heuristic for instance 1. The best solution does not seem to improve after seven iterations,

and the same happens if we compare this for multiple executions and different instances. Therefore, we

set niter = 7, such that the execution time will decrease and it will most likely not harm the performance.

The results of the peak period heuristic with these specific parameter settings can be found in Table 4.

Table 4: The results of the peak period heuristic

Inst.
Local

Search?
Composition

Total
Train Units

Total Costs
(in millions)

Gap with optimal
solution (in %)

LB Gap
(in %)

Time
(in s)

1 Without [122, 67, 34] 223 52.01 3.17 3.73 17.2
With LS [119, 67, 32] 218 50.66 0.59 1.04 221.4

2 Without [138, 83, 41] 262 61.04 15.52 16.85 87.2
With LS [126, 74, 35] 235 54.59 3.31 4.50 617.4

3 Without [171, 97, 63] 332 78.78 23.89 26.64 298.5
With LS [153, 84, 48] 285 66.99 5.35 7.68 3138.6

4 Without [345, 221, 117] 683 159.95 9.33 10.28 2,526.0
With LS [317, 205, 114] 636 149.48 2.17 3.06 29,004.0
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As can be seen, the results of the peak period itself are relatively weak compared to the lower bound and

the optimal solution. Especially instance 3 performs dramatically with a percentage gap to the lower

bound of over 25%. Not only is the heuristic far from accurate, but also the algorithm is extremely

time-consuming. The local search technique is as expected slow, but its results are quite promising as it

approaches the exact solution. Although the results with this algorithm are better, there is still room for

improvement, e.g. instance 3 has a percentage gap of 7.7% compared to the lower bound.

8.3 Set Cover Heuristic

As being explained in Chapter 6, the set cover heuristic is an intuitive solution approach, which must

be tackled differently for each different data set. Since the train stations of our given data set can be

illustrated as a star graph illustrated Figure 1, we use the same approach as the example given in Chapter

6.2. In that chapter, we stated that for such a layout, a significant route is a combination of a trip leaving

an ’outer’ station after a trip which just arrived at this ’outer’ station. To conclude, the set of significant

trips F̄ consists of a route which departs at the central station and finally arrives at the central station

and in the meanwhile visiting only one other station. Besides these routes, we include routes which

contain only one trip j, for every j ∈ V . We want to compare the effect of using a weight factor and not

using one. Therefore, we first use the set of significant trips F̄ and calculate the outcome without using

weight factor Cf (by setting Cf = 0) The results of this approach can be viewed in Table 5.

Table 5: The results of the set cover heuristic without including a weight factor Cf

Inst.
Local

Search?
Composition

Total
Train Units

Total Costs
(in millions)

Gap with optimal
solution (in %)

LB Gap
(in %)

Time
(in s)

1 Without [122, 68, 33] 223 51.87 2.90 3.45 1.4
With LS [118, 66, 33] 217 50.57 0.32 0.86 188.3

2 Without [139, 85, 38] 262 60.66 14.80 16.12 1.6
With LS [126, 73, 34] 233 54.07 2.33 3.50 796.8

3 Without [160, 106, 49] 315 73.11 14.97 17.52 1.8
With LS [148, 83, 48] 279 65.65 3.24 5.53 4,368.9

4 Without [339, 213, 114] 666 156.06 6.67 7.60 4.8
With LS [316, 200, 114] 630 148.30 1.37 2.25 20,036.4

If we compare these results with the results of the peak period heuristic, we observe that for each instance

the set cover heuristic performs better. Not only are the total costs lower, but also the execution time is

significantly better compared to Cacchiani et al. (2019). Also, when we compare the results while using

local search, the objective values of the set cover heuristic are always lower than the one of the peak

period heuristic. Although the results are obtained rapidly, we question the performance of the heuristic.

Without using local search, the results are just slightly better than the peak period heuristic, but at the

same time, the gap to the exact solution and lower bound is significantly large.

The last results that we will discuss is the set cover heuristic containing a weight factor Cf . Since

this process is also intuitive, some extensive analysis is necessary. We want to consider three factors to

influence the value of Cf , namely the number of trips in a route nf , the difference between departure

and arrival time and the difference of requested demand between two trips i, j. Since we only consider

routes with nf = 1 and nf = 2, we prefer routes with nf = 2 such that train units between two trips can

be ’combined’ within one route. Furthermore, it makes sense to prefer a low transfer time for sequencing

trips, which can be mathematically presented as sj − fi− tij . A less significant, but yet important factor

is the difference in the demand between two trips: |dj − di|.
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Since our goal is to minimise the number of used train units, we do not want our penalty factor Cf to

approach the size of ck. Furthermore, we want to penalise the number of trips in a route n respectively,

the difference in transfer time and the difference in demand the most. Therefore, we analyse the data

such that we can redefine, give a higher weight, square or root one of the penalty factors. We do this with

the help of Figure 4. Here, the x-axis represents all significant routes for instance 1 whenever nf = 2.

(a) The weight factor when we con-
sider sj − fi − tij

(b) The weight factor when we con-
sider |dj − di|

(c) The weight factor when we con-
sider 10(sj − fi − tij) + 3

√
|rj − ri|

Figure 4: Motivation for the selection of Cf .

We start by considering the difference in transfer time, as can be seen in Figure 4a. The values of

this factor differ between 0 and 85, where a value close to 0 is better. The values of the difference in

demand are somewhat more fluctuating, since the values differ between 2 and 1,132, as shown in Figure

4b. Because we want to lower the significance of the difference in demand and emphasise the significance

in transfer time, we experiment such that the difference in transfer time would be the deciding factor.

Finally, we end up with the following formula for these two factors: 10(sj − fi − tij) + 3
√
|rj − ri|, as can

be seen in Figure 4c. Since the importance of having two trips in a route instead of only one is even more

essential, we want to give Cf such a high value whenever nf = 1, such that it will exceed Cf whenever

nf = 2. Putting this all together, we come up with the following definition for the weight factor Cf :

Cf =

{
10(sj − fi − tij) + 3

√
|rj − ri| if nf = 2,

1000 if nf = 1.
(22)

If we use this expression to solve the integer linear program of equations (18)-(21), we end up with the

results listed in Table 6. The results approach the (exact) objective value of the integer linear program.

Furthermore, the solution time is for all instances just a few seconds, which is also very promising. Even

when we try to improve the solution using the local search technique, the objective value decreases even

further and in the case of instance 1 even matches the exact solution. The other instances have an

percentage gap to the exact solution of not even 1%.

Table 6: The results of the set cover heuristic containing a weight factor Cf as prescribed

Inst.
Local

Search?
Composition

Total
Train Units

Total Costs
(in millions)

Solution Gap
(in %)

LB Gap
(in %)

Time
(in s)

1 Without [121, 65, 32] 218 50.74 0.65 1.20 1.9
With LS [121, 65, 31] 217 50.41 - 0.54 201.6

2 Without [126, 73, 36] 235 54.73 3.58 4.77 2.1
With LS [125, 73, 33] 231 53.51 0.89 2.43 775.1

3 Without [146, 83, 48] 277 65.19 2.52 4.79 3.0
With LS [143, 83, 47] 273 64.17 0.91 3.15 3291.2

4 Without [317, 199, 114] 630 148.34 1.39 2.28 7.2
With LS [311, 201, 113] 625 147.01 0.49 1.36 18,045.6
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9 Conclusion

In this thesis, we analysed the train unit assignment problem, and we introduced different solution

approaches to solve this problem. We started with an integer linear program which could solve this

problem exactly. The computational time was decent, although it seems to increase exponentially for

bigger instances. Then we considered the peak period heuristic proposed in Cacchiani et al. (2019).

Their paper came up with a lower bound and an algorithm represented as the upper bound. Their lower

bound was based on the minimisation of train units over a subset of all trips. This so-called set of

incompatible trips S was the largest set of trips which cannot be sequenced with each other. This lower

bound generated excellent results, while the lower bound is close to the exact solution. Therefore, we

used this lower bound as a comparison for all the other heuristics.

The upper bound continued with this incompatible set S. For the other set of trips, the so-called uncritical

trips, it computed the cheapest set of train units for a specific trip. Although their paper came up with

excellent results, the results for our specific data set, where the layout of the train stations was similar to

a star graph, the peak period heuristic performs miserably. The outcomes were way too high compared

to the exact solution and the lower bound. Furthermore, the execution time was even worse than the

computational time of the integer linear program.

Afterwards we introduced the set cover heuristic, which is similar to the actual set cover formulation. The

only difference is the fact that we do not consider all possible trips, but only a small subset of so-called

significant trips F̄ . There is a possibility to even emphasise the significance of a route f by adding a

weight factor Cf to it. While there is no general description or procedure for this heuristic, intuition is

necessary. Even without adding a weight value to the routes, the performance of the set cover heuristic

was better than the peak period heuristic. Although the results were not yet close to the exact solution

and the lower bound, the set cover heuristic produced better results in significantly less time than the

peak period algorithm.

When we add a weight factor Cf to each route in F̄ , the outcomes become even closer to the optimal

solution, while the execution time is still excellent. The percentage gap between the outcome of this

heuristic and the exact solution extends to a maximum of a few percentages. Another benefit is the

execution time: this algorithm is solved within a few seconds, even for larger instances.

Lastly, we presented the local search algorithm, whose goal was to improve any given solution. It accom-

plished this by checking (for every trip) whether there is a more cheaper train unit composition than the

current one. If a cheaper composition has been found, it starts again by searching for another cheaper

train unit composition. Although this process is time-consuming, as the results did confirm, the heuristic

performance was magnificent. It decreases the total costs of the peak period heuristic to an acceptable

level. However, its best application was in combination with the set cover heuristic, where it approaches

and even matched the exact solutions.

However, there are some suggestions for further research. Firstly, our thesis is in conflict with the paper

of Cacchiani et al. (2019) regarding the peak period heuristic. It seems the usage of different data sets

affects the performance of that heuristic. It would be interesting to replicate and possibly confirm the

effectiveness with a comparable data set as used in their paper. However, the other way around, it

is of interest to examine the performance of the set cover heuristic for alternative data sets, especially

for a more complex lay-out of train stations. Furthermore, we can make the TUAP more complex by
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including additional constraints, such as taking the order of the train units into account for more realistic

transferring of those carriages. Other possibly ideas are the introduction of the railway shunting problem

or considering rescheduling in case of possibly delays.

In conclusion, the peak period heuristic does not appear to give acceptable results for this specific data

set. However, the set cover heuristic gave excellent results, especially in combination with an introduced

weight factor and the local search technique. Although the local search technique is time-consuming, the

results approach or even match the exact solution.
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A Appendix

In this chapter, we briefly describe the included programming code and files. We explain the MATLAB-

files in chronological order. We thereby show the parents and children relations by the usage of bullet

points. A nested list is a collection of children of a parent. We represent the name of the classes

as italic words and its description follows immediately. Each MATLAB-folder consists of a so-called

dataMatlab.mat file, which has some minor changes to the original given data set. The departure and

arrival times are noted in minutes, where 0 minutes corresponds to 0:00, such that 1:00 corresponds to

60. The locations of the train stations are not represented by letters, but by numbers. Lastly, the last

column, which shows the train line of the trip, is changed to the maximum length of that train track.

A.1 Integer Linear Program

The integer linear program is solved by MATLAB, but also by Aimms. Therefore, both files are available

in the ZIP-file. We will only explain the MATLAB-file, while the Aimms file is pretty straightforward.

• mainModel : This is the main model which solves the formulation;

– createArcsMatrixLowerBound : This class computes a so-called adjadency-matrix, which rep-

resents the existing arcs. This is similar to the formulation of aij in Chapter 5.1.1;

– formulation: This class computes the required matrices for the cplexmilp class and returns

the outcome;

∗ cplexmilp: This is the commercial solver CPLEX and solves mixed-integer linear programs;

A.2 Peak Period Heuristic

This is the peak period heuristic which is introduced by Cacchiani et al. (2019).

• TOTALMODEL This is the main model which solves the heuristic;

– createArcsMatrixLowerBound : This class computes a so-called arcs-matrix, which represents

the existing arcs. This is similar to the formulation of aij in Chapter 5.1.1;

– LowerBoundFirstModel : This class computes the formulation introduced in Chapter 5.1.1;

∗ cplexmilp: This is the commercial solver CPLEX and solves mixed-integer linear programs;

– changeXmatrix1to2Lower : This class transfers the output of the first stage for usage for the

second stage of the lower bound;

– LowerBoundSecondModel : This class computes the dual formulation of the formulation intro-

duced in Chapter 5.1.2;

∗ cplexmilp: This is the commercial solver CPLEX and solves mixed-integer linear programs;

– changeXmatrixAfter2Lower : This class changes the output of the second stage of the lower

bound, such that it can be used for the computation of the upper bound;

– AssignmentCritical : This class is the main model which is responsible for the assignment of

the critical trips as described in Chapter 5.2.2.1;

∗ computeFSEL: This class computes the set of all the subsets of train units with a sum of

the capacities ≥ rj and ≤ lj ;
∗ APkModel : This class computes the costs of a given train unit composition, also known as

the AP (k)-model, described in Chapter 5.2.2.2. It uses the MATLAB-function matchpairs;

∗ changeTripOrderFirst : This class changes the trip order in the set of critical trips whenever

the number of iterations is equal to nc;

24



∗ changeTripOrderSecond : This class changes the trip order in the set of critical trips

whenever the number of iterations is equal to 2nc;

– AssignmentUncritical : This class is similar to the class AssignmentCritical, but this class is

used for the assignment of the uncritical trips as described in Chapter 5.2.2.3;

∗ computeFSEL: This class computes the set of all the subsets of train units with a sum of

the capacities ≥ rj and ≤ lj ;
∗ APkModel : This class computes the costs of a given train unit composition, also known as

the AP (k)-model, described in Chapter 5.2.2.2. It uses the MATLAB-function matchpairs;

– feasibilityPhase: This class executes the feasibility phase as described in Chapter 5.2.3;

∗ computeFSEL: This class computes the set of all the subsets of train units with a sum of

the capacities ≥ rj and ≤ lj ;
∗ APkModel : This class computes the costs of a given train unit composition, also known as

the AP (k)-model, described in Chapter 5.2.2.2. It uses the MATLAB-function matchpairs;

– endAdjustments: This class updates the set of critical and uncritical trips;

A.3 Set Cover Heuristic

Here we describe the MATLAB-files corresponding to the set cover heuristic as explained in Chapter 6.

• mainModel : This class is the main model which solves the heuristic. The letters a, b, c, d represent

the used weight factor as described in Chapter 8.3;

– makeMatrix : This class determines the set of significant trips F̄ and their corresponding weight

factors Cf ;

– setCoverModel : This class solves the set cover formulation as described in Chapter 6.1. In

case the weight factor must be ignored, the word ’fMatrix’ in line 8 must be deleted;

∗ cplexmilp: This is the commerical solver CPLEX and solves mixed-integer linear programs;

– changeXmatrix : This class combines all the used routes computes by the setCoverModel and

computes its costs;

– APkModel : This class computes the costs of a given train unit composition, also known as the

AP (k)-model, described in Chapter 5.2.2.2. It uses the MATLAB-function matchpairs;

A.4 Local Search

The local search technique is not a particular map or file in the ZIP-file. It is the end of the TOTALM-

ODEL of the peak period heuristic and mainModel of the set cover heuristic.

• selectionProcedure: This class runs for h times, where h is the number of iterations used. It

remembers the best solution and its composition. It also randomly selects a trip;

– selectingComposition: This class considers every possible composition for a trip and determines

the cheapest combination of train units;

∗ computeFSEL: This class computes the set of all the subsets of train units with a sum of

the capacities ≥ rj and ≤ lj ;
∗ APkModel : This class computes the costs of a given train unit composition, also known as

the AP (k)-model, described in Chapter 5.2.2.2. It uses the MATLAB-function matchpairs;

• APkModel : This class computes the costs of a given train unit composition, also known as the

AP (k)-model, described in Chapter 5.2.2.2. It uses the MATLAB-function matchpairs;
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