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Abstract
Train operators are responsible for the scheduling of train units on every trip they carry out.

They have to decide the train unit decomposition that can suffice the demand of seats on every

trip. This problem is known as the Train Unit Assignment Problem. This thesis is concerned

with solving this problem, by first testing the effective peak period heuristic opposed in

Cacchiani et al. (2019). The heuristic is finetuned by analyzing the best settings in the

heuristic, for the instances used in this thesis. Thereafter, this thesis gives three improvements

to the heuristic that strongly decrease the runtime. One improvement is suggested in

particular, because it excels in terms of runtime.

The views stated in this thesis are those of the author and not necessarily those of Erasmus School of

Economics or Erasmus University Rotterdam.
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1 Introduction

When train operators are managing the railway system in a certain region, they have the re-

sponsibility to provide every trip in the region with enough train units. A trip has enough

train units, if these train units combined contain enough seats to satisfy the demand on the

trip. When a train operator knows how many seats a train on each trip needs, it is also known

which combinations of different types of train units together satisfy the demand, for every trip.

The train operator has to decide how to assign their train units to the trips, such that all the

demand is satisfied. This problem is generally known as the Train Unit Assignment Problem

(TUAP). Train operators need to know the least cost total decomposition of train units to buy.

Solving the TUAP provides this information, with the goal of minimizing the total train unit

purchase cost in mind. The total cost of the needed train units is especially important for train

operators that want to take control over a new region. Namely, which train operator is going to

take control over the region is decided by means of a bidding competition between the potential

train operators.

Of course, operating a railway system will provide the company with more costs than only

the payment of train units. But the train unit costs are generally very high, and train units

can not be acquired for a short time, as mentioned in Peeters and Kroon (2008). This means

that the company will have to pay for unused train units in uneventful times, because a higher

amount of train units is needed in the peak period. Moreover, Lin and Kwan (2014) suggest

that the crew planning is partly decided by the TUAP. Having a good solution to the TUAP

during the peak period is therefore really important for train operators.

Several contents will be discussed in this thesis, starting with the contribution in Chapter

1.1. After that, the existing literature related to this thesis is summarized in Chapter 2. The

problem that is tackled is then clarified in Chapter 3. Chapter 4 elaborates the methodology

that is used to get the desired results of Chapter 6. Chapter 6 also shows the results of different

improvements to the heuristic, that are explained in Chapter 5. The conclusions that are a

result of this thesis, are stated in Chapter 7. Finally, the results are discussed in Chapter 8.

1.1 Contribution

This thesis is a rework of Cacchiani et al. (2019), in which a heuristic for solving the TUAP is

proposed. The aim is to both investigate and extend their recommended heuristic for solving

the TUAP. One of the things the extensions focus on, is reducing the runtime of the heuristic.

Cacchiani et al. (2019) show that all forms of the TUAP that are used, are NP-hard. It is

therefore very useful to get insight and improvement in the running time of the heuristic.

The idea of the heuristic is to get the lower bound cost, and to iteratively let the upper bound

solution decrease. After the iteration process is done, the gap between the lower bound cost and

the upper bound cost is preferably zero. If not, the best solution cost found is equal to the upper

bound. The lower bound cost is found by solving a LP-model and an ILP-model for a specific

set of trips. Then the upper bound cost is considered multiple times by solving LP-models in

the heuristic procedure. Although small gaps were found in Cacchiani et al. (2019), this thesis

aims to reduce the upper bound cost by making changes in the used heuristic.

To improve the heuristic in terms of solution cost and runtime, the main causes of high

upper bounds and long runtimes have to be identified. In order to investigate those causes, the

heuristic as in Cacchiani et al. (2019) is first tested on multiple data sets. Once the bottlenecks

are detected, purposeful extensions are developed.

2 Literature

The train unit assignment problem is a well-studied problem, especially when small variations

are taken into account. For example, similar problems exist for cars, ships and such, instead of

train units. Railway optimization problems in general are studied intensively. An overview of
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optimization models for the most commonly studied passenger railway transportation problems

is made by Huisman et al. (2005). The crew planning of the train units is an example of a

railway optimization process that is related to the TUAP.

This thesis, however, is only concerned with the TUAP, so only existing literature about

that specific problem is mentioned here. Given a timetable and the passengers’ seat demand,

a model and branch-and-price algorithm determine an allocation of rolling stock to the daily

trips in Peeters and Kroon (2008). Lin and Kwan (2014) solve the same problem as in Peeters

and Kroon (2008) with a model of an integer fixed-charge multicommodity flow problem, by

using this in a heuristic. This article is followed by Lin and Kwan (2016), in which the problem

is solved with a branch-and-price algorithm instead. As an extension to Peeters and Kroon

(2008), combining and splitting trains at stations of different lengths is taken into account in

Fioole et al. (2006).

Another form of a TUAP is described by Schrijver (1993). One day with trips is considered,

on which the passenger seat demand must be satisfied for every trip. The problem is solved

by integer linear programming. Borndörfer et al. (2015) give a mixed integer program for the

rolling stock problem, in which maintenance is also considered. The problem is solved by means

of an algorithm. When only the adjustment of the rolling stock planning is considered, because

of urgent maintenance requests, a multicommodity flow type model can be solved, as suggested

by Maróti and Kroon (2005). Other papers concerning rescheduling of the rolling stock planning

because of maintenance are Giacco et al. (2014) and Wagenaar et al. (2017). The paper Lusby

et al. (2017) is concerned with rescheduling of the rolling stock planning in general, where the

problem is solved with a branch-and-price algorithm. In Cordeau et al. (2001) a similar problem

for freight trains is introduced. Instead of using enough train units to satisfy passengers’ seat

demand, this problem is about deciding the minimum number of locomotives, in order to give

every train enough power to transport the weight of the freight.

A slightly different problem, and with that, another solution approach is considered by

Abbink et al. (2004). Here the number of available train units is known, and given this number,

the best allocation of train units has to be found in order to give as many travelers as possible

a seat. An article that focuses on specific rules that must be considered for coupling and

uncoupling train units, as opposed to this thesis, is Alfieri et al. (2006).

There are also articles that connect the TUAP with other closely related problems. One

of them is Haahr and Lusby (2017), in which the rolling stock scheduling problem is combined

with a train unit shunting problem.

This thesis resembles Cacchiani et al. (2019) the most, obviously, as it is a rework of that

article. The exact version of this TUAP is used by these authors twice before, in Cacchiani

et al. (2010) and Cacchiani et al. (2013). The first one solves the integer linear programming

model that is constructed by means of a developed heuristic. Due to the quite long running

time of this procedure, a faster heuristic based on the Lagrangian relaxation of the problem is

suggested in Cacchiani et al. (2013). However, the quality of the solutions in the latter article

tend to slightly decrease when bigger instances are considered. Finally, the proposed heuristic

in Cacchiani et al. (2019) is supposed to give good, fast solutions.

3 Problem description

In the TUAP there is a set of trips J = {1, ..., N} and a set of train units I = {1, ...,M}. By

solving the TUAP, the aim is to find a least cost assignment of the train units to the trips. This

is done by sequencing every train unit to different trips in an efficient way. Train units that

arrive at a certain train station can thereafter be used for other trips leaving the same station.

The assumption is that an arrived train unit needs tj minutes of time before it can depart on

another trip. Another assumption is that, in order to meet demand, all different types of train

units can be combined with each other, and no specific order is needed. As opposed to other

related works, deadheading is not taken into consideration in this thesis. In other words, train
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units can not travel to other train stations without being assigned to a trip j ∈ J . Ultimately,

the goal is to find the least cost set of train units I with which the TUAP can be solved.

In the set of trips J , the total number of trips to be covered is given by N . Each trip j ∈ J
has the following information: its departure (set off) time sj , its arrival time aj , the arrival and

departure station, the demanded number of seats dj , and the rail line number. Each rail line

can handle a maximum train length of lj . This parameter has subscript j of a trip, because each

trip runs over a single rail line.

There are p different types of train units available for purchase, each k = 1, ..., p indicates a

different type of train unit. The yearly cost for a single train unit of type k is Ck, the number

of available seats inside a train unit of type k is Sk and the length of a train unit is Lk.

In the TUAP, these are the restrictions that must be satisfied:

-Demand The demand of every trip j ∈ J must be covered.

-Sequencing Trips z, j ∈ J can only be performed with the same train unit, if and only if:

1. the destination station of trip z is the same as the departure station of

trip j.

2. sj ≥ az + tz, meaning that there is enough time for an arrived train unit

to get ready for the next departure.

-Length The total length of the train units combined on trip j can be lj at most.

4 Methodology

In this chapter, the heuristic as proposed in Cacchiani et al. (2019) is described. They state that

the heuristic basically consists of three parts: getting an initial solution lower bound, checking

whether this lower bound is suitable as a solution for the whole instance (e.g. the upper bound

equals the lower bound), and working towards a feasible solution if the upper bound and lower

bound differ. These three parts are elaborated in Chapter 4.1, 4.2 and 4.3, respectively. The

methodology for getting a lower bound on the peak period schedule cost (PP-LB) was first

introduced in Cacchiani et al. (2010). The constructive phase of 4.2 and the feasibility phase of

4.3 are the building blocks of the effective heuristic in Cacchiani et al. (2019). How to combine

the three parts in the heuristic, is shown in Chapter 4.4.

4.1 Getting a lower bound

The first step in getting the PP-LB is based on the notion of incompatible trips. The incompatible

trips are the trips that are impossible to sequence, because of the sequencing and demand

restrictions mentioned in Chapter 3. These trips are really important, because distinct train

units have to be used for each incompatible trip. Therefore, the train units needed for all trips

together are at least those train units needed to serve all the incompatible trips.

The idea is to start with reducing the set of trips J to a set of trips S that only contains the

incompatible trips. The PP-LB is then obtained by assigning the trips in S to train units in the

most efficient way. The procedure to obtain S starts with making a directed graph G = (V,A),

where the nodes in V are the trips in J . Each node has corresponding demand dj . The nodes

are connected by the arcs in set A, where an arc (z, j) ∈ A exists if and only if for two trips

z, j ∈ J , the two requirements for the sequencing restriction described in Chapter 3 are met.

To get set S, the maximum-weight stable set in G has to be constructed. This is the same as

finding the minimum number of paths such that each node in V is covered by at least dj paths.

By adding a sink τ and a source θ to the set of nodes to obtain V̄ , a minimum flow problem

with the demands on the nodes can be solved. The source node θ is connected to the nodes in V

without in-going arcs and the sink node τ is connected to all nodes in V without out-going arcs.
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The addition of these arcs to A gives the new set of arcs Ā. Here in-going and out-going arcs of

node j are represented by δ−(j) and δ+(j), respectively. Furthermore, a continuous variable fzj

is introduced, which equals the flow of paths on arc (z, j) ∈ Ā. The linear programming model

is shown below:

min
∑

(θ,j)∈δ+(θ)

fθj (1)

s.t.
∑

(z,j)∈δ−(j)

fzj =
∑

(j,z)∈δ+(j)

fjz j ∈ V (2)

∑
(z,j)∈δ−(j)

fzj ≥ dj j ∈ V (3)

fzj ≥ 0 (z, j) ∈ Ā (4)

The objective function (1) minimizes the flow leaving the source θ. Constraints (2) make sure

that no flow is lost for all nodes except the sink and the source. Restrictions (3) make sure

that the demand is satisfied for all nodes in V . Finally, (4) makes sure that the variables in the

model are continuous and positive. With integer demands on the nodes, integer flows on the

arcs will be attained.

By solving the model (1)-(4), the maximum-weight stable set S can be constructed. Because

the paths dj decide the weight, this is done by taking the dual variables of the constraints that

are concerned with the demand, constraints (3). These dual variables select the nodes that will

construct set S of incompatible trips, if they are strictly positive valued. Now the train units

have to be assigned to the trips in S, to get the PP-LB. To solve the assignment problem, integer

variable wkj is introduced. This variable equals the number of train units of type k that cover

trip j. The following integer linear programming model is attained:

min

p∑
k=1

∑
j∈S

Ckwkj (5)

s.t.

p∑
k=1

Skwkj ≥ dj j ∈ S (6)

p∑
k=1

Lkwkj ≤ lj j ∈ S (7)

wkj ∈ N k = 1, ..., p, j ∈ S (8)

The goal here is to minimize the total cost of train units, given in (5). The constraints (6) ensure

that there are enough seats on every trip in S. Additional constraints (7) have to be added to

make sure that trains do not become too long for the rail line. The variables are integer valued

because of (8). The models (1)-(4) and (5)-(8) together satisfy the demand, sequencing and

length constraints of Chapter 3, for all the incompatible trips. Therefore, the objective function

(5) gives the PP-LB. By summing the values of wkj over j for every train unit type k separately,

the minimum number of train units per type is obtained. These values are noted as d̄k.

4.2 Constructive phase

In the constructive phase, train units are assigned to so-called critical and uncritical trips. It is

tested whether or not the values of d̄k found in the PP-LB are sufficient for serving the critical

and uncritical trips together. If these values are indeed sufficient, an optimal solution is found.

If these values are not sufficient, additional train units are needed, and an upper bound higher

than the PP-LB will be found. To test this, the results of the models in Chapter 4.1 are needed.

The set of trips J is initially separated into the critical trips CJ := S and the uncritical trips
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UJ := J \ CJ . First the assignment of the critical trips is considered. There are five steps

included in this assignment problem, that will be repeated for nc iterations or until all critical

trips have been assigned:

1. Take a single trip j of the set CJ at a time, beginning with the first trip in the set.

2. Make a set FSEL that contains all subsets of the available train units, in which each of

those subsets has a total capacity of seats that is at least equal to the demanded number

of seats for trip j, and in which each of those subsets has a combined train unit length of

at most lj . Then order these subsets by ascending total seat capacity and choose the first

one of those subsets, such that the subset with the capacity closest to dj is chosen first.

The available train units are given by the d̄k values. Multiple train units of the same type

k can appear in the same subset. The subset of train units selected in this step is called

TU .

3. For every train unit type in TU , solve the SDVSP (9)-(12) given in Chapter 4.2.1. This

model decides the currently optimal scheduling of train units of this type, to all the trips

that make use of this train unit type. With that, the model gives information about how

many train units of this type are needed to serve all trips that use this train unit type,

called SDVSP(k).

4. The TU chosen in step 2 can only be accepted if SDVSP(k) does not exceed d̄k for any of

the types k that are part of TU . If it is accepted, go to step 1 with the successor trip of

trip j, and follow the steps again. If not, go back to step 2 and select the next best subset

of train units TU , before following the steps again. If none of the subsets considered in

step 2 gets accepted in step 4, let trip j remain uncovered and go to the successor trip of

the current trip in step 1. Go to step five if there are no trips left to consider.

5. (a) Stop the iteration process if none of the critical trips remains uncovered. If that is

not the case, up the iteration counter by one and change the order of the trips in

CJ . This different order is determined by considering the uncovered trips u ∈ CJ .

If u ∈ S, this trip is placed just before the covered trips in S. Else, it is placed just

after the trips in S and just before the covered trips in CJ . With this new set CJ ,

reset all the trips in the set to uncovered and start at step 1 again.

(b) If the number of iterations equals nc for the first time while there are still trips left

uncovered, reset the iteration counter nc and set all the trips in the set to uncovered.

Now repeat steps 1-5, but change step 5 in this second stage. Now move every trip left

uncovered before the covered trips in set S, regardless of the uncovered trip belonging

to S or not.

(c) If the number of iterations equals nc for the second time while there are still trips left

uncovered, stop the procedure and save the trips left uncovered.

The pseudocode for the 5 steps of the assignment procedure can be seen in Figure 1. The

assignment of the trips in UJ follows the same procedure as the trips in CJ , only step 5 is

disregarded. So when assigning the uncritical trips, the pseudocode only consists of lines 1-4

and 6-26 together, and CJ becomes UJ .
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Figure 1: The five step procedure for trip assignment, in the form of pseudocode

4.2.1 Single depot vehicle scheduling problem

In step 3 of the assignment problem, the Single Depot Vehicle Scheduling Problem (SDVSP) is

needed. Solving this problem decides whether or not the selected TU can be accepted. To solve

this problem for every type of train unit that is used, again a graph is needed. Every trip that

uses this type of train unit becomes a node in this graph, and a source node σ and sink node

τ are added. All trips that satisfy the sequencing rules of Chapter 3 are connected by an arc.

Furthermore, every trip is connected with an arc to both the source and sink node. The trips

are part of set V ′ and all the arcs are part of set A′. The source and sink node are added to

set V ′, noted as set V ′′. Now a directed graph G = (V ′′, A′) can be made, with costs czj on the

arcs. The cost on an arc from the source to a trip equals Ck, the cost on every other arc is set

to 0. Some trips can be in need of multiple train units of the same type, which has to be taken

into account. Therefore, the parameter nkj is introduced, which equals the number of train units

of type k that cover trip j. There are nkj − 1 dummy nodes in the graph, for every value of nkj
that exceeds 1. This ensures that trips covered by multiple train units of the same type will

get distinct train units of that type, because the dummy nodes and original node violate the

sequencing restriction. The continuous variable yjz equals the number of times a train unit of

this type uses arc (z, j) ∈ A′. This variable equals 0 or 1, with demanded values on the nodes

being the integer value of 1. The model that has to be solved now becomes:
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min
∑

(z,j)∈A′
czj yzj (9)

s.t.
∑

(j,z)∈δ+(j)

yjz = 1 j ∈ V ′ (10)

∑
(z,j)∈δ−(j)

yzj = 1 j ∈ V ′ (11)

yzj ≥ 0 (z, j) ∈ A′ (12)

The minimum cost for the SDVSP is attained by (9). By dividing this objective function with

Ck, the needed number of train units of this type is obtained, called SVSP(k). The constraints

in (10) and (11) together ensure that a train unit of type k enters and leaves the node of each

(dummy) trip. Namely as before, in-going and out-going arcs of node j are represented by δ−(j)

and δ+(j), respectively. Finally, restrictions (12) make sure that the variables in the model are

continuous and at least zero.

4.3 Feasibility phase

After the assignment of the trips in CJ and UJ , there are no trips left uncovered in an ideal

situation. In this case, the values of d̄k were enough to satisfy the demand for the whole set of

trips J , a feasible solution has been found. The total cost of the upper bound equals the PP-LB

in this case. However, this is only the case if there are no uncovered trips coming out of the

constructive phase.

If not all the trips in J can be covered with the amount of train units d̄k (in other words,

there are uncovered trips left at the end of the constructive phase for at least one of the sets

CJ and UJ), additional train units have to be added to find a feasible solution. The trips left

uncovered will be assigned to the additional train units, by using the same procedure that is

used for the uncritical trips, as mentioned in Chapter 4.2. The d̄k values are increased by a

big amount for every train unit type, such that every trip in J will be covered after this phase.

The additional amount is big enough, if no subset of train units for an uncovered trip is denied

because of the need of additional train units. Adding the objective functions of the last executed

SDVSP models for each type k, gives the feasible solution cost.

4.4 Combining phases in the peak period heuristic

The constructive phase and the feasibility phase are generally not executed only once. They

are sequentially done at most niter times, if no optimal solution is found before that number

is reached. The order of the trips in set CJ is determined by the set that comes out of the

constructive phase of the last iteration. The order of the trips in UJ stays chronological in

every iteration. The uncovered trips of both the critical and the uncritical sets are added to the

end of CJ at the end of the constructive phase, as long as no optimal solution is found. At the

end of the feasibility phase, the lowest solution cost is updated if a feasible solution better than

the old one is found.

It is important that the assignment of the trips in CJ and UJ is done sequentially in the

constructive phase. The trip assignment in the feasibility phase is done after the assignment

of the trips in the constructive phase. Assigning trips in CJ , UJ and the set of uncovered

trips, can be seen as three stages of trip assignments. Each stage has a different set of trips to

be assigned, but the train units assigned to the trips already covered have to be remembered

in every consecutive assignment stage. The subsets of train units already assigned have to be

saved, in order to solve the correct SDVSP in every trip assignment. For the trips covered, the

values of nkj have to be stored as well. Only when a new iteration of the heuristic starts, the list

of train units already assigned to trips and the values of nkj can be reset. The procedure of the
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peak period heuristic can be seen in Figure 2.

Figure 2: A flowchart of the peak period heuristic

5 Improvements to the heuristic

The heuristic as proposed by Cacchiani et al. (2019) is mainly focused on covering all the trips

with only the use of the number of train units found in the PP-LB solution. There is no guarantee

that this is possible, or that the number of trips left uncovered decreases in each iteration of niter.

However, the only stopping criterion of the heuristic, besides the maximum number of iterations

being reached, is when no trips are left uncovered after the constructive phase. Therefore, the

efficiency of the algorithm decreases when finding an upper bound equal to the lower bound

seems unlikely. Especially the running time of the heuristic can be decreased by slight changes

in the heuristic, as explained in Chapter 5.1. Furthermore, Chapter 5.2 explains how possibly

better and certainly faster solutions can be obtained by adding new stopping criteria to the

heuristic.

The methodology of Chapter 4.3 stated that the values of d̄k have to be increased by an
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amount big enough, such that no subset of train units will be denied in the feasibility phase.

This is different than the methodology used by Cacchiani et al. (2019), they increased the values

of d̄k to the maximum number of train units available per type. No such increase is possible

in this thesis, as no maximum availability of train units is given. The used methodology may

cause bad trip assignments in the feasibility phase, as the first selected TU will be accepted for

all the trips. Therefore, a different trip assignment procedure for the feasibility phase is given

in Chapter 5.3.

5.1 Fine tuning

With no maximum on the train units available for purchase, the set FSEL could become

enormous if the train length restriction is not taken into account. Even if the length restriction

is considered, one could argue that not having a maximum amount of train units per subset

would not lead to better solutions. Take for instance the case that the demand on trips can all

be satisfied with 2 train units, when taken individually. When including subsets of train units in

FSEL of size 5, this will most likely lead to unnecessary attempts to solve the SDVSP models.

Namely, when assigning 2 train units to a trip is not possible with the d̄k values, assigning

even more train units to this trip is in general also not possible with these d̄k values. So the

subsets of size 3,4 and 5 all have to be tested by executing SDVSP models, while these additional

executions most likely will not lead to a feasible solution. Because of this, the assumption is that

the runtime of the heuristic will increase without getting better solutions, when the maximum

size of subsets in FSEL increases. However, the heuristic will miss the opportunity to find

better solutions, if the size of the subsets becomes too restricted. To test this assumption, the

heuristic will be executed with different maximum sizes a of train unit subsets, noted by FSEL

#a.

Another assumption that can be tested is that the second stage, as described in 5.(b) of

the trip assignment procedure in Chapter 4.2, leads to additional runtime without giving better

solutions. To test this assumption, the results of the heuristic are gathered twice: once with

inclusion of the second stage, and once without using this second stage.

The last adjustment that can possibly lead to better results, is changing the order of the

train unit subsets in FSEL. Initially, these subsets are given in ascending order of total seat

capacity that these train units together provide. However, when dealing with a cost minimization

problem as in this thesis, intuitively it might be more suitable to order the subsets in ascending

order of the total cost of the train units in a subset. The heuristic is therefore also performed

with the subsets in FSEL being ordered by ascending total cost.

5.2 Additional stopping criteria in the assignment problem of CJ

After each iteration in the assignment of critical trips, there are zero or more trips left uncovered.

When all these trips are added to the set of uncovered trips, the size of this set can be obtained,

called uncoveredTripSize.

In an extension to the heuristic, the first step is to use the set-up that seems the most

optimal after studying the results of Chapter 5.1. Here a set-up instruction states the following

characteristics of the heuristic: the number a used in FSEL #a, whether or not a second stage

is included, whether the subsets in FSEL are ordered by ascending capacity or cost. With the

optimal set-up, additional stopping conditions are added to the heuristic. The goal is to cover as

many trips as possible with the given d̄k values in the PP-LB solution. In order to work towards

this goal, stopping conditions need to lead to a decreasing pattern of the uncoveredTripSize

values in the assignment of the critical trips. When this pattern appears to go in an increasing

direction, the heuristic has to stop with the assignment of the trips in which uncoveredTripSize

was lowest. In order to do so, in each iteration of nc the following information has to be saved:

− The uncoveredTripSize of this iteration, the last iteration and the second to last iteration.
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− The set of uncovered trips in this iteration, in the last iteration and in the second to last

iteration.

− The trip assignment per train unit type for the trips covered in this, the last and the

second to last iteration.

− The values nkj in the trip assignment of the covered trips in this, the last and the second

to last iteration.

Take the last three parts together in a collection for every iteration of nc, such that an information

collection for the current, last and second to last iteration is obtained. With the first part of

information, three stopping conditions can be checked after each iteration. When the values of

uncoveredTripSize are A, B and C in three consecutive iterations (C is the the value in the

current iteration, A the value in the second to last iteration), the assignment of critical trips has

to be stopped if:

1. B < A and B < C, stop the assignment problem with the information collection of the

last iteration, belonging to the value B.

2. A < B ≤ C, stop the assignment problem with the information collection of the second to

last iteration, belonging to the value A.

3. A = B and B < C, stop the assignment problem with the information collection of the

last iteration, belonging to the value B.

The intuition of these stopping conditions is to get better solutions. In the original heuristic,

the assignment of trips in CJ ends with the trips left uncovered after iteration nc, if none of

the iterations before that result in covering all the critical trips. There is no guarantee that the

number of trips left uncovered after iteration nc is lower than the number of trips left uncovered

in any other iteration. In the contrary, the additional stopping conditions focus on ending the

trip assignment with the lowest number of trips left uncovered. In most iterations of niter, this

extension will therefore lead to smaller values of uncoveredTripSize in the feasibility phase. Less

uncovered trips will most likely need less additional train units to become covered, resulting in

better solutions.

Besides that, the runtime could decrease drastically as well, because the assignment problem

of critical trips is stopped earlier when one of the stopping conditions is met before the iteration

counter reaches nc. These additional stopping conditions are added to the five step procedure

of Chapter 4.2, when executing the assignment problem of set CJ . The pseudocode in Figure 1

shows that these conditions influence the runtime by possibly shortening the while loop of line

5.

5.3 Improved trip assignment in the feasibility phase

The idea of the feasibility phase remains the same. The objective is to find a feasible solution,

by assigning the uncovered trips to additional train units. Instead of adding a big amount of

train units of every type instantly, small amounts of train units will now be added iteratively.

The numbers of train units used in each iteration are dkfeas, initiated as the d̄k values. For every

trip that remains uncovered, the cheapest subset of train units TU ∈ FSEL is considered. The

amount of train units per type, that are part of this TU , are counted. This gives a number

of train units to be added for every type k, referred to as needed(k). When these numbers

are obtained for every trip left uncovered, the highest of those numbers is chosen for every

type, named increase(k). In every iteration, the values of dkfeas are increased by increase(k).

With these values, do the trip assignment as in lines 7-26 in Figure 1 with lines 11,17 and 25

disregarded. With the deletion of these lines, the trip assignment is only tested for the cheapest

TU of every trip. If there are still trips left uncovered, go to the next iteration of the feasibility
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phase. If all trips are covered, a feasible solution is found. If the total cost of the amount of train

units in dkfeas is the cheapest solution yet, update the best solution cost and end the feasibility

phase. The pseudocode for the trip assignment in the improved feasibility phase can be seen in

Figure 3.

Figure 3: The pseudocode for the improved feasibility phase

5.3.1 Implementation in the heuristic

The improved feasibility phase replaces the feasibility phase of the heuristic shown in Figure 2.

The heuristic that is used when testing this new procedure, has the additional stopping criteria

of Chapter 5.2 as well. This implementation is referred to as the improved feasibility heuristic.

Besides this implementation, there are other ways to use this new procedure of trip assignment.

The feasibility phase is only executed after the constructive phase fails to find a solution

equal to the PP-LB. By iterating over nc in the constructive phase, the heuristic tries to find

such a solution equal to the PP-LB multiple times. If it is unlikely that such a solution will

be reached, a lot of runtime is wasted in the constructive phase. In the contrary, the feasibility

phase always finds a feasible solution. Furthermore, the improved feasibility phase goes towards

a feasible solution with a cost-minimizing approach. When it is unlikely that the d̄k values are

enough to cover all the trips, it is therefore useful to let the heuristic focus more on the improved

feasibility phase instead of the constructive phase. To do this, the trip assignment of the critical

trips is only executed once (as if nc = 1) in the constructive phase, before going to the feasibility

phase. While doing this, updating the set CJ has to be done differently. After the constructive

phase, the trips left uncovered in CJ get added to the new set CJ in the same way as described

in step 5.(a) of Chapter 4.2. The trips left uncovered in UJ are added to the end of CJ . The

12



procedure as described here, is named the short heuristic.

Another implementation of the improved feasibility phase leads to the new heuristic. This

heuristic starts with the assignment of trips in CJ as in the short heuristic (as if nc = 1). If

there are trips left uncovered, the trip assignment of Figure 3 is executed on these trips. If this

is the case, then the trip assignment of the trips in UJ is done as usual (with lines 1-4 and 6-26

of Figure 1), but with the values of dkfeas attained in the trip assignment of uncovered trips in

CJ . If the set UJ has trips left uncovered after this trip assignment, the procedure of Figure

3 is done again with these uncovered trips. This implementation basically splits the feasibility

phase into one feasibility phase for the trips in CJ and one feasibility phase for the trips in UJ .

The assignment of the trips in UJ is only started if all trips in CJ are covered, and the trip

assignment of the trips in UJ uses the number of train units needed for covering all the trips in

CJ . For the next iteration of niter, the sets CJ and UJ are updated in the same way as in the

short heuristic.

6 Results

A data set containing four different instances is given, each instance having only trips in the

north of Italy. The instances consist of a list of 200, 318, 564 and 1010 trips, respectively. All

the trips in a single instance have to be executed between 5:00 a.m. and 11:30 a.m., on the same

day. In all instances, the assumption is that an arrived train unit needs five minutes of time

before it can depart on another trip, so tj = 5 ∀j ∈ J . There are three different types of train

units available in each instance: type OC, type OH and type OT. The specifications of each

train unit type are shown in Table 1. In every set-up of the heuristic, nc is set to 10 and niter is

set to 20. The programs are written in Java, making use of the CPLEX optimization package

in the process.

Table 1: The specifications of all train unit types

Type OC Type OH Type OT

Yearly cost e 230,000.- e 190,000.- e 330,000.-
Seat capacity 500 360 640
Length 100 75 125

The PP-LB is the same with every set-up of the heuristic, because the methodology of Chapter

4.1 is never changed. The results of the PP-LB’s of the four instances can be seen in Table 2.

The PP-LB cost of instance 4 more than doubles that of instance 3, while there are not twice

as many trips in instance 4 as in instance 3. This means that a bigger percentage of the total

trips is incompatible in instance 4 than in instance 3.

Table 2: The PP-LB cost and values of d̄k

PP-LB Instance 1 Instance 2 Instance 3 Instance 4

Cost e 49,950,000.- e 51,820,000.- e 60,570,000.- e 143,090,000.-
Train units 215 224 259 609
d̄OC 119 123 144 310
d̄OH 65 70 75 192
d̄OT 31 31 40 107

6.1 Comparing set-ups

The heuristic is executed 16 times in total: the four instances are executed with four different

set-ups. The results of these 16 executions are shown in Table 3. The initial setup is the one

discussed in Chapter 4, called #3. This name indicates that the subsets of FSEL are of size

3 at most. The other 3 set-ups are the ones described in Chapter 5.1. The name #5 indicates

the set-up with subsets of FSEL being of size 5 at most. The name first indicates the same

set-up as #3, in which the second stage of the critical trip assignment is not executed. The
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set-up similar to first, but in which the subsets in FSEL are ordered by ascending cost instead

of ascending capacity, is called cost.

Table 3: The results for different set-ups of the heuristic

Instance 1 Instance 2
#3 #5 first cost #3 #5 first cost

Cost (million euro’s) 53.41 53.52 53.54 51.91 63.00 62.76 63.31 61.39
Gap PP-LB and cost (%) 6.7 6.9 6.9 3.8 19.5 19.1 20.0 16.9
Train units 231 230 230 223 270 270 271 263
OC 119 123 120 123 128 122* 131 142
OH 78 72 74 67 95 101 93 80
OT 34 35 36 33 47 47 47 41
Runtime (seconds) 229 277 112 57 603 827 365 170

Instance 3 Instance 4
#3 #5 first cost #3 #5 first cost

Cost (million euro’s) 80.34 80.37 78.86 77.30 171.58 170.01 166.22 157.33
Gap PP-LB and cost (%) 28.1 28.1 26.2 24.3 18.1 17.2 15.0 9.5
Train units 342 341 336 326 730 727 710 669
OC 167 169 169 174 318 307* 335 339
OH 113 109 108 92 268 280 247 211
OT 62 63 59 60 144 140 128 119
Runtime (seconds) 1389 1991 833 484 4515 5326 2476 1413

* These values are lower than the corresponding d̄k values of Table 2. This is possible, since the lower

bound is on the cost, not on the d̄k values.

When looking at the results of Table 3, a notable observation is that the gaps between the PP-

LB and the upper bound cost are bad for instances 2, 3 and 4. Especially the gaps in instance

3 are really big, regardless of the set-up that is used. The gaps of instance 1 and 4 are the

smallest, which shows that the quality of the solutions does not generally decrease as the size of

the problem increases. However, the runtime increases significantly as the size of the problem

increases. When the size of the problem approximately doubles, for example when comparing

instance 3 to instance 4, the runtime of the heuristic more than doubles. This is the case for

every set-up used.

When adjusting the heuristic, the goal is to analyze the percentage difference between the

solutions found and the runtimes found. These results are obtained by comparing the results

shown in Table 3. A summary of those percentage differences is made in Table 4. The three

comparisons being made are between:

− #3 and #5. The cost difference between the solutions of these set-ups is really small.

Besides that, the solution cost of #3 sometimes is smaller than the solution cost of #5.

The runtime of #3 is way faster for every instance. Choosing #3 is therefore the better

choice.

− #3 and first. Similar observations as when comparing #3 to #5 are made. The first

set-up is way faster than the #3 set-up, and the differences in cost can be slightly better

for either of the set-ups. Therefore, first is preferred.

− first and cost. When ordering the subsets in FSEL by ascending cost, in general bet-

ter results are obtained. This was to be expected, as the main goal is to minimize the

cost. Surprisingly, the runtime is also shorter with the cost set-up. Because of the better

solutions and shorter runtime, set-up cost is the best choice.
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Table 4: The percentage difference between different set-ups, for cost and runtime

Difference (%)
#3 to #5 #3 to first first to cost

Instance 1
Cost 0.21 0.24 -3.00
Runtime 21.30 -50.93 -49.06

Instance 2
Cost -0.38 0.49 -3.03
Runtime 37.16 -39.53 -53.39

Instance 3
Cost 0.04 -1.84 -1.98
Runtime 43.39 -39.99 -41.87

Instance 4
Cost -0.92 -3.12 -5.35
Runtime 17.97 -45.15 -42.93

6.2 Improvements

There are four different heuristics that have implemented improvements to the heuristic of

Chapter 4. These heuristic all use the same set-up as in the cost heuristic, because that set-up

is the best one found. The four improved heuristics are stop, feas, short and new. The name

stop refers to the heuristic with the added stopping conditions, as described in Chapter 5.2. The

names feas, short and new refer to the improved feasibility heuristic, short heuristic and new

heuristic of Chapter 5.3, respectively.

With these four heuristics being executed for the same four instances, there are again 16

executions of a heuristic. The results are shown in Table 5. The gaps for the improved heuristic

are still quite big, but smaller than the gaps in Table 3. The solutions found in the four different

heuristics are all really similar. However only slightly better, the short heuristic gives the best

solutions for each instance. The runtime of the new heuristic is lower than the runtimes of the

other heuristics, for every instance. The runtimes of the short heuristic are really low for small

instances, but drastically increase as the size of the instance increases. For the big instances,

the runtime of this heuristic surpasses the runtime of the stop heuristic. The feas heuristic is

the worst one in terms of runtime.

Table 5: The results for different improvements to the heuristic

Instance 1 Instance 2
stop feas short new stop feas short new

Cost (million euro’s) 51.83 51.83 51.69 51.73 61.39 61.39 60.42 61.39
Gap PP-LB and cost (%) 3.7 3.7 3.4 3.5 16.9 16.9 15.3 16.9
Train units 223 223 223 223 263 263 260 263
OC 121 121 121 122 142 142 139 142
OH 69 69 70 69 80 80 82 80
OT 33 33 32 32 41 41 39 41
Runtime (seconds) 28 29 12 12 75 95 56 41

Instance 3 Instance 4
stop feas short new stop feas short new

Cost (million euro’s) 78.03 78.03 77.17 78.36 157.33 157.33 156.04 156.67
Gap PP-LB and cost (%) 25.2 25.2 24.1 25.6 9.5 9.5 8.7 9.1
Train units 329 329 325 330 669 669 666 667
OC 171 171 172 171 339 339 342 339
OH 96 96 92 96 211 211 211 211
OT 62 62 61 63 119 119 130 117
Runtime (seconds) 281 501 405 209 850 1609 1236 695

When improving the heuristic, the goal is again to analyze the percentage difference between the

solutions found and the runtimes found. Therefore, the results of Table 5 are compared to the

results of the base case, which is the cost set-up. The percentage differences between the cost

set-up and the four new heuristics, are shown in Table 6. The four comparisons are as follows:
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− In the stop heuristic, the addition of extra stopping conditions is tested. The goal of

lowering the cost does not seem to be achieved with this heuristic, as the cost difference is

really small, or non-existent. However, the runtime drastically decreases while obtaining

almost similar solution costs. In that regard, the extended heuristic is an improvement to

the original heuristic.

− When changing the feasibility phase in the feas heuristic, the solution costs also barely

change. The runtime again drastically decreases when compared to the cost set-up, for

the smaller instances 1 and 2. However, the execution of this heuristic takes longer than

the cost heuristic, when looking at the bigger instances 3 and 4. This heuristic therefore

is not more useful when dealing with big data sets.

− With the implementation of the improved feasibility phase as in the short heuristic, the

solution cost decreases for every instance. These differences are really small however,

which raises the question whether or not these decreases are attained for all data sets.

The runtime decreases immensely for the small instances, when compared to the cost set-

up. These percentages decrease for the bigger instances, which raises the assumption that

the cost heuristic will be faster for even bigger instances.

− The new heuristic is an extreme improvement to the cost heuristic in terms of runtime.

Although the percentage decrease becomes smaller as the size of the instances increases,

the decrease in runtime is still enormous for big instances. The solutions found are really

similar to the solutions of the cost heuristic. They can be better or worse, but the difference

is small enough to not prefer one over the other in terms of solution quality.

When comparing the four improved heuristics with each other, the short heuristic seems to

give the best solutions. The solutions given by the four heuristics are almost the same though,

so all four heuristics could be used for getting quality solutions. Because of this similarity,

deciding which heuristic is the most effective is mostly decided by the runtime. Although all

four heuristics except the feas heuristic are a big improvement in terms of runtime, the new

heuristic excels. Looking at the percentages found in Table 6, one could argue that only the stop

heuristic possibly becomes faster for instances of enormous size, as the runtime percentages do

not seem to strongly decrease as the size of the instance increases.

Table 6: The percentage difference between the cost set-up and improved heuristics, for
solution cost and runtime

Difference (%)
cost to stop cost to feas cost to short cost to new

Instance 1
Cost -0.15 -0.15 -0.42 -0.35
Runtime -50.36 -49.27 -79.01 -79.01

Instance 2
Cost 0 0 -1.58 0
Runtime -55.98 -44.11 -67.05 -75.88

Instance 3
Cost 0.94 0.94 -0.17 1.37
Runtime -41.95 3.41 -16.40 -56.86

Instance 4
Cost 0 0 -0.82 -0.42
Runtime -39.86 13.86 -12.54 -50.82

7 Conclusion

In this thesis, the heuristic as described in Cacchiani et al. (2019) is tested, analyzed and

improved. The proposed heuristic tries to solve the TUAP by iteratively decreasing the upper

bound cost, until the same cost as in the PP-LB is achieved. If no such solution is reached after

niter iterations, the lowest found upper bound cost becomes the best solution to the TUAP.

The heuristic is tested on four instances, initially with four different set-ups of the heuristic.

Thereafter, the results of these four different set-ups are analyzed. Lastly, the results of four
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different improved heuristics are analyzed. In total, Chapter 6 contains results of eight slightly

different heuristics that are all based on the one suggested by Cacchiani et al. (2019). For the

instances used in this thesis, a preferable set-up of the original heuristic is found. This thesis also

gives three improvements to the heuristic, suggesting the use of one improvement in particular.

First, the results obtained in this thesis are somewhat similar to those of Cacchiani et al.

(2019). The gap between the lower bound and upper bound is smaller in the instances of

Cacchiani et al. (2019) than in this thesis. The used heuristic is initially the same, so the

slightly different results are due to other data instances. The runtimes are comparable, but

longer in this thesis than in Cacchiani et al. (2019). The main cause of this difference, is that

the PP-LB is never reached in this thesis, which causes the heuristic to execute all iterations. In

Cacchiani et al. (2019), the gap found is zero in many instances, which terminates the heuristic

before all iterations are executed. So again, the difference is caused by the difference in the data

sets.

When doubling the size of the instance, the runtime more than doubles. The solution cost

shows no clear indication of change, when increasing the instance size. The gap between the

lower bound and the upper bound becomes bigger sometimes, and smaller for other cases.

The heuristic spends most of its runtime on solving SDVSP models. Reducing the number

of times this problem has to be solved, is therefore a good way to reduce the runtime. For the

instances used in this thesis, this is achieved by having the following set-up: the size of subsets

in FSEL is 3 at most, only the first stage of the critical trip assignment is executed and the

subsets in FSEL are ordered by ascending cost. When making adjustments in this set-up to

reduce the runtime, the quality of the upper bound solution barely changes. When the order of

subsets in FSEL changes from ascending capacity to ascending cost, the quality of the upper

bound found even increases.

Besides the set-up, improvements to the heuristic strongly decrease the runtime as well.

Namely, adding additional stopping conditions for better solutions also reduces the number

of times a SDVSP has to be solved. The implementation of a new feasibility phase does not

necessarily decrease the number of times a SDVSP has to be solved, but when implemented as

in the feas and short heuristic, the runtimes of the small instances still decrease. For bigger

instances however, the runtime of these heuristics increases faster than the runtime of original

heuristic as in the cost set-up. The implementation of a new feasibility phase as in the new

heuristic, causes an enormous decrease in runtime for every instance size. Although the short

heuristic gives the best upper bound cost for every instance, there is no reason to believe that

any of the improved heuristics gives better solutions. When comparing the original heuristic

with the cost set-up to the improved heuristics, the differences in solution cost are really small.

So the improved heuristics all give similar solutions, while decreasing the runtime enormously,

with the new heuristic excelling.

8 Discussion

All the runtimes found in this thesis, that have the subsets in FSEL ordered by ascending

capacity (set-ups #3, #5 and first), are longer than they should be. The implementation of

the FSEL set is done wrong during the execution of these heuristics. Namely, identical subsets,

in which only the order of the train units differs, are not deleted. This causes the program to

potentially run the same SDVSP multiple times, increasing the runtime needlessly. This is more

problematic for the cases than for the #3 cases. Despite this mistake, the preference of the

cost set-up over these three wrongly implemented set-ups can still be justified. When executing

the cost heuristic with the same mistake implemented, this heuristic is still faster than the other

three. Moreover, the solution quality is not affected by this mistake, so the cost set-up is also

still better in terms of solution quality.

For further improvements on the heuristic, more finetuning could be done. The best solutions

found are many times found with low numbers of h, in some cases the upper bound is not even
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changed after the first iteration. One could question if niter of 20 is too high for that matter. An

example of the change in best upper bound throughout the iteration process, is shown in Figure

4, with the UB cost in million euros. The upper bound cost starts at infinity, which is shown

by the green vertical line segment at h = 1. This is the iteration process of the new heuristic

executed on instance 1. There are only better solutions in three iteration, and the upper bound

remains the same for the last twelve iterations.

Also more research to find better solutions could be done. The improvements discussed in

this thesis strongly reduce the runtime, but the solution quality remains almost the same.

Figure 4: The best upper bound found in every iteration of niter, in which green line segments
depict a change
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Appendix

The code used in this thesis is listed below. The code is written for the instances used here,

keeping in mind that there are only three types of train units. The code is not written for the

use of other types of train units in general, only for the use of these three types. The zip file

contains the following files as code:

− DirectedGraph.java: this file is a simple class that can be used to model directed graphs,

where arbitrary types of data are associated with the nodes and arcs of the graph.

− DirectedGraphArc.java: class that models arcs in the directed arcs.

− MainCacchiani.java: the main program that runs the heuristic as described in Cacchiani

et al (2019).

− MainFeas.java: the main program that runs the heuristic with the additional feasibility

phase, named feas.

− MainNew.java: the main program that runs the heuristic with the additional feasibility

phase implemented as in the new heuristic.

− MainShort.java: the main program that runs the heuristic with the additional feasibility

phase implemented as in the short heuristic.

− MainStop.java: the main program that runs the heuristic with the additional stopping

criteria, named stop.

− ModelILP.java: the CPLEX model that is used to solve the model (5)-(8).

− ModelMFPD.java: the CPLEX model that is used to solve the model (1)-(4).

− ModelSVSP.java: the CPLEX model that is used to solve the Single Depot Vehicle Schedul-

ing Problem (SDVSP).

− TrainUnit.java: the train unit object, which consists of the type, costs per year, amount

of seats and length in meters.

− Trip.java: the ’Trip’ object, which consists of the departure time and location, arrival time

and location, the demand on the trip and the maximum length of the train on this trip.

Furthermore, there are text files for the four instances, that are read by the main programs.
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