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Abstract

This paper will take an extensive look at the conditionally optimal weights with shrinkage

(COWS) and the bias corrected optimal weights with shrinkage (BC-OWS) introduced by

Gibbs and Vasnev (2018). This paper will select a new way to calculate the variables for the

weights and it will compare the weights with the use of the US inflation and the Mexican

inflation which has gone trough hyperinflation to proof that these weights will not outperform

the simple equal weights when there is hyperinflation.
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1 Introduction

Researchers have always tried to find the best way to forecast the performance of an economy.

They do so because if you can forecast an economy correctly you can foreshadow when the next

economic crisis will appear or when an economy will restore from a crisis and you will be able to

make the most profit. That is also why a lot of different models have been introduced. Hibon

and Evgeniou (2005) noted that it differs per situation which individual model performs best.

Since it is hard to predict which forecast will perform best it seems that combining the forecasts

could be benificial.

The first combination of models was introduced by Bates and Granger (1969). Since then

multiple papers have tried to find the best way to make a combination of the forecasts. Tim-

mermann (2006) noted that most of the time simple forecast combinations, like equal weights,

are better at forecasting than the more advanced methods. Since this is still poorly understood

people still try to find more advanced methods to give weights to the forecasts. With these

combinations they try to outperform the equal weights. Gibbs and Vasnev (2018) found that

most of these more advanced methods do not take into account that most models are assumed

to be unbiased which cannot be applied in a lot of cases. That is why they propose weights

which will include the bias.

One of these weights is the conditional optimal weight with shrinkage (COWS). In principle

the bias of each individual forecast is calculated and is then used to construct the weights.

These weight will then shrink towards equal weights via a parameter named α, this will be

further discussed in section 3.1.

Besides the COWS there will also be looked at a different weight which is also introduced by

Gibbs and Vasnev (2018). This is the bias-corrected with optimal weight and shrinkage (BC-

OWS). Gibbs and Vasnev (2018) have shown that using bias correction for individual models

does not seem to work. However, combining them does seem to give a reasonable forecast, but

the variable used to calculate the bias is fixed. But it is not necessarily the best variable to

calculate the bias. The bias could be different for different models and it could even be different

over time. This is why I will calculate the bias for each model in a different way. I will use the

general-to-specific method, which has been developed over a couple of decades, largely by David

Henry and his coworkers according to Lütkepohl (2007), to choose which variable will be used

to construct the bias.

Timmermann (2006) mention that most weights are being calculated via a backward-looking

approach. Gibbs and Vasnev (2018) notice that this approach is empirically not very effective.

Which brings them to use a forward-looking approach. This is why this paper will also use a
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Figure 1: US and Mexico Inflation historical data

forward looking approach to calculate the weights, this will be further discussed in section 3.1.

Equal weights have been a benchmark for testing different weights in most of the literature.

That is why I will also compare the combined forecasts and the individual forecasts with equal

weights.

The performance of an economy is normally measured through the GDP. However, there are

more measurements to look at the performance of an economy. An interesting measurement for

the economy is inflation. Since historically inflation has been used a lot to test the performance

of models (e.g. Bollerslev (1986), Stock and Watson (1999)) and it is very hard to predict,

according to Gibbs and Vasnev (2018). That is why they use inflation to test their weights.

They use the US inflation from the second quarter of 1947 until the first quarter of 2017.

During this period the inflation has been pretty steady except for a small time period around

1950 where it exceeded 25 percent. After this rise it never got above 20 percent again1. That is

why I will use a data set which contains hyperinflation to compare the results of the COWS and

the BC-OWS and see if it still outperforms equal weights. To do so the inflation in Mexico will

be used, since Mexico went through hyperinflation during most of the 1980s. The information

about inflation from Mexico has been measured from the first quarter of 1969 so there should

be enough data available to construct the models and have a long enough out of sample period

left to compare the weights.

2 Data

This paper will use data of the inflation of the US and Mexico on a quarterly basis. The data

of the US will be used because this is a data set with enough variables to investigate the models

properly (Gibbs and Vasnev (2018)). The data of Mexico will be used since there seems to be

enough data to get decent models and it has gone through hyperinflation which has been most

1Information gotten from https://tradingeconomics.com/united-states/inflation-cpi
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extreme in the early 1980’s and the end of the 1980’s2. The difference between the US inflation

and the Mexican inflation can be seen in Figure 1. In this graph it can be seen that although

Mexico has gone through hyperinflation during the 1980’s it has never had deflation like the US

had during the financial crisis in 2009.

The first data set will be of the US and is retrieved from the Federal Reserve Bank of

Philadelpia real time macroeconomic data set which is described in Croushore and Stark (2001).

This data set start in the first quarter of 1948 and ends in the first quarter of 2019. In this

data set the same measures used by Gibbs and Vasnev (2018) will be used. These are the

quarterly nominal personal consumption expenditures, the total real GDP and unemployment

rate. The quarterly nominal personal consumption expenditures will be used to construct the

inflation according to equation 1. In which πt is the inflation in period t and pt the consumption

expenditures.

πt = ln

(
pt
pt−1

)
· 400 (1)

The total real GDP and unemployment rate will be used to construct 5 different explanatory

variables. Three variables will be constructed with the real GDP and two with the unemployment

rate. The first variable will be constructed as the GDP growth. This will be constructed by

taking the log-difference of the GDP. The second variable will be an output gap. Which will be

constructed with the use of the standard Hodrick Prescott (HP) filter introduced by Hodrick and

Prescott (1997)3. The HP will be made with the use of eviews, where a λ of 1600 will be used,

since this is the appropriate amount for quarterly observations4. The third variable will be a

GDP growth gap. This growth gap will be constructed by taking the difference between the GDP

growth and the maximum GDP growth over the past twelve observations. The fourth variable

will be the unemployment rate in levels. The fifth variable will be a unemployment rate gap.

This will be the difference between the unemployment rate and the maximum unemployment

rate over the past 12 observations. The bias for the models will also be evaluated with each

other, that is why I will normalize5 the data with the use of equation 2 with the exception of

the inflation.

2Most of the research towards the Mexican hyperinflation has been done why it wasn’t recovering after the early
1980’s (for example Dornbusch et al. (1988)). I have not been able to find much literature after the hyperinflation
at the end of the 1980’s.

3This paper is originally from 1981 but finally came out in its final version in 1997 the only difference is the
tables added in the appendix.

4http : //www.eviews.com/help/helpintro.html#page/content/series-Hodrick-Prescott F ilter.html
5https://medium.com/@rrfd/standardize-or-normalize-examples-in-python-e3f174b65dfc
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Mean St. Dev. Min Max

US 6.235 3.841 -9.79 28.31
MEX 23.045 31.072 2.27 177.44

Table 1: Properties of the data

xnew =
x−min(x)

max(x)−min(x)
(2)

The second data set is from Mexico and is obtained via the Organization for Economic

Cooperation and Development (OECD). This data set goes from the first quarter of 1969 until

the fourth quarter of 2018. In this data set the Consumer Price Index (CPI) will be used as

the inflation6. The quarterly GDP growth provided by the OECD will be used to construct the

GDP growth gap. The real GDP is not available for every quarter, only for the entire year.

Therefore, the GDP growth per quarter will be used to construct the real GDP per quarter.

However, there are some differences between the calculated values, so the real annual values.

That is why the real GDP will be annually adjusted.

The Mexican inflation has some different properties in comparison with the US inflation. In

Table 1 it can be seen that the standard deviation of the Mexican inflation is much higher than

the standard deviation of the US inflation. Therefore, it may be expected that the models with

the Mexican data set will have a higher Root Mean Squared Forecast Error (RMSFE) and a

higher bias in comparison to the RMSFE and the bias from the models which use the US data

set.

3 Methodology

In the first section of this chapter the weights and how they are constructed will be explained.

In the second section of the chapter it will be explained which models are being used and how

to construct the models and how to retrieve the values for the weights.

3.1 Weights

Optimal weights have been constructed since Bates and Granger (1969) started constructing

them. They argue that the model with a lower MSE should be given more weight. Throughout

the literature constructing the weights is usually done with the use of the unconditional variance

6A explanation for the use of CPI as inflation https://data.oecd.org/price/inflation-cpi.htm
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of the errors of the forecast models. In these cases it is assumed that the model which is being

used is unbiased. However, in a lot of cases this is not true. That is why this paper assumes

that there is a bias. When this bias is calculated it can be used to construct optimal weights

which are conditioned on some extra information.

The weights which are being used in this paper are the equal weights, the conditional optimal

weights with shrinkage (COWS) and bias-corrected optimal weights with shrinkage (BC-OWS).

The COWS and BC-OWS both need the bias of the individual models to construct the weight.

The bias will be constructed via equation 3. With ei,t the error of the i’th model in time period

t, ci a constant, xt the explanatory variable and ξ the error term.

ei,t+4 = ci + βixt + ξi,t+4 (3)

The explanatory variable will be chosen via the General-to-specific approach. I will use

this approach in the following manner. First start by doing a regression on all the explanatory

variables in xt. In this regression there will be searched for the variable with the highest p-value

and it will be removed from xt. Then, a regression with the reduced xt will be done and again

the variable with the highest p-value will be removed. This will be done until there is only one

variable left. This will be done for every individual observation since the variable which will

explain the most of the bias of the models might change over time. After this procedure a new

ei,t+4 will be estimated which will be used to construct the COWS and the BC-OWS.

The conditional optimal weight (COW) is introduced by Gibbs and Vasnev (2018) and is

written down in equation 4. The bias b̂T that is used here is the bias which is calculated in

equation 3 and can be formulated as b̂T+4 = E[eT+4|IT ] where IT is an information matrix

consisting of all the explanatory variables up to time period T. The Σ̃ξ that will be used is

the variance co-variance matrix from the realized errors of each model their bias which can be

formulated as Σ̃ξ = var(ξT+4|IT ).

ŵCOS(IT ) =
[Σ̃ξ + b̂T+4b̂

′
T+4]

−1ι

ι′[Σ̃ξ + b̂T+4b̂
′
T+4]

−1ι
(4)

Equation 4 shows how the COW is calculated. However, I want to use the COWS which means

that a shrinkage method will be used. The shrinkage method that will be used is shown in

equation 5. Where Σ0 is an identity matrix to pull the weights towards equal weights. There

are several possibilities to chose for Σ̂ξ to shrink. I will use the same part to shrink as Gibbs

and Vasnev (2018) did, which is Σ̃ξ + b̂T+4b̂
′
T+4. Shrinking this entire part will have the most
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effect on pulling the weights towards equal weights.

Σ̃ξ = αΣ0 + (1− α)Σ̂ξ (5)

The bias correction that will be used is shown in equation 6. This is the same approach to

correct for the bias as in Gibbs and Vasnev (2018). In equation 6, ŷ is the forecast of the model

and bT will be the bias et+4 as calculated for that model in the same way as described above.

ỹt+4 = ŷt+4 + et+4 (6)

When the forecasts have been corrected for the bias I will use the classical result for the optimal

weights as discussed in Elliott (2011) and is shown in equation 7 where Σe = var(e). I will also

shrink this equation towards the equal weights by using Σe as Σ̂ξ in equation 5.

wOW =
Σ−1e ι

ι′Σ−1e ι
(7)

3.2 Models

The models that will be used in this paper are all the models used in Gibbs and Vasnev (2018)

which are shown in Table 2. The AO model will be usedas a benchmark which is based upon

the näıve random walk model from Atkeson and Ohanian (2001). Stock and Watson (2007)

show that the model has a decent forecast for a longer horizon after 1984 but not as well with

a shorter horizon and before 1984. This model simply takes the average of the previous four

quarters of inflation to make a prediction for the next four quarters. The standard ARMA(p,q)

model is shown in equation 8. To get an AR model we put q=0 and p to degree of the AR

model. Since a four quarter ahead forecasts is required the forecast is made iteratively.

yt = c+

p∑
i=1

βiyt−i + et +

q∑
i=1

θiet−i (8)

The Phillips curve models are constructed in the same way as in Gibbs and Vasnev (2018),

which means they are bi-variate and have two lags for inflation and two lags for an explanatory

variable. This is shown in equation 9 with yt as the inflation in period t and xt as an explanatory

variable. The forecasts for the Phillips curves also have to be made iteratively.

yt = c+ β1yt−1 + β2yt−2 + β3xt−1 + β4xt−2 + et (9)
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The Direct Forecasts (DF) are also constructed in the same way as in Gibbs and Vasnev (2018),

which means it is an OLS regression with an explanatory variable being regressed on inflation

which is four-quarter-ahead. This model is shown in equation 10. In which πt+4 is the inflation

in period t+4, xt the explanatory variable and ε the error term.

πt+4 = c+ βxt + εt+4 (10)

Univariate Phillips Curve Direct Forecasts

AR(1) PC Output Gap DF Output Gap
AR(2) PC Unemployment Gap DF Unemployment Gap
AR(4) PC GDP Growth DF GDP Growth
ARMA(1, 1) PC Growth Gap DF Growth Gap
ARMA(4, 4) PC Unemployment Rate DF Unemployment Rate
AO VAR Al

Table 2: Models

All the models mentioned above will be programmed in Python with the help of Statsmodels

from Seabold and Perktold (2010).

The weights for the combined forecasts have to be constructed for each time period, this will be

done in accordance with Gibbs and Vasnev (2018) with the following procedure.

1. Each of the 17 models is estimated

2. Each of the 17 models is used to construct a four-quarter-ahead forecast.

3. The bias will be estimated according to equation 3 with the available real-time forecast

errors for each of the 17 models.

4. Equation 3 is used to predict the expected forecast errors for the four quarter ahead

forecast. To construct a bias êi,t+4 for each of the 17 models.

5. These errors and biases are used to construct the weights for the combined forecast meth-

ods.

To create a four quarter ahead forecast we need to estimate the models on a sufficient amount

of data. That is why for the US the first models will be estimated on data from 1948Q1 until

1965Q1. So that the first four quarter ahead forecast can be made for 1966Q1. In the Mexican

data set the models will be estimated on the data from 1969Q1 until 1979Q2 so the first forecast

will be in 1980Q2.
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There is a second period needed to estimate the bias for every model. Since estimating it on

one variable will not result in a reliable estimation. That is why for the US data set the errors

from 1966Q1 until 1968Q4 will be used to get a proper estimation for the first bias model. The

first bias estimation will be made for 1969Q4. In the Mexican data set the first bias model will

be estimated on the errors from 1980Q2 until 1983Q1 so the first estimation will be made in

1984Q1.

This results in an out of sample period from 1969Q4 until 2019Q1 for the US data and

from 1984Q1 until 2018Q1 for the Mexican data set. The out of sample period for the Mexican

data set will also be divided into 2 parts one from 1985Q1 until 1999Q4 and the other from

2000Q1 until 2018Q4. This is to include hyperinflation in the first time frame and exclude it

from the second. Since the hyperinflation makes the data more volatile it could be expected

that the models will perform worse in comparison to the part without hyperinflation in terms

of RMSFE. Since the errors are expected to be larger it can also be expected that the bias will

be greater and the variance of the bias its errors to be greater. This most likely has the most

effect on the BC-OWS since the individual bias will be added. In the COWS this will have less

of an effect since the bias will most likely be bigger for all the models and this may cancel each

other out while constructing the weights.

4 Results

In the first section of this chapter the results of how the forecasts perform using the data from

the US will be discussed. The second section will be used to discuss the forecasts made with the

Mexican data. Finally, in the third section both the results of the forecasts with the US data

and the results of the forecasts with the Mexican data will be compared.

4.1 US

The results of all the individual models and the combination of models are shown in Table 3.

The RMSFE are calculated for the individual models in the period 1966Q1-2019Q1 and for the

combined forecasts 1970Q4-2019Q1. This is because the first weights will only be available in

1970Q4 since the first time they are being calculated is in 1969Q4. With the equal weights it was

possible to take the sample from 1966Q1-2019Q1 that is why I wrote that number down in the

parenthesis so it could be used for calculating the Relative RMSFE for the individual models.

The average bias is the average bias over the calculated future bias for individual models in the

time frame 1970Q4 until 2020Q1 (so the first value is calculated at 1969Q4 but is being used

for 1970Q4) and for the combined forecasts it is from 1976Q1 until 2020Q1 this is taken from

10



Model
Most common
Bias predictor

Average
Predicted bias

RMSFE
Rel. RMSFE

(AO)
Rel. RMSFE

(Equal weights)

Phillips Curve

PC GDP gr. GDP gr. gap 1.19 2.443 1.245 1.033
PC GDP gr. gap GDP gr. gap 1.25 2.439 1.123 1.031
PC Unemp. Unemp. rate 0.72 2.569 1.183 1.086
PC Unemp. gap GDP gr. gap 0.99 2.390 1.100 1.011
PC Output gap GDP gr. 1.37 2.621 1.207 1.108
PC VAR all GDP gr. 0.87 2.591 1.193 1.096

Direct Forcast

DF GDP gr. GDP gr. 1.04 2.655 1.222 1.123
DF GDP gr. gap GDP g. 1.13 2.573 1.185 1.088
DF Unemp. GDP gr. 0.62 2.626 1.209 1.110
DF Unemp. gap GDP gr. 0.84 2.625 1.209 1.110
DF Output gap GDP gr. 1.40 2.874 1.323 1.215

Univariate

AO OUTPUT gap 0.20 2.172 1.000 0.918
AR(1) GDP gr. 1.31 2.657 1.223 1.123
AR(2) GDP gr. 1.09 2.394 1.102 1.012
AR(4) GDP gr. 1.72 2.698 1.242 1.141
ARMA(1,1) Output gap 1.23 2.151 0.990 0.910
ARMA(4,4) Output gap 0.77 2.251 1.036 0.952

Combined

Equal weights GDP gr. gap 0.93 2.381(2.365) 1.089 1.000
COWS GDP gr. gap -0.06 2.142 0.986 0.900
BC-OWS GDP gr. gap 0.51 2.106 0.970 0.885

Table 3: The results over the full sample for the individual and combined weights on the US data set.

1976Q1 so that there is some historical data on which the bias model can be calculated.

In Table 3 we can see that almost none of the individual models seems to outperform the

AO, except for the ARMA(1,1). However, the ARMA(1,1) improvement is not a statistically

different, it also seems to perform worse on 53% of the forecasts. The AO, ARMA(1,1) and

the ARMA(4,4) are all performing better than the equal weights. Hibon and Evgeniou (2005)

noted that combined forecasts will never outperform the best single forecast for each observation.

Since there is quite some difference in the performance in terms of RMSFE of the individual

forecasts it can be expected that some of the forecasts will perform better in comparisson to

equal weights. Here also lies the problem of combining forecasts chosing the best model for each

observation. It seems that the COWS and the BC-OWS are doing a better job at chosing the

right individual model since they seem to outperform all the individual models. Note that none

of these results seem to be significantly different since the standard deviation of the RMSFE of

11



OUTPUT gap GDP gr. gap GDP gr. Unempl. Unemp. gap

Philips Curve

PC GDP gr. 27 129 20 6 16
PC GDP gr. gap 18 141 24 0 15
PC Unemp. 8 59 0 130 1
PC Unemp. gap 16 136 8 15 23
PC OUTPUT gap 59 44 85 4 6
PC VAR all 26 0 100 72 0

Total PC 154 509 237 227 61

Direct Forecast

DF GDP gr. 0 7 191 0 0
DF GDP gr. gap 0 8 190 0 0
DF Unemp. 0 5 193 0 0
DF Unemp. gap 0 8 190 0 0
DF OUTPUT gap 34 0 164 0 0

Total DF 34 28 928 0 0

Univariate

AO 166 10 22 0 0
AR(1) 22 123 7 27 19
AR(2) 26 130 20 6 16
AR(4) 21 126 6 25 20
ARMA(1,1) 136 31 10 2 19
ARMA(4,4) 99 16 18 64 1

Total Univariate 470 436 83 124 75

Combined

Equal weights 4 129 1 31 12
COWS 46 55 26 50 0
BC-OWS 1 110 66 0 0

Total Combined 51 294 93 81 12

Table 4: Times bias used

most models is around 2. The COWS and BC-OWS also seem to outperform the equal weights.

The COWS perform better in 60% of the forecasts and the BC-OWS perform better in 58% of

the forecasts. The Average bias that is being used is positive for all the individual models and

none of them seem to be significantly different from 0. This could be due to the fact that for

every prediction there is another variable used for the prediction of the bias

Table 4 shows how many times each variable is used for predicting the bias. Here we can see

that it mostly depends on which model we use instead of which variable is being used in each

model. For the Philips Curves we can see that the GDP growth gap is the most commonly used

even when the GDP growth gap is used for predicting the model. Also the Unemployment rate is

used the most when it is used to predict the model. The Unemployment rate and Unemployment
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rate gap are least likely to be chosen as bias. The Direct Forecasts seem to only have the GDP

growth as a recurring option for estimating the bias. The Univariate models seem to be more

spread out with the main focus on the Output gap and the GDP growth gap. With the Output

gap being used for the two models with the lowest RMSFE. In the combined forecasts it seems

that the GDP growth is also the most common. However if we look at the COWS we see that

the bias for this model seems to be spread out mostly among the Output gap, GDP growth gap

and the Unemployment rate.

4.2 Mexican

Model
Most common
Bias predictor

Average
Predicted bias

RMSFE
Rel. RMSFE

(AO)
Rel. RMSFE

(Equal weights)

Philips Curve

PC GDP gr. GDP gr. -1.70 20.179 1.370 1.098
PC GDP gr. gap GDP gr. -1.63 20.688 1.404 1.125
PC Output gap GDP gr. 1.01 18.655 1.266 1.015
PC VAR all GDP gr. gap 0.14 21.176 1.437 1.152

Direct Forecast

DF GDP gr. GDP gr. 6.36 27.323 1.855 1.486
DF GDP gr. gap GDP gr. 0.75 25.317 1.718 1.377
DF Output gap GDP gr. gap 15.60 27.757 1.884 1.510

Univariate

AO Output gap 0.55 14.733 1.000 0.801
AR(1) Output gap -1.55 13.741 0.933 0.747
AR(2) GDP gr. 1.88 23.489 1.594 1.278
AR(4) Output gap -4.26 16.735 1.136 0.910
ARMA(1,1) Output gap -1.90 14.367 0.975 0.781
ARMA(4,4) Output gap 3.92 12.857 0.873 0.699

Combined

Equal weights GDP gr. -4.16 16.931(18.385) 1.248 1.000
COWS GDP gr. -1.30 17.430 1.183 1.029
BC-OWS Output gap 3.70 17.870 1.213 1.055

Table 5: The results over the full sample for the individual and combined weights on the Mexican data
set.

The results of all the individual models and the combination of models of the Mexican data

set are shown in Table 5. The RMSFE are calculated for the individual models in the period

1980Q2-2018Q4 and for the combined forecasts 1985Q1-2018Q4. This is because the first weights

will only be available in 1985Q1 since the first time they are being calculated is in 1984Q1. With

the equal weights it was possible to take the sample from 1980Q2-2018Q4, which is why I wrote

13



that number down in the parenthesis so it could be used for calculating the Relative RMSFE for

the individual models. The average bias is the average bias over the calculated future bias for

individual models in the time frame 1985Q1 until 2019Q4 (so first value is calculated at 1984Q1

but is being used for 1985Q1) and for the combined forecasts it is from 1990Q2 until 2019Q4

this is calculated from 1990Q2 so that there is some historical data on which the bias model can

be calculated.

Output gap GDP gr. GDP gr. gap

Philips Curve

PC GDP gr. 8 132 0
PC GDP gr. gap 3 134 3
PC Output gap 16 124 0
PC VAR all 14 49 77

Total PC 41 439 80

Direct Forecast

DF GDP gr. 34 100 6
DF GDP gr. gap 35 105 0
DF Ouput gap 55 0 85

Total DF 124 205 91

Univariate

AO 134 6 0
AR(1) 140 0 0
AR(2) 19 121 0
AR(4) 140 0 0
ARMA(1,1) 140 0 0
ARMA(4,4) 140 0 0

Total Univariate 713 127 0

Combined

Equal weights 20 99 0
COWS 43 10 66
BC-OWS 119 0 0

Total Combined 182 108 66

Table 6: Times bias used

In Table 5 we can see that the Philips curves and the direct forecasts seems like terri-

ble options to predict the inflation in comparison to the simple AO model. Only the AR(1),

ARMA(1,1) and ARMA(4,4) seem to perform better. Since the standard deviation of RMSFE

of the AO is 25.47 those models are not significantly better. The AR(1) model only outper-

forms the AO in 35% of the time which suggest that the AO performs really badly in a couple

of observations. Which seems logical when looking at Figure 1. When the inflation is really

high it suddenly drops a lot which makes the RMSFE of the AO really big. The same is true
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for the ARMA(1,1) model which performs worse than the AO in 71% of the time and for the

ARMA(4,4) who performs worse than the AO in 55% of the time. When looking at the combined

forecasts neither of the forecasts seem to outperform the equal weights based on the RMSFE.

The BC-OWS perform worse than the equal weights in 55% of the time and the COWS perform

worse on 58% of the time. However, the COWS do outperform the BC-OWS on 58% of the time.

The average predicted bias seems to be pretty close towards 0 for all of the models. However,

most of the time the bias which is projected is very positive or very negative. This can be seen

in the variance which shows that for most of the individual models it is around 200 and for the

DF Output gap it is even over 1000. For the equal weights and the COWS the variance is about

60 and for the BC-OWS it is about 250.

Table 6 shows how often each bias is being chosen as a predictor via the general-to-specific

approach. Here we can see that the predictor depends on what kind of model it is. For the

Philips curves it is mostly the GDP growth the same is true for the Direct forecasts. The

univariate on the other hand mostly uses the Output gap to construct the bias. We can see that

for the individual models the GDP growth gap is barely being used. It is just the main predictor

in 2 (PC VAR all and DF Output gap) out of the 13 models and in 9 of the models it isn’t even

used once. If we look at the models which are performing the best, according to the RMSFE in

Table 5, all of them have the Output gap as the most or even only used bias predictor. Looking

at the combined forecasts we see that every one of the combinations has another preferred bias

the equal weights has GDP growth the COWS has GDP growth gap and the BC-OWS has the

Output gap.

Table 7 shows us the RMSFE and the percentage that the weights have a better prediction

than the equal weights prediction. This data had been divided from 1985Q1 until 1999Q4 and

from 2000Q1 until 2018Q1. In Table 7 we can see that the BC-OWS performs worse than the

equal weights in both of the time frames for both the percentage and the RMSFE. The COWS

does perform better than the equal weights but only in the time frame where the inflation is

more stable.

1985Q1-1999Q4 2000Q1-2018Q4
RMSFE % Outperform vs EW RMSFE % Outperform vs EW

Equal Weights 24.096 11.274
Cows 26.138 23% 10.555 57%
BC-OWS 24.825 43% 12.379 46%

Table 7: Comparing two time frames of the Mexican data set
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4.3 Comparison

In Table 8 we see the results of all the combined forecasts for the US database and the Mexican

database with only the use of the GDP growth, GDP growth gap and the Output gap. The

selection for these three variables is just so we can compare the data sets in the most appropriate

way. The RMSFE is calculated from 1986Q1 until 2018Q4 and the bias is the average bias

calculated from these models in the time period of 1989Q2 until 2018Q4.

If we compare these results we can see that the RMSFE of the Mexican data set is much

higher which was expected by the higher variance of the Mexican inflation as shown in Table

1. Furthermore, we can see in Table 8 that in both data sets the RMSFE is the lowest for the

Equal weights. However, if we look at Table 3 the RMSFE for BC-OWS and COWS are lower

when all the variables are included. If we look at the full US sample with only the GDP growth,

GDP growth gap and output gap included the RMSFE for equal weights is 2.457, for COWS

2.101 and for BC-OWS is 2.095. Note that the RMSFE is a lot lower for COWS and BC-OWS

this shows that COWS and BC-OWS perform better in the time frame 1970Q4 until 1985Q4

with only three variables. If all the variables are included in the time frame from 1986Q1 until

2019Q1 the RMSFE of the equal weights is 2.056. This seems to be much higher than the 1.592

from the equal weights with only 3 variables. The COWS have a RMSFE of 1.889 with all

the variables in the time frame from 1986Q1 until 2019Q1 and for the BC-OWS the RMSFE is

1.860. This shows us that when the unemployment rate is included the equal weights seem to

perform much worse in the time frame from 1986Q1 until 2019Q1 but the COWS and BC-OWS

do not differ that much. This most likely comes due to the fact that the volatility of inflation

the GDP growth and the GDP growth gap in the period from 1986Q1 until 2019Q1 is lower and

volatility the unemployment rate is higher in this period. Which most likely have a negative

effect on the models where it is being used as a variable for estimating the inflation. Which

seems to have more effect on the equal weights than on the COWS and BC-OWS.

US MEX
Bias RMSFE Bias RMSFE

Equal Weights 1.794 1.592 -4.576 17.060
Cows 0.178 1.847 -1.297 17.356
BC-OWS 0.546 1.832 3.702 17.425

Table 8: Comparing the US results with the Mexican results
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5 Conclusion and discussion

If the results from the COWS and BC-OWS are compared to the results from Gibbs and Vasnev

(2018) it does seem that the general-to-specific approach for calculating the bies for each model

by each observation does provide better forecasts since they have a lower, relative to equal

weights, RMSFE.

Furthermore, it can be seen that the COWS and BC-OWS do not seem to outperform the

equal weights when there is hyperinflation since the RMSFE seems to be higher. However, if

we look at the results from the US data set, it shows us that when extra models are added the

equal weights seem to performing worse and the COWS and BC-OWS seem to perform about

the same. Which would indicate that a lack of variables and models could be the reason why

the COWS and the BC-OWS do not outperform the equal weights with the use of the Mexican

data set. Although all the weights perform worse in the time frame from 1986Q1 until 2019Q1

when the unemployment variables are included, the equal weights perform better over the entire

period when they are included. Which shows that these variables do have explanatory value

on inflation when the inflation is more volatile. It could be investigated if the COWS and BC-

OWS will outperform the equal weights when there is hyperinflation when an unemployment

measurement is used.
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A Appendix

The codes in the ZIP file are:

AO The calculation of the AO.

ARMA The calculation of the AR and ARMA models.

BC-OWS The calculation of the BC-OWS.

bias The calculating the average bias.

countbias Counting how many times each variable is used for calculating the bias.

COWS The calculation of the COWS.

DF The calculation of the Direct Forecasts.

equal The calculation of the equal weights.

PC The calculation for the phillips curves.

PCALL The calculation for the phillips curves with all the variables.

Note that these are the codes used for the US data set the only difference with the Mexican

data set is the values when to start calculating and which variables to use.
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