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Abstract

An accurate prediction of the behaviour of strategic individuals in an open

routing service system with a shared station can be of great use for many

companies, an example is a restaurant with an open buffet. However,

customer behaviour is hard to predict and system details tend to differ a

lot. In the paper of Arlotto et al. (2019) an open routing system with two

stations is simulated. They conclude customers show herding behaviour

at the slowest station, to prevent being further back in the slow queue,

as this could happen if they visit the faster station first. In this research,

we first replicate their simulation and compare the results. In addition,

we perform a similar simulation on a three-station subset open routing

system with a shared station. Customers in this station visit only two

of the three stations, but the shared station is always one of them. We

divide the customers into two groups, one group visits one subset of the

stations and the other group visits the other subset. The simulation shows

individuals tend to herd at the shared station, given high enough service

rates at the two specific stations.

The views stated in this thesis are those of the author and not necessarily those of

Erasmus School of Economics or Erasmus University Rotterdam
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1 Introduction

In many everyday environments, service systems can be found. In these systems, services

are provided to customers at one or multiple stations. An example of this is a breakfast

buffet, where a customer can independently choose to go to the bread station, beverage

station or fruit station in whatever order they decide. As individuals are free to choose

their path strategically, they can minimise the time they will spend waiting in the queues

for these stations. Given that there are more customers who will be trying to do this, the

question arises: What route should a customer choose?

The importance of researching this subject lies in the frequency of the occurrence of

an open routing system. As described by Arlotto et al. (2019), these can be found in all

sorts of environments such as amusements parks, festivals, shopping centres and buffets,

but also in trials of medical research, as described by Baron et al. (2016). In the latter

case, the individuals are not free to choose their own route but are given a schedule by

a central planner. The central planner can have different objectives such as maximising

customer satisfaction or minimising the total service time of the system. If one can get

a clearer view of the behaviour of customers in an open routing system and how this

compares to the optimal behaviour for a company, one can create a plan to increase cus-

tomer satisfaction or to decrease the total system time. Furthermore, awareness under

individuals can be created to inform them about the choice they should make to minimise

their own waiting times as well as improve the cumulative system time.

There has been done previous research on open routing in service networks and several

aspects have already been discovered and clarified. This is to be expected, as there is a

great variety of different versions of open routing in service networks. We will analyse a

three-station system with one shared station between two customer classes. Here, cus-

tomers arrive simultaneously, but with priorities given to each customer. Furthermore, a

numerical research will be performed on the same system, but in this case with stochastic

arrivals. Firstly, we will reproduce the simulation performed in Arlotto et al. (2019). As

their research focuses on a simulation with two stations with individuals who learn accord-

ing to the historical average waiting times of both stations, there are still questions left to

answer for similar systems with other aspects. Therefore we will extend the research of

Arlotto et al. (2019) by analysing a model based on three stations, where a subset of two

stations is visited by each individual. In our model, one station will be visited by each

individual, while the other two stations will only be attended by part of the individuals.

This setup is seen in multiple environments in practice, but yet little research is done for

this construction. An example would be a buffet where there are separate stations for the

drinks, warm and cold food. As customers are likely to either attend the cold or warm
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buffet, but visit the drinks station either way. These reasons and applications motivated

us to analyse the following research question: “How do strategic individuals in an open

routing system where only a subset of the stations is visited, with a shared station between

these subsets, behave?” which brings the following sub-questions: “How do service rates

influence the behaviour of individuals in an open routing system?” and “Do individuals

herd at their specific station?” and finally “Do individuals herd at the shared station?”.

Motivated by these questions, we first replicate the numerical simulation performed

by Arlotto et al. (2019) and compare the achieved results with those of their simulation.

We will then set up a simulation with three stations: A, B and C. Customers will visit

shared station A and either B or C. The results of this numerical research give us a better

understanding of the behaviour of individuals in open routing systems. We find customers

tend to herd at the shared station when the service rates at the specific stations are high

enough and the system is congested. Furthermore, as the system becomes less congested,

customers show a slight decrease in herding behaviour. When the service rates of the

specific stations are above that of the shared station, herding behaviour at the shared

station is shown for all parameter combinations tested.

In Section 2 the relevant literature will be discussed, in Section 3 the two-station and

three-station subset open routing games will be explained in further detail as well as the

specifications of the systems we used in the simulations. Section 4 gives an in depth view

of the two-station simulation as well as the three-station simulation. The parameters and

structure used in the simulations as well as the hypothesis for these simulations will be

discussed in this section. In Section 5, the output of the simulations is analysed and

compared. Section 6 contains the conclusion of the paper and some final remarks and

potential extensions for future research.

2 Literature

The research we do is closely related to literature of different aspects. We will go over

some literature done on two-station networks, simulation, herding and finally a paper

about multi-station routing. One of the few papers papers incorporating a stochastic

network where customers choose the sequence of stations they visit, is Parlaktürk and

Kumar (2004). They research a network, with two stations, where a “job” needs two

tasks performed on it. Each station has a queue for both Task 1 and Task 2, where Task

1 has a shorter service time. Each station can perform only one task for each individual.

As Task 1 is always executed first, the route decides which station performs which task for

individuals i. The system planner can choose at each station which queue to serve next.
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Depending on the scheduling rule chosen by the system planner, the cumulative service

time decreases or increases. This can be caused by a better distribution of the already

chosen routes of individuals, or by the differences in routes chosen by individuals, as they

may change routes when the system planner implements a different scheduling rule. In

the end, the researchers propose a scheduling rule where the self interested behaviour of

the customers does not decrease the overall performance of the system. The contrast with

the model researched by Arlotto et al. (2019) is that there are two queues at each station,

instead of separate stations for each task. Furthermore, as there is only one server at

each station, we assume the same serving method, namely first come first serve (FCFS),

is applied to all customers for each station.

When we look at the existing literature about simulation-based study of routing

schemes, the paper of Pinilla and Prinz (2003) gives a helpful insight for the numeri-

cal part of our research. They look into the standard sequential model and use simulation

to receive insights in a flexible system. With their example of routing in a coffee shop they

find that, when assigning the sequence of tasks dynamically compared to a fixed sequence

of tasks, performance can be increased significantly. When we investigate the options

to implement these results in our three-station system we see the options are minimal.

The ability to determine which station to go next to after attending a station, is in our

network not effective since there are only two stations to attend. This makes that there is

only one station to attend to after having visited the first station. Therefore the insights

of constructing a simulation to obtain empirical results are applicable, but we will not

investigate the topic of flexible route choosing in further depth.

A previous research that found herding behaviour under customers is that of Veer-

araghavan and Debo (2011, 2009). They looked into two competitive service providers

where customers have private information about the quality of each provider. They find

herding in cases where service rates are relatively high. As longer queues may insinuate

better quality, uninformed individuals will join the longer queue and thus contribute to

the herding strategy if they seek to optimise their utility. When comparing the results

of the research to those of Arlotto et al. (2019), a similar aspect is finding herding as

a equilibrium strategy. The difference occurs when we analyse the incentive behind the

herding, as the customers are driven by the service quality and not the time spent in

the queues. As the individuals in Arlotto et al. (2019) are assumed to try to minimise

their expected time in the queue, starting at the less crowded station will be punished

by a longer queue at the second station. Therefore, the both occurrences of herding have

different causes.
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When considering the three-station subset open routing game, there is the paper

of Foss and Chernova (1998) which researches stability of multi-station systems which

are partially accessible to each individual. This is a close representation of the idea

of a customer visiting a set subset of a system. Foss and Chernova (1998) looks into

three different situations where the system service times differ in each situation. They

obtain simple stability criteria for two cases and further analyse the third case. An

interesting approach is shown by using Markov process and chains to prove the stability

criteria. Another aspect of the paper is the use of constant routing policies. Although

multiple routing policies are studied, there is always a constant decision rule which does

not implement an individuals historical information.

3 Open Routing Systems

Each open routing system has their own respective specifications such as number of

stations, connections between the stations, service rates and many more. In this section

we will discuss two types of open routing systems: the two-station open routing system

and the three-station subset open routing system.

3.1 Two-station open routing game

Our first model, based on the model of Arlotto et al. (2019), is a two-station open

routing system. In this model, the customers want to minimise their waiting time while

still attending both stations. The stations, station A and station B, each have one queue

with one server and nonidentical service rates µA and µB, respectively. Without a loss of

generality, we assume the case of non-equal service rates (µA < µB). The customers are

free to choose which station to attend first, but have to visit both stations exactly once.

A FCFS policy is applied to serve the queues, as this is also maintained in many service

environments in practice. The resulting network is shown in Figure 1.
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Figure 1: Customers who follow AB will first visit station A and than B, Arlotto et al. (2019)

The paper of Arlotto et al. (2019) gives useful insights about the equilibrium behaviour

of customers in a two-station open routing system. In this system, customers choose a

route simultaneously, receive a randomised priority and service times are deterministic.

It shows that given that there are enough players in the system, herding equilibria are the

only pure strategy Nash equilibria. Even when non-strategic customers, who have a pre-

determined route independent of the queues, or stochastic service times are introduced,

herding is still an equilibrium strategy profile. When customers who only attend one

of the two stations are introduced in the game, herding behaviour stays an equilibrium

strategy profile. The note has to be made that in this case it is necessary to have enough

strategic players in the game compared to the customers who attend only one station.

When the game is played sequentially it is shown that herding at station A, the slower

station, is the prevailing strategy. The motivation is that when a player first visits station

B, his position will be overtaken and he will end more to the back of the slower queue at

station A. The individual with the last priority, will join the queue at station B first, as he

is last in line for station A already. In the case of a system with more than two stations,

herding is still a Nash equilibrium. In this case the herd visits the stations according

to the increasing service rates. The customers start at the slowest station and make

their way to the fastest serving station. Arlotto et al. (2019) have shown the conditions

and boundaries of this specific herding strategy profile, but do not exclude the possibil-

ity of other equilibrium strategy profiles existing for a system with more than two stations.

Furthermore, Arlotto et al. (2019) have found that the cumulative system time, the

time it takes to serve all customers, is close to the optimal time when herding is applied.

Finally, they looked into an example of a non-congested system which reached a steady

state. In this system customers arrive over time and the arrival rate is lower than the

slowest service rate of the stations. For this example, herding profiles are still equilibria.

Although, any other feasible routing profile is also an equilibrium. Therefore herding
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behaviour is not necessary prevailing in a system that does not overflow over time.

3.2 Three-station subset open routing game

The research of Arlotto et al. (2019) suggests that studying a system with more than two

stations, where each customer visits only a subset of the stations, may be interesting. We

adopt this idea to a system with three stations, station A, B and C, where each customer

has to visit station A and either B or C, depending on the class of the customer. We will

split the customers in two classes, Sab and Sac, where individuals in Sab will visit station A

and B and those in Sac visit A and C. A visual representation of the two service systems

with a shared station is given in Figure 2.

Figure 2: Customers in class Sab will either visit station A first, if they take route AB, or B if they take route BA

The customers are free to choose which station they attend first, but there is still a

one queue FCFS policy at each station. In case of equal arrival times of a customer from

class Sab and Sac at the same station, class Sab will be served first. This leads to two

separate groups of possible routes: AB and BA for the customers in class Sab and route

AC and CA for those in Sac. Therefore, multiple herding strategies are possible. The first

one would be herding at station A, where every customer first visits station A. One of the

other possibilities would be herding at the specific stations. Customers in class Sab and

Sac would take route BA and CA, respectively. Furthermore, a possible herding strategy

profile would be one where one class starts at station A, while the other class visits their

specific station first.

We still assume inequality in service rates. As we consider equally large classes of

customers, we set µB > µC , without a loss of generality, to prevent repetition of results

with different station labels. This gives room for three different set-ups considering the

service rates of the station:
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• µA > µB > µC

• µB > µA > µC

• µB > µC > µA

which gives different combinations of slowest and fastest stations. This could be an im-

portant factor in our multi-station subset open routing game, as the results of Arlotto

et al. (2019) have shown us herding at the slowest station is an equilibrium strategy pro-

file. Even though their system structure was different, it may have similarities in outcome.

When all customers arrive at the same time, but priorities are still given uniformly

at random, the number of customers N is large enough and the service times are deter-

ministic, there is an equilibrium strategy profile where all customers start at the shared

station A.

Proposition 1 (Herding Equilibrium in the Three-Station Subset Open Routing

Game). For N ≥ 2µA/µC + 1 and µA < µC < µB, the open routing game with a shared

station has a Nash Equilibrium in which all players visit station A first.

The proof for this assumption is given in Appendix A and based upon the proof of

Proposition 1 in Arlotto et al. (2019). When this situation is analysed for the case with

stochastic service times, herding at the shared station is found to be a symmetric Nash

equilibrium for all customers in both classes.

Proposition 2 (Nash Equilibrium with Visiting Shared Station A first in Case of

Stochastic Service Times). For N > 1 + 2µA
µC

+
µ2A(σ2

A+σ2
C)

2−µA
µC

, it is a symmetric Nash Equi-

librium for all customers in class Sab and Sac to visit station A first, which implies they

follow route AB and AC, respectively.

The proof for this assumption can be found in Appendix A and is inspired by the

proof of Proposition 5 in the paper of Arlotto et al. (2019).

4 Methodology

In this section we will first describe how we replicated the simulation performed by

Arlotto et al. (2019) with the two-station open routing system. Secondly, the simulation

of the three-station subset open routing game will be explained. The results of these

simulations will be discussed in Section 5.
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4.1 Two-station simulation

In the paper of Arlotto et al. (2019) the differences of equilibria strategies between

congested and non-congested systems are discussed. They state that in systems that are

not very busy, herding strategies do not predominate compared to other strategies. This

brought them to the following hypothesis: “Herding occurs when a service system is con-

gested, that is, the arrival rate is higher than the service rates of both stations until the

arrival of the last customer” where the practical benefits of confirming this hypothesis are

significant as systems are often congested at the start of their service availability. Further-

more, even though the analytical results given by Arlotto et al. (2019) are theoretically

correct, they argue that it is highly unlikely that individuals perform such analysis before

deciding which queue to join. Therefore they decided to perform a simulation where indi-

viduals learn through repeated rounds in the system. The arrival and service times were

both stochastic. The results of the simulation give an insight in the customer behaviour in

a two-station open routing system. This information is most interesting for us, as we will

perform a simulation with a three-station service system, where customers visit only two

stations. Individuals play multiple rounds in the system and choose the route which they

believe has the shortest expected waiting time. After the round they learn the waiting

time of both the chosen route as well as the other route. After learning this their beliefs

update to the empirical average of their own samples for both routes. In case of an equal

average waiting time for both routes, a random route will be chosen. For the first round,

a random route is chosen as well.

The arrival times are defined by γ and φ, which represent the mean and variance of

the arrival times. The arrival time of individual i ∈ {1, ..., N} will be assumed to be

uniformly distributed on [iγ − φ, iγ + φ]. This leads to mutually independent arrivals of

different customers, but leaves the opportunity of different priorities if φ is large enough,

as overlap may occur when φ > γ/2. The service rates of the stations are defined as

µA and µB for station A and B respectively. These are taken to be distributed expo-

nentially, where station B is assumed to be the slower station with fixed µB = 1 and

µA < 1. The number of individuals N will stay fixed at N = 50. We will simulate all

combinations of γ ∈ {0.001, 0.1, 0.25, 0.5, 0.75, 1}, φ ∈ {0, 0.25, 0.5, 0.75, 1} and µA ∈
{0.1, 0.25, 0.5, 0.75} which leads to a total of 120 parameter sets. For each parameter set

100 independent trials are performed, with each up to 250 rounds of play in each trial.

The trial will be stopped whenever all individuals have chosen the same route 50 times,

to decrease computation time. This condition will bias the results a little bit towards

herding behaviour, as the round stops whenever complete herding occurs for 50 routes.

9



However, the effect will be small as it is unlikely individuals will switch routes when all

individuals choose the same route for such a period. The largest expected bias will be

created by the last customer, as is may be efficient for her not to herd. The gain in com-

putation time is expected to be of a factor 10, which is based on a test run for comparison.

The results of this simulation will be compared to those of Arlotto et al. (2019),

where the final null hypothesis will be: “The number of customers choosing route AB

in the final round of the simulation has the same distribution as that of the simulation

performed by Arlotto et al. (2019)”. To test this, we will first test the equality of the mean

number of customers choosing AB in the last round for each parameter combination, for

our simulation and the one performed by Arlotto et al. (2019). The two-sample t-test

will be used to test this equality, with the null hypothesis: “The average number of

customers choosing route AB at the end of the trial, for this parameter set, is equal for

both simulations”, where this test will be performed for each parameter set shown in

Arlotto et al. (2019). The test statistic will be calculated as follows:

Ti =
X̄i − Ȳi
s(Xi)

√
N

2
, (1)

where Xi is the average of all trials for parameter set i, Yi the average given by Arlotto

et al. (2019), s(Xi) the sample standard deviation of the trails for parameter set i and N

the number of trials, which is 100 in both simulations. This also brings that we use 198

degrees of freedom in our tests. The results of these lower stage tests, which use a 95%

confidence level, will be used as inputs for a binomial test to confirm or deny the main

hypothesis. Even though the Jarque-Bera test rejects the null hypothesis of Normality for

the distribution of the number of individuals choosing route AB in each trial, the averages

of these trails may still be normally distributed. This, combined with the Central Limit

Theorem makes that we can still assume normality and therefore apply the two-sample

t-test.

4.2 Three-station subset simulation

For the same reasons as above, a simulation of the three-station subset open rout-

ing game is constructed where the hypothesis: “When the system is congested, herding

occurs at either the shared station A, or at each class’ specific station”, is tested. Con-

sidering the parameter sets for this system, we have γ ∈ {0.001, 0.1, 0.25, 0.5, 0.75, 1},
φ ∈ {0, 0.25, 0.5, 0.75, 1} and (µB, µC) ∈ {(0.25,0.1), (0.75,0.5), (1.25,0.75), (1.75,0.25),

(1.25,1.1), (1.75,1.5)}. This gives for each combination of µ’s described in Section 3.2, two
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different situations with varying values for µB and µC . The total number of parameter

combinations is 180. For each of these parameter combinations 100 independent trials

will be executed, where individuals play up to 250 rounds in each trial.

5 Results

We will discuss the results from the two-station simulation in Subsection 5.1 and those

of the three-station subset simulation in Subsection 5.2. For both simulations we analyse

the number of people who choose station A as their first station to visit and for the three-

station simulation we will analyse the number of individuals attending A first per class

as well. Furthermore, the results of the two-station simulation will be compared to those

of Arlotto et al. (2019).

5.1 Two-station simulation outcome

The results of the simulation with γ = 0.001 and φ = 0 are shown for multiple values

of µA in Figure 3. This shows the results of the system where all customers arrive in a set

order, as φ = 0, and with very little time between arrivals, as γ = 0.001. The situation

closely resembles the analytically researched system in Arlotto et al. (2019), in which all

customers are all present at the start and choose their routes sequentially. This differs

from the simulation performed, as individuals cannot observe each others decisions but

choose their route based on the historical waiting times. It can be seen the number of trails

ending with all individuals choosing route AB increases as µA increases. Furthermore,

there are no occurrences where less than 40 customers choose route AB, which is in

line with the statements made by Arlotto et al. (2019), even though the conditions of

the system differ from those of system the propositions are based on. The herding at

station A can be explained by customers experience from previous rounds, where they

encountered a longer waiting time if they attended station B first due to being overtaken

at station A by later arrivals.
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Figure 3: Frequency Chart for Number of AB Customers in the Final Round (100 trials in total), for γ = 0.001 and φ = 0

In Table 1 and Table 2, the resulting number of individuals choosing route AB in the

final round is shown. The γ values chosen for these tables represent arrivals more spread

out over time, instead of the γ = 0.001. This is motivated based on the application in

practice, since γ = 0.001 would mean each individual arrives almost at the same time,

which is unlikely in a real world scenario. We fix µA at 0.75 and 0.5 for the tables and

vary γ and φ between zero and one. Because herding never seems to arise for route BA,

for any of the parameter sets in the tables, the number of customers who choose route

AB can be used as a measure for herding. The right side of the tables give the values for

the first quartile of the results.

We note the number of final round choices for AB seems to decrease as γ increases.

This can be explained due to more idle time at the stations. When inter-arrival times

increase, the probability of a customer arriving at the service system when there are

no busy stations increases. As this would bring equal waiting times for both routes,

more customers choose a route randomly, which leads to more customers taking route

BA. There is clear herding behaviour for all parameter settings, given γ ≥ 0.1, since all

average results are over 42, which represents 84% of the individuals, and for µA = 0.5

the averages are even over 48, which accounts for 96% of the customers. Furthermore,

there seems to be a slight difference due to the decreasing value of µA, when comparing

Table 2 and Table 1. The results of the simulation with µA = 0.5 tend to be slightly

higher, which would be in line with the theory of increasing herding behaviour when the

differences in service rates increase as described by Arlotto et al. (2019). When looked

into these differences in more detail, we see a smaller decrease as γ increases compared

to the decrease in Table 1. This would be in line with the theory of decreasing herding

behaviour as the system is less congested due to more equilibrium strategy profiles existing

in a non-congested system. With slower service rates, 0.5 instead of 0.75, the system is

more congested for equal γ values. Therefore, herding behaviour appears more than in

Table 1.
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Sample mean Sample first quartile

φ φ

γ 0 0.25 0.5 0.75 1 γ 0 0.25 0.5 0.75 1

0.1 49.25 49.37 49.45 49.52 49.41 0.1 50 50 50 50 50

0.25 49.19 49.36 49.25 49.31 49.41 0.25 50 50 49 50 50

0.5 48.8 48.87 48.88 48.64 48.96 0.5 49 49 49 48 49

0.75 46.99 47.9 48.3 48.14 47.98 0.75 46.75 48 47.75 47 47.75

1 43.71 43.8 42.59 43 42.93 1 41 41 41 40 40.75

Table 1: Average number of AB customers (out of 50) in the final round, with µA=0.75

Sample mean Sample first quartile

φ φ

γ 0 0.25 0.5 0.75 1 γ 0 0.25 0.5 0.75 1

0.1 49.56 49.49 49.52 49.63 49.6 1 50 49 49 50 50

0.25 49.09 49.58 49.4 49.82 49.35 0.75 49 50 50 50 50

0.5 49.29 49.43 49.09 49.38 49.51 0.5 50 50 50 50 50

0.75 49.11 49.1 49.17 48.98 48.99 0.25 50 50 50 50 50

1 48.65 48.47 48.69 49.05 48.65 0.1 49.75 46.75 49.75 50 49

Table 2: Average number of AB customers (out of 50) in the final round, with µA=0.5

When we compare the results of our simulation to the results of Arlotto et al. (2019),

which are given in Appendix B, we test whether the number of AB customers in the final

round differ significantly by means of a two-sample t-test. At a 5% significance level, the

results of only 5 parameter sets are not rejected for the null hypothesis of equality. When

we test the number of accepted null hypothesis in our main test with null hypothesis:“The

number of customers choosing route AB in the final round of the simulation has the same

distribution as that of the simulation performed by Arlotto et al. (2019)” we use a Binomial

test with 5 as the number of successful trials, 50 as the total number of trials and 95% as

the probability of success. This leaves space for a 5% error margin which is required since

we work with simulation results where random numbers are involved. In case of a 100%

success probability it would mean all parameter sets needed an accepted null hypothesis.

The result of the Binomial test gives a probability smaller than 0.001, which makes that

we reject the null hypothesis. The differences in results may occur due to decisions made

within the simulation, for example the cut-off condition as described in Subsection 4.1.
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Another reason may be a difference in simulation structure, which could be caused by an

unspecified detail in the paper of Arlotto et al. (2019).

5.2 Three-station subset routing behaviour

Figure 4 shows the results of the three-station open routing game simulation, where

the empirical frequencies for the number of individuals who choose to visit station A

first are represented, for three combinations of (µB, µC). The values of γ and φ are set

to 0.001 and 0, respectively. Similar to Figure 3 in Section 5.1, this closely represents

the scenario of all individuals arriving simultaneously, but with different priorities. If

we compare the simulation results to Proposition 2, which states herding at the shared

station is an equilibrium strategy profile under certain conditions, similar outcomes are

found. As the number of individuals visiting A first is concentrated around 50 for all

three combinations of (µB,µc). Furthermore, as µB and µc increase, the number of trials

resulting in all customers choosing to visit A first increases as well. This could imply the

incentive for herding behaviour is dependent on the service rates for the other stations.

Another dependency of this can be found in the conditions for N in Proposition 1 and

2, as the number of individuals necessary for herding at station A to be an equilibrium

strategy profile decreases as µC increases.

Figure 4: Frequency Chart for Number of Customers starting at station A in the Final Round (100 trials in total)

In Table 3 and Table 4, the results of the three-station subset simulation are shown for

µB and µC equal to (0.25, 0.1) and (1.75, 0.25), respectively. When analysing the results

in Table 3, there seems to be no herding at station A, but at the specific stations for γ <

0.5. There is still an increase in value as γ increases from 0.1 to 0.25, but there remains a

clear sign of herding at the specific stations. For γ > 0.25, the individuals from class Sac

herd at station A, while the other class still starts at their specific station. For all other

combinations of parameters, the results are comparable to those shown in Table 4. There

is a strong trend of herding behaviour for each γ ≥ 0.1 as well as for φ in [0,1]. When
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we compare the results of the numerical analysis with Proposition 2, we note that they

are in line with each other even though the arrivals are stochastic instead of at the same

time.

Sample mean Sample first quartile

φ φ

γ 0 0.25 0.5 0.75 1 γ 0 0.25 0.5 0.75 1

0.1 3.89 4.04 4.17 4.58 4.33 0.1 3 3 3 4 4

0.25 7.8 7.88 8.06 8.03 8.36 0.25 7 7 7 7 8

0.5 24.14 24.67 24.93 24.85 24.81 0.5 23 24 25 25 24.75

0.75 25.76 25.64 25.66 25.75 25.72 0.75 25 25 25 25 25

1 26.86 26.8 26.69 26.78 26.72 1 26 26 26 26 26

Table 3: Average number of customers visiting A first (out of 50) in the final round, with µB=0.25 and µC=0.1

Sample mean Sample first quartile

φ φ

γ 0 0.25 0.5 0.75 1 γ 0 0.25 0.5 0.75 1

0.1 49.73 49.86 49.73 49.78 49.74 0.1 50 50 50 50 50

0.25 49.98 49.94 49.9 49.91 49.92 0.25 50 50 50 50 50

0.5 49.95 49.95 49.96 49.97 49.97 0.5 50 50 50 50 50

0.75 48.83 49.04 48.9 49.11 49.1 0.75 48 48 48 48 48

1 45.27 45.38 45.3 45.25 45.03 1 44 44 44 44 44

Table 4: Average number of customers visiting A first (out of 50) in the final round, with µB=1.75 and µC=0.25

A separate representation of the individuals per class attending station A first is given

in Table 5 and Table 6 for (µB, µC)=(0.25,0.1) and (µB, µC)=(1.75,0.25), respectively. In

Table 5 a slight increase in customers from Sab visiting A first can be seen as γ increases,

while for customers in class Sac this seems to be a much stronger increase, as it ranges

from 3.09 to 25 for φ = 0. Furthermore, there is a clear difference between the behaviour

of the two classes. Class Sab shows clear herding behaviour at station B, as there are less

than two customers on average choosing route AB for all parameter sets, while class Sac

tends to shift from visiting station C first, to herding at station A as γ increases.

Table 6 gives a representation of a (µB, µC) set where for all values of γ and φ indi-

viduals from both classes show a clear herding behaviour. As γ increases, the number
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of individuals in class Sab visiting A first decreases, which is as expected as the system

becomes less busy. For the individuals in class Sac this is not the case, as µC is lower than

µB. This causes station C to remain busy even though the increasing inter-arrival times.

Class Sab Class Sac

φ φ

γ 0 0.25 0.5 0.75 1 γ 0 0.25 0.5 0.75 1

0.1 0.09 0.08 0.08 0.13 0.14 0.1 3.8 3.96 4.09 4.45 4.19

0.25 0.07 0.02 0.03 0.04 0.01 0.25 7.73 7.86 8.03 7.99 8.35

0.5 0.24 0.27 0.36 0.33 0.41 0.5 23.9 24.4 24.57 24.52 24.4

0.75 0.77 0.64 0.66 0.75 0.72 0.75 24.99 25 25 25 25

1 1.86 1.8 1.69 1.78 1.72 1 25 25 25 25 25

Table 5: Average number of customers visiting A first per class in the final round, with µB=0.25 and µC=0.1

Class Sab Class Sac

φ φ

γ 0 0.25 0.5 0.75 1 γ 0 0.25 0.5 0.75 1

0.1 24.81 24.86 24.78 24.81 24.76 0.1 24.92 25 24.95 24.97 24.98

0.25 24.98 24.94 24.9 24.91 24.92 0.25 25 25 25 25 25

0.5 24.95 24.95 24.96 24.97 24.97 0.5 25 25 25 25 25

0.75 23.83 24.04 23.9 24.11 24.1 0.75 25 25 25 25 25

1 20.27 20.38 20.3 20.25 20.03 1 25 25 25 25 25

Table 6: Average number of customers visiting A first per class in the final round, with µB=1.75 and µC=0.25

6 Conclusion

Firstly, a replication of the two-station open routing game simulation in Arlotto et al.

(2019) is performed. These results are compared and it is found that the average number

of customers choosing route AB in our simulation follows a different distribution than

that of the results of the simulation performed by Arlotto et al. (2019). Analyses of the

simulation results shows that herding behaviour appears as an equilibrium strategy when

the arrival rate is higher than the lowest service rate. As the inter-arrival times increase

and thus the system becomes less busy, customers tend to spread out over both routes.
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Therefore, it is suggested herding occurs when a service system is congested.

Secondly, a numerical research is performed on a three-station subset open routing

game, where customer visit one specific station and a shared station. The results of the

simulation performed with this system show us the influence of service rates, inter-arrival

times and changes in priorities on the routing behaviour. With these results we can an-

swer the question “How do strategic individuals in an open routing system where only a

subset of the stations is visited, with a shared station between these subsets, behave?” We

see when the service rates of the two specific stations are sufficiently large compared to

that of the shared station, customers of both groups herd at the shared station. When

the service rates are not sufficiently large, customers herd at their specific station, or the

case arises where one class herds at their specific station and the other class at the shared

station. Another parameter of influence on the behaviour of customers is the inter-arrival

times, as it seems a less congested system gives room for other strategy profiles and cus-

tomers show a little less herding behaviour. These findings are in line with Proposition

2, which states an open routing game with a shared station has a Nash Equilibrium in

which all players visit shared station A first. Although, it has to be noted that there are

differences in system conditions, as the proposition holds for systems with simultaneous

arrivals while the simulation works with simultaneous as well as sequential arrivals.

The differences between these two systems could be an interesting subject for future

research, where the similarities and differences in analytical propositions could be further

researched. This may lead to a better practical application of the propositions made

by Arlotto et al. (2019), for the two-station system and our own propositions for the

three-station subset system.

Another example for future research would be a further elaboration on the idea of a

subset open routing game. This could be by the addition of another subset, which would

imply each station is shared by two classes, or the implementation of more stations while

maintaining only one shared station. A further understanding of these situations could

widen the practical application of these results, as many practical situations only slightly

differ from each other. Therefore a more general statement about herding behaviour

would be of great practical value.

Finally, as already stated by Arlotto et al. (2019), an analyses with varying utility

for different customers could give a more realistic result. As customers may have a more

complex opinion about waiting times and experience waiting in queues differently. For

example, some may prefer waiting equally long at both stations over waiting for a longer

time at one station and being served at the second station immediately. Even if the total
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waiting time is equal for both situations.

An improvement for future research would be the inclusion of a wider range of service

rates, inter-arrival times and priority variance. Furthermore, if practically possible, the

cut-off restriction used in the simulation could be dropped. It could also be interesting

to include varying types of learning rules, instead of only letting individuals decide based

on the historical waiting times. This could show how routing behaviour differs between

different assumed learning rules.

18



References

A. Arlotto, A. E. Frazelle, and Y. Wei. Strategic open routing in service networks.

Management Science, 65(2):735–750, 2019.

O. Baron, O. Berman, D. Krass, and J. Wang. Strategic idleness and dynamic scheduling

in an open-shop service network: Case study and analysis. Manufacturing & Service

Operations Management, 19(1):52–71, 2016.

S. Foss and N. Chernova. On the stability of a partially accessible multi-station queue

with state-dependent routing. Queueing Systems, 29(1):55–73, 1998.

J. Kingman. Some inequalities for the queue gi/g/1. Biometrika, 49(3/4):315–324, 1962.

A. Müller and D. Stoyan. Comparison methods for stochastic models and risks, volume

389. Wiley New York, 2002.

A. K. Parlaktürk and S. Kumar. Self-interested routing in queueing networks. Manage-

ment Science, 50(7):949–966, 2004.

J. M. Pinilla and F. B. Prinz. Lead-time reduction through flexible routing: application

to shape deposition manufacturing. International Journal Of Production Research, 41

(13):2957–2973, 2003.

S. Veeraraghavan and L. Debo. Joining longer queues: Information externalities in queue

choice. Manufacturing & Service Operations Management, 11(4):543–562, 2009.

S. K. Veeraraghavan and L. G. Debo. Herding in queues with waiting costs: Rationality

and regret. Manufacturing & Service Operations Management, 13(3):329–346, 2011.

19



A Analytical proofs

Proof of Proposition 1. Suppose µA < µC < µB and N ≥ 2µA
µC

+ 1, then whenever a

specific station (B or C) is idle, it will never have a queue again, since the service rate of

station A is the lowest of all three. This also implies that whenever station A has started

serving customers, it will not be idle until all customers are served. Furthermore, as the

priorities of customers are drawn uniformly at random, the game is symmetric given the

class of the customer. This means customer i can be considered, where i represents an

arbitrary player index as long as the player remains in the same class.

Assume all individuals from class Sab and Sac start at station A, than customer i with

priority j from class Sab will have to wait for j − 1 customers to be served before being

served herself. When leaving station A, they will have immediate service at station B.

Thus, customer i with priority j from class Sab has total service time QA
ab(j) given by

QA
ab(j) =

j

µA
+

1

µB
, j = 1, ..., N. (2)

Let Tab(1,m, k) be the expected time in the system for customer i, from class Sab who

attends station A first, as well as m other customers from class Sab and k customers from

class Sac. Tab(0,m, k) is the expected system time if customer i chooses to attend station

B first, and m+ k customers attend A first. Due to the uniformly random priorities, the

expected waiting time for customer i is

Tab(1,
N

2
− 1,

N

2
) =

N∑
j=1

1

N
QA
ab(j) =

N∑
j=1

1

N
(
j

µA
+

1

µB
) =

1

µB
+
N + 1

2µA
, (3)

where the third step contains the constant occupancy of station A in j
µA

and the lack

off a queue forming at station B, as this station is faster than station B, in 1
µB

. If the

individual deviates from visiting route A first, they will be last in line at station A.

Therefore, Tab(0,
N
2
− 1, N

2
) is deterministic and given by

Tab(0,
N

2
− 1,

N

2
) =

1

µB
+ (

N

µA
− 1

µB
) =

N

µA
, (4)

where the ( N
µA
− 1

µB
) represents the time spent waiting for N − 1 customers at station A

and being served herself at A, minus the time spent at B. As station A never gets idle

once service has started until all customers are served, these two values can be deducted

from each other. This implies due to the assumptions of N ≥ 2µA
µC

+ 1 and µA < µC < µB

that
1

µB
+
N + 1

2µA
≤ 1

µC
+
N + 1

2µA
≤ N

µA
. (5)
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Therefore, there is no incentive for customer i from class Sab to deviate from taking

route AB, as Tab(1,
N
2
− 1, N

2
) ≤ Tab(0,

N
2
− 1, N

2
).

For a customer i in class Sac, Tac(1,
N
2
, N

2
− 1) and Tac(0,

N
2
, N

2
− 1) can be found by a

similar approach and are given by

Tac(1,
N

2
,
N

2
− 1) =

1

µC
+
N + 1

2µA
and Tac(0,

N

2
,
N

2
− 1) =

N

µA
. (6)

Therefore, due to the assumptions of N ≥ 2µA
µC

+ 1 and µA < µC < µB,

1

µC
+
N + 1

2µA
≤ N

µA
. (7)

This means there is no incentive for customer i from class Sac to change to route CA.

This brings that we have a Nash Equilibrium at station A.

Proof of Proposition 2. Assume equal variance of the service rates for station B

and C (σ2
B = σ2

C), µA < µC < µB and that all customers from class Sab and Sac visit

station A first. This makes that stations B and C are empty until the first departure

towards the specific station. As all customers visit station A first and priorities between

customers from class Sab and Sac are distributed alternately, station B behaves like a

GI/GI/1 queueing system with arrival rate µA
2

and service rate µB. The same holds for

station C with arrival rate µA
2

and service rate µC . Note that as µA < µC < µB, both

systems would be stable.

We let FWB
0,ab

be the distribution function for a random variable, independent of the

arrival and service processes, which may alter the initial state of the queueing system.

WB
k,ab, k ≥ 1, denotes the waiting time the k-th departure of class Sab from station A

experiences at station B. Here, FWB
k,ab

is the distribution function of WB
k,ab. As with

probability 1, WB
0,ab = 0 as well as WB

1,ab = 0 , since station B starts empty, we can state

FWB
1,ab

stochastically dominates FWB
0,ab

. We denote this as

FWB
0,ab
≤st FWB

1,ab
. (8)

To define the stationary waiting time distribution function for a GI/GI/1 queueing

system, we use FWB
∞,ab

. As stated in Müller and Stoyan (2002) by Theorem 6.2.1, it holds

that

FWB
k,ab
≤st FWB

∞,ab
∀ k = 1, 2, ... (9)

The current strategy of the customer, with all other customers visiting station A first

as well, gives her priority k at station A, where k = 1, .., N each has probability 1
N

.
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Therefore, the conditional expected time in the system, E[QA
ab|k], is given by

E[QA
ab|k] =

k

µA
+ E[WB

k,ab] +
1

µB
. (10)

Which is constructed by the expected waiting and service time at station A, the expected

waiting time at station B and the expected service time at station B. Equation (9) implies

that E[WB
k,ab] ≤ E[WB

∞,ab]. Therefore, we can state

E[QA
ab|k] ≤ k

µA
+ E[WB

∞,ab] +
1

µB
≤ k

µA
+
µA(σ2

A + σ2
B)

4(1− µA
2µB

)
+

1

µB
. (11)

The final inequality follows from bounds for the steady-state expected waiting time

in a queue for a GI/GI/1 queue as given by Kingman (1962), with µA
2

as arrival rate for

station B. This leads to expected system time

E[QA
ab] ≤

1

N

N∑
k=1

(
k

µA
+
µA(σ2

A + σ2
B)

4(1− µA
2µB

)
+

1

µB
) =

N + 1

2µA
+
µA(σ2

A + σ2
B)

4(1− µA
2µB

)
+

1

µB
. (12)

When a customer from class Sab deviates, she will be last in line at station A.

Therefore, her expected total system time, E[QB
ab], is at least N

µA
. Finally, as N >

1 + 2µA
µC

+
µ2A(σ2

A+σ2
B)

2− µA
µB

and µA < µC < µB, it follows

2µA
µC

+
µ2
A(σ2

A + σ2
B)

2− µA
µB

< N − 1

→ 1

µC
+
µA(σ2

A + σ2
B)

2(2− µA
µB

)
<

1

µB
+
µA(σ2

A + σ2
B)

4(1− µA
2µB

)
<
N − 1

2µA

→E[QA
ab] ≤

N + 1

2µA
+
µA(σ2

A + σ2
B)

4(1− µA
2µB

)
+

1

µB
<

N

µA
≤ E[QB

ab]

Therefore, a customers expected system time is shorter if she chooses route AB over

BA and thus is there no incentive for her to deviate.

When considering a customer from class Sac the expected system time for both routes

can be found in a similar way and are given by

E[QA
ac] ≤

N + 1

2µA
+
µA(σ2

A + σ2
C)

4(1− µA
2µC

)
+

1

µC
and E[QB

ac] ≥
N

µA
. (13)

With these expected total system times and the condition for N , it follows

E[QA
ac] ≤

N + 1

2µA
+
µA(σ2

A + σ2
C)

4(1− µA
2µC

)
+

1

µC
≤ N

µA
≤ E[QB

ac].

This implies there is no incentive for a customer in class Sac to deviate from route AC to

route CA when all other customers visit station A first. This makes that we can conclude

it is a Nash Equilibrium for all customers in both classes to visit station A first.
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B Past Results

Sample mean Sample first quartile

φ φ

γ 0 0.25 0.5 0.75 1 γ 0 0.25 0.5 0.75 1

0.1 46.22 46.61 45.42 47.45 49.2 0.1 44 45 45 47 49

0.25 46.55 45.83 46.22 46.07 45.72 0.25 45 44 44.75 44 44

0.5 45.2 45.27 45 44.64 44.32 0.5 43 43 42 42 42

0.75 41.68 42.7 41.59 41.73 42.46 0.75 39.75 41 38.75 40 40.75

1 35.9 37.38 36.47 36.23 38.17 1 33.75 34.75 34 34 35

Table 7: Summary statistic for Number of AB Customers in the Final Round,with µA =0.75 by Arlotto et al. (2019)

Sample mean Sample first quartile

φ φ

γ 0 0.25 0.5 0.75 1 γ 0 0.25 0.5 0.75 1

0.1 48.47 48.53 49.98 50 50 0.1 48 48 50 50 50

0.25 48.34 48.39 47.81 48.61 49.18 0.25 48 48 47 48 49

0.5 48.05 48.07 48.3 48.1 47.82 0.5 47 47 48 47.75 47

0.75 47.88 47.9 47.81 47.8 47.76 0.75 47 47 47 47 47

1 47.48 47.42 47.47 47.52 47.33 1 47 47 47 47 47

Table 8: Summary statistic for Number of AB Customers in the Final Round,with µA =0.5 by Arlotto et al. (2019)

C Code

Two-Station simulation code

1 import numpy as np

2 import pandas as pd

3

4 #import sys

5

6 import i t e r t o o l s

7 #from mul t ip roc e s s i ng .dummy import Pool as ThreadPool

8

9 #from customQueue import Queue

10 #from i t e r a t i o n import I t e r a t i o n

11

12 max t ra i l s = 100

13 max rounds = 250
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14 n = 50

15 count=−1
16

17 gamma params = np . array ( [ 0 . 0 0 1 , 0 . 1 , 0 . 25 , 0 . 5 , 0 . 75 , 1 ] )

18 #gamma params = np . array ( [ 0 . 1 , 0 . 25 , 0 . 5 , 0 . 75 , 1 ] )

19 #gamma params = np . array ( [ 0 . 2 5 , 0 . 5 , 0 . 75 , 1 ] )

20 #gamma params = np . array ( [ 1 0 ] )

21

22 phi params = np . array ( [ 0 , 0 . 25 , 0 . 5 , 0 . 75 , 1 ] )

23 mu a = np . array ( [ 0 . 1 , 0 . 25 , 0 . 5 , 0 . 7 5 ] )

24 #mu a = np . array ( [ 0 . 5 , 0 . 7 5 ] )

25 sk ip=0

26

27 params = i t e r t o o l s . product ( gamma params , phi params , mu a)

28 f i n a l r e s u l t s = pd . DataFrame ( index=range ( max t r a i l s ) , columns=range ( l en ( gamma params )∗ l en ( phi params )∗
l en (mu a) ) )

29 #i t e r a t i o n = I t e r a t i o n ( )

30 #pool = ThreadPool (6 )

31 #r e s u l t s = pool . starmap ( i t e r a t i o n . i t e r a t i o n , z ip ( params , i t e r t o o l s . r epeat ( max t ra i l s ) , i t e r t o o l s . r epeat

(max rounds ) , i t e r t o o l s . r epeat (n) ) )

32 #pool . c l o s e ( )

33 #pool . j o i n ( )

34 #f i n a l r e s u l t s = r e s u l t s

35 f o r param in params :

36 sk ip +=1

37 i f skip<=5:

38 cont inue

39 count+=1

40 i nd i v i dua l s = pd . DataFrame ( index=range (n) , columns=[” person id ” , ” a r r i v a l t ime ” , ” s t a t i o n s v i s i t e d ” , ”

cur rent route ” , ”avg time AB” , ”avg time BA” ] )

41 i nd i v i dua l s [ ’ person id ’ ] = range (n)

42 f o r t r a i l in range ( max t r a i l s ) :

43 #pr in t (” t r a i l ”+s t r ( t r a i l ) )

44 i nd i v i du a l s [ ’ cur rent route ’ ] = np . random . cho i c e ( a=[True , Fa l se ] , s i z e =(n , 1 ) )

45 i nd i v i du a l s [ ’ avg time AB’ ] = np . z e ro s (n)

46 i nd i v i du a l s [ ’ avg time BA’ ] = np . z e ro s (n)

47 s t a t i ona ry=0

48 p r ev s t a t=0

49

50 f o r nRound in range (max rounds ) :

51 p r in t ( s t r ( param)+” − t r a i l ”+s t r ( t r a i l )+” − round ”+s t r (nRound) )

52 i f nRound>1:

53 ab time = np . copy ( i nd i v i du a l s [ ’ avg time AB’ ] )

54 ba time = np . copy ( i nd i v i du a l s [ ’ avg time BA’ ] )

55 i nd i v i dua l s [ ’ cur rent route ’ ] = ab time <= ba time # i f true , route AB i s chosen

56 i nd i v i dua l s [ ’ cur rent route ’ ] [ ab time == ba time ] = np . random . cho i c e ( a=[True , Fa l se ] ,

s i z e=len ( i nd i v i du a l s [ ’ cur rent route ’ ] [ ab time == ba time ] ) )

57

58 i n c r v e c = np . arange (n)+1

59 lower = in c r v e c ∗ param [ 0 ] − param [ 1 ]

60 upper = in c r v e c ∗ param [ 0 ] + param [ 1 ]

61 a r r i v a l t im e s = np . random . cho i c e ( a=upper−lower , s i z e=(n , ) )+lower

62 i nd i v i du a l s [ ’ a r r i v a l t ime ’ ]= a r r i v a l t im e s

63

64 #serv t imesA = np . random . exponent ia l ( s c a l e=1/param [ 2 ] , s i z e=n)

65 serv t imesA = np . random . exponent ia l ( s c a l e=1/param [ 2 ] , s i z e=n)

66

67 serv t imesB = np . random . exponent ia l ( s c a l e =1, s i z e=n)

68

69

70 wait ingt ime ab = np . z e ro s (n)

71 wait ingt ime ba = np . z e ro s (n)

72

73 a r r i v a l s s t a t i o n 1 = np . copy ( a r r i v a l t im e s )

74

75 depar ture s ta t i onA = np . z e ro s (n)

76 depar ture s ta t i onB = np . z e ro s (n)

77

78 depar ture s ta t i onAFic = np . z e ro s (n)

79 depar ture s ta t i onBFic = np . z e ro s (n)

80

81 f i r s t a v a i l a b i l i t y A = np . z e ro s (n)

82 f i r s t a v a i l a b i l i t y B = np . z e ro s (n)

83

84 i nd i v i du a l s [ ’ s t a t i o n s v i s i t e d ’ ]=0

85 s t a t i o n s v i s i t e dF i c=np . z e ro s (n)
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86

87

88 whi le sum( i nd i v i du a l s [ ’ s t a t i o n s v i s i t e d ’ ] ) <100:

89

90 i f sum( a r r i v a l s s t a t i o n 1 )==0:

91 min a r r i va l =100000

92 e l s e :

93 m in a r r i va l = np . min ( a r r i v a l s s t a t i o n 1 [ np . nonzero ( a r r i v a l s s t a t i o n 1 ) ] )

94

95 i f sum( depar ture s ta t i onA )==0:

96 min departureA=100000

97 e l s e :

98 min departureA = np . min ( depar ture s ta t i onA [ np . nonzero ( depar ture s ta t i onA ) ] )

99

100 i f sum( depar ture s ta t i onB )==0:

101 min departureB=100000

102 e l s e :

103 min departureB = np . min ( depar ture s ta t i onB [ np . nonzero ( depar ture s ta t i onB ) ] )

104

105 #f i c t i t i o u s play

106 i f sum( depar ture s ta t i onAFic )==0:

107 min departureAFic=100000

108 e l s e :

109 min departureAFic = np . min ( depar ture s ta t i onAFic [ np . nonzero ( depar ture s ta t i onAFic )

] )

110

111 i f sum( depar ture s ta t i onBFic )==0:

112 min departureBFic=100000

113 e l s e :

114 min departureBFic = np . min ( depar ture s ta t i onBFic [ np . nonzero ( depar ture s ta t i onBFic )

] )

115

116 #choose next event

117

118 i f m in a r r i va l <= min departureA and min a r r i va l <= min departureB and min a r r i va l <=

min departureAFic and min a r r i va l <= min departureBFic : # or np . i snan (

min departureB ) ) :

119 cur r ent t ime = min a r r i va l

120 id = np . where ( a r r i v a l s s t a t i o n 1==min a r r i va l ) [ 0 ] [ 0 ]

121 event type=0 #f i r s t a r r i v a l

122 a r r i v a l s s t a t i o n 1 [ id ]=0

123

124 e l i f min departureA <= min departureB and min departureA <= min departureAFic and

min departureA <= min departureBFic : # or np . i snan ( min departureB ) :

125 cur r ent t ime = min departureA

126 id = np . where ( depar ture s ta t i onA==min departureA ) [ 0 ] [ 0 ]

127 event type=1 #departure from A

128 depar ture s ta t i onA [ id ]= 0

129

130 e l i f min departureB <= min departureAFic and min departureB <= min departureBFic :

131 cur r ent t ime = min departureB

132 id = np . where ( depar ture s ta t i onB==min departureB ) [ 0 ] [ 0 ]

133 event type=2 #departure from B

134 depar ture s ta t i onB [ id ] = 0

135

136 e l i f min departureAFic <= min departureBFic :

137 cur r ent t ime = min departureAFic

138 id = np . where ( depar ture s ta t i onAFic == min departureAFic ) [ 0 ] [ 0 ]

139 event type=3 #departure from f i c t i t i o u s A

140 depar ture s ta t i onAFic [ id ]=0

141 e l s e :

142 cur r ent t ime = min departureBFic

143 id = np . where ( depar ture s ta t i onBFic == min departureBFic ) [ 0 ] [ 0 ]

144 event type=4 #departure from f i c t i t i o u s B

145 depar ture s ta t i onBFic [ id ]=0

146

147 cu r r t ime vec = np . f u l l (n , cu r r ent t ime )

148

149 #execute event

150 i f ( event type==0) : #f i r s t a r r i v a l event

151 i d r ou t e = i nd i v i dua l s . i x [ id , ’ cur rent route ’ ]

152

153 i f i d r ou t e : #i nd i v i dua l s v i s i t s A f i r s t => compute departure from A

154 depar ture s ta t i onA [ id ] = np .maximum. reduce ( [ np .maximum. reduce (

depar ture s ta t i onA ) , cur r ent t ime ] ) + serv t imesA [ id ]
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155 depar ture s ta t i onBFic [ id ] = np .maximum. reduce ( [ np .maximum. reduce (

depar ture s ta t i onB ) , cur r ent t ime ] ) + serv t imesB [ id ]

156 f i r s t a v a i l a b i l i t y A [ : id ] = np .maximum. reduce ( [ cu r r t ime vec [ : id ] ,

f i r s t a v a i l a b i l i t y A [ : id ] ] ) + serv t imesA [ id ]

157 f i r s t a v a i l a b i l i t y A [ id +1: ] = np .maximum. reduce ( [ cu r r t ime vec [ id +1: ] ,

f i r s t a v a i l a b i l i t y A [ id +1 : ] ] ) + serv t imesA [ id ]

158 e l s e : #i nd i v i du a l s v i s i t s B f i r s t => compute departure from B

159 depar ture s ta t i onB [ id ] = np .maximum. reduce ( [ np .maximum. reduce (

depar ture s ta t i onB ) , cur r ent t ime ] ) + serv t imesB [ id ]

160 depar ture s ta t i onAFic [ id ] = np .maximum. reduce ( [ np .maximum. reduce (

depar ture s ta t i onA ) , cur r ent t ime ] ) + serv t imesA [ id ]

161 f i r s t a v a i l a b i l i t y B [ : id ] = np .maximum. reduce ( [ cu r r t ime vec [ : id ] ,

f i r s t a v a i l a b i l i t y B [ : id ] ] ) + serv t imesB [ id ]

162 f i r s t a v a i l a b i l i t y B [ id +1: ] = np .maximum. reduce ( [ cu r r t ime vec [ id +1: ] ,

f i r s t a v a i l a b i l i t y B [ id +1 : ] ] ) + serv t imesB [ id ]

163

164 e l i f ( event type==1) : #departure from s t a t i on A

165 i nd i v i du a l s . i x [ id , ’ s t a t i o n s v i s i t e d ’ ] += 1

166

167 i f i n d i v i dua l s . i x [ id , ’ s t a t i o n s v i s i t e d ’ ]==2:

168 wait ingt ime ba [ id ]= cur r ent t ime

169 e l s e :

170 depar ture s ta t i onB [ id ] = np .maximum. reduce ( [ np .maximum. reduce (

depar ture s ta t i onB ) , cur r ent t ime ] ) + serv t imesB [ id ]

171 f i r s t a v a i l a b i l i t y B [ : id ] = np .maximum. reduce ( [ cu r r t ime vec [ : id ] ,

f i r s t a v a i l a b i l i t y B [ : id ] ] ) + serv t imesB [ id ]

172 f i r s t a v a i l a b i l i t y B [ id +1: ] = np .maximum. reduce ( [ cu r r t ime vec [ id +1: ] ,

f i r s t a v a i l a b i l i t y B [ id +1 : ] ] ) + serv t imesB [ id ]

173

174 e l i f ( event type==2) : #departure from s t a t i on B

175 i nd i v i du a l s . i x [ id , ’ s t a t i o n s v i s i t e d ’ ] += 1

176

177 i f i n d i v i dua l s . i x [ id , ’ s t a t i o n s v i s i t e d ’ ]==2:

178 wait ingt ime ab [ id ]= cur r ent t ime

179 e l s e :

180 depar ture s ta t i onA [ id ] = np .maximum. reduce ( [ np .maximum. reduce (

depar ture s ta t i onA ) , cur r ent t ime ] ) + serv t imesA [ id ]

181 f i r s t a v a i l a b i l i t y A [ : id ] = np .maximum. reduce ( [ cu r r t ime vec [ : id ] ,

f i r s t a v a i l a b i l i t y A [ : id ] ] ) + serv t imesA [ id ]

182 f i r s t a v a i l a b i l i t y A [ id +1: ] = np .maximum. reduce ( [ cu r r t ime vec [ id +1: ] ,

f i r s t a v a i l a b i l i t y A [ id +1 : ] ] ) + serv t imesA [ id ]

183

184 e l i f ( event type==3) : #departure from f i c t i t i o u s s t a t i on A

185 s t a t i o n s v i s i t e dF i c [ id ] +=1

186

187 i f s t a t i o n s v i s i t e dF i c [ id ]==2:

188 wait ingt ime ba [ id ]= cur r ent t ime

189 e l s e :

190 depar ture s ta t i onBFic [ id ] = f i r s t a v a i l a b i l i t y B [ id ] + serv t imesB [ id ]

191

192 e l i f ( event type==4) : #departure from f i c t i t i o u s s t a t i on B

193 s t a t i o n s v i s i t e dF i c [ id ] +=1

194

195 i f s t a t i o n s v i s i t e dF i c [ id ]==2:

196 wait ingt ime ab [ id ]= cur r ent t ime

197 e l s e :

198 new departuret ime = f i r s t a v a i l a b i l i t y A [ id ] + serv t imesA [ id ]

199 depar ture s ta t i onAFic [ id ] = new departuret ime

200

201

202 wait ingt ime ab = wait ingt ime ab − i n d i v i du a l s [ ’ a r r i v a l t ime ’ ]

203 wait ingt ime ba = wait ingt ime ba − i n d i v i du a l s [ ’ a r r i v a l t ime ’ ]

204 i nd i v i du a l s [ ’ avg time AB’ ] = ( ( nRound)∗ i n d i v i du a l s [ ’ avg time AB’ ]+wait ingt ime ab ) /(nRound

+1)

205 i nd i v i du a l s [ ’ avg time BA’ ] = ( ( nRound)∗ i n d i v i du a l s [ ’ avg time BA’ ]+wait ingt ime ba ) /(nRound

+1)

206 i f np . sum( i nd i v i dua l s [ ’ cur rent route ’ ] )==pr ev s t a t or a l l ( i n d i v i dua l s [ ’ cur rent route ’ ]==

True ) or a l l ( i n d i v i dua l s [ ’ cur rent route ’ ]==False ) :

207 s t a t i ona ry +=1

208 p r ev s t a t = np . sum( i nd i v i dua l s [ ’ cur rent route ’ ] )

209 i f s t a t i ona ry >= 50 :

210 break

211 f i n a l r e s u l t s . i x [ t r a i l , count ]=sum( i nd i v i dua l s [ ’ cur rent route ’ ] )

212 #f i n a l r e s u l t s . t o c sv ( r ’C:\ Users\mees \Documents\Thes is QM\data\ r e s u l t s t o t a l . csv ’ )

Three-Station Simulation
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1 import numpy as np

2 import pandas as pd

3

4 #import sys

5

6 import i t e r t o o l s

7 #from mul t ip roc e s s i ng .dummy import Pool as ThreadPool

8

9 #from customQueue import Queue

10 #from i t e r a t i o n import I t e r a t i o n

11

12 max t ra i l s = 100

13 max rounds = 250

14 n ab = 25

15 n ac = 25

16 n= n ab + n ac

17 count=−1
18

19 gamma params = np . array ( [ 0 . 0 0 1 , 0 . 1 , 0 . 25 , 0 . 5 , 0 . 75 , 1 ] )

20 #gamma params = np . array ( [ 0 . 1 , 0 . 25 , 0 . 5 , 0 . 75 , 1 ] )

21 phi params = np . array ( [ 0 , 0 . 25 , 0 . 5 , 0 . 75 , 1 ] )

22 mu a = 1

23 mu b c params = np . array ( [ ( 0 . 2 5 , 0 . 1 ) , ( 0 . 7 5 , 0 . 5 ) , ( 1 . 2 5 , 0 . 7 5 ) , ( 1 . 7 5 , 0 . 2 5 ) , ( 1 . 2 5 , 1 . 1 ) , ( 1 . 7 5 , 1 . 5 ) ] )

24 #mu b c params = np . array ( [ ( 0 . 2 5 , 0 . 1 ) , ( 1 . 7 5 , 0 . 2 5 ) ] )

25

26

27 params = i t e r t o o l s . product ( gamma params , phi params , mu b c params )

28 f i n a l r e s u l t s = pd . DataFrame ( index=range ( max t r a i l s ) , columns=range ( l en ( gamma params )∗ l en ( phi params )∗
l en ( mu b c params ) ) )

29 f i n a l r e s u l t s a b = pd . DataFrame ( index=range ( max t ra i l s ) , columns=range ( l en ( gamma params )∗ l en ( phi params

)∗ l en ( mu b c params ) ) )

30 f i n a l r e s u l t s a c = pd . DataFrame ( index=range ( max t ra i l s ) , columns=range ( l en ( gamma params )∗ l en ( phi params

)∗ l en ( mu b c params ) ) )

31

32 #i t e r a t i o n = I t e r a t i o n ( )

33 #pool = ThreadPool (6 )

34 #r e s u l t s = pool . starmap ( i t e r a t i o n . i t e r a t i o n , z ip ( params , i t e r t o o l s . r epeat ( max t ra i l s ) , i t e r t o o l s . r epeat

(max rounds ) , i t e r t o o l s . r epeat (n) ) )

35 #pool . c l o s e ( )

36 #pool . j o i n ( )

37 #f i n a l r e s u l t s = r e s u l t s

38

39 f o r param in params :

40 count+=1

41 i nd i v i dua l s = pd . DataFrame ( index=range (n) , columns=[” person id ” , ” a r r i v a l t ime ” , ” s t a t i o n s v i s i t e d ” ,

42 ” current route ” , ”avg time A f i r s t ” , ”avg time A

l a s t ” , ” subset ” ] )

43 i nd i v i dua l s [ ’ person id ’ ] = range (n)

44 i nd i v i dua l s . i x [ : n ab , ’ subset ’ ]=True #subset i s t rue i f subset ab i s a s s i gned

45 i nd i v i dua l s . i x [ n ab : , ’ subset ’ ]=False #subset i s f a l s e i f subset ac i s a s s i gned

46

47 f o r t r a i l in range ( max t r a i l s ) :

48 #pr in t (” t r a i l ”+s t r ( t r a i l ) )

49 i nd i v i du a l s [ ’ cur rent route ’ ] = np . random . cho i c e ( a=[True , Fa l se ] , s i z e =(n , 1 ) )

50 i nd i v i du a l s [ ’ avg time A f i r s t ’ ] = np . z e ro s (n)

51 i nd i v i du a l s [ ’ avg time A l a s t ’ ] = np . z e ro s (n)

52 s t a t i ona ry=0

53 p r ev s t a t=0

54

55 f o r nRound in range (max rounds ) :

56 p r in t ( s t r ( param)+” − t r a i l ”+s t r ( t r a i l )+” − round ”+s t r (nRound) )

57 i f nRound>1:

58 a f i r s t t im e = np . copy ( i nd i v i du a l s [ ’ avg time A f i r s t ’ ] )

59 a l a s t t ime = np . copy ( i nd i v i du a l s [ ’ avg time A l a s t ’ ] )

60 i nd i v i dua l s [ ’ cur rent route ’ ] = a f i r s t t im e <= a l a s t t ime # i f true , s t a t i on A i s

v i s i t e d f i r s t

61 i nd i v i dua l s [ ’ cur rent route ’ ] [ a f i r s t t im e == a l a s t t ime ] = np . random . cho i c e ( a=[True ,

Fa l se ] , s i z e=len ( i nd i v i dua l s [ ’ cur rent route ’ ] [ a f i r s t t im e == a l a s t t ime ] ) )

62

63 i n c r v e c ab = 2∗np . arange ( n ab )+1

64 i n c r v e c a c = 2∗np . arange ( n ac )+2

65 i n c r v e c = np . concatenate ( ( inc r vec ab , i n c r v e c a c ) )

66 lower = in c r v e c ∗ param [ 0 ] − param [ 1 ]

67 upper = in c r v e c ∗ param [ 0 ] + param [ 1 ]

68 a r r i v a l t im e s = np . random . cho i c e ( a=upper−lower , s i z e=(n , ) )+lower

69 i nd i v i du a l s [ ’ a r r i v a l t ime ’ ]= a r r i v a l t im e s
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70

71 serv t imesA = np . random . exponent ia l ( s c a l e=1/mu a , s i z e=n)

72 serv t imesB = np . random . exponent ia l ( s c a l e=1/param [ 2 ] [ 0 ] , s i z e=n ab )

73 serv t imesC = np . random . exponent ia l ( s c a l e=1/param [ 2 ] [ 0 ] , s i z e=n ac )

74

75 wait ingt ime ab = np . z e ro s ( n ab )

76 wait ingt ime ba = np . z e ro s ( n ab )

77 wa i t ingt ime ac = np . z e ro s ( n ac )

78 wa i t ingt ime ca = np . z e ro s ( n ac )

79

80 a r r i v a l s s t a t i o n 1 = np . copy ( a r r i v a l t im e s )

81

82 depar ture s ta t i onA = np . z e ro s (n)

83 depar ture s ta t i onB = np . z e ro s ( n ab )

84 depar ture s ta t i onC = np . z e ro s ( n ac )

85

86 depar ture s ta t i onAFic = np . z e ro s (n)

87 depar ture s ta t i onBFic = np . z e ro s ( n ab )

88 depar ture s ta t i onCFic = np . z e ro s ( n ac )

89

90 f i r s t a v a i l a b i l i t y A = np . z e ro s (n)

91 f i r s t a v a i l a b i l i t y B = np . z e ro s ( n ab )

92 f i r s t a v a i l a b i l i t y C = np . z e ro s ( n ac )

93

94 i nd i v i du a l s [ ’ s t a t i o n s v i s i t e d ’ ]=0

95 s t a t i o n s v i s i t e dF i c=np . z e ro s (n)

96

97

98 whi le sum( i nd i v i du a l s [ ’ s t a t i o n s v i s i t e d ’ ] ) <100:

99

100 i f sum( a r r i v a l s s t a t i o n 1 )==0:

101 min a r r i va l =100000

102 e l s e :

103 m in a r r i va l = np . min ( a r r i v a l s s t a t i o n 1 [ np . nonzero ( a r r i v a l s s t a t i o n 1 ) ] )

104

105 i f sum( depar ture s ta t i onA )==0:

106 min departureA=100000

107 e l s e :

108 min departureA = np . min ( depar ture s ta t i onA [ np . nonzero ( depar ture s ta t i onA ) ] )

109

110 i f sum( depar ture s ta t i onB )==0:

111 min departureB=100000

112 e l s e :

113 min departureB = np . min ( depar ture s ta t i onB [ np . nonzero ( depar ture s ta t i onB ) ] )

114

115 i f sum( depar ture s ta t i onC )==0:

116 min departureC=100000

117 e l s e :

118 min departureC = np . min ( depar ture s ta t i onC [ np . nonzero ( depar ture s ta t i onC ) ] )

119

120 #f i c t i t i o u s play

121 i f sum( depar ture s ta t i onAFic )==0:

122 min departureAFic=100000

123 e l s e :

124 min departureAFic = np . min ( depar ture s ta t i onAFic [ np . nonzero ( depar ture s ta t i onAFic )

] )

125

126 i f sum( depar ture s ta t i onBFic )==0:

127 min departureBFic=100000

128 e l s e :

129 min departureBFic = np . min ( depar ture s ta t i onBFic [ np . nonzero ( depar ture s ta t i onBFic )

] )

130

131 i f sum( depar ture s ta t i onCFic )==0:

132 min departureCFic=100000

133 e l s e :

134 min departureCFic = np . min ( depar ture s ta t i onCFic [ np . nonzero ( depar ture s ta t i onCFic )

] )

135

136

137 #choose next event

138 i f m in a r r i va l <= min departureA and min a r r i va l <= min departureB and min a r r i va l <=

min departureC and min a r r i va l <= min departureAFic and min a r r i va l <=

min departureBFic and min a r r i va l <= min departureCFic : # or np . i snan (

min departureB ) ) :

139 cur r ent t ime = min a r r i va l
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140 id = np . where ( a r r i v a l s s t a t i o n 1==min a r r i va l ) [ 0 ] [ 0 ]

141 event type=0 #f i r s t a r r i v a l

142 a r r i v a l s s t a t i o n 1 [ id ]=0

143

144 e l i f min departureA <= min departureB and min departureA <= min departureC and

min departureA <= min departureAFic and min departureA <= min departureBFic and

min departureA <= min departureCFic : # or np . i snan ( min departureB ) :

145 cur r ent t ime = min departureA

146 id = np . where ( depar ture s ta t i onA==min departureA ) [ 0 ] [ 0 ]

147 event type=1 #departure from A

148 depar ture s ta t i onA [ id ]= 0

149

150 e l i f min departureB <= min departureC and min departureB <= min departureAFic and

min departureB <= min departureBFic and min departureB <= min departureCFic :

151 cur r ent t ime = min departureB

152 id = np . where ( depar ture s ta t i onB==min departureB ) [ 0 ] [ 0 ]

153 event type=2 #departure from B

154 depar ture s ta t i onB [ id ] = 0

155

156 e l i f min departureC <= min departureAFic and min departureC <= min departureBFic and

min departureC <= min departureCFic :

157 cur r ent t ime = min departureC

158 id = np . where ( depar ture s ta t i onC == min departureC ) [ 0 ] [ 0 ] +n ab

159 event type=3 #departure from C

160 depar ture s ta t i onC [ id−n ab ]=0

161

162 e l i f min departureAFic <= min departureBFic and min departureAFic <= min departureCFic :

163 cur r ent t ime = min departureAFic

164 id = np . where ( depar ture s ta t i onAFic == min departureAFic ) [ 0 ] [ 0 ]

165 event type=4 #departure from f i c t i t i o u s A

166 depar ture s ta t i onAFic [ id ]=0

167

168 e l i f min departureBFic <= min departureCFic :

169 cur r ent t ime = min departureBFic

170 id = np . where ( depar ture s ta t i onBFic == min departureBFic ) [ 0 ] [ 0 ]

171 event type=5 #departure from f i c t i t i o u s B

172 depar ture s ta t i onBFic [ id ]=0

173

174 e l s e :

175 cur r ent t ime = min departureCFic

176 id = np . where ( depar ture s ta t i onCFic == min departureCFic ) [ 0 ] [ 0 ] +n ab

177 event type=6 #departure from f i c t i t i o u s C

178 depar ture s ta t i onCFic [ id−n ab ]=0

179

180 cu r r t ime vec = np . f u l l (n , cu r r ent t ime )

181

182 #execute event

183 i f ( event type==0) : #f i r s t a r r i v a l event

184 i d r ou t e = i nd i v i dua l s . i x [ id , ’ cur rent route ’ ] # i f true , v i s i t A f i r s t

185 i d sub s e t = i nd i v i du a l s . i x [ id , ’ subset ’ ] # i f true , subset i s AB

186

187 i f i d r ou t e and i d sub s e t : #i nd i v i du a l s v i s i t s A f i r s t => compute

departure from A and f i c t i t i o u s B

188 depar ture s ta t i onA [ id ] = np .maximum. reduce ( [ np .maximum. reduce (

depar ture s ta t i onA ) , cur r ent t ime ] ) + serv t imesA [ id ]

189 depar ture s ta t i onBFic [ id ] = np .maximum. reduce ( [ np .maximum. reduce (

depar ture s ta t i onB ) , cur r ent t ime ] ) + serv t imesB [ id ]

190 f i r s t a v a i l a b i l i t y A [ : id ] = np .maximum. reduce ( [ cu r r t ime vec [ : id ] ,

f i r s t a v a i l a b i l i t y A [ : id ] ] ) + serv t imesA [ id ]

191 f i r s t a v a i l a b i l i t y A [ id +1: ] = np .maximum. reduce ( [ cu r r t ime vec [ id +1: ] ,

f i r s t a v a i l a b i l i t y A [ id +1 : ] ] ) + serv t imesA [ id ]

192

193 e l i f not i d r ou t e and i d sub s e t : #i nd i v i dua l s v i s i t s B f i r s t => compute

departure from B and f i c t i t i o u s A

194 depar ture s ta t i onB [ id ] = np .maximum. reduce ( [ np .maximum. reduce (

depar ture s ta t i onB ) , cur r ent t ime ] ) + serv t imesB [ id ]

195 depar ture s ta t i onAFic [ id ] = np .maximum. reduce ( [ np .maximum. reduce (

depar ture s ta t i onA ) , cur r ent t ime ] ) + serv t imesA [ id ]

196 f i r s t a v a i l a b i l i t y B [ : id ] = np .maximum. reduce ( [ cu r r t ime vec [ : id ] ,

f i r s t a v a i l a b i l i t y B [ : id ] ] ) + serv t imesB [ id ]

197 f i r s t a v a i l a b i l i t y B [ id +1: ] = np .maximum. reduce ( [ cu r r t ime vec [ id+1+n ab : ] ,

f i r s t a v a i l a b i l i t y B [ id +1 : ] ] ) + serv t imesB [ id ]

198

199 e l i f i d r ou t e and not i d sub s e t : #i nd i v i dua l s v i s i t s A f i r s t => compute

departure from A and f i c t i t i o u s C

200 depar ture s ta t i onA [ id ] = np .maximum. reduce ( [ np .maximum. reduce (
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depar ture s ta t i onA ) , cur r ent t ime ] ) + serv t imesA [ id ]

201 depar ture s ta t i onCFic [ id−n ab ] = np .maximum. reduce ( [ np .maximum. reduce (

depar ture s ta t i onC ) , cur r ent t ime ] ) + serv t imesC [ id−n ab ]

202 f i r s t a v a i l a b i l i t y A [ : id ] = np .maximum. reduce ( [ cu r r t ime vec [ : id ] ,

f i r s t a v a i l a b i l i t y A [ : id ] ] ) + serv t imesA [ id ]

203 f i r s t a v a i l a b i l i t y A [ id +1: ] = np .maximum. reduce ( [ cu r r t ime vec [ id +1: ] ,

f i r s t a v a i l a b i l i t y A [ id +1 : ] ] ) + serv t imesA [ id ]

204

205 e l s e : #i nd i v i dua l s v i s i t s C f i r s t => compute departure from C and f i c t i t i o u s A

206 depar ture s ta t i onC [ id−n ab ] = np .maximum. reduce ( [ np .maximum. reduce (

depar ture s ta t i onC ) , cur r ent t ime ] ) + serv t imesC [ id−n ab ]

207 depar ture s ta t i onAFic [ id ] = np .maximum. reduce ( [ np .maximum. reduce (

depar ture s ta t i onA ) , cur r ent t ime ] ) + serv t imesA [ id ]

208 f i r s t a v a i l a b i l i t y C [ : id−n ab ] = np .maximum. reduce ( [ cu r r t ime vec [ : id−n ab ] ,

f i r s t a v a i l a b i l i t y C [ : id−n ab ] ] ) + serv t imesC [ id−n ab ]

209 f i r s t a v a i l a b i l i t y C [ id−n ab +1: ] = np .maximum. reduce ( [ cu r r t ime vec [ id +1: ] ,

f i r s t a v a i l a b i l i t y C [ id−n ab +1 : ] ] ) + serv t imesC [ id−n ab ]

210

211 e l i f ( event type==1) : #departure from s t a t i on A

212 i nd i v i du a l s . i x [ id , ’ s t a t i o n s v i s i t e d ’ ] += 1

213 i d sub s e t = i nd i v i du a l s . i x [ id , ’ subset ’ ] # i f true , subset i s AB

214

215 i f i n d i v i dua l s . i x [ id , ’ s t a t i o n s v i s i t e d ’ ]==2:

216 i f i d s ub s e t :

217 wait ingt ime ba [ id ]= cur r ent t ime

218 e l s e :

219 wa i t ingt ime ca [ id−n ab ] =cur r ent t ime

220

221 e l s e :

222 i f i d s ub s e t :

223 depar ture s ta t i onB [ id ] = np .maximum. reduce ( [ np .maximum. reduce (

depar ture s ta t i onB ) , cur r ent t ime ] ) + serv t imesB [ id ]

224 f i r s t a v a i l a b i l i t y B [ : id ] = np .maximum. reduce ( [ cu r r t ime vec [ : id ] ,

f i r s t a v a i l a b i l i t y B [ : id ] ] ) + serv t imesB [ id ]

225 f i r s t a v a i l a b i l i t y B [ id +1: ] = np .maximum. reduce ( [ cu r r t ime vec [ id+1+n ab : ] ,

f i r s t a v a i l a b i l i t y B [ id +1 : ] ] ) + serv t imesB [ id ]

226 e l s e :

227 depar ture s ta t i onC [ id−n ab ] = np .maximum. reduce ( [ np .maximum. reduce (

depar ture s ta t i onC ) , cur r ent t ime ] ) + serv t imesC [ id−n ab ]

228 f i r s t a v a i l a b i l i t y C [ : id−n ab ] = np .maximum. reduce ( [ cu r r t ime vec [ : id−n ab ] ,

f i r s t a v a i l a b i l i t y C [ : id−n ab ] ] ) + serv t imesC [ id−n ab ]

229 f i r s t a v a i l a b i l i t y C [ id−n ab +1: ] = np .maximum. reduce ( [ cu r r t ime vec [ id +1: ] ,

f i r s t a v a i l a b i l i t y C [ id−n ab +1 : ] ] ) + serv t imesC [ id−n ab ]

230

231 e l i f ( event type==2) : #departure from s t a t i on B

232 i nd i v i du a l s . i x [ id , ’ s t a t i o n s v i s i t e d ’ ] += 1

233

234 i f i n d i v i dua l s . i x [ id , ’ s t a t i o n s v i s i t e d ’ ]==2:

235 wait ingt ime ab [ id ]= cur r ent t ime

236 e l s e :

237 depar ture s ta t i onA [ id ] = np .maximum. reduce ( [ np .maximum. reduce (

depar ture s ta t i onA ) , cur r ent t ime ] ) + serv t imesA [ id ]

238 f i r s t a v a i l a b i l i t y A [ : id ] = np .maximum. reduce ( [ cu r r t ime vec [ : id ] ,

f i r s t a v a i l a b i l i t y A [ : id ] ] ) + serv t imesA [ id ]

239 f i r s t a v a i l a b i l i t y A [ id +1: ] = np .maximum. reduce ( [ cu r r t ime vec [ id +1: ] ,

f i r s t a v a i l a b i l i t y A [ id +1 : ] ] ) + serv t imesA [ id ]

240

241 e l i f ( event type==3) : #departure from s t a t i on C

242 i nd i v i du a l s . i x [ id , ’ s t a t i o n s v i s i t e d ’ ] += 1

243

244 i f i n d i v i dua l s . i x [ id , ’ s t a t i o n s v i s i t e d ’ ]==2:

245 wa i t ingt ime ac [ id−n ab ]= cur r ent t ime

246 e l s e :

247 depar ture s ta t i onA [ id ] = np .maximum. reduce ( [ np .maximum. reduce (

depar ture s ta t i onA ) , cur r ent t ime ] ) + serv t imesA [ id ]

248 f i r s t a v a i l a b i l i t y A [ : id ] = np .maximum. reduce ( [ cu r r t ime vec [ : id ] ,

f i r s t a v a i l a b i l i t y A [ : id ] ] ) + serv t imesA [ id ]

249 f i r s t a v a i l a b i l i t y A [ id +1: ] = np .maximum. reduce ( [ cu r r t ime vec [ id +1: ] ,

f i r s t a v a i l a b i l i t y A [ id +1 : ] ] ) + serv t imesA [ id ]

250

251 e l i f ( event type==4) : #departure from f i c t i t i o u s s t a t i on A

252 s t a t i o n s v i s i t e dF i c [ id ] +=1

253 i d sub s e t = i nd i v i du a l s . i x [ id , ’ subset ’ ] # i f true , subset i s AB

254

255 i f s t a t i o n s v i s i t e dF i c [ id ]==2:

256 i f i d s ub s e t :
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257 wait ingt ime ba [ id ]= cur r ent t ime

258 e l s e :

259 wa i t ingt ime ca [ id−n ab ]= cur r ent t ime

260

261 e l s e :

262 i f i d s ub s e t :

263 depar ture s ta t i onBFic [ id ] = f i r s t a v a i l a b i l i t y B [ id ] + serv t imesB [ id ]

264 e l s e :

265 depar ture s ta t i onCFic [ id−n ab ] = f i r s t a v a i l a b i l i t y C [ id−n ab ] +serv t imesC [

id−n ab ]

266

267 e l i f ( event type==5) : #departure from f i c t i t i o u s s t a t i on B

268 s t a t i o n s v i s i t e dF i c [ id ] +=1

269

270 i f s t a t i o n s v i s i t e dF i c [ id ]==2:

271 wait ingt ime ab [ id ]= cur r ent t ime

272 e l s e :

273 depar ture s ta t i onAFic [ id ] = f i r s t a v a i l a b i l i t y A [ id ] + serv t imesA [ id ]

274

275 e l i f ( event type==6) : #departure from f i c i t i o u s s t a t i on C

276 s t a t i o n s v i s i t e dF i c [ id ] +=1

277

278 i f s t a t i o n s v i s i t e dF i c [ id ]==2:

279 wa i t ingt ime ac [ id−n ab ]= cur r ent t ime

280 e l s e :

281 depar ture s ta t i onAFic [ id ] = f i r s t a v a i l a b i l i t y A [ id ] + serv t imesA [ id ]

282

283

284

285 wait ingt ime ab = wait ingt ime ab − i n d i v i du a l s . i x [ : n ab−1, ’ a r r i v a l t ime ’ ]

286 wait ingt ime ba = wait ingt ime ba − i n d i v i du a l s . i x [ : n ab−1, ’ a r r i v a l t ime ’ ]

287 wa i t ingt ime ac = wai t ingt ime ac − i n d i v i du a l s . i x [ n ab : , ’ a r r i v a l t ime ’ ]

288 wa i t ingt ime ca − wai t ingt ime ca − i n d i v i du a l s . i x [ n ab : , ’ a r r i v a l t ime ’ ]

289

290 i nd i v i du a l s [ ’ avg time A f i r s t ’ ] = ( ( nRound)∗ i n d i v i dua l s [ ’ avg time A f i r s t ’ ]+np . concatenate

( ( wait ingt ime ab , wa i t ingt ime ac ) ) ) /(nRound+1)

291 i nd i v i du a l s [ ’ avg time A l a s t ’ ] = ( ( nRound)∗ i n d i v i dua l s [ ’ avg time A l a s t ’ ] +np . concatenate

( ( wait ingt ime ba , wa i t ingt ime ca ) ) ) /(nRound+1)

292

293 i f np . sum( i nd i v i dua l s [ ’ cur rent route ’ ] )==pr ev s t a t :

294 s t a t i ona ry +=1

295 p r ev s t a t = np . sum( i nd i v i dua l s [ ’ cur rent route ’ ] )

296 i f a l l ( i n d i v i dua l s [ ’ cur rent route ’ ]==True ) or a l l ( i n d i v i du a l s [ ’ cur rent route ’ ]==False ) or

s t a t i ona ry >= 50 :

297 break

298 f i n a l r e s u l t s . i x [ t r a i l , count ]=sum( i nd i v i dua l s [ ’ cur rent route ’ ] )

299 f i n a l r e s u l t s a b . ix [ t r a i l , count ]=sum( i nd i v i dua l s . i x [ : n ab−1, ’ cur rent route ’ ] )

300 f i n a l r e s u l t s a c . i x [ t r a i l , count ]=sum( i nd i v i dua l s . i x [ n ab : , ’ cur rent route ’ ] )

301

302 #f i n a l r e s u l t s . t o c sv ( r ’C:\ Users\mees \Documents\Thes is QM\data\ r e s u l t s t o t a l . csv ’ )
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