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Abstract

As forecasting remains a major topic of interest in economics, combining forecasts has been

described extensively in literature. Gibbs and Vasnev (2017) use a forward looking approach

to combining forecasts, in which predictions of future forecast errors are made which are used

to construct combination weights. In this paper, this method is further explored. Besides

unconditional optimal weights and bias-corrected forecasting models, two combination models

using conditionally optimal weights are constructed. Specifically, we investigate whether it is

beneficial for forecasting to use these conditionally optimal weights. US inflation data is used to

examine the forecast performance of the different individual models, bias-corrected models and

the forecast combination models. The forecast performances are compared with those of two

parsimonious benchmark models, namely the Naive forecasting model as described by Atkeson

et al. (2001) and the Equal Weights forecasting model, which both have relatively good forecast

performance. In contrast to the promising results in Gibbs and Vasnev (2017), we do not find

that the forecast combining models outperform the parsimonious forecasting models.

The views stated in this thesis are those of the author and not necessarily

those of Erasmus School of Economics or Erasmus University Rotterdam.
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1 Introduction and problem description

For governments and policymakers, knowing what to expect of macro-economic variables such as

GDP growth or inflation is important. However, forecasting such variables remains a puzzle, and

although different individual econometric models have been proposed, none of them seem to produce

good forecasts consistently. Instead of searching for the individual model with the best forecasting

performance, combining forecasts is also topic of research. Although research in combining forecast

strategies has been promising, methods using a backward-looking approach have a relatively poor

performance. This is partially due to biases that exist in individual forecasts, which makes it difficult

to exploit predictable information in conditional forecast errors, which leads to optimal weights that

are misspecified. Therefore, such methods do not consistently outperform simple strategies like the

Equal Weights strategy of combining forecasts.

It seems logical to investigate whether correcting the biases that are present in the individual

forecasts is beneficial for the forecast performance of both the individual models and the forecast

combinations. Indeed, when the forecasts are corrected with accurate estimates of the biases, this

should leave us with more accurate forecasts, as proven in Gibbs and Vasnev (2017). However,

this is exactly the problem: estimates of biases are often noisy, and correcting the forecasts with a

contaminated bias results in worse forecasts.

An approach different from the backward-looking method is described in Gibbs and Vasnev

(2017), where it is suggested to use a forward-looking approach. In the methods used, predictions

of the future forecast errors are made and subsequently combination weights are constructed using

these predictions. Rather than using the past forecast performance to construct the combination

weights as done in the backward-looking approach, the forward-looking approach uses the expected

forecast performance. In practice, they predict the forecast errors of each model and they assign

weights such that the expected squared errors of the forecast combination models are minimized.

The paper of Gibbs and Vasnev (2017) will be used as a base for our research. Five different

forecast combinations of seventeen different individual model forecasts will be compared, including

Equal Weights, unconditional optimal weights, bias-corrected forecasts with unconditional optimal

weights and conditionally optimal weights. The weights of the forecast combination of conditionally

optimal weights are constructed using a covariance matrix of the bias-corrected forecast errors. In

Gibbs and Vasnev (2017), this covariance matrix is assumed to be fixed over time. In addition to

Gibbs and Vasnev (2017), the forecasting performance of a second forecast combination strategy
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with conditionally optimal weights is added. However, in this strategy we allow the covariance

matrix of the bias-corrected forecast errors to be time-varying. The variance matrix will be updated

using the DCC-GARCH model, as described in Engle (2002).

We use quarterly US inflation rates to compose forecasts. The forecasts of the different models

will be compared based on the Root Mean Squared Forecast Error (RMSFE) and the Mean Forecast

Error (MFE). The forecast performance of the models proposed will be tested in three different

time periods to be able to compare the performance for different volatility levels of inflation. This

allows us to compare the models on robustness as well. Specifically, we want to answer the question

whether or not the forecast combination strategies of conditionally optimal weights (with or without

time-varying variance matrix) outperform other forecast combinations in inflation forecasting, when

compared based RMSFE and MFE.

We find that the forecasting accuracy differs greatly among three different subsamples used,

which are characterised by differences in volatility levels of the inflation rates. In periods with

more volatile inflation rates, predictive accuracy drops which results in higher RMSFE. Also, when

inflation is more volatile, the MFE tend to be more biased. Furthermore, as expected, parsimonious

benchmark models are still hard to beat, regardless the volatility levels of inflation. Applying bias-

correction to forecasts also does not lead to better forecasts, as it remains a puzzle to accurately

estimate biasedness. Furthermore, the extended model of conditionally optimal weights with time-

varying covariance matrix does not perform better than the conditionally optimal weights with fixed

covariance matrix. In contrast to Gibbs and Vasnev (2017), we find that none of the individual or

combined forecasting models is able to consistently beat the benchmark models.

Next section contains the data descriptions. Section 3 introduces the econometric models used

to create forecasts, the combined forecast strategies and some performance measures. In Section 4

the results will be given, and Section 5 concludes.

2 Data

To investigate the forecast performance of the different models, we use quarterly US inflation rates

similar to Gibbs and Vasnev (2017), which we have obtained from the Consumer Price Index (CPI)

from the International Monetary Fund (IMF). In their research however, real-time vintage data is

used which allows them to know for sure that the data they use at the time a forecast is made,

was actually available to the public at that time. For simplicity, we only use the last vintage data,
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in contrast to their paper. However, to still account for lagged information availability of inflation

rates, we always forecast h = 4 quarters ahead. We denote time T as the moment the last known

inflation rate is available to the public and usable for forecasting, and construct forecasts for time

T + h. This difference in data usage causes that forecasting results in our paper and the paper of

Gibbs and Vasnev (2017) cannot be compared directly.

The time series of quarterly US inflation rates used in our research starts from 1960Q2 until

2019Q1, which gives us a total of 236 observations. In Figure 1, the US inflation rates are shown.

Figure 1: US quarterly inflation rate from 1960Q2 until 2019Q1, split up into the training- and hold-in

sample and three forecasting samples

In the inflation time series Figure 1 it can be seen that there are great differences in general

inflation patterns over different periods in time, for example in volatility levels. Therefore, for the

model estimation in later periods, it might be beneficial to only use recent past observations which

show the same patterns to estimate the models and construct forecasts, because when the behaviour

of variables change over time, the last observations might give us more relevant information for future

behaviour. Therefore, for the estimation of the models, we use a rolling window consisting of n = 40

observation. This window contains both the training sample for the estimation of parameters and

the hold-in-sample to obtain the initial forecast errors for the calculation of biases. This is in contrast

to Gibbs and Vasnev (2017), where an expanding window is used which causes the training- and

hold-in sample to grow at each iteration, and which causes the estimation window to also contain

observations from periods in which the inflation rates showed different patterns.
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Besides the training- and hold-in sample, there is the hold-out sample of length n = 196 used

for forecasting. This hold-out sample is split up into three different time periods, as can be seen

in Figure 1. In this figure, the first period consists of the training and the hold-in sample. The

remainder of the sample is split up in three forecasting samples to be able to compare forecast

performance in different periods. As inflation rates were more volatile and showed higher peaks

between roughly 1965 and 1983 than in the years after, we set the first forecasting sample from

1970Q2 up to 1982Q4. Because we forecast h = 4 quarters ahead, the first forecasts are made for

1971Q2, such that in Section 4, the performance measures are given from 1971Q2. The remaining

data corresponds to the forecasting sample from Gibbs and Vasnev (2017), and for simplicity we use

the same breakpoint as they use, namely at 2007Q3. This gives us a second forecasting sample from

1983Q1 until 2007Q3, and a third forecasting sample from 2007Q4 and 2019Q1. However, because

of some differences in the methods used in this paper and the methods in Gibbs and Vasnev (2017),

we cannot directly compare the results. In Table 1, the descriptive statistics of the inflation data in

the four different samples can be found. This supports our observation that inflation rates were more

volatile in the first forecasting sample. Besides the volatility, also the inflation rates itself gradually

decreased over the last three decades, ranging between 0.06% and 2.81% in the last sample, close

to the target inflation rate of 2% of most central banks.

Table 1: Descriptive statistics of quarterly US inflation data (in percentages)

Sample
Training and First forecasting Second forecasting Third forecasting

hold-in sample sample sample sample

Timeframe 1960Q2 - 1970Q1 1970Q2 - 1982Q4 1983Q1 - 2007Q3 2007Q4 - 2019Q1

Mean 2.56 7.13 3.19 1.85

St. dev. 1.81 3.19 1.26 0.58

Min -0.44 2.10 0.69 0.06

Max 6.34 14.52 7.33 2.81

Observations 40 51 99 46

The descriptive statistics of US inflation in percentages for four different time periods, namely the

training and hold-in sample and the three forecasting samples.

Besides the time series for inflation, also time series of the GDP growth rates and unemployment

rates are used in the forecasting models. These rates are also obtained from the IMF database. From

these variables, the GDP growth gap and unemployment gap are created by taking the difference

between the maximum value over the last twelve quarters and the current observation. Furthermore,

the output gap is created using a Hodrick-Prescott Filter, as described by Hodrick and Prescott
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(1980). For this, the statsmodels function in Python was used. In the next section, the forecasting

models will be described.

3 Methodology

First, in Section 3.1, the estimation procedure of the models is explained in detail. In Section 3.2,

the econometric models which are used to create individual forecasts are described. The procedure

for obtaining the bias-corrected forecasts is described in Section 3.3. The description of the five

forecast combination strategies are provided in Section 3.4, and lastly, the combined forecasts are

compared using performance measures described in Section 3.5.

3.1 Estimation procedure

For each model, in each iteration, the estimation and forecasting procedure at time T goes as follows:

1. All 40 observations in the rolling window (T − 39 up to T ) are used to obtain parameter

estimates for the models. This is in contrast to the method in Gibbs and Vasnev (2017),

where they use all past observations except the last 20 observations in the estimation window.

The last 20 observations are used in the next step for the estimation of the bias. However,

due to poor forecasting performance when using only the first 20 observations from the rolling

window for the estimation of the parameters, we use the whole rolling window for this.

2. When the parameter estimates are obtained, a forecast of the bias is constructed using the

last 20 observations of the rolling window, in line with the procedure in Gibbs and Vasnev

(2017). The estimation procedure of the bias will be discussed in detail in Section 3.3.

3. Using the parameters estimates and estimated biases, regular and bias-corrected forecasts are

constructed for T + h using only the information available at time T .

4. For each forecast, the forecast error and the squared forecast error are calculated for the MFE

and the RMSFE. The performance measures of the different models are compared using the

tests as described in Section 3.5.

3.2 Individual forecasting models

To create individual h-step-ahead forecasts, Gibbs and Vasnev (2017) propose 17 different econo-

metric forecasting models which we adopt in our research. The models are summarized in Table 2.
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An extensive description of the models can be found below.

Table 2: Forecasting models

Univariate Phillips Curve Direct Forecasts

Naive model PC GDP Growth DF GDP Growth

AR(1) PC GDP Growth Gap DF GDP Growth Gap

AR(2) PC Output Gap DF Output Gap

AR(4) PC Unemployment Rate DF Unemployment Rate

ARMA(1,1) PC Unemployment Gap DF Unemployment Gap

ARMA(4,4) All Variables

The different models used to make forecasts of US inflation. The models

consist of univariate models, models based on the Phillips curve

and Direct forecasting models, based on OLS regression.

Naive forecasting model A parsimonious model which is used in Gibbs and Vasnev (2017), is the

Naive forecasting model as proposed by Atkeson et al. (2001). The inflation rate of a coming year is

assumed to be equal to the average inflation rate of the past year: yT+1 =
yT+yT−1+yT−2+yT−3

4 + εT+1.

Because of the lagged information availability of inflation, the inflation forecast at time T is esti-

mated as the average of the last four known quarters:

fT+h =
yT + yT−1 + yT−2 + yT−3

4
(1)

As this simple model proves to be quite a good estimate, this model will be used as a benchmark

model for the comparison of the individual forecasting models.

Autoregressive Moving Average forecasting model The Autoregressive Moving Average

(ARMA(p,q)) models of order p and q are relatively simple univariate models that are widely used

to forecast time series. Forecasts are based on the past p observations and the past q shocks ε.

Thus, the model is given as follows:

yT+h = φ1yT + ...+ φpyT−p+1 + θ1εT + · · ·+ θqεT−q+1 + εT+h. (2)

For the estimation of the ARMA(p,q) models, the Statsmodels module in Python is used. The

Autoregressive (AR(p)) models of order p are restricted ARMA(p,q) models and produce forecasts

based on a linear combination of the last p observation. In Equation 2, the parameters θi = 0, for

i = 1, . . . q and the parameters φi, for i = 1, . . . , p, are unknown and can be estimated using OLS.

7



Phillips Curve model Furthermore, bivariate Vector Autoregressive (VAR) models are included

based on the Phillips Curve. For these forecasts the GDP growth, GDP growth gap, the output

gap, the unemployment rate and unemployment gap are used, forming five individual models, each

consisting of inflation and one of the variables. Besides this, one model is added using the three

variables which are good predictors of forecast bias. In this VAR model, the GDP growth, output

gap and unemployment gap are used to forecast inflation. Forecasts created with the bivariate VAR

model are based on past observation of the two (or four in the model using all variables) included

variables. The bivariate VAR model is described as follows:

YT+h =

yT+h
zT+h

 =

a1
a2

 +

b1,1 b1,1

b1,1 b1,2

yT
zT

 +

b1,1 b1,2

b2,1 b2,2

yT−1
zT−1

 +

εT+h
εT+h

 (3)

= a+B1YT +B2YT−1 + εT+h, (4)

where Equation 4 is the model in matrix form. The parameters can be estimated using System

OLS.

Direct forecasting models Lastly, five Direct Forecasting models using OLS regressions are

included, in which the forecast of inflation is based on the last observation of some other variable

zT . This model is described as follows:

yT+h = α+ βzT + εT+h. (5)

The choice of variable for zT is, just like the previous models, the five variables as described before.

3.3 Bias corrected forecasts

Besides investigating the forecasts of the individual models as described above, we also construct

forecasts which are corrected with estimated biases. This strategy builds on the idea that biasedness

that is present in the forecasts of individual forecasting models can be corrected to obtain more

accurate forecasts. This can be shown by observing the forecast error ẽT+h that remains when we

use forecasts that are corrected with the actual bias, f̃T+h = fT+h + bT , as also described in Gibbs

and Vasnev (2017):

ẽT+h = yT+h − f̃T+h (6)

= eT+h − bT = ξT+h, (7)
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which is the bias-corrected forecast error. In practice however, when the noise in the estimated

bias is large, the bias-correction might lead to forecasts that are less accurate than the uncorrected

forecasts.

To obtain an estimate of the bias that is contained in the individual forecast, we regress the

h-quarter-ahead forecast error of model i, ei,T+h = yT+h − fi,T+h, on the observation at time T of

a specific variable zT at time T :

ei,T+h = αi + βizT + ξi,T+h. (8)

At each time T , with this model an estimate of the bias can be made which is used for the bias-

correction using f̃T+h = fT+h + bT . For the bias-corrected individual forecast models, the variable

output gap is used as regression variable zT for the estimation of the bias.

3.4 Forecast combination strategies

Forecasts made with the econometric models as described above, are combined using weights in order

to create combined forecasts. Consider the h-step-ahead forecasts vector of individual models fT+h:

fT+h = (f1,T+h, . . . , fk,T+h)′ ∈ Rk, (9)

with k the amount of individual forecasting models. The combined inflation forecast at time T + h

is then expressed as fc,T+h = w′T+hfT+h with weights wT+h = (w1,T+h, . . . , wk,T+h)′. To evaluate

the forecasts, we define the vector of forecasting errors as described in Gibbs and Vasnev (2017):

eT+h = yT+h1− fT+h (10)

= bT + ξT+h, (11)

with yT+h the real inflation value, bT = E[eT+h|IT ] the forecast bias vector and ξT+h the vector of

bias-corrected forecast errors with E[ξT+h|IT ] = 0. The errors of the combined forecasts are given

by

ec,T+h = yT+h − fc,T+h = w′T+heT+h. (12)

Five different forecast combination strategies will be used: the benchmark strategy of Equal

Weights, unconditional optimal weights, bias-corrected forecasts combined using unconditional opti-

mal weights and the conditionally optimal weights strategy with respectively fixed and time-varying

covariance matrix of the bias-corrected forecast errors ξT+h.
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Equal Weight forecasts This simple forecast combination strategy corresponds to averaging

the individual forecasts in order to form the combined forecasts. Hence, the weights are defined as

wT+h = w = 1
n1. This strategy will be used as a benchmark forecast combination.

Unconditional optimal weights The unconditionally optimal weights w∗ are calculated using

w∗ =
Σ−1e 1

1′Σ−1e 1
, (13)

where Σe corresponds to the unconditional variance of the forecast errors. This strategy boils down

to using no information to predict the errors.

Bias-corrected forecasts combined with unconditional optimal weights This forecast

combining strategy uses bias-corrected forecasts as constructed in Section 3.3. The individual

forecasts are then combined using unconditional optimal weights, calculated using Equation 13.

We use the five variables as described earlier as regression variable zT to make estimates for the

biases. Theoretically, if the forecasts can be corrected perfectly by removing the contaminating

bias from the forecasts before combining, a more optimal combined forecasts can be obtained.

Gibbs and Vasnev (2017) already described that when the biases are corrected perfectly, combining

these corrected forecasts with unconditional optimal weights leads to forecasts with a lower MSE.

However, because the estimated bias can be quite noisy, in practice this noise could also pollute the

forecast, especially when the noise is relatively big compared to the bias.

Conditionally optimal weights with fixed Σξ For this strategy, the conditionally optimal

weights w∗(IT ) are chosen such that the mean squared error (MSE) of the combined forecast

errors, e2c,T+h is minimised. This optimisation problem can be written as:

w∗(IT ) = arg minwE[e2c,T+h|IT ]. (14)

The MSE of this optimization problem is MSE(w) = w′(Σξ + bTb
′
T )w and is minimised by the

conditionally optimal weights,

w∗(IT ) =
[Σξ + bTb

′
T ]−11

1′[Σξ + bTb′T ]−11
, (15)

with fixed covariance matrix Σξ. In this strategy, a shrinkage component α ∈ (0, 1) is included

such that the covariance matrix can be stabilised, Σ̃ξ = αΣ0 + (1− α)Σ̂ξ. In our research, we use

α = 0.5 and for Σ0 we use the identity matrix.
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Conditionally optimal weights with time-varying Σξ,T This strategy is similar to the strat-

egy above, however, we allow the covariance matrix Σξ,T to vary over time. To achieve this, we use

the GARCH composition as introduced in Bollerslev (1986). Specifically, we use the multivariate

Dynamic Conditional Correlation (DCC) GARCH(1,1) model, as proposed in Engle (2002) and de-

scribed in Orskaug (2009). The idea of the model is that the covariance matrix of the bias-corrected

forecast errors ξT , Σξ,T , can be decomposed as Σξ,T = DTRTDT , where RT is a correlation matrix

of the bias-corrected forecast errors and DT a diagonal matrix of conditional standard deviations.

The correlation matrixRT can be decomposed usingRT = Q∗−1T QQ∗−1T , whereQ∗−1T has the square

root elements of QT on the diagonal, and zeros on the off-diagonal. The DCC-GARCH model is

updated using Equation 16, where Q̄ is estimated using the bias-corrected forecast errors from the

rolling window: Q̄ = 1
T

∑T
t=1 ξtξ

′
t.

QT = (1− a− b)Q̄+ aξT−1ξ
′
T−1 + bQT−1. (16)

For the initial Q0, the matrix Q̄ is chosen. The covariance matrix Σξ,T is positive semidefinite if

a ≥ 0, b ≥ 0 and a + b < 1. The optimal values for the parameters a and b are estimated in the

training sample, using the generalised optimisation method, choosing the a and b such that the

expected RMSFE is as low as possible. Just like in the strategy with the fixed Σξ, the shrinkage

component α = 0.5 is added to stabilise the covariance matrix such that Σ̃ξ,T = αΣ0 + (1−α)Σ̂ξ,T ,

with Σ0 the identity matrix.

3.5 Performance Measures

To measure the overall forecasting performance of the forecasting models, the Root Mean Squared

Forecasting Error (RMSFE) for each model i is calculated. The RMSFE of model i is defined as

RMSFEi =

√√√√ 1

T

N∑
T=i

(yT − fi,T )2, (17)

with yT the real inflation rate at time T and fi,T the inflation forecast of model i at time T . To

be able to compare the forecasting performance of each model with the benchmark models (for the

individual models and the combined forecasting models respectively the Naive forecasting model

and the combination model of Equal Weights), in the results the relative RMSFE will be given. To

test whether a particular model outperforms the benchmark model, the Diebold-Mariano test for

the comparison of predicting accuracy is used, as proposed by Diebold (2015). The test compares

the RMSFE of the particular model and the benchmark model in a certain period, with the null
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hypothesis that both models have equal forecast accuracy. In the results, for each model only the

significance level of the model itself compared to the benchmark will be given.

Furthermore, to measure if there is any biasedness present in the forecasts of model i, the Mean

Forecast Error (MFE) is calculated for each model. The MFE is defined as

MFEi =
1

T

N∑
j=i

(yT − fi,T ). (18)

To test whether the MFE is significantly different from zero, we use the two-sided t-test with

Newey-West Heteroskedasticity and Autocorrelation Corrected (HAC) standard errors, as described

in Newey and West (1986). The standard errors are obtained using Eviews 10+. In next section,

the results will be described.

4 Results

In this section, we will describe the results of benchmark models, the individual forecasting models

and the bias-corrected individual forecasting models. After this, the results of the combined forecasts

will be described.

4.1 Results benchmark models

First, we will describe the results of the benchmark models, namely the Naive forecasting model

and the combination strategy of Equal Weights. In Table 3 the RMSFE and the MFE of both

models over the total forecasting sample and the three separate forecasting samples are given. For

comparison, also the bias-corrected Naive forecasting model is added. Notable is that the forecasting

performance of the three models differ greatly among the three forecasting samples. The RMSFE is

almost twice as big in the first subsample compared to the RMSFE of the total sample. Furthermore,

the RMSFE drops in the second sample, and becomes even lower in the third forecasting subsample.

In Figure 2, the two forecasts together with the true inflation rates are shown. It can be seen that

the highly volatile inflation rates during the first forecasting sample gives less accurate forecasts of

the benchmark models and it is notable that for the Naive forecasting model, the short but large

peaks in inflation rates are hard to predict because of the lagged forecasts. Also, the Equal Weights

strategy does not manage to predict the inflation well in the first sample. This is in contrast to the

second forecasting sample and (even more) third forecasting sample, when inflation rates are less
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volatile and gradually drop to around 2%. Both forecasting models obtain more accurate forecasts

when the inflation rate is less volatile.

Table 3: The MFE and RMSFE of the inflation forecasts of the benchmark forecasting models: the

(bias-corrected) Naive forecasting model and the forecasting combination strategy of Equal Weights

Total Sample 1971Q2 - 1982Q4 1983Q1 - 2007Q3 2007Q4 - 2019Q1

Benchmark model MFE RMSFE MFE RMSFE MFE RMSFE MFE RMSFE

Naive 0.12† 2.150 -0.16† 3.906 0.29† 1.213 0.04† 0.733

Bias-corrected Naive 0.04† 2.496 0.13† 4.399 0.02† 1.594 0.02† 0.877

Equal Weights 0.40† 1.965 -1.61 3.657 1.12 1.679 0.02† 0.715

p-value DM-test 0.354 0.914 0.049 0.771

For the benchmark models and the bias-corrected Naive forecasting model, the MFE and RMSFE

are shown. MFEs which are not significantly different from zero at the 10 percent level are

indicated with an †. Besides this, the p-value of the Diebold-Mariano test for equal forecast

accuracy between the two benchmark models is added.

When we compare the Equal Weights strategy and the Naive forecasting models in more detail,

it stands out that in the first and third forecasting sample, the Equal Weights strategy has the

lowest RMSFE. This is in contrast to the second forecasting sample, where the Naive forecasting

model has the lowest RMSFE. Also the p-values of the Diebold-Mariano test for equal forecasting

accuracy of the two benchmark models for the total sample and the three forecasting samples can

be found in Table 3. These indicate that in the total sample and in the first and third forecasting

sample, we cannot reject the null hypothesis that the forecasting accuracy of both models is equal.

However, in the second forecasting sample, we reject this null hypothesis at the 5% level. As the

RMSFE of the Naive forecasting model is lower in this sample, the forecasting accuracy of the Naive

forecasting model is better in the second sample.

4.2 Individual forecasting models

In Table 4, the MFE and RMSFE of the individual forecasting models of the complete sample

and the three forecasting samples are shown. The RMSFE is given relative to the RMSFE of the

benchmark, the Naive forecasting model.

As can be seen, over the complete sample, the Naive forecasting model turns out to be hard

to beat. Only the AR(1) and AR(2) models have a lower RMSFE, however, these are both not

significantly lower than the RMSFE of the benchmark. Furthermore, most models have a RMSFE

which is relatively close to the RMSFE of the Naive forecasting model. Besides this, almost none
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Figure 2: US inflation rates with forecasts of the benchmarks, the Naive forecasting model and the forecast

combining model of Equal Weights

of the biases are significantly different from zero.

When the forecasting performance of the different samples are compared, it turns out that all

models have worse forecasting performance in the first forecasting sample. This can be due to the

high volatility levels of inflation which are present in this sample, as can be seen from Table 1.

Besides the higher RMSFE, most individual forecasting models show a relatively large negative

MFE, although not all are significantly different from zero at the 10% level. Especially the Direct

Forecasts show negative biasedness in the forecast errors. In the second forecasting sample, the

forecasting performance of all the individual models is better than in the first sample, as seen by

the lower RMSFE. Also, for most models, the forecasting performance seems to be better in this

sample than in the total sample. However, none of the individual models produces more accurate

forecasts than the benchmark in the same sample. Besides this, all forecasting models except the

benchmark have positively biased forecast errors significantly different from zero. In the third

sample, the MFE and RMSFE again show different characteristics than the performance measures

in the other samples. All RMSFE are lower in this sample than in the previous samples, and almost

all MFE are unbiased. However, again not a single model is able to significantly outperform the

Naive forecasting model in this sample. These results shows that in general, inflation seems to be

easier to forecast in periods when inflation has low volatility (like in the second and third forecasting

sample). When the MFE of the three different forecast samples are compared, it seems like forecasts
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of most models are less biased when the inflation is stable, and that the bias in the MFE inflates

when there is more volatility. However, in the second forecasting sample, when the volatility is

already relatively low compared to the first sample, there is still biasedness in the MFE present.

Table 4: MFE and relative RMSFE of individual forecasting models

Total Sample 1971Q2 - 1982Q4 1983Q1 - 2007Q3 2007Q4 - 2019Q1

Forecasting model MFE Rel. RMSFE MFE Rel. RMSFE MFE Rel. RMSFE MFE Rel. RMSFE

Univariate

Naive 0.12† 1.000 -0.16† 1.817 0.29† 0.564 0.04† 0.341

AR(1) 0.22† 0.957 -1.00† 1.646 0.85 0.667 0.11† 0.306

AR(2) 0.18† 0.993 -1.00† 1.717 0.78 0.683 0.07† 0.316

AR(4) 0.09† 1.064 -1.32† 1.859 0.78 0.711 0.05† 0.322

ARMA(1,1) -0.78 1.034 -1.20† 1.883 -0.71 0.570 -0.51 0.378

ARMA(4,4) 0.07† 1.070 -0.34† 1.908 0.33 0.661 -0.02† 0.345

Phillips curve

GDP Growth 0.18† 1.001 -0.91† 1.730 0.75 0.688 0.06† 0.321

GDP Growth Gap 0.17† 1.018 -0.98† 1.730 0.78 0.736 0.06† 0.318

Output Gap 0.09† 1.169 -1.15† 2.071 0.65 0.742 0.18† 0.370

Unemployment 0.08† 1.029 -1.17 1.657** 0.79 0.827 -0.16† 0.373

Unemployment Gap 0.16† 1.030 -1.28 1.609 0.92 0.872 -0.03† 0.386

Var All 0.64 1.394 0.94† 2.355 0.83 0.951 -0.05† 0.706

Direct Forecasts

GDP Growth 0.25† 1.060 -2.02 1.701 1.40 0.872 0.12† 0.308

GDP Growth Gap 0.25† 1.063 -2.04 1.704 1.40 0.877 0.11† 0.306

Output Gap 0.25† 1.098 -2.08 1.790 1.41 0.877 0.13† 0.318

Unemployment 0.00† 1.176 -2.86 1.843 1.46 1.006 -0.21† 0.349

Unemployment Gap 0.11† 1.171 -2.75 1.742 1.56 1.081 -0.08† 0.330

*** p < 0.01 ** p < 0.05 * p < 0.1

For each model, the MFE are shown. MFEs which are not significantly different from zero at the 10 percent

level are indicated with an †. Furthermore, for each model the relative RMSFE and the one-sided

significance of the Diebold-Mariano test compared to the benchmark model (the Naive forecasting model) at

three different significance levels are shown (indicated with the asterices).

4.3 Bias corrected individual forecasting models

In Table 5, the results of the bias-corrected individual forecasting models can be found. For each

model, the forecasts are corrected using biases as estimated with Equation 8, using the variable

output gap as zT . Again, the MFE of each model is shown, together with the RMSFE relative to

the RMSFE of the uncorrected Naive forecasting model. Over the complete sample, none of the bias-

corrected individual models manage to significantly outperform the uncorrected Naive forecasting

model in forecasting accuracy when tested for using the Diebold-Mariano test.

In the remaining three forecasting sample, there are also no models which have significantly
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more accurate forecasting accuracy than the uncorrected Naive forecasting model. However, just

like the results of the uncorrected individual forecasts, the forecasts in the third forecasting sample

have the lowest RMSFE of the three samples, followed by the second and third forecasting sample,

suggesting that models can forecast less volatile inflation better.

Table 5: MFE and relative RMSFE of bias-corrected individual forecasting models

Total Sample 1971Q2 - 1982Q4 1983Q1 - 2007Q3 2007Q4 - 2019Q1

Forecasting model MFE Rel. RMSFE MFE Rel. RMSFE MFE Rel. RMSFE MFE Rel. RMSFE

Univariate

Naive 0.04† 1.161 0.12† 2.046 0.02† 0.741 0.02† 0.408

AR(1) 1.14 1.265 1.51† 2.046 1.48 1.024 0.02† 0.378

AR(2) 0.17† 1.101 -0.50† 1.821 0.54 0.841 0.07† 0.390

AR(4) 0.11† 1.182 -0.70† 2.010 0.51 0.846 0.07† 0.403

ARMA(1,1) -0.03† 1.199 0.25† 2.164 -0.15† 0.701 -0.04† 0.397

ARMA(4,4) 0.25† 1.424 1.08† 2.339 -0.08† 1.107 0.14† 0.483

Phillips curve

GDP Growth 0.17† 1.127 -0.44† 1.872 0.50† 0.852 0.06† 0.395

GDP Growth Gap 0.16† 1.141 -0.49† 1.855 0.53† 0.906 0.04† 0.390

Output Gap 0.14† 1.239 -0.53† 2.056 0.46† 0.941 0.12† 0.424

Unemployment 0.17† 1.015 -0.66† 1.719 0.70 0.738 -0.10† 0.328

Unemployment Gap 0.24† 1.008 -0.57† 1.601 0.79 0.830 -0.09† 0.374

Var All 0.62 1.389 0.92† 2.350 0.78 0.947 -0.02† 0.698

Direct Forecasts

GDP Growth 0.22† 1.067 -0.88† 1.738 0.80 0.840 0.10† 0.391

GDP Growth Gap 0.23† 1.098 -0.94† 1.754 0.89 0.897 0.00† 0.402

Output Gap 0.20† 1.154 -0.95† 1.971 0.79 0.820 0.11† 0.385

Unemployment 0.10† 1.058 -1.78 1.694 1.05† 0.871 -0.12† 0.331

Unemployment Gap 0.18† 0.967 -1.38 1.441 1.05 0.885 -0.10† 0.312

*** p < 0.01 ** p < 0.05 * p < 0.1

For each model, the MFE are shown. MFEs which are not significantly different from zero at the 10 percent

level are indicated with an †. Furthermore, for each model the relative RMSFE and the one-sided

significance of the Diebold-Mariano test compared to the benchmark model (the uncorrected Naive

forecasting model) at three different significance levels are shown (indicated with the asterices).

4.4 Combined forecasting models

The results of the combined forecasting models can be found in Table 6. In this table, again the MFE

of each combined forecasting model is given, together with the RMSFE relative to the benchmark

model in the complete sample, the forecast combining strategy of Equal Weights. Also, the results

of the Naive forecasting model without bias-correction are given for comparison.

When comparing the results of the total sample, the benchmark model as well as the Naive

forecasting model both turn out to be hard to beat. Also, the forecast combination model with
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unconditional weights performs surprisingly well.

Some of the bias-corrected forecasting models have similar RMSFE as the Equal Weight strategy

and the Naive forecasting model, depending on the variable used to forecast the bias although

the models do not outperform the benchmark. Also, the conditional optimal weights with fixed

covariance matrix of the bias-corrected forecast errors Σξ do not outperform the benchmark model.

The combination model with conditional optimal weights and a time-varying Σξ, T matrix even has

a higher RMSFE than the unconditionally optimal weights with fixed covariance matrix. Overall,

there is not a single model that significantly outperforms the benchmark models. The forecast

combination strategy of Equal Weights therefore seems a good choice. Also, some of the forecast

combinations with conditionally optimal weights produce biased forecasts which are significantly

different from zero, especially when the covariance matrix is time-varying.

When we compare the models in the first forecasting sample with highly volatile inflation rates,

again the performance of the models drops, which is shown by the higher RMSFE, which is for each

model around 1.4 to 2.6 times as high as the benchmark model in the complete sample. There is

some difference between the bias-corrected combination models depending on the variable used to

correct the bias, but in general these models do not outperform the benchmark. The combination

models with conditionally optimal weights with both fixed and time-varying Σξ,T matrix do have

lower RMSFE in this sample, however when tested for equal forecasting accuracy with the Diebold-

Mariano test, the models do not significantly outperform the Equal Weights strategy in the same

forecasting sample. Notable is however, that all of the forecast combination with conditionally

optimal weights with time-varying covariance matrix of the bias-corrected forecasts errors, and

some of those with fixed covariance matrix, do produce unbiased forecast errors in this sample.

When we compare the models in the last two forecasting samples we see that, just like in the

previous results, the RMSFE improves as the volatility of the inflation drops. However, there is

not one model which is able to outperform the benchmark. In the second forecasting sample, all

forecasting combinations have biased forecast errors, while in the third forecasting sample, they are

all unbiased.
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Table 6: MFE and relative RMSFE of combined forecasting models

Total Sample 1971Q2 - 1982Q4 1983Q1 - 2007Q3 2007Q4 - 2019Q1

Forecasting model MFE Rel. RMSFE MFE Rel. RMSFE MFE Rel. RMSFE MFE Rel. RMSFE

Benchmark Models

EW 0.40† 1.000 -1.61 1.861 1.12 0.855 0.03† 0.364

Naive 0.12† 1.094 -0.16† 1.988 0.29† 0.618 0.04† 0.373

Uncond -0.06† 1.039 -2.68 2.145 0.61 0.744 0.02† 0.376

Bias corrected forecasts with unconditional optimal weights

GDP Growth 0.21† 0.978 -1.47 1.782 0.78 0.847 0.02† 0.411

GDP Growth Gap 0.19† 0.968 -1.47 1.776 0.73 0.830 -0.02† 0.411

Output Gap 0.23† 1.056 -1.46† 2.003 0.79 0.879 0.00† 0.391

Unemployment 0.20† 1.164 -1.62 2.212 0.76 0.964 0.05† 0.442

Unemployment Gap -0.25† 1.316 -2.97 2.586 0.49 0.931 -0.22† 0.827

Conditional optimal weights with fixed covariance matrix Σξ.

GDP Growth 0.35† 1.005 -1.61 1.724 1.03 0.926 0.04† 0.433

GDP Growth Gap 0.37† 1.026 -1.59 1.731 1.05 0.960 0.04† 0.443

Output Gap 0.36† 1.024 -1.58 1.620 1.05 0.979 0.01† 0.562

Unemployment 0.49 1.034 -1.15† 1.617 1.11 0.972 0.12† 0.656

Unemployment Gap 0.50 1.089 -0.28† 1.685 0.91 1.021 0.10† 0.724

Conditional optimal weights with time-varying covariance matrix Σξ,T .

GDP Growth 0.56 1.018 -0.41† 1.470 1.07 1.058 0.04† 0.442

GDP Growth Gap 0.59 1.044 -0.34† 1.485 1.10 1.094 0.05† 0.451

Output Gap 0.55 1.052 -0.48† 1.474 1.08 1.085 0.01† 0.575

Unemployment 0.66 1.054 -0.05† 1.554 1.11 1.037 0.13† 0.652

Unemployment Gap 0.71 1.171 0.96† 1.880 0.94 1.086 0.08† 0.716

*** p < 0.01 ** p < 0.05 * p < 0.1

For each model, the MFE are shown. MFEs which are not significantly different from zero at the 10 percent

level are indicated with an †. Furthermore, for each model the relative RMSFE and the one-sided

significance of the Diebold-Mariano test compared to the benchmark model (combining forecasts with Equal

Weights) at three different significance levels are shown (indicated with the asterices). For the models with

conditional optimal weights, a shrinkage component of α = 0.5 is used to stabilise the covariance matrix.

5 Conclusion

In this research, we replicated the paper of Gibbs and Vasnev (2017) about the performance of

forecasts combination models. Specifically, Gibbs and Vasnev (2017) put effort in examining the

forecasting performance of forecast combinations with conditionally optimal weights with fixed

covariance matrix of the bias-corrected forecast errors. To extent their research, we added a similar

model and allowed the covariance matrix to be time-varying, using a DCC-GARCH(1,1) model.

In line with Gibbs and Vasnev (2017), the individual forecasting models do not outperform the

parsimonious Naive forecasting model, which is used as benchmark model for the individual models.
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When we correct the individual forecasting models with an estimated bias, this also does not deliver

more accurate forecasting results. Seemingly, the estimated biases used to correct the forecasts are

noisy estimates, and therefore are not able to improve the forecasts significantly.

Furthermore, in contrast to the results in Gibbs and Vasnev (2017), the forecast combining

strategies do not outperform the benchmark strategy of the combined forecasting models, the fore-

cast combination of Equal Weights. None of the models manages to significantly outperform the

parsimonious model in one of the forecasting subsamples at all. There are a few factors which could

cause these differences.

First, one major difference between this paper and the paper of Gibbs and Vasnev (2017) is that

we use the last vintage data for US inflation, in contrast to using all vintages. It could be that using

the data at the time that it is available to the public is beneficial for some models in forecasting

inflation.

A second reason for this could be the differences between the estimation windows. In Gibbs and

Vasnev (2017), an expanding window is used, which enlarges the training sample at every iteration.

In this research, a rolling window of length n = 40 observations is used. It might be the case that

the training sample is too short to provide accurate parameter estimates. However, as mentioned

earlier, the inflation data from roughly 1965 until 1983 shows very different patterns compared to

the last two forecasting samples, characterised by high volatility levels. This rises the question

whether keeping observations from past periods with different characteristics in the training sample

by using an expanding window is beneficial for the forecasting accuracy.

A third difference between the methods used in this paper and the methods used in Gibbs and

Vasnev (2017), is that the estimation of the biases is done by using forecast errors of the last 20

observations in the rolling window. However, because we estimate the model parameters using the

entire rolling window, using the forecast errors from the same sample to obtain the bias estimates

is not entirely correct. Therefore, this could also lead to different outcomes compared to Gibbs

and Vasnev (2017). However, because of the poor forecast outcomes when only using the first 20

observations for the estimation of the parameters, this choice seemed the right way to go.

One secure conclusion that we can draw from this research is that forecasting inflation remains

a puzzle, especially when inflation rates are highly volatile. Although in our research, we were not

able to produce a model that significantly outperforms the parsimonious benchmark forecasting

models, methods of combining forecast strategies stays promising. More research on this topic,

and specifically, on the topic of conditionally optimal weights might be beneficial in finding more
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accurate forecasting methods.
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A Appendix

The python code used for this thesis is provided separately in the ZIP-file, BachelorThesisCodes.

This file contains the following codes, followed by a brief description of the code:

HodrickPrescott.ipynb

Python code for obtaining the output gap from the GDP growth using the Hodrick-Prescott filter.

weightsCalculator.ipynb

Calculates all the models used in this paper, including the weights and other output. Also, graphs

found in this paper are plotted using this code. In the code, at the start of each model, the name

of the model can be found.
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