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Abstract

Betting on football matches is a huge industry which exists already for a long time. Therefore, pre-

dicting sports matches has been the topic of a lot of researches. This paper attempts to replicate and

extent the paper of Goller et al. (2018), where a new method to predict football matches is used.

Various variables describing the teams in the 1. Bundesliga are used to predict the final league table

of the 1. Bundesliga. The main focus of this paper is the comparison between the predictive power of

the Ordered Random Forest Model (ORFM) of Goller et al. (2018) and the Bivariate Poisson Regres-

sion Model (BPRM). The predictive performance of both models is assessed by different performance

measures, for example a hypothetical return on investment (ROI). The BPRM slightly outperforms

the ORFM in terms of the performance measures used in this paper. Therefore, I conclude that the

BPRM has a slightly higher predictive power than the ORFM. Hence, I would recommend the BPRM

over the ORFM for predicting football matches.

The views stated in this thesis are those of the author and not necessarily those of

Erasmus School of Economics or Erasmus University Rotterdam.
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1 Introduction

Betting on football (i.e. soccer) matches is not a new phenomenon. However, the sports betting

industry has grown rapidly over the last decades. Due to the growth of the internet and mobile

devices, the betting market has become more accessible than it used to be. According to Darren

Small1, director of integrity at Sportradar, a betting and sports data analyst, the industry is worth

in between 700 billion and 1 trillion dollars a year, where 70% of the total worth comes from football

related activity. Consequently, a proper prediction strategy for football matches is important, for

both the firms in the betting industry as for the people who bet on those games.

Besides the importance for the betting industry, football clubs may gain from realistic estimates

of their place in the league table as well. For example, having a good estimation of the league table

can help the board of the club to get more adequate sponsor deals. The higher your club finishes,

the more it can ask from its sponsors. Furthermore, the club’s board can make a better judgment of

the manager’s performance in that particular season.

Machine learning has proved to be a useful method in all sorts of prediction problems. Although,

there is little research conducted to examine the performance of these methods on the estimation

of probabilities of ordered outcomes. In addition, machine learning is not used frequently when

predicting the outcomes of football games. Therefore, the first part of this paper consists of a

replication of the paper of Goller et al. (2018). Here, an extension of the classical random forest

estimator will be tested on its predictive performance. Goller et al. (2018) use the so-called Ordered

Random Forest Model (ORFM), developed by Lechner and Okasa (2018), which takes the natural

ordering into account that exists in outcomes of football matches. Moreover, classical random forest

estimation has an outstanding predictive performance in predicting probabilities of ordered outcomes,

according to Fernández-Delgado et al. (2014). The estimates of these probabilities are then used to

construct a prediction of the league table at the end of the season. This league table will be used to

examine the predictive performance of this estimation strategy. In the second part of the paper, I will

try to further enhance the paper by Goller et al. (2018) by comparing the ORFM with the Bivariate

Poisson Regression Model (BPRM) of Karlis and Ntzoufras et al. (2005). Hereby, the performance of

the ORFM can be seen in a broader perspective, than when it is not compared with another method.

This research can be used by betting companies when a particular prediction method shows

to perform better in predictive power than the prediction method that a betting company uses.

Furthermore, as stated before, using the best prediction method, could be useful for fans and in

particular the board of a football club. Because of this, I believe that this research could be of use

for both the betting and the football industry.

This paper is structured in the following manner. First, there is a short overview of papers that

discuss this topic. Hereafter, the sources of the data are presented and the data set itself is discussed.

Furthermore, adjustments in the data are being accounted for. The fourth Section contains the

methodology of both models. Thereupon, the results of both models are presented. Finally, the

limitations of this paper are discussed in Section 7, as well as suggestions for further research.
1See article: https://www.bbc.com/sport/football/24354124.
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2 Literature Review

There have been numerous studies about predicting football matches and the best methods to do

so. For example, Leitner et al. (2018) examined the forecast performance of methods build on

ability ratings or bookmakers odds. They showed that the model where the bookmakers odds were

aggregated performed best. Besides that, Min et al. (2008) proposed the use of Bayesian inference,

rule-based reasoning and the so-called in-game time-series approach, rather than machine learning

techniques. This technique allows for different kind of tactics in a game and in-game changes in

tides between the two teams. This model outperforms two other so-called historic predictors that

they built. Crowder et al. (2002) took another approach. They examined the independent Poisson

model with dynamic attack and defense qualities to obtain probabilities for home win, draw or away

win and compared their model to the model of Dixon and Coles (1997), which also has its roots in

the independent Poisson model. Crowder showed that both of the approaches have similar predictive

abilities. Furthermore, Baio and Blangiardo (2010) propose the so-called Bayesian hierarchical model.

They have shown that, emperically, there is a certain correlation between the goals scored by the

two competing teams. However, Baio and Blangiardo (2010) showed that the Bayesian hierarchical

model is not inferior to the bivariate Poisson model, despite the fact that the Bayesian hierarchical

model does not explicitly takes the correlation between the amount of goals scored by the two teams

into account. In this paper we extend the bivariate Poisson model into a bivariate Poisson regression

model.

As stated before, machine learning techniques are widely used to handle predictive challenges.

For example, Groll et al. (2018) tested the predictive performance of several estimation methods,

namely a Poisson regression models, random forests and ranking methods. In contrast to Baio and

Blangiardo, they showed that a combination of the random forest and the ranking methods gives the

best model in terms of predictive performance. In addition, Baboota and Kaur (2019) tested machine

learning methods, such as the Gaussian naive Bayes model, a support vector machine model, the

random forest method and finally gradient boosting. They concluded that out of these four models,

gradient boosting had the best performance. However, gradient boosting was not capable of beating

the bookmaker’s predictions. Finally, Joseph et al. (2006) compared an expert constructed Bayesian

network with a naive Bayesian network, a Bayesian network learned form statistical relationships

in the date, a k-nearest neighbour implementation and a decision tree. They showed that generally

speaking, the expert Bayesian network has the biggest predictive power of all five techniques.

As stated before, there exist numerous ways to predict the outcomes of football matches. The

goal of this paper is to replicate the ORFM of Goller et al. (2018) and compare this method with the

BPRM of Karlis and Ntzoufras (2005). This will put the findings of Goller et al. (2018) in a broader

perspective.

3 Data

This research uses data that comes from various sources. Unfortunately, I was not able to find all

the data that Goller et al. (2018) used. However, I think that the core variables from their paper are
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incorporated in this research. The data consists of different kind of variables, which can be put into

some categories. These categories are now briefly discussed.

First of all, the match results from all the 1. Bundesliga games are gathered from www.datahub.io.

This contains all results of the matches played from the beginning of the season 2008/09 until the

33-rd match day of the season 2018/19.

Furthermore, the quality of a particular team can be approximated using certain variables. Ex-

amples of these team characteristics are: market value of the club, TV revenues received and average

age of the team. These variables are obtained from www.transfermarkt.com. The TV revenues of

each club are obtained from www.fernsehgelder.com from 2012/13 until 2018/19.

The location of the match can be of a huge influence on the game’s result. Therefore, location

related variables are obtained as well. The travel times between the two stadiums of the two competing

teams are computed from www.google.com/maps. Here, I deviate from the paper of Goller et al.

(2018). They use public transportation time as their approximation of the travel time between two

cities. However, all 1. Bundesliga clubs have their own bus, so I think the travel time of a car is

more adequate to use. Moreover, the same source is used to calculate the distance between two cities.

Finally, the maximum capacity of each stadium is obtained from Wikipedia.

Another factor that could be of influence in the result of a match is the schedule that is used in a

season. Moreover, international football, such as the Champions League and matches for a country,

may affect the performance of a club. This information is collected from www.github.com.

As in the paper of Goller et al. (2018) the regional economic situation is retrieved from

www.regionalstatistik.de. This contains the GDP and the unemployment rate in the cities of the

teams.

Finally, the betting odds used by five of the world’s biggest betting companies are obtained from

www.football-data.co.uk. The odds of the following bookmakers are used: Bet365, Bwin, Interwetten,

Ladbrocker and William Hill. It contains the odds of a home win, a draw or an away win. These

odds are used to benchmark the predictions made by the models that are being tested in this paper

against the predictions used by the bookmakers. The bookmakers’ odds are not used in the estimation

procedure.

3.1 Data Adjustments

The TV revenues of the football teams are obtained from www.fernsehergelder.com, as stated before.

However, only the data from 2012/13 until 2018/19 were available on this website. There were no

alternative data sources for this variable for the seasons 2008/09 until 2011/12. This variable is used in

a lot of other variables as well. For example the variable Market value - TV revenues, obviously needs

the variable TV revenues. Missing this variable would, thus, mean that almost half of all observations

had to be discarded. This would have led to a major loss of information, which is needed to construct

appropriate models. Therefore, the missing TV revenues are estimated by regressing on the available

TV revenues. These estimates are then used in the data set.

Another adjustment that is made in the data set is about the previous season variables. As

every year there are teams that get promoted and get relegated, some values of these variables are
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unreliable to use. For example, if Hannover 96 plays in the 2. Bundesliga in season 2010/2011 and

gets promoted to the 1. Bundesliga. Then the values, in season 2011/12, of for example PS goals,

which reflects the total amount of goals scored the previous season, will be relatively high, because

Hannover 96 was one of the top teams in the second division and consequently scored a lot of goals.

This does not adequately reflect the amount of goals they would have scored when they would have

been playing in the 1. Bundesliga. Therefore, the teams that got promoted, get the average value of

the three lowest teams on the table of that previous season.

4 Methodology

The prediction of football games is a non-standard predictive task. This is the case, because of two

reasons. Firstly, the outcome results of football matches are constructed in a goal difference or reflect

whether the match ended in a win for the home or the away team, or as a draw. Because of this

structure of the outcomes, a standard linear model can be expected to perform poorly. There are

several reasons why one could suspect that a standard linear model would not be the most appropriate

model in this case. Firstly, a standard linear model does not take into account the ordering of the

data. The outcome of football matches clearly has a certain ordering, namely win, draw or lose.

Besides that, a standard linear model assumes a continuous dependent variable, while the dependent

variable in this paper only can take three, discrete values, corresponding to a win, draw or lose. The

second reason why the prediction of football games is a non-standard predictive task is that it is in

the nature of football that every game is heavily influenced by unobservable factors, such as luck or

possible mistakes of the referees. Because of this uncertainty, it is needed to use prediction methods

that fully utilize the available information. This can be used to expose the importance of uncertainty

in the outcome of a match. The random forest algorithm is more flexible than a standard linear

model, hence, one can expect it would perform better than a standard linear model. Therefore an

ordered random forest algorithm is introduced in Section 4.1.

In Section 4.2 another prediction method is described, namely the BPRM. Furthermore, the

estimation procedure for this method is explicitly discussed in Section 4.2.1. Finally, in Section 4.3

the construction of the league tables, using the results of the prediction methods, is explained, for

both models.

4.1 Random Forests

Developed by Breiman (2001), random forests are used in all kinds of predictions problems. The

algorithm of random forest works with a large amount of decorrelated, randomly built, decision trees.

But why would one work with a lot of trees and not one?

The problem of using only one single regression tree is that it tend to have a high variance. This

is due to the path-dependent structure of a decision tree. These regression trees (Breiman, 2017)

choose a certain covariate space, which minimizes the sum of squares, at each split of the decision

tree. The final prediction for input x is then obtained by averaging the amount of observations that

end in the same end-node Lpxq, which is called a leaf. If a decision tree has a lot of splits, it will
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have a low bias on the one hand. On the other hand, it will have a high variance, because of the

path-dependent structure of the tree. The so-called bagging resolves this problem by taking a lot of

relatively small trees and averaging on all those low bias trees. To define this formally, we take the

same notation as used in Breiman (1996), where a learning set L = tpym,xq,m “ 1, 2, 3u is defined,

and where ym denotes the outcome of the match. In other words, ym expresses whether a particular

team wins, ties or loses a particular game, for given x. Here x denotes the particular covariates used.

Next, we assume that we have a predictor φpx,Lq, which predicts y if we put x in φpx,Lq. Suppose,

we have a sequence of learning sets tLku that all consist of Q independent observations with the

same distribution as L. The goal is to get a better predictor than φpx,Lq, using only the sequence of

predictors φpx,Lkq. In our case, as we have numerical outcomes y, we average φpx,Lkq over k.

Next to bagging, random forest decorrelates the trees to achieve even a higher variance reduction

(Hastie et al., 2009). This is done by taking only a random subset of the covariates at each split

point in the tree. If we combine the bagging and the above, we obtain the algorithm that lies behind

random forests. To summarize, the algorithm picks a bootstrapped sample b of size Q and constructs

a regression tree Tb(x) while choosing randomly p covariates out of the total of K covariates at each

split point, where p < K. This is done until the minimum leaf size is reached. Hereafter, the final

random forest estimate RFB(x) can be obtained. RFB(x) is defined as follows

RFBpxq “
1

B

B
ÿ

b“1

Tbpxq,

with Tb(x) defined as

Tbpxq “
1

|ti : xi P Lpxqu|

ÿ

ti:xiPLpxqu

yi.

Although, Random Forest have proved to be a method with a high predictive power, it does not take

into account any potential ordered structure in the data. The outcomes of football matches do have

an ordered outcome. Therefore, Goller et al. (2018) use the ORFM.

4.1.1 Ordered Random Forest Model

The ORFM is an extension of the conventional random forest. It does take into account the or-

dered structure within the data. Herewith, the potential loss of valuable information is prevented.

The ORFM used in this paper, is developed by Lechner and Okasa (2018). This model explicitly

incorporates the ordered structure of the outcomes. Because the basis of this model is a random

forest algorithm, the model can deal with high-dimensional covariate spaces and provide some basic

econometric output, for example marginal effects and outcome probabilities. This model can, thus,

be seen as an alternative for the more traditional econometric models that take the ordered structure

into account, such as the ordered probit model or ordered logit model. For the reader who is more

interested in the ORFM, I would like to refer to Lechner and Okasa (2018). Their paper provides

a thorough discussion of the estimator, the inference procedure and a simulation study. In the next

paragraph the ORFM is explained in a more formal manner.

First, consider the ordered outcome variable Φi P t1, ...,Mu with m ordered categories. In this

paper, M “ 3, because the only possible outcomes can be a home win, a draw or an away win.
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Given sample size N , with n “ 1, ..., N , estimating the conditional ordered outcome probabilities

evaluated at x, P rΦi “ m|Xi “ xs, is based on an estimation of the cumulative probabilities given

by binary indicators Ym,i “ 1pYi ď mq for m “ 1, ...,M ´ 1. Hereafter, a regression random forest is

estimated for all theM´1 binary indicators, which gives the predictions Ŷm,i “ P̂ pYm,i “ 1|Xi “ xq.

Because the fact that the cumulative probabilities have to sum up to one, ŶM,i has to be equal to 1.

After obtaining the cumulative probabilities, the probabilities of all M categories, for all N games

are subsequently computed. For the first outcome category, the probability is defined as P̂ tot1,i “ Ŷ1,i.

This probability is taken directly from the random forest estimation as in the case of the binary

outcome. Here, the estimated conditional mean is a valid estimation of the probability of the first

category. For the outcome probabilities m “ 2, ...,M the probabilities are computed as follows:

P̂ totm,i “ Ŷm,i ´ Ŷm´1,i. The cumulative probabilities’ nature is used for these categories, because it is

possible to isolate the probability of the m-th category by subtracting the estimated probability of

the preceding category. In the case that a estimated probability is negative, these probabilities are

set to zero, i.e. P̂ totm,i “ 0 if P̂ totm,i ă 0. To ensure that all predictions sum up to one, the final step is

to normalize all the probabilities. This is done in the following way: P̂m,i “
P̂ tot

m,i
řM

m“1 P̂
tot
m,i

. Here P̂m,i

denote the conditional ordered outcome probabilities, i.e. P̂ totm,i “ P̂ rYi “ m|Xi “ xs.

Note, that the ORFM makes use of linear combinations from the regression random forest prob-

ability estimates. Thus, if the regression random forest meets the conditions for normality and

consistency, the ORFM will fulfill these conditions as well. Then, statistical inference can be con-

ducted. Moreover, the ORFM, as described above, needs to estimate M ´ 1 random forests in the

training set. This seems a rather demanding task, but because the fact that our data only has 3

outcome categories and the existence of fast software implementations, the computation time is not

a problem.

4.2 Bivariate Poisson Regression Model

As stated before, this paper compares the ORFM of Goller et al. (2018). with the BPRM of Karlis and

Ntzoufras et al. (2005). This model is built to predict the amount of goals that two teams score against

each other. Here, consider the random variable Gr for r “ 1, 2, 3, that follow an independent Poisson

distributions with parameters λr > 0. Now, the random variables H “ G1 ` G3 and A “ G2 ` G3

follow a joint, bivariate Poisson distribution. This gives the following joint probability function

PH,Aph, aq “ P pH “ h,A “ aq “

expp´pλ1 ` λ2 ` λ3qq
λh1
h!

λa2
a!

minph,aq
ÿ

q“0

¨

˝

h

q

˛

‚

¨

˝

a

q

˛

‚q!

ˆ

λ3

λ1λ2

˙q

.
(1)

Here, H and A represent the amount of goals scored by the two teams. The bivariate Poisson

distribution allows for dependence between H and A. Marginally, H and A follow a univariate

Poisson distribution. More formally, ErHs “ λ1` λ3 and ErAs “ λ2` λ3. The assumed dependence

between H and A is expressed by CovpH,Aq “ λ3. Note that if λ3 “ 0, the two random variables

are independent and, thus, this distribution would reduce to the product of two independent Poisson

distributions.
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All the parameters λr, for r “ 1, 2, 3, in (1) can incorporate covariates by specifying an adequate

response function. Specifically, λr “ pλr1, ..., λrnq contains all λs for every observation. I follow Groll

et al. (2018) and use λr = exp(ηr), with the linear predictor ηr “ β0r ` c
T
r βr and response function

hp¨q = exp(¨), such that λr becomes a non-negative Poisson parameter. Moreover, cr “ pc1r, ..., cprqT

contains all the covariates of predictor r.

For football data, a logical way of modelling the three parameters λr, r “ 1, 2, 3, is to let λ1 and

λ2 contain the covariate information of the competing teams 1 and 2, respectively. λ3 contains the

covariate information reflecting the match conditions, which are the same for the competing teams,

obviously. The model representation becomes

λ1 “ exppβ10 ` c
T
1 β1q, λ2 “ exppβ20 ` c

T
2 β2q, (2)

where c1 and c2 contain the covariate information of team 1 and team 2, respectively. Covariance

parameter λ3 generally depends on different covariates and effects and is modelled as follows

λ3 “ exppα0 ` z
Tαq, (3)

with z that could contain certain covariates of c1 and c2 or completely new covariates.

Note that, for λ1 and λ2, in (2), there is no common intercept. The intuition behind the intercept

in this model is that it represents the goals scored, without any further information. I assume there

exists a so-called "homFe-advantage" and a "away-disadvantage". In other words, β01 represents the

home-advantage and β02 represents the away-disadvantage, in a particular game.

4.2.1 Estimation

The BPRM does not offer a direct estimate for the parameters λ1, λ2 and λ3. Therefore, a numerical

approach is chosen to obtain maximum likelihood estimates for these parameters. There are a lot

of different ways to estimate the parameters of the BPRM. For example, Gourieroux et al. (1984)

derived a pseudo maximum likelihood estimation method and Kocherlakota and Kocherlakota (2001)

estimated the parameters using a Newton-Raphson procedure. In this paper, the Expectation Maxi-

mization (EM) algorithm is used to estimate the parameters which are needed in 1. This method is

also used in the paper of Karlis and Ntzoufras (2003). For the BPRM, a trivariate reduction deriva-

tion of the bivariate Poisson distribution is necessary to construct the EM algorithm. Suppose, for the

i-th observation G1i, G2i, G3i correspond to non-observable data. The observable data is represented

as Hi “ G1i `G3i and Ai “ G2i `G3i. The estimation would have been simple if the unobservable

data was available. The only thing to do was to fit Poisson regression models to G1, G2 and G3.

To resolve this problem caused by the unobservables and to be able to construct the EM algorithm,

the unobservable data is estimated by their conditional expectations. After this Poisson regression

models are fitted to the pseudo-values obtained by the E-step. Let γ denote the vector containing

the parameters to be estimated, that is γ “ pβ1, β2, αq
1. Then, the complete data log-likelihood is

given by

Lpγq “ ´
n
ÿ

i“1

3
ÿ

r“1

λri `
n
ÿ

i“1

3
ÿ

r“1

xri logpλriq ´
n
ÿ

i“1

3
ÿ

r“1

logpgri!q,
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where the λs are given by (2) and (3).

Now, the EM algorithm for the bivariate Poisson model is given by

E-step: Calculate the conditional expected values of G3i, using the current parameter values

of k iteration, denoted by γpkq, λpkq1i , λ
pkq
2i and λpkq3i , for i “ 1, ..., n, by

si “ E
`

G3i|Hi, Ai, γ
pkq

˘

“

$

’

&

’

%

λ
pkq
3i

PH,Aphi´1,ai´1|λ
pkq
1i ,λ

pkq
2i ,λ

pkq
3i q

PH,Aphi,ai|λ
pkq
1i ,λ

pkq
2i ,λ

pkq
3i q

if min(hi, ai) ą 0

0 if min(hi, ai) “ 0

where PH,Aph, a|λ1, λ2, λ3q is given in (1).

M-step: Update the estimates by

β
pk`1q
1 “ β̂ph´ s, c1q,

β
pk`1q
2 “ β̂pa´ s, c2q,

αpk`1q “ α̂ps, zq,

λ
pk`1q
ri “ exp

´

c1riβ̂
pk`1q
r

¯

for r “ 1, 2.

λ
pk`1q
3i “ exp

´

z1iα̂
pk`1q

¯

Here, s “ ps1, ..., snq
1 is the nˆ 1 vector from the E-step, β̂ph,Cq are the maximum likelihood

estimates of a Poisson model with response the vector h and data matrix C “ pc1, c2, zq1. Each

data matrix Cr is a nˆ pr matrix, where pr is the amount of covariates for r “ 1, 2, 3.

The bivpois package is used in this paper to implement the above described estimation algorithm

in R. The package is available from the authors’ web page at http://www.stat-athens.aueb.gr/

~jbn/papers/paper14.htm.

4.3 League Outcomes

In this Section it will be explained how the league tables are constructed. Besides the construction

of the league tables, other performance measures will be introduced, which will be used to assess the

predictive power of the models.

4.3.1 Ordered Random Forest Model

Once we obtained the probabilities for a win, draw or a loss for all the teams using the ORFM, one

can use these probabilities to derive a final league table. I follow the paper of Goller et al. (2018)

and use two approaches. Firstly, a logical way of using the estimated probabilities is to compute the

expected points (3 for a win, 1 for a draw and 0 for a loss) according to the probabilities of each

team in each game. If all these points are summed up, the expected final league table is obtained.

Secondly, one may take into account the uncertainty that every game has. To account for this, the

points in every game are derived by a random draw of a simulated outcome based on the estimated

probabilities. The realization of this random variable determines the amount of points a team gets

for a particular game. Again, adding up all the points from all the games will result in a final league

9
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table. This is repeated 10.000 times, so that it becomes feasible to compute the probability to become

champions, to get relegated or to reach the play-offs for European football. For example, to compute

the probability that Borussia Dortmund will win the league, one divides the total amount of times

Borussia Dortmund ended on top of the table by the total amount of simulations. All other places

in the table are derived in the same manner.

After the final league table is derived, one can examine the predictive performances of this method.

This can be done by Spearman’s rank coefficient, the root mean squared error and a hypothetical

ROI. The latter one is used to compare the methods to the betting odds of the bookmakers.

4.3.2 Bivariate Poisson Regression Model

The bivariate Poisson model, as discussed in Section 4.2, is used to compute the two distributions

of the scores of the two teams, for each match. The match result is drawn randomly from the

predicted distributions. In other words, the scores are drawn from G1 „ Poissonpλ̂1 ` λ̂3q and

G2 „ Poissonpλ̂2 ` λ̂3q, where λ̂1, λ̂2 and λ̂3 are obtained by the regression model, explained in

Section 4.2. If G1 ą G2, the home team has scored more goals than the away team and, thus, the

home team wins; if G1 “ G2, it means that both teams scored the same amount of goals, which means

that the game ended as a draw; if G1 < G2 the away team scored more than the home team, resulting

in a win for the away team. Again, the winning team receives 3 points, 1 point for a draw and 0

points for a loss. Hereafter, the seasons will be simulated 10.000 times. Based on these simulations,

for each team the probability of reaching a certain place at the table will be calculated.

To asses the predictive performance of this model the odds of the bookmakers are used. These odds

are used to compute three quantities p̃r “ 1{oddsr, r P 1, 2, 3. Here, p̃1 represents the odds of a home

win, p̃2 the odds of a draw and p̃3 the odds of a away win. This is normalized with d :“
ř3
r“1 p̃r,

so that the margins of the bookmakers are being account for. The odds can be transformed into

probabilities using p̂r “
p̃r
d . These transformed probabilities serve as an approximation for the

bookmakers’ probabilities for a home win, an away win or a draw. This approximation is based on

the assumption that the margins of the bookmakers follow a discrete uniform distribution on the three

possible match results. The true match outcomes ωg P t1, 2, 3u, g “ 1, ..., G, with G the total amount

of games, are used to compute p̄three´way :“ 1
G

řG
g“1 p̂

δ1ωg

1g p̂
δ2ωg

2g p̂
δ3ωg

3g , where δrg, denotes Kronecker’s

delta. p̄three´way serves as a good performance measure of the model compared to the bookmakers’

odds.

5 Results

This Section contains the results of the two methods introduced in Section 4. First, the results of the

ORFM are presented. Hereafter, the results of the BPRM are displayed. Finally, the two methods

will be compared by the hypothetical ROI and the p̄three´way, which are described in Section 4.1.1

and 4.3.2, respectively.
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5.1 Ordered Random Forest Model

To asses the predictive power of the Ordered Random Forest model, the season of 2017/18 is predicted.

The training data consisted of the data from the season 2008/09 until 2016/17. The training data is

used to compute the probabilities for a home win, a draw or an away win in the season 2017/2018.

The algorithm used, is described in Section 4.1.1. The expected points have been gathered and used

to construct a prediction of the league table for the 1. Bundesliga of the season 2017/18. Table 1

shows the predicted and the actual league table. The same is done for the season 2018/2019, with

training data until the end of the season 2017/2018. The results are shown in Table 9 in the Appendix.

Note that Table 9 is not the final league table, but the table after match day 33.

Table 1: The predicted and the actual final table of the 1. Bundesliga season 2017/18 estimated with the ORFM

Rank Points
Team Predicted Actual Predicted Actual
FC Bayern München 1 1 75.3 84
Borussia Dortmund 2 4 62.0 55
RB Leipzig 3 6 55.0 53
Schalke 04 4 2 52.0 63
Bayer 04 Leverkusen 5 5 51.3 55
Borussia M’gladbach 6 9 51.3 47
TSG Hoffenheim 7 3 48.4 55
VfL Wolfsburg 8 16 46.2 33
Hertha BSC Berlin 9 9 45.7 43
1. FC Köln 10 18 45.0 22
Werder Bremen 11 11 41.9 42
SC Freiburg 12 15 41.9 36
1. FSV Mainz 05 13 14 41.3 36
FC Augsburg 14 12 41.1 41
Eintracht Frankfurt 15 8 40.9 49
Hannover 96 16 13 40.8 39
VfB Stuttgart 17 7 40.2 51
Hamburger SV 18 17 39.4 31

As football results depend for a huge amount on luck and other unpredictable factors, there are

surprises in the league table, in a positive and a negative way. For example, in Table 1 it can be seen

that Eintracht Frankfurt was predicted to end at the fifteenth place. However, they had a strong

season and ended at the eighth place. At the same time, VfL Wolfsburg performed relatively poor, as

they had a predicted rank of 8, but a realized rank of 16. These differences between the predicted and

actual league table are not really surprising, because it is very difficult to capture all the in-season

developments of a team.

To see whether the ORFM did a good job in predicting the final league table, the predictions

of Table 1 are compared with other predictions of the final ranking and points. Twelve alternative

strategies to predict the final league table and points are retrieved from www.bstat.de. Here, different

forecasts of experts or algorithms are collected before each season.

To formally compare the different prediction methods, the Spearman’s rank correlation coefficient

and the root mean squared error (RMSE) are considered. The Spearman’s rank correlation coefficient
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is computed using the actual table and the predicted table. This coefficient represents the amount of

correlation between the actual and predicted final league table. Thus, the higher the coefficient, the

closer the prediction is to the actual table. The RMSE is used to asses the accuracy of the predicted

points. In Table 2 the results of the ORFM and the twelve other predictors are shown.

Table 2: Comparison of different predictions for the final league table of the 1. Bundesliga
season 2017/18

Rank Correlation RSME
Ordered Random Forest 0.65 8.7
bundesliga-prognose.de 0.43 16.8
Club Elo 0.62 -
Euro Club Index 0.61 9.0
FiveThirtyEight 0.63 9.9
Fupro.de 0.63 11.5
fussball-manager.com 0.58 16.4
fussballmathe.de 0.63 12.1
General-Anzeiger 0.74 -
Goalimpact 0.71 9.0
kickform.de 0.61 9.4
Spiegel Online 0.75 -
transfermarkt.de 0.60 -

In terms of Spearman’s rank correlation, three other predictions showed to perform better than

the ORFM. These are the predictions of the experts of the newspapers General-Anzeiger and Spiegel

Online. Besides those, the algorithmic prediction of Goalimpact showed to have a higher Spearman’s

rank correlation. On the other hand, in terms of predicting the amount of points that each team

won, the ORFM has the smallest RSME of all predictors. This means that the ORFM performed

the best in predicting the amount of points won.

The ORFM calculates for every game a certain probability for a home win, a draw or an away

win. These probabilities are compared with the betting odds of five major bookmakers. To asses the

performance of the ORFM, different betting strategies are used and a hypothetical ROI is calculated

for each strategy. The first strategy that is considered, is the so-called proportional strategy. In this

strategy, 1 euro is bet on each game. This euro is then split according to the estimated probabilities

of the ORFM for each outcome. To clarify, if the estimated probabilities are 50 % for a home win

and 25% for a draw and an away win, 50 cents are bet on a home win and 25 cents are bet both

on a draw and an away win. To check whether we would win or lose money, assume that the home

team wins and the betting odds are 1.9, 2.0 or 2.1. In the first case, we would lose money, because

we spent e1,- and get 1.9*e0.5 = e0.95. For the second betting odds, we would not win nor lose

money, because 2*e0.5 = e1,-. Finally, for the third case, we would win money, because 2.1*e0.5 =

e1.05. The probability that is implied by the betting odds of 2.1 is 1
2.1 “ 47.6%. As our estimated

probability was 50%, a ROI is achieved of 1.05´1
1 “ 5%. In the first three columns of Table 3 the ROIs

of this strategy for different time frames is shown. In the first column the ROIs for season 2017/18 is

shown, the second column displays the ROIs for the season 2018/19 until the 33rd match day, while

the third column contains the ROIs if we combine both seasons.
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Table 3: Return of investment in percent of different bookmakers in different seasons

Odds Odds net of fees
2017/18 2018/19 2017/2019 2017/18 2018/19 2017/2019

B365 -5.7 -7.5 -6.7 -0.8 -2.6 -1.7
Bwin -5.8 -7.4 -6.6 -0.9 -2.7 -1.8
Interwetten -7.1 -2.4 -4.8 -1.0 -2.4 -1.7
Ladbrockes -3.3 -7.9 -5.6 -1.1 -2.8 -1.9
William Hill -5.0 * * -1.3 * *
Value bet: -13.2 -17.4 -11.3

For the season 2017/18 the ROIs lie between -3% and -7%. For the next season the results are

similar, showing negative ROIs in between -2% and -7%. In the third and sixth column season

2017/18 and 2018/19 are combined, which means that all games of both seasons are used to compute

the ROIs. When both seasons are combined, the results lie approximately in the middle of the two

former columns for all bookmakers, respectively. The odds for the season 2018/19 for the bookmaker

William Hill are not shown, because the data was not correct for this year. This would lead to biased

and inadequate ROIs, which would make the results less credible. Therefore, the value, in the column

where the two seasons are combined, is also not shown. Table 3 shows that the ORFM does not

outperform any bookmaker, for all time frames.

There are two possible explanations why the bookmakers odds outperform the ORFM. First, the

bookmakers’ odds most likely reflect short-term developments as well, while the ORFM does not

have access to this kind of information. Examples of short-time developments can be injuries or other

factors that could influence the players and/or the staff. Second, the implied probabilities of the odds

of the bookmakers imply a fee for the bookmaker, because the implied probabilities do not count

up to one. However, it is unknown how the fees are distributed over the outcomes (for a discussion

on this, see e.g. Levitt (2004), Paul and Weinbach (2007), Paul and Weihnbach (2012)). I assume,

like in Goller et al. (2018), that the fees are distributed proportionally. This would create odds that

are "net of fees" in the following manner. The bookmakers’ odds are inverted to get the implied

probabilities. Hereafter, these implied probabilities are normalized to make sure that they sum up to

one. Finally, the normalized probabilities are inverted again to obtain the "normalized" bookmakers’

odds. By doing this, a comparison between the probabilities obtained from the ORFM and from the

bookmakers’ odds is more fair. These results are displayed in the last three columns of Table 3. There

are two remarkable observations to be made when looking at these results. Namely, all the ROIs, for

all different time frames, have decreased substantially relative to the corresponding columns where

the "conventional" odds were used. For the season 2017/18 all ROIs changed to approximately -1%.

Furthermore, the variation between the different bookmakers has reduced, making them very similar.

This may indicate that the differences, in the first three columns, are mainly being caused by the

different fees that the bookmakers charge.

The second strategy that is being investigated is the so-called value bet strategy. In this strategy

one will only bet on a certain game when the estimated probabilities are higher than the one implied

by the bookmaker’s odds. For example, if you have an estimated probability of a home win of 50%.

When the betting odds are lower than 2, it would mean that we would lose money in the long-run,
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even when we would know that the true probability is 50%. This may happen because of the implicit

fee that is being charged or due to a too high probability of a home win (estimated by the bookmaker).

It could happen that there are multiple outcomes that have a higher probability than the probabilities

implied by the bookmakers or that this is the case for multiple bookmakers. In this case, the best

bookmaker-outcome combination is chosen by picking the highest ratio of the ORFM probabilities

and the implied probabilities of the bookmakers. The losses using this strategy lie between 17% and

11%. Note that for the values of the value bet strategy in the season 2018/19 and the combination

of seasons 2017/18 and 2018/19 (under the header 2017/19 in Table 3), the odds of William Hill are

not considered. As stated before, the odds of William Hill are not correct for the season 2018/19,

therefore the hypothetical ROIs are not reliable and, thus, not presented for the columns that contain

this season.

In Section 4.3.1 it is described how the probabilities are derived that a certain team ends at a

particular place on the league table. A team can have a goal in the season, for example qualifying for

the Champions League (rank 2-4) or to qualify for the Europa League (rank 5-6). The probabilities

for certain ranks are therefore aggregated to represent the probability to achieve a certain goal.

The probabilities are given in Table 4. The left part of Table 8 represents the probabilities that

are computed before the season, so when all teams still have 0 points. The right part of the table

contains the probabilities computed after match day 8, so the points won thus far are included in

computing the probabilities. I follow Goller et al. (2018) in my chose for match day 8, however every

match day could have been chosen to show the change in probabilities within the season, when the

materialized results thus far are incorporated. Table 4 shows that if you incorporate the results, the

probabilities will change. For example, Hertha BSC had a great start of the season in the season

2018/19, with a shared fifth place with RB Leipzig. Consequently, one can see that the probability

that they reach Champions League places (rank 2-4) rose from 16% to 25%. For teams that start the

season badly, the probabilities change as well. Schalke 04, for instance, is usually a team that plays

for the Champions League spots in the 1. Bundesliga. However, after the eighth match day, Schalke

04 is at the sixteenth place with only 6 points. Because of this, the probability of Schalke 04 to reach

the Champions League places has reduced from 17% to only 3%.

14



Table 4: Probabilities in percentages, obtained with the Ordered Random Forest model, to achieve certain season goals in the
1. Bundesliga season 2018/19

Before season start After match day 8
Season Goals 1 2-4 5-6 7-15 16 17-18 1 2-4 5-6 7-15 16 17-18
FC Bayern 78 20 1 62 37 1
Dortmund 11 62 14 12 30 64 5 2
RB Leipzig 3 39 20 36 2 47 25 25
Leverkusen 2 36 21 39 1 14 23 61 1 1
Gladbach 3 34 20 40 1 1 5 57 21 18
Hoffenheim 20 17 56 3 3 12 20 64 2 2
Schalke 04 17 17 58 3 5 3 7 75 6 9
Hertha 16 16 59 4 5 1 25 26 47 1 1
E. Frankfurt 14 14 61 4 6 15 21 60 2 2
Wolfsburg 11 12 62 5 9 4 10 74 5 8
Bremen 7 10 65 7 11 17 23 58 1 1
Stuttgart 6 9 64 8 12 1 3 62 12 23
Hannover 6 9 64 8 14 1 3 64 12 20
Augsburg 3 6 61 10 20 1 5 69 10 15
Mainz 3 5 63 10 19 1 3 70 10 16
Freiburg 2 4 55 12 28 1 2 62 12 23
Düsseldorf 2 3 53 12 30 1 40 14 46
Nürnberg 1 3 49 12 36 1 51 13 35

The percentages below 1 are not reported in this table. Furthermore, the displayed percentages have been

rounded to whole numbers.

Note that these probabilities are obtained by aggregating all the points until match day 33, this

is been taken as the final league table. This is done, because the last match day was missing in the

data set. However, because the algorithm has run 10.000 times and the fact that only one round is

missing, the estimated probabilities for each rank are reliable.

5.2 Bivariate Poisson Regression Model

In this Section the results, obtained using the BPRM, will be showed. The first step in the process

was the estimation of the coefficients in (2) and (3), so that λ̂r for r “ 1, 2, 3 was obtained. This

is done by the EM algorithm, described in Section 4.2.1. In contrast to the findings of Groll et

al. (2018), λ̂3 showed to be nonzero and significant. This means that there is a certain covariance

between the scores of both teams, although investigation of λ̂3 shows that for most observations

λ̂3 « 0. Note that if λ̂3 “ 0, one would obtain two (conditionally) independent univariate Poisson

models. However, the Likelihood-Ratio (LR) test shows that the BPRM and the product of two

(conditionally) independent univariate Poisson models differ significantly. More formally, LR “

2lpθ̂1q ´ 2lpθ̂0q “ 2p´9945.913 ` 9980.576q “ 69.326, where lpθ̂1q “ ´9945.913 represents the log-

likelihood of the BPRM and lpθ̂0q “ ´9980.576 corresponds to the log-likelihood of the product of

two (conditionally) independent univariate Poisson models. Asymptotically, the LR test follows a

χ2p38q « 56 distribution. The degree of freedoms in this distribution is 38, because there are 37

variables and a intercept used in the estimation of λ3. Hence, because LR « 70 ą 56, the hypothesis

that λ̂3 “ 0 is rejected. The fact that this paper differs on this point to the paper of Groll et al.

(2018) is explainable. Groll et al. (2018) used European championships to test their model. In these
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matches the "home-advantage" and "away-disadvantage" is less influential than in regular matches in

a national league, because at a international tournament matches are played at a "neutral" ground,

except for the country that hosts the tournament. In a regular season the home-advantage and

away-disadvantage may be more present, because teams do play at home or away.

The estimated parameters are then used in a univariate Poisson distribution to determine the

estimated amount of goals scored in a particular game. More formally, G1 „ Poissonpλ̂1 ` λ̂3q and

G2 „ Poissonpλ̂2` λ̂3q, with G1 and G2 the amount of goals scored by the home team and the away

team, respectively.

The advantage of this method, compared to, for example the ORFM, is that the exact match

outcomes is drawn for every match. The season 2018/19 has been simulated 10.000 times. Based

on these simulations, the probabilities to reach a certain goal in this season is obtained. Note that,

again, Table 5 presents the probabilities of being at that certain place after match day 33, due to the

fact that the data of the last match day is not available in the data set.

Table 5: Probabilities in percentages, obtained with the bivariate Poisson regression model, to achieve certain season goals in
the 1. Bundesliga season 2018/19

Before start season After match day 8
Season Goals 1 2-4 5-6 7-15 16 17-18 1 2-4 5-6 7-15 16 17-18
FC Bayern 84 16 67 33
Dortmund 10 82 6 1 28 70 1
RB Leipzig 5 79 13 4 4 80 14 3
Leverkusen 1 59 27 13 1 27 41 32
Gladbach 30 36 34 1 62 26 10
Hertha 21 10 76 5 5 6 21 72 1
Schalke 04 8 23 67 1 1 1 8 86 3 2
Wolfsburg 7 22 68 2 1 3 13 82 2 1
E. Frankfurt 5 15 74 4 3 6 21 71 1 1
Hoffenheim 5 15 74 3 3 3 13 81 2 1
Bremen 4 15 76 3 3 10 31 58
Mainz 1 6 78 7 8 3 83 7 6
Augsburg 1 5 77 7 9 4 84 6 6
Stuttgart 1 4 73 9 12 1 64 14 20
Freiburg 2 63 13 22 1 70 13 16
Hannover 1 51 15 33 44 19 37
Nürnberg 35 16 49 1 38 18 44
Düsseldorf 34 15 50 21 14 65

The percentages below 1 are not reported in this table. Furthermore, the displayed probabilities have been

rounded to whole numbers.

Table 5 shows the same structure as Table 4. For example, in 84% of the cases, FC Bayern

Munich becomes champions if we predict the season from the first match day. This probability slinks,

however, if we incorporate the first 8 match days, to 67%. This is because of the fact that FC Bayern

Munich had a relative bad start of the season, while for example Borussia Dortmund had an excellent

start of the season, increasing their probability to become champion from 10% to 28%.

As stated in Section 4.3.2 the predictive power of the BPRM is assessed by the quantity p̄three´way.

This quantity is compared with the predictive power of the bookmakers’ odds and also the p̄three´way

of the ORFM. In Table 6 it is shown that the BPRM has approximately an equal predictive power
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as the bookmakers’ odds.

Table 6: p̄three´way of five bookmakers’ odds and the bivariate Poisson regression model

p̄three´way
2017/2018 2018/19 2017/2019

B365 40.52 42.44 41.47
Bwin 40.51 42.29 41.38
Interwetten 40.38 42.33 41.34
Ladbrockes 40.74 42.31 41.52
William Hill 40.54 * *
ORFM 36.56 36.96 36.76
BPRM 40.65 42.30 41.46

The numbers reported in this table are in percentages.

Furthermore, it outperforms the ORFM in all time spans. One may conclude from this that

the BPRM has a higher predictive power than the ORFM. In addition, the BPRM performs better

relative to the bookmakers’ odds than the ORFM, which is outperformed at all time spans by every

bookmakers’ odds. It is worth to note that this is a remarkable result, taking into account that the

bookmakers’ odds are usually only released a couple of days before a match, hence, containing the

most recent information regarding the teams.

To see whether the estimated probabilities obtained from the BPRM could help one with betting,

a hypothetical ROI is computed. This ROI is computed using the same betting strategy as was used

for the ORFM. This means that for the first three columns of Table 7 the proportional strategy has

been used. The last three columns of Table 7 report the hypothetical ROIs where first the odds of

the bookmakers have been corrected for their implicit fees. Lastly, the last row of Table 7 shows us

the ROIs when the value-bet strategy is used.

Table 7: Return of investment in percent of different bookmakers in different seasons

Odds Odds net of fees
2017/18 2018/19 2017/2019 2017/18 2018/19 2017/2019

B365 -5.4 -5.0 -5.2 -0.5 0.1 -0.2
Bwin -5.7 -4.7 -5.2 -0.7 0.2 -0.3
Interwetten -6.9 0.9 -3.0 0.3 -2.4 -0.3
Ladbrockes -3.0 -5.3 -4.1 0.0 -2.8 -0.4
William Hill -4.6 * * -0.9 * *
Value bet: -5.4 -16.3 -10.8

If the resutls of Table 3 and Table 7 are compared, one can see that the ROIs obtained using

the BPRM are a bit less negative. This means that this model slightly outperforms the ORFM in

terms of the hypothetical ROI. However, the main structure within and relationships between the

columns are the same for both tables. In addition, Table 7 shows that in general the BPRM, does

not outperform the bookmakers. The same holds for the OFRM.
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6 Conclusion

This paper consists of two parts. The first part of the paper is an attempt to replicate the paper of

Goller et al. (2018). Here, the ORFM is implemented to obtain predictions of the outcome of sport

leagues. This is done in a probabilistic manner. Thanks to the particular algorithm of the ORFM,

predictions could be made for every game in the season. As expected, the same conclusions are drawn

in this paper, as in the paper of Goller et al. (2018), although the data in both papers was different.

The data set which is used, is obtained using different sites. The retrieving of the data appeared to

be a rather demanding job. Because of the limited time available for this paper not all the variables

used in Goller et al. (2018) have been used. However, I think the most important variables have been

used in this paper, making the model strong enough to obtain similar and reliable results.

The ORFM showed to be a decent prediction model. First of all, the predicted final league

table showed to be a good estimation compared to other predictions of the final league table made

by experts or algorithms. In terms of the Spearman’s rank correlation coefficient only three other

predictors performed better. Moreover, in terms of the RSME, the ORFM performed best of all

predictors. However, the ORFM did not outperform the bookmakers’ odds, but the model was close,

especially in the case that the implicit fee for the bookmakers was taken into account. It is important

to note that the bookmakers use a much more up-to-date information set, compared to the ORFM.

This could be an explanation for the fact that the ORFM is outperformed by the bookmakers, in

every case.

In the second part of the paper, another method is used to predict the final league table in the

1. Bundesliga. The BPRM showed to predict a similar outcome of the 1. Bundesliga after 33 match

days, compared to the prediction made by the ORFM. Using an EM algorithm the estimates for λ̂r

for r “ 1, 2, 3 are obtained. Hereafter, these estimates are used to predict the amount of goals by

the two competing teams, resulting in a particular match outcome. It was interesting to see how

the two different models differ from each other. An advantage of the BPRM is that in this model

also the amount of goals scored and conceded is predicted. This could improve the prediction of the

final league table, relative to the prediction made by the ORFM. For example, if two teams have the

same amount of points, their ranking is based on the amount of goals scored minus the amount of

goals conceded. The ORFM is not capable of estimating the amount of goals scored per game and,

thus, cannot decide which teams has to be higher in this kind of situations. Furthermore, two other

performance measures were used to compare the two methods. As stated before, the ORFM has

been compared to the bookmakers’ odds. This is also done for the BPRM, showing slightly better

results. However, the BPRM is also not able to outperform the bookmakers, just as the ORFM. Next

to this measure, the prediction power of both models is assessed by the quantity p̄three´way, which

is described in Section 4.3.2. This is also a useful performance measure for a comparison between

the predictive power of a model and the bookmakers’ odds, but also between the models. In Table

6 it is shown that the BPRM does not outperform nor underperform the bookmakers’ odds. This is

remarkable, because, again, the bookmakers’ odds contain more recent information compared to the

BPRM. Besides that, the BPRM does outperform the ORFM in all time frames by approximately

4%. If everything is taken into account, the advantage of obtaining the exact match results, having a
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less negative hypothetical ROI for all bookmakers, in all time spans and the higher p̄three´way result

in a minor preference for the BPRM over the ORFM.

7 Limitations and Further Research

The models in this paper use a long list of variables that may or may not contribute to the predictive

power of the models. Goller et al. (2018) use a data set containing around 300 variables. In this

paper, more or less 90 variables are used. Not all variables have been retrieved, because of a limited

time span in which this paper had to be written. Although the missing variables, both the OFRM

and the BPRM worked quite well. It would be interesting to see how the models would perform with

the same data set that is used in Goller et al. (2018).

Furthermore, the models do not limit themselves to only work for football matches. The ORFM

works for all sports where you can win, draw or lose, while the BPRM needs sports where the goal

is to score more points than the other team. There are several sports that meet these conditions.

Therefore, research to further investigate the predictive performance of both models in other sports

or in other leagues can be interesting.
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10 Appendix

10.1 Data

As mentioned in Section 3, variables are used that represent team characteristics, match, schedule,

economic and location related information. The data set consists of "home", "away" and "home-

away" variables, which numbers concern the home team, the away team or the difference between

the home and away team, respectively.

The first variables that are presented are the team characteristics, which are captured in a lot

of different variables. For example, the wealth of different clubs is captured in TV Revenue, which

denotes the amount of TV revenue a certain club received in a particular season, in millions. The

variable market value denotes the market value of a club. Furthermore, there are several variables

that combine the two above variables. Other team characteristics such as the inequality within a

team is measured as the ratio of Top 3 (11) most valuable players to the market value of the players

ranked 12-14 (12-21). Also, the diversity in a team is represented by several age related variables, such

as the mean, minimum, maximum or the standard deviation of the age in a team. Other examples

are, the share of left-footed players in a team, etc. Finally, there are three variables that classify the

different clubs. traditional club indicates teams with a rich history, for example Borussia Dortmund

and Bayern Munich. yo-yo club indicates a team that gets relegated and/or promoted from/to the 1.

Bundesliga. Other clubs denote all other clubs that are neither traditional, nor yo-yo clubs.

The next set of variables are variables that contain information about the previous played games,

for each team, as well as the difference between the home and away team. For example, the amount

of points the home team got the last match day is incorporated in PG Home. The share of total

possible points the home team has won, is also used in PG Share Home.

Schedule related variables capture information such as if the home or the away team is in the

Champions League this year. If the match played is two weeks before or after a European game for

the home or away team. Finally, there are two dummy variables that indicate if it is a season before

the World cup or after, respectively.

Regional economic indicators are incorporated in the covariate set as well. Unemployment rate

and log GDP are the variables that try to reflect the economic situation in the city where a particular

team comes from.

Location related factors denote for example the maximum capacity of the home stadium, the

distance in km between the two cities of the two competing teams and the travel time between the

two cities.

The last set of variables contain variables regarding the results from the previous season. The

amount of points won, amount of goals in total and at half time, amount of shots, fouls, yellow cards,

red cards, corners and the difference in the amount of points won the previous season between the

home and away team, as well as the difference in goals scored the previous season.

23



Table 8: Descriptive Statistics

Variables Reference Unit Mean (St. dev.) Update
Team Characteristics
TV Revenue Home EURO (in millions) 26.31(13.25) Yearly
TV Revenue difference Home-Away EURO (in millions) 0.94(8.62) Yearly
Market value Home EURO (in millions) 122.13(124.93) Yearly
Market value difference Home-Away EURO (in millions) 0.08(197.64) Yearly
Market value / TV Revenue Home EURO (in millions) 4.60(3.35) Yearly
Market value / TV Revenue difference Home-Away EURO (in millions) -0.09(4.78) Yearly
Market value - TV Revenue Home EURO (in millions) 95.82(117.73) Yearly
Market value - TV Revenues difference Home-Away EURO (in millions) -0.86(162.35) Yearly
Market value share Home, Away Ratio 0.06(0.05) Yearly
Standardized market value Home - 0.05(1.01) Yearly
Standardized market value difference Home-Away - 0.0004(1.47) Yearly
Average market value Home EURO (in millions) 121.18(108.50) Yearly
Average market value difference Home-Away EURO (in millions) -0.02(157.77) Yearly
St.dev. market value Home EURO (in millions) 52.15(42.94) Yearly
St.dev. market value difference Home-Away EURO (in millions) 0.05(62.13) Yearly
Ratio of Top 3 to ranked 12-14 players’

market value
Home Ratio 3.60(1.44) Yearly

Ratio of Top 3 to ranked 12-14 players’
market value difference

Home-Away Ratio 0.002(1.83) Yearly

Ratio of Top 11 to ranked 12-21 players’
market value

Home Ratio 3.54(1.14) Yearly

Ratio of Top 11 to ranked 12-21 players’
market value difference

Home-Away Ratio -0.0007(1.41) Yearly

Age mean difference Home-Away Numerical -0.001(1.11) Yearly
Age st. dev. difference Home-Away st. dev. -0.0005(0.74) Yearly
Age 11 most valuable players difference Home-Away Numerical -0.001(1.54) Yearly
Age ratio of top 11 to ranked 12-21 dif-

ference
Home-Away Numerical 0(0.11) Yearly

Age of those above 20 difference Home-Away Numerical -0.006(4.56) Yearly
Minimum age in the squad difference Home-Away Numerical -0.0002(1.16) Yearly
Maximum age in the squad difference Home-Away Numerical -0.0002(1.16) Yearly
Share left footed players difference Home-Away Ratio -0.0001(0.09) Yearly
Share two footed players difference Home-Away Ratio -0(0.07) Yearly
Share left footed among 11 most valu-

able players difference
Home-Away Ratio -0.0002(0.17) Yearly

Share two footed among 11 most valu-
able players difference

Home-Away Ratio 0(0.10) Yearly

Mean height difference Home-Away Numerical 0(0.01) Yearly
St. dev. height difference Home-Away Numerical 0(0.01) Yearly
Mean height top 11 difference Home-Away Numerical 0(0.02) Yearly
St. dev. height top 11 difference Home-Away Numerical 0(0.02) Yearly
Traditional club Home Categorical 0.66(0.47) Once
Traditional club Away Categorical 0.66(0.37) Once
Yo-yo club Home Categorical 0.17(0.37) Once
Yo-yo club Away Categorical 0.17(0.37) Once
Other clubs Home Categorical 0.18(0.38) Once
Other clubs Away Categorical 0.17(0.38) Once

Previous Game (PG) Outcomes
PG points last match Home Numerical 1.14(1.28) Match
PG points last match Away Numerical 1.54(1.33) Match
PG points share of total Home Ratio 0.44(0.20) Match
PG points share of total Away Ratio 0.45(0.21) Match

Schedule related
Season ID Categorical 5.98(3.16) Yearly
Before European match Home Dummy 0.08 Match
Before European match Away Dummy 0.08 Match
After European match Home Dummy 0.09 Match
After European match Away Dummy 0.09 Match
In champions league Home Dummy 0.18 Yearly
In champions league Away Dummy 0.18 Yearly
Season before World cup Dummy 0.27 Yearly
Season after World cup Dummy 0.27 Yearly

Regional Economic Indicators
Log GDP per capita difference Home-Away EURO 0(0.27) Yearly
Unemployment difference Home-Away Percentage -0.02(4.60) Yearly

Location Related Variables
Stadium capacity Home Discrete 47990.56(17807) Match
Distance between cities Kilometer 371.32(185.41) Once
Transport time between cities Minutes 218(102.828)

Previous Seasons (PS) Outcomes
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Variables Reference Unit Mean (St. dev.) Update
PS goals Home Numerical 49.12(14.33) Yearly
PS goals Away Numerical 49.11(14.35) Yearly
PS points Home Numerical 46.95(13.91) Yearly
PS points Away Numerical 46.95(13.93) Yearly
PS goals at halftime Home Numerical 21.59(6.84) Yearly
PS goals at halftime Away Numerical 21.59(6.85) Yearly
PS total shots Home Numerical 444.33(68.57) Yearly
PS total shots Away Numerical 444.26(68.64) Yearly
PS shots on target Home Numerical 160.19(32.39) Yearly
PS shots on target Away Numerical 160.18(32.42) Yearly
PS total fouls Home Numerical 538.14(71.26) Yearly
PS total fouls Away Numerical 538.13(71.30) Yearly
PS total corners Home Numerical 166.76(28.84) Yearly
PS total corners Away Numerical 166.75(28.87) Yearly
PS total yellow cards Home Numerical 61.10(10.38) Yearly
PS total yellow cards Away Numerical 61.08(10.39) Yearly
PS total red cards Home Numerical 3.00(1.77) Yearly
PS total red cards Away Numerical 3.00(1.77) Yearly
PS points difference Home-Away Numerical 0.004(20.25)
PS goals difference Home-Away Numerical 0.01(20.66)

The standard deviation is shown in parentheses. This is not reported for the dummy variables.

"Home": the home team; "Away": the away team; "Home-Away": the value of the home team minus

the value of the away team. Update category match updates the corresponding variables before every

new match day.

10.2 Season 2018/19

Table 9 shows the predicted league table at match day 33 in the 1. Bundesliga in the season 2018/19.

The reason why this league table is estimated and not the final league table, is because the data of

the last match day was missing in the data set.

Table 9: The predicted and the actual table of the 1. Bundesliga season 2018/19, until match day 33, estimated with
the Ordered Random Forest model

Rank Points
Team Predicted Actual Predicted Actual
FC Bayern München 1 1 71.0 75
Borussia Dortmund 2 2 59.1 73
RB Leipzig 3 3 52.2 66
Bayer 04 Leverkusen 4 5 52.2 55
Borussia M’gladbach 5 4 51.8 55
TSG Hoffenheim 6 8 47.8 51
Hertha BSC Berlin 7 10 46.7 43
Schalke 04 8 15 46.7 32
Eintracht Frankfurt 9 6 45.9 54
VfL Wolfsburg 10 7 44.1 52
VfB Stuttgart 11 16 42.7 27
Werder Bremen 12 9 42.3 50
Hannover 96 13 17 41.9 21
FC Augsburg 14 14 40.1 32
1. FSV Mainz 05 15 12 39.7 40
SC Freiburg 16 13 38.2 33
1. FC Nuremberg 17 18 21.5 19
Fortuna Düsseldorf 18 11 20.4 41
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10.3 Programming Code

The programming code used in this paper is gathered in the zip file called "Programs_434229_Thesis".

In this Section all the different programming codes are briefly described.

10.3.1 MATLAB Code

• betting_odds1718.m

This program is used to compute the hypothetical ROIs using the proportional strategy

for season 2017/18 (see Table 3 and Table 7).

• betting_odds1718_2.m

This program is used to compute the hypothetical ROIs using the value-bet strategy for

season 2017/18 (see Table 3 and Table 7).

• betting_odds1719.m

This program is used to compute the hypothetical ROIs using the proportional strategy

where season 2017/18 and season 2018/19 are combined (see Table 3 and Table 7).

• betting_odds1719_2.m

This program is used to compute the hypothetical ROIs using the value-bet strategy where

season 2017/18 and season 2018/19 are combined (see Table 3 and Table 7).

• betting_odds1819.m

This program is used to compute the hypothetical ROIs using the proportional strategy

for season 2018/19 (see Table 3 and Table 7).

• betting_odds1819_2.m

This program is used to compute the hypothetical ROIs using the value-bet strategy for

season 2018/19 (see Table 3 and Table 7).

10.3.2 R Code

• Kronecker_ORF_1718.R

This program is used to compute the p̂three´way in Table 6 for season 2017/18 (see Table

6).

• Kronecker_ORF_1719.R

This program is used to compute the p̂three´way in Table 6 where season 2017/18 and

season 2018/19 are combined (see Table 6).

• Kronecker_ORF_1819.R
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This program is used to compute the p̂three´way in Table 6 for season 2018/19 (see Table

6).

• Poisson.R

This program is used to compute the probabilities to reach a particular goal in season

2018/19, using the BPRM (see Table 5).

• Prob_8_Matchday.R

This program is used to compute the probabilities to reach a particular goal in season

2018/19 considering the points already materialized on match day 8, using the ORFM (see

Table 4).

• Prob_Before_Season.R

This program is used to compute the probabilities to reach a particular goal in season

2018/19, computed before the beginning of the season, using the ORFM (see Table 4).

• RandomForest17_18.R

This program is used to predict the final league table for season 2017/18, using the ORFM

(see Table 1).

• RandomForest18_19.R

This program is used to predict the final league table for season 2018/19, using the ORFM

(see Table 9).

• Results_Poisson_171.R

This program is used to compute the p̂three´way for the bookmakers and the BPRM, where

the season 2017/18 and season 2018/19 are combined (see Table 6).

• Results_Poisson_1718.R

This program is used to compute the p̂three´way for the bookmakers and the BPRM, for

the season 2017/18 (see Table 6).

• Results_Poisson_1819.R

This program is used to compute the p̂three´way for the bookmakers and the BPRM, for

the season 2017/18 (see Table 6).

• RF.R

This program is not used for the content in this paper. It contains a self-written code for

the random forest algorithm. The code contains a function called SingleTree1, which is

captured in Single regression tree2.R.

• Single regression tree2.R

This program is not used for the content of this paper. It contains a self-written code that

constructs a single decision tree, which is the basis for the random forest code in RF.R.
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