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Abstract

Combining forecasts from multiple models into one forecast typically leads to better forecasting per-
formance than individual models can achieve. However, elaborate backward looking combination
strategies are often outperformed by simple strategies, such as averaging. Gibbs and Vasnev (2018)
show that a forward looking approach based on predictable bias can make combinations that out-
perform equal weighting, individual and random walk forecasts. In this thesis, those results are
generally replicated. The extension of their analysis is within the modification of bias predictions
to have autoregressive terms to account for possible serial correlation. Forecast combinations have
been made with these new bias predictions for both inflation and unemployment rate data and the
results show that forecasting inflation generally benefits from adding autoregressive terms to the bias
predictions, whereas unemployment forecasting performance does not improve.

The views stated in this thesis are those of the author and not necessarily those of Erasmus School of
Economics or Erasmus University Rotterdam.
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1 Introduction

In many forecast combination applications it is customary to consider approaches that look at the
historical performance of individual forecasts in order to construct optimal weights. In empirical studies
it is often found that combining forecasts produces better forecasts than forecasts that originate from
the superior individual model (Timmermann, 2006). Clemen (1989) finds similar results and stresses
the interdisciplinary usefulness of combined forecasting. Next to econometrics, it also has potential for
sciences as meteorology and psychology. The quote: ’We no longer need to justify this methodology,’
referring to combined forecasting, illustrates the relevance of this topic.
Typically, simple forecast combination strategies such as equal weighting produce the most accurate
forecasts when compared to combined forecasts that have a more elaborate way of weight determination.
This empirical result seems to be contradictory to the theory, as the averaging strategy should only
be optimal under a set of very restrictive conditions (Stock and Watson, 2004). Recently, one of the
underlying reasons for this phenomenon is tackled within the literature. Gibbs and Vasnev (2018)
show that an important reason for this difference between practice and theory lies within the forecast
errors. Generally, forecast errors are predictable and they exhibit serial correlation. They prove that
optimal weights conditional to the available information at that time yield better forecast results than
unconditional weighting under a general loss function. Therefore, weight determination should be based
on expected forecast performance, instead of looking at past performance. Gibbs and Vasnev (2018)
also show empirically that forward looking approaches are better at forecasting inflation than backward
looking ones. However, their focus was predominantly on the predictability of the forecast errors. The
prediction of the forecast errors is given by a direct forecasting procedure of the model’s real-time forecast
error. To this end, they use an explicit regression for a given model i on the four-step ahead forecast
error ei,t+4 = πt+4 −E(πt+4):

ei,t+4 = c+ βixt + ξi,t+4,

in which πt+4 is the inflation rate at time t + 4, E(πt+4) is the four-quarter-ahead forecast of inflation
at time t and xt is a macroeconomic variable. Within this specification, the typically present serial
correlation of the errors is not captured in any way. This could possibly be done by specifying an ARMA
structure.
Moreover, only inflation forecasts are considered. Other variables may also be interesting to forecast,
with possibly new model specifications based on macroeconomic relations. In particular, unemployment
rates may be interesting to look at. Gibbs and Vasnev (2018) use a Phillips Curve Vector Autoregressive
(VAR) model to forecast inflation, but they ignore the opportunity to forecast unemployment as well.
New model specifications could be considered based on economic theory, such as a VAR model with
unemployment and GDP growth (Okun’s law, 1962). Incorporating new data and models is useful to
create a higher degree of generality of the results found by Gibbs and Vasnev (2018), or possibly the new
results find that their findings do not hold generally. The main research question of the thesis would be:
Does the prediction of forecast errors improve when accounting for serial correlation using an ARMA
structure and therefore lead to better forecast performance? To answer this question, it is useful to
answer some subquestions, being:
1. Which ARMA structure would be most suitable?
2. Is the result replicable with another data type, specifically unemployment rates?
The following Data section describes the data used within this thesis and how it is used. The Methodology
section elaborates on the forecasting models used and how the forecasting is performed. Next to that, it
provides some theory about forecast combination, explains the procedure of predicting bias and describes
the methods I use in this thesis to make the combinations. Logically the Results section follows, in which
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I show that adding autoregressive terms is useful for inflation forecasting, but not for unemployment
rate forecasting. After that section I provide the conclusion of this thesis and discuss further research
possibilities and limitations of this paper.

2 Data

The data that I consider for this thesis is the same real-time data set that Gibbs and Vasnev (2018) use
in their research. It is the Philadelphia Federal Reserve Real-Time Macroeconomic Data Set of which a
couple of data types are extracted. First of all, we extract the quarterly Price Consumer Expenditure
(PCE) index. This PCE is used to create the inflation variable as

πt = 400ln
( pt
pt−1

)
,

in which pt is the PCE index. The macroeconomic variables that we consider for forecasting inflation
are constructed from real GDP and unemployment rates found in the data set. We use the GDP level
data to construct three new measures. The first one is the simple GDP growth, expressed in the same
way as the inflation rate above. The second measure is the output gap, which we create by applying a
Hodrick-Prescott filter to the GDP level data and taking the difference between the actual GDP level and
the potential output, which is the result after the filtering. Finally, we consider a growth gap measure
which is the difference between the current GDP growth and the highest GDP growth of the last twelve
quarters.
Next to GDP, we consider unemployment rates to create two measures. The first one is simply the
level of the unemployment rates and the second one is an unemployment gap, computed by taking the
difference between the current unemployment rate and the lowest unemployment rate of the previous 12
quarters. The growth and unemployment gap are considered to account for possible nonlinearity of the
Phillips curve (Stock and Watson, 2010).
I perform the forecasting, which I describe within the Methodology section, using the data vintage that
has just the right amount of information. For example, we consider a four-quarter-ahead forecast of
1970Q1. The data vintage containing 1969Q1 as its last observation will be used to construct this fore-
cast. It occurs that some last observations are not available yet, in which case a four-quarter-ahead
forecast cannot be done with that vintage since it then has to be a five-quarter-ahead forecast for the
required period of time. If this is the case, the inflation of the missing observation will be set equal to
the previous period.

Figure 1: Inflation data Figure 2: Unemployment rates
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3 Methodology

3.1 Models

In order to replicate the results by Gibbs and Vasnev (2018), we consider the same individual models as
they used in their analysis when considering inflation data. This comes down to three types of models.
The first group is a set of univariate autoregressive models. The AR(1), AR(2), AR(4), ARMA(1,1) and
ARMA(4,4) models are considered as benchmark models. The general ARMA(p, q) model is given by

πt = c+

p∑
i=1

βiπt−i +

q∑
j=1

φjεt−j + εt,

The general AR(p) model is a restricted ARMA(p, q) model:

πt = c+

p∑
i=1

βiπt−i + εt,

with φj = 0, ∀j. All benchmark models can be obtained by substituting the relevant values for p and q.
Next to those, we consider a random walk model introduced by Atkeson et al. (2001), which is simply
the average of the four preceding quarters of inflation:

π̂AOt+h =
1

4

4∑
i=1

πt−i.

For the purpose of forecasting unemployment rates, we consider these models as well.

The Phillips Curve type models are also used in the same way as Gibbs and Vasnev (2018), namely as
bivariate VAR models with two lags for inflation and two lags of a macroeconomic variable, including a
VAR All model. When forecasting unemployment, these models are used as well since the typical Phillips
Curve relation is that between inflation and unemployment. The bivariate VAR with unemployment and
GDP growth is interesting, since their relation is known as Okun’s law (1962). The VAR(2) specification
is given by

yt = c+A1yt−1 +A2yt−2 + εt,

where yt = (πt, xt)
′. Finally direct forecasts are considered for both data types, which regress four-

quarter-ahead inflation (unemployment rate) on a macroeconomic variable:

πt+4 = c+ βxt + εt+4,

with πt the inflation at time t and xt a macroeconomic variable.

3.2 Forecasting

In this thesis, we consider the four-quarter-ahead forecast of quarterly inflation and unemployment
following Gibbs and Vasnev (2018) with inflation following an annual rate. Forecasts are made based on
the latest vintage of data available throughout time as explained thoroughly in the Data section. Due to
missing the current observation in each vintage, the four-quarter-ahead forecast resembles the forecast
of the current and following three quarters. We denote the forecast as Eτt πt+4, where τ is the vintage
and t is the last observation available.
The four-quarter-ahead forecasts from the benchmark ARMA models and the VAR models are obtained
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by iteration (dynamic forecasting), in contrast with the direct forecasting models.
The metrics and target measures to evaluate the forecasts follow those of Gibbs and Vasnev (2018),
using Root Mean Squared Forecast Error (RMSFE) to measure relative forecasting performance to the
benchmark AO forecasts and Mean Forecast Error (MFE) to compute the bias. These statistics are given
as follows:

RMSFE =

√√√√ T∑
t=1

(
e2i,t
T

)
,

MFE =

T∑
t=1

(ei,t
T

)
,

with ei,t the forecast error at time t for model i. We consider the test developed by Diebold and Mariano
(1995) to check whether RMSFEs are significantly different. In order to compute the Diebold-Mariano
(DM) statistic, it is necessary to construct loss differentials based on the squared forecast errors of a
specific model and the random walk AO forecasts,

Dt = e2i,t − e2AO,t.

The test is based on the arithmetic mean of the loss differential

D̄ =

∑T
t=1Dt

T
.

It is likely that the loss differential series is autocorrelated (Harvey et al., 1997). They state that the
asymptotic variance of D̄ can be shown to be

V (D̄) ≈
γ0 + 2

∑h−1
k=1 γk

T
,

with γk the k-th order autocovariance of Dt and h = 4 in the case of four-quarter-ahead forecasting. The
autocovariance can be estimated in the following manner:

γ̂k =

T∑
t=k+1

(Dt − D̄)(Dt−k − D̄).

The Diebold-Mariano statistic is given as follows:

DM =
D̄√
V̂ (D̄)

,

which follows a standard normal distribution under the null hypothesis.
Harvey et al. (1997) state that the DM test is found to be over-sized for a sample with a moderate
number of observations. They modify the DM statistic for h-step-ahead forecasts to account for this
possible problem:

DM∗ =

(
T + 1 + 2h+ T−1h(h− 1)

T

)
DM.

Harvey et al. (1997) argue that comparing the DM statistic to quantile values of the Student’s t-
distribution with (n − 1) degrees of freedom is more appropriate than comparing it with the standard
normal extreme values. Hence, in this thesis I compare the DM statistic with the t(n−1) extreme values
at one, five and ten percent significance level.
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To test the significance of the bias I consider a t-test using HAC standard errors (Newey and West, 1986).
To perform this test, I regress the series of the forecast errors on only a constant with the Newey-West
standard error specification. We can simply compute the test statistic as constant

stderrorNW
which follows a

t(n− 2)-distribution.
Considering the difference between the metrics and measures used by Gibbs and Vasnev (2018) and this
paper, the exceptions are:
1. The target measures of unemployment, since there is no second release data available in the real-time
data set. We compare it to the most recent data available due to the lack of this data.
2. The target measure for inflation is the second-release data of the GDP deflator inflation type. The
PCE and GDP deflator are similar and for the GDP deflator the second-release data is available and
verified to be legitimate within the real-time data set, whereas this is not the case for PCE inflation.

3.3 Combined Forecasting

3.3.1 Conditionally Optimal Weights

When forecast combinations are considered, minimizing a loss function is typically done to determine
the weights of the forecasts. Rather than just using the unconditional variance for this purpose, we
consider a conditional Mean Squared Error (MSE) loss function that can be decomposed as the sum
of squared bias and variance. The measure is conditional on predictable information not incorporated
by classical weighting techniques. The implication that such predictable information exists follows from
the notion that economic forecasting models frequently suffer from misspecification and that economic
data types usually exhibit regular structural breaks. If this notion is true, Hendry and Clements (2004)
show that equally weighted forecasting is effective, since the biases from the different models are lev-
eled out against each other with this approach. Hence, an equally weighted forecast is typically hard
to beat with common backward looking combination techniques. However, the structural breaks and
misspecified forecasting models due to time-varying aspects imply that the forecast errors are serially
correlated and those issues lead to the idea that there is some predictable information which is not con-
sidered by backward looking combination approaches. Hence, the forecast combination weights should be
conditioned on that predictable information. This implies the minimization of the conditional MSE men-
tioned earlier, preferred over minimizing a measure like unconditional variance (Gibbs and Vasnev, 2018).

3.3.2 Combination Theory

Combining forecasts from different models to minimize a certain expected loss function such as (Root)
Mean Squared Error may yield better results than the individual models and simple combination strate-
gies. Consider the four-quarter-ahead forecast yT+4, information set IT and a vector of length n consisting
of the forecasts from n different models

fT+4 = (f1,T+4, f2,T+4, · · · , fn,T+4)′,

which we transform into one combined forecast using a linear transformation with weights

w = (w1, w2, · · · , wn)′,

to construct a forecast as fc,T+4 = w′fT+4, following Gibbs and Vasnev (2018). The forecast errors are
given as

eT+4 = yT+4ι− fT+4,
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leading to a combined error ec,T+4 = w′eT+4. Consider the Mean Squared Error loss function L(e) = e2.
Note that this implicitly assumes that the loss function only depends on the forecast error ec,T+4. The
conditionally optimal weights are the solution to the minimization problem of the MSE:

w∗(IT ) = argmin
w

E(L(ec,T+4|IT ).

We assume that the forecasts are unbiased and minimize the MSE subject to the constraint that the
weights sum up to one. We can decompose the errors of the original forecasts following Gibbs and Vasnev
(2018) as

eT+4 = bT + ξT+4,

with bT = E(eT+4|IT ) and E(ξT+4|IT ) = 0. We can find an expression for the MSE:

MSE(w) = w′(Σξ + bT b
′
T )w,

where Σξ = E(ξT+4ξ
′
T+4|IT ). The MSE is minimized by the conditionally optimal weights

w∗(IT ) =
[Σξ + bT b

′
T ]−1ι

ι′[Σξ + bT b
′
T ]−1ι

.

It is clear that not only the optimal weights, but also bt,Σξ and MSE(w) depend on IT . However,
we choose to keep notation simple and reserve this dependency for the optimal weights, to emphasize
the time-varying nature of the weights and to stay close to the assumptions made by Gibbs and Vasnev
(2018). Σξ is assumed to be constant in this thesis as well. The conditionally optimal weights are of
course different than unconditionally optimal weights

w∗ =
Σ−1e ι

ι′Σ−1e ι
,

with unconditional variance of errors Σe = Σξ + E(btb
′
t). For further intuition on the dynamics of

these ’new’ conditionally optimal weights I refer to the observations made by Gibbs and Vasnev (2018).
Finally, they propose a three-part theorem that gives a formalization of the idea that considering more
information will lead to better forecast combinations.
Theorem 1 Given the existence of the first and second (un)conditional moments, convex loss function
L(·) and information sets JT ⊂ IT , then:

(a) E(MSE(w∗(IT ))) ≤ E(MSE(w∗)),

(b) E(MSE(w∗(IT ))|JT ) ≤ (MSE(w∗(JT )),

(c) E
(
min
w

E(L(ec,T+4|IT )|JT
)
≤ min

w
E(L(ec,T+4|JT ).

Part (a) is a comparison between conditional and unconditional MSE. The theorem implies that adding
more information leads to better or at worst equally good forecasting combinations. Part (b) is more
or less similar to part (a) since it is a generalization using information sets, again implying that adding
more information (IT contains more information than JT ) leads to better or equally good combinations
in terms of MSE. Part (c) implies that conditioning on more information also leads to a lower or equal
(unspecified but convex) loss function outcome, which is preferable of course. This concludes the theory
on forecast combinations and now let us look at the different strategies that I employ in this thesis.
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3.3.3 Combination Strategies

We have seen that an optimal solution for the MSE exists:

w∗(IT ) =
[Σξ + bT b

′
T ]−1ι

ι′[Σξ + bT b
′
T ]−1ι

.

However, estimation of Σξ and bT inherits some issues. We consider three options to try to lessen these
issues, following Gibbs and Vasnev (2018). The first one is the equal weights benchmark, since it is
known to be an effective method (Hendry and Clements, 2004). The second approach is the shrinkage
method. The idea of the shrinkage method is to stabilize the variance estimation, which is typically
unstable. It is given explicitly by

Σ̃ξ = αΣ0 + (1− α)Σ̂ξ,

with shrinkage parameter α = 0.5 and stabilizing matrix Σ0, equal to identity matrix I. The choice of
the identity matrix as a stabilizer shrinks the weights towards equal weights (Gibbs and Vasnev, 2018).
The optimal weights are given by

ŵCOS(IT ) =
[Σ̃ξ + b̂T b̂

′
T ]−1ι

ι′[Σ̃ξ + b̂T b̂
′
T ]−1ι

,

with b̂T the estimated bias and ι a vector of ones. Thirdly, we consider the predicted exponential weights
method:

ŵPE(IT ) =
1∑n

i=1 exp(−γb̂2i,T )

(
exp(−γb̂21,T , · · · , exp(−γb̂2n,T )

)′
,

which accelerates the weight decrease when bias increases. In the research, γ is either set equal to five
or sent towards infinity. This method is quite intuitive, as it ’punishes’ increasing bias with decreasing
weights at an exponential rate. When bias is close to or equal to zero, it yields a relatively high weight
for that specific model. Looking at the limiting case where γ →∞, this model allocates a weight equal
to one to the model on the model that predicts the lowest (squared) bias. This case is particularly
interesting to examine, since this type of forecasting with a single model at each point in time usually
performs very poorly in out-of-sample forecasting (Timmermann, 2006).

3.3.4 Bias Prediction

As mentioned in the introduction, we obtain the prediction of the forecast error by direct forecasting

ei,t+4 = c+ βixt + ξi,t+4,

in which πt+4 is the inflation rate at time t + 4, E(πt+4) is the four-quarter-ahead forecast of inflation
at time t and xt is a macroeconomic variable. We use the specification for replication and extend it
to have a ARX(1) and ARMAX(1,1) specification, meaning models with an ARMA structure and an
explanatory variable as well. Specifically, the expressions are

ei,t+4 = c+ βixt + φiei,t+4 + ξi,t+4,

ei,t+4 = c+ βixt + φiei,t+3 + ψiξi,t+3 + ξi,t+4.

We consider these specifications since we already use these AR(1) and ARMA(1,1) models as benchmarks
for the individual forecasting performance and therefore it seems reasonable to consider these ARMA
specifications for the error prediction as well. To keep the research executable within the time frame,
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only these two specifications are employed.
To check which specification is best, I consider a heuristic approach based on the Akaike Information
Criterion. This is necessary as I recursively perform bias prediction regressions with varying regressors
for 17 different models. This procedure is done for the ’vanilla’ bias prediction, the ARX(1) and AR-
MAX(1,1) prediction. Since this produces a high number of AICs, I consider an indicator function It

with the following specification:

It = 1 if AICAR1
t > AIC

ARMA(1,1)
t ,

It = 0 else.

Intuitively, if the sum of the indicators is sufficiently high, this would mean that the ARMA(1,1) model
is preferred above the AR(1) model for a specific bias prediction. This is of course a vague criterion, so I
propose to use a t-test for the indicators to test whether the mean is significantly different from 0.5. The
mean of the indicator represents a probability that the ARMA model is better than the AR model, so if
they are equally accurate the mean equals 0.5. The procedure is to regress the indicator on a constant
with Newey-West standard errors and subsequently performing the test.
The resulting model would be a Linear Probability Model (LPM) which suffers from heteroskedasticity
by definition (Horrace and Oaxaca, 2006), but the Newey-West errors fix this issue. Also, the fact that
this LPM generally yields biased parameters is not a problem since only a constant is involved, which
equals the mean of the indicator. The model that is significantly better on the most occasions is the
model I use for the actual forecasting combinations.
By performing this heuristic approach the usage of the AIC is justified in my opinion, as the direct
AIC comparison on which the value of the indicator is based is between a model and an extension of
that model with an MA(1) term. In this sense, the comparison is always between nested models. This
testing procedure may not be perfect for this application, since the indicator value of the present AIC is
highly correlated with the indicator value of the preceding AICs. However, the Newey-West errors and
parameter estimates, which are simply the means of the indicators, are not restricted by this possible
dependence in the data whereas a regular t-test for testing a mean requires independence. Therefore, I
choose to use this method.
We construct the forecast error series in the same manner as Gibbs and Vasnev (2018), while unemploy-
ment forecast errors are made using the latest data available due to unavailability of second-release data.
For out-of-sample forecasting, we follow the procedure of Section 3.5.2 by Gibbs and Vasnev (2018), with
the in-sample forecasting period starting from 1966Q4 in order to prevent the usage of information that
was not available at the time a forecast was made.
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4 Results

Table 1: Individual model performance

1970Q1-
2014Q1

Predictor
Rel.

RMSFE
Bias

Benchmark

AO 2.346 -0.07†

Direct Forecasts

DF CUR 1.300 -0.25†

DF GDP Growth 1.243 0.08†

DF Growth Gap 1.179 0.52†

DF Output Gap 1.303 0.20†

DF Unemp. Gap 1.298 0.14†

VAR Forecasts

VAR CUR 1.030 -0.09†

VAR GDP Growth 1.024 0.40†

VAR Growth Gap 1.003 0.07†

VAR Output Gap 1.032 0.34†

VAR Unemp. Gap 0.988 0.21†

VAR All 1.075 -0.16†

Benchmark
Forecasts

AR(1) 1.110 0.29†

AR(2) 0.993 0.21†

AR(4) 1.056 0.36†

ARMA(1,1) 0.970 0.20†

ARMA(4,4) 1.097 0.27†

Table 1: This table shows the performance of
the individual models in terms of Relative Root
Mean Squared Error and bias. Explanation of
symbols: *** p<0.01, ** p<0.05, *p<0.1, a
† indicates unbiasedness at ten percent level.
The RMSFEs are shown relative to the AO
benchmark. The Rel. RMSFE for AO is the real
RMSFE value.

The results of Table 1 seem to be in line with the
findings of Gibbs and Vasnev (2018). The direct
forecasts are all substantially poor compared to
the benchmark, with the Growth Gap specification
being the best with a Relative RMSFE of 1.179.
The VAR forecasts have similar performance to the
AO benchmark, with the best model being the Un-
employment Gap model with an RMSFE of 0.988,
(insignificantly) outperforming AO. Some ARMA
models perform slightly better as well, albeit not
significantly. There is no individual model that can
significantly outperform the random walk model
which replicates the general results from Gibbs
and Vasnev (2018). Note that in terms of exact
numbers, the found values can be slightly different.
This may be caused by the usage of most recent
data for the regressors and possibly, a slightly dif-
ferent forecasting approach. Next to the RMSFE
results, all forecasts errors are unbiased at a ten
percent significance level, fitting the assumption
that the expected value of the forecast errors is
equal to zero.

Figure 3: AO Random Walk forecasts inflation
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Table 2: Individual model performance
unemployment

1970Q1-
2014Q1

Predictor
Rel.

RMSFE
Bias

Benchmark

AO 1.512 0.19†

Direct Forecasts

DF Inflation 1.227 0.95
DF GDP Growth 1.284 1.03
DF Growth Gap 1.222 0.78
DF Output Gap 1.229 0.98

VAR Forecasts

VAR Inflation 0.694∗∗∗ 0.47
VAR GDP Growth 0.682∗∗∗ 0.37
VAR Growth Gap 0.677∗∗∗ 0.48
VAR Output Gap 0.696∗∗∗ 0.32
VAR All 0.683∗∗∗ 0.21†

Benchmark
Forecasts

AR(1) 0.738∗∗∗ 0.23†

AR(2) 0.749∗∗∗ 0.50
AR(4) 0.734∗∗∗ 0.41
ARMA(1,1) 0.710∗∗∗ 0.29
ARMA(4,4) 0.736∗∗∗ 0.41

Table 2: This table shows the performance of
the individual models in terms of Relative Root
Mean Squared Error and bias. Explanation of
symbols: *** p<0.01, ** p<0.05, *p<0.1, a
† indicates unbiasedness at ten percent level.
The RMSFEs are shown relative to the AO
benchmark. The Rel. RMSFE for AO is the real
RMSFE value.

The individual model results I obtain by using
(quarterly) unemployment data have some distinct
differences compared to the inflation forecast mod-
els. The AO random walk forecasts are significantly
less accurate in terms of RMSFE than the autore-
gressive benchmark and VAR models. This result
is not surprising since unemployment is known to
be rigid, implying that autoregressive models are
useful in explaining and forecasting unemployment.
Likely due to the parameter restrictions on the AO
model (all 0.25), the performance is quite poor. Al-
though the VAR and ARMA models perform well
when looking at relative RMSFE, the forecasts
seem to be biased in most cases. The similarity
with the inflation results lies within the direct fore-
casting models since the relative RMSFEs to the
benchmark are approximately of the same size. The
best individual model is the VAR model with the
Growth Gap Measure as a regressor with a relative
RMSFE of 0.677. I include this model as a bench-
mark next to the AO and equal weights forecast
in order to check whether combined forecasts can
outperform the best individual model.

Figure 4: AO Random Walk forecasts
unemployment

12



Table 3: AR(1) vs. ARMA(1,1) contest inflation

Regressors
bias
predictions

Predictor
Unemp. Gap
t-test statistic

GDP Growth
t-test statistic

Growth Gap
t-test statistic

Unemp. t-test
statistic

Output Gap
t-test statistic

Benchmark

AO -25.13† -45.14† -27.22† -45.14† -22.14†

Direct Forecasts

DF CUR 2.86† 1.81† 1.71† 1.62† 2.15†

DF GDP Growth 3.66† 3.68† 3.28† 2.38† 5.86†

DF Growth Gap 2.78† 2.71† 2.49† 2.16† 4.36†

DF Output Gap 1.80† 1.64† 1.47† 1.53† 2.46†

DF Unemp. Gap 1.33† 1.18 1.16 1.08 1.58†

VAR Forecasts

VAR CUR 1.25 0.39 0.84 0.39 1.84†

VAR GDP Growth 0.47 1.02 0.89 1.17 1.69†

VAR Growth Gap -0.32 -0.52 -0.73 -0.25 0.33
VAR Output Gap 0.54 1.10 0.90 1.10 2.05†

VAR Unemp. Gap -1.48† -1.27 -1.72† -1.30† -0.32
VAR All -9.67† -9.12† -13.96† -13.34† -8.47†

Benchmark
Forecasts

AR(1) 1.88† 1.80† 1.83† 1.62† 2.54†

AR(2) 1.29 1.27 1.21 1.17 1.92†

AR(4) 1.80† 1.81† 1.71† 1.61† 2.54†

ARMA(1,1) 1.41† 1.27 1.21 1.17 1.92†

ARMA(4,4) 2.65† 2.60† 2.50† 2.16† 2.61†

’Victories’

AR(1) 3 2 3 3 2
ARMA(1,1) 9 7 7 7 13

Table 3: A † represents significant difference at ten percent level. Significant negative t-statistics indicate a
victory for AR(1) and significant positive t-statistics indicate an ARMA(1,1) victory. t-statistics are obtained
by regressing the AIC indicators on a constant and using Newey-West standard errors.

Table 3 shows that the ARMA(1,1) bias predictions generally yield better AIC results than the AR(1)
predictions for inflation data. The difference in number of victories is quite substantial since the AR(1)
specification does not have more than three significant victories whereas the minimum number of victories
from the ARMA(1,1) model equals seven for a given regressor.
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Table 4: AR(1) vs. ARMA(1,1) contest unemployment

Regressors
bias
predictions

Predictor
Inflation t-test
statistic

GDP Growth
t-test statistic

Growth Gap
t-test statistic

Output Gap
t-test statistic

Benchmark

AO -35.03† -20.85† -20.85† -13.03†

Direct Forecasts

DF Inflation 20.00† 25.43† 20.00† 20.00†

DF GDP Growth -10.39† -44.88† -86.52† -45.14†

DF Growth Gap -6.99† -39.69† -45.14† -45.14†

DF Output Gap 25.38† 20.00† 25.38† 20.00†

VAR Forecasts

VAR Inflation 1.58† 2.03† 1.77† 1.84†

VAR GDP Growth -10.74† -4.30† -4.79† -1.64†

VAR Growth Gap 2.48† 3.10† 3.27† 3.17†

VAR Output Gap -44.67† -15.20† -22.46† -20.00†

VAR All 8.75† 9.17† 9.17† 8.75†

Benchmark
Forecasts

AR(1) 22.98† 41.49† 86.52† 39.85†

AR(2) -24.92† -9.25† -9.25† -9.53†

AR(4) -22.98† -15.32† -15.32† -39.69†

ARMA(1,1) -1.86† 3.41† 3.09† 3.25†

ARMA(4,4) -17.52† -18.14† -18.14† -22.98†

’Victories’

AR(1) 9 8 8 8
ARMA(1,1) 6 7 7 7

Table 4: A † represents significant difference at ten percent level. Significant negative
t-statistics indicate a victory for AR(1) and significant positive t-statistics indicate an
ARMA(1,1) victory. t-statistics are obtained by regressing the AIC indicators on a constant
and using Newey-West standard errors.

The results from Table 4 show that the results for unemployment data differ from the inflation data
results. The number of victories are closer to each other, but the AR(1) bias prediction is strictly
superior for each regressor in terms of these victories. Hence, I use the ARMA(1,1) specification for bias
prediction for inflation data whereas I use the AR(1) specification for unemployment data.
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Table 5: Combined forecasting performance
inflation

1970Q1-
2014Q1

Predictor
Rel.
RMSFE

Bias

Shrinkage Weights
(α = 0.5)

CUR 0.784∗∗∗ -0.002†

GDP Growth 0.964 0.41
Growth Gap 0.927 0.40
Output Gap 0.873∗∗∗ 0.21†

Unemp. Gap 0.903∗∗ 0.40

Predicted
Exponential
Weights (γ = 5)

CUR 0.879∗∗∗ 0.09†

GDP Growth 0.987 0.28†

Growth Gap 0.971 0.42
Output Gap 0.959 0.33†

Unemp. Gap 0.909∗∗ -0.31†

Predicted
Exponential
Weights (γ →∞)

CUR 0.906∗∗ 0.06†

GDP Growth 1.031 0.20†

Growth Gap 1.006 0.34†

Output Gap 1.019 0.40
Unemp. Gap 0.928∗ 0.34†

Benchmark
Forecasts

Equal weights 2.440 0.19†

AO 0.962 -0.07†

Table 5: This table shows the performance of
the combined forecasts in terms of Relative Root
Mean Squared Error and bias. Explanation of
symbols: *** p<0.01, ** p<0.05, *p<0.1, a †
indicates unbiasedness at ten percent level. The
RMSFEs are shown relative to the Equal Weights
benchmark. The Rel. RMSFE for equal weights
is the real RMSFE value.

The results from Table 5 indicate that using a for-
ward looking approach when it comes to combining
forecasts is useful. The shrinkage method yields
significant improvements over the equal weights
benchmark for three regressors, with the best com-
bined forecasts coming from the bias prediction
using unemployment rate. Predicted exponential
weighting for both γ values also leads to two sig-
nificant improvements. However, sending γ to-
wards infinity leads to three forecast series that are
worse than the equal weights benchmark consider-
ing RMSFE and bias. Timmermann (2006) notes
that using a single model for each period of time
generally leads to poor out-of-sample forecasting
results, so in that sense these results are not out
of line with the theory. The outcome is also still
in line with Gibbs and Vasnev (2018) since bias
predictions can still lead to RMSFE improvement
for two forecast combinations with this method,
even when this type of forecasts would typically
yield inferior results.
The bias predictions using the unemployment vari-
ables are important for all methods, since they
(more or less) yield the best results considering
relative RMSFE. The forecasts are generally unbi-
ased with a few exceptions. Since all forecasts were
unbiased at a ten percent level when looking at
the individual model forecasts, combining forecasts
does not necessarily improve bias results.
These results again generally follow Gibbs and Vas-
nev (2018), since the idea that a forward looking
approach should work well in combined forecasting
is confirmed by this empirical analysis for inflation
data. There are some differences considering which
regressors work best for each method and which
regressors for bias prediction yield the significant
improvements. However, for reasons mentioned
earlier at the individual model results, this is not
surprising. Moreover, it seems more intuitive that
unemployment variables are important for explain-
ing and forecasting inflation, since it is established
economic theory that inflation and unemployment
have a distinct relationship (Phillips, 1958).
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Table 6: Combined forecasting performance
ARMA(1,1)

1970Q1-
2014Q1

Predictor
Rel.

RMSFE
Bias

Shrinkage Weights
(α = 0.5)

CUR 0.875∗∗∗ -0.14†

GDP Growth 0.885∗∗ -0.02†

Growth Gap 0.886∗∗ -0.01†

Output Gap 0.876∗∗∗ 0.03†

Unemp. Gap 0.817∗∗∗ -0.10†

Predicted
Exponential
Weights (γ = 5)

CUR 0.925∗∗∗ -0.14†

GDP Growth 0.894∗∗ -0.04†

Growth Gap 0.895∗∗ -0.06†

Output Gap 0.921∗∗∗ -0.05†

Unemp. Gap 0.913∗∗∗ -0.05†

Predicted
Exponential
Weights (γ →∞)

CUR 0.948 -0.17†

GDP Growth 0.904∗∗ -0.07†

Growth Gap 0.926∗ -0.10†

Output Gap 0.966 -0.08†

Unemp. Gap 0.941 -0.09†

Benchmark
Forecasts

Equal weights 2.440 0.19†

AO 0.962 -0.07†

Table 6: This table shows the performance of
the combined forecasts in terms of Relative Root
Mean Squared Error and bias. Explanation of
symbols: *** p<0.01, ** p<0.05, *p<0.1, a †
indicates unbiasedness at ten percent level. The
RMSFEs are shown relative to the Equal Weights
benchmark. The Rel. RMSFE for equal weights
is the real RMSFE value.

The contents of Table 6 show that adding an
ARMA(1,1) specification to the bias predictions
leads to superior results in comparison to the ’reg-
ular’ bias predictions which only use a macro-
economic variable and a constant. The first in-
teresting fact to note is that generally the relative
RMSFE values move together more closely. A log-
ical result, since the bias predictions now all share
two explanatory variables.
The shrinkage and exponential weighting (γ = 5)
methods now yield significant improvements over
equal weights for all bias predictors. Moreover, all
forecasts are unbiased, which also implies an im-
provement in bias performance from the combined
forecast results from Table 5. The limiting case of
the exponential weights method (γ =∞) also leads
to better results in the sense that now, no forecast
series is less accurate than the equal weights bench-
mark considering both RMSFE and bias. However,
the modified bias predictions do not lead to more
significant improvements for this method.
Since forecast errors are likely serially correlated
(Gibbs and Vasnev, 2018), the result that explic-
itly modelling autoregressive terms to account for
this possible serial correlation actually improves
forecasting performance is somewhat expected.
Despite the general improvement, the best fore-
cast series for shrinkage and exponential weighting
(γ = 5) from the regular combined forecasts now
yield less accurate results. For these methods the
unemployment rate predictor leads to the most ac-
curate results in Table 5, which is no longer the
case in Table 6. The fact that unemployment rate
is no longer the best predictor is no problem of
course, but the best results in terms of RMSFE
are lost. Only the limiting case of exponential
weighting yields a slightly better ’best’ forecast se-
ries, being the GDP Growth specification with a
relative RMSFE of 0.904, whereas the ’best’ fore-
cast series from 5 for this method (Unemployment
Rate) leads to a relative RMSFE of 0.906. In gen-
eral the forecasting performance improves, but the
’best’ performing forecast series may be lost by
modifying the bias predictions.
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Table 7: Combined forecasting performance
unemployment data

1970Q1-
2014Q1

Predictor
Rel.
RMSFE

Bias

Shrinkage Weights
(α = 0.5)

Inflation 0.878∗∗ -0.28†

GDP Growth 0.874∗∗ -0.25†

Growth Gap 0.871∗∗ -0.25†

Output Gap 0.843∗∗ -0.25†

Predicted
Exponential
Weights (γ = 5)

Inflation 0.940∗∗ -0.45
GDP Growth 0.959∗ -0.39
Growth Gap 0.924∗∗ -0.39
Output Gap 0.977 -0.40

Predicted
Exponential
Weights (γ →∞)

Inflation 1.058 -0.46
GDP Growth 1.031 -0.23†

Growth Gap 1.026 -0.29†

Output Gap 1.164 -0.30†

Benchmark
Forecasts

Equal weights 1.186 -0.51
AO 1.275 0.15†

VAR Growth Gap 0.863∗∗ 0.48

Table 7: This table shows the performance of
the combined forecasts in terms of Relative Root
Mean Squared Error and bias. Explanation of
symbols: *** p<0.01, ** p<0.05, *p<0.1, a †
indicates unbiasedness at ten percent level. The
RMSFEs are shown relative to the Equal Weights
benchmark. The Rel. RMSFE for equal weights
is the real RMSFE value.

The results from combining unemployment rate
forecasts displayed in Table 7 are not exactly fol-
lowing the inflation data results.
The shrinkage method leads to four significant im-
provements over the equal weights benchmark with
unbiased forecasts, making it the best method in
this table. However, only the Output Gap pre-
dictor achieves a lower relative RMSFE as well as
lower bias than the best individual model, the VAR
Output Gap model. The exponential weighting
(γ = 5) lead to three significant improvements over
the benchmark. However, the forecasts are still
biased. The limiting case of exponential weight-
ing exhibits poor forecasting results, with no single
improvement over the benchmark. However, most
forecasts are unbiased.
Combining forecasts leads to better performance
than a simple averaging approach, but in this case
most individual models already lead to better fore-
casting results than the equal weighting forecasts.
As mentioned, only one combined forecast series
performs better than the best individual model.
Because of this it is difficult to say whether com-
bining forecasts results in substantial improvement.
To answer this question, it would be a good idea
to remove the direct forecasting specifications from
the combinations, since these offer very poor indi-
vidual results in comparison to the (V)AR mod-
els. Their results may drag the performance of
combined forecasts down quite considerably, which
possibly makes the (V)AR individual models look
better than they actually are and consequently let-
ting the combinations look worse. Sadly this is not
included within the thesis due to time constraints,
but will be mentioned as a limitation/further re-
search possibility.
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Table 8: Combined forecasting performance
unemployment data AR(1)

1970Q1-
2014Q1

Predictor
Rel.

RMSFE
Bias

Shrinkage Weights
(α = 0.5)

Inflation 0.985 -0.34†

GDP Growth 0.986 -0.33†

Growth Gap 0.986 -0.33†

Output Gap 0.980 -0.33†

Predicted
Exponential
Weights (γ = 5)

Inflation 0.935∗∗ -0.40
GDP Growth 0.961 -0.40
Growth Gap 0.961 -0.40
Output Gap 0.942∗∗ -0.40

Predicted
Exponential
Weights (γ → T∞)

Inflation 0.951∗ -0.40
GDP Growth 0.956 -0.40
Growth Gap 0.959 -0.40
Output Gap 0.953 -0.39

Benchmark
Forecasts

Equal weights 1.186 -0.51
AO 1.275 0.15†

VAR Growth Gap 0.863∗∗ 0.48

Table 8: This table shows the performance of
the combined forecasts in terms of Relative Root
Mean Squared Error and bias. Explanation of
symbols: *** p<0.01, ** p<0.05, *p<0.1, a †
indicates unbiasedness at ten percent level. The
RMSFEs are shown relative to the Equal Weights
benchmark. The Rel. RMSFE for equal weights
is the real RMSFE value.

Modifying the bias predictions with ARMA terms
generally yields better results in the case of in-
flation data, but the results in Table 8 show a
different outcome. The performance of the shrink-
age method has declined substantially, leading to
zero significant improvements and worse bias per-
formance, albeit still having unbiased forecasts.
The exponential weighting (γ = 5) leads to more
or less similar results in comparison to Table 7.
Although there are now two instead of three signif-
icant improvements, the GDP Growth and Growth
Gap predictors lead to relative RMSFE results that
are very close to (10 percent) significance. Some
predictors perform better, some perform worse.
Bias results are quite similar, all forecasts are bi-
ased around 0.40.
The performance of the limiting case of exponential
weighting now in fact does improve by the addi-
tion of the AR(1) term, leading to one significant
improvement over the benchmark, with the other
forecast series being quite close to significance as
well. All forecasts from this method are biased
though.
When comparing the best forecast series from Ta-
ble 8 to the best individual forecasting model, we
see that the individual model has a strictly lower
relative RMSFE than any other combined forecast
series. Also, the ’best’ forecast series from Table 7
are lost similarly to the inflation data results. It
is difficult to draw a conclusion from these results,
since: one method performs worse, one method
performs similarly and one method performs bet-
ter compared to the original forecast combinations.
I would say that it is easier to defend not adding
AR terms to the bias predictions, due to the loss
of quite some significant improvements from the
shrinkage method, which is not compensated for
with considerable significant improvements from
other methods.
However, the results may be more credible if the di-
rect forecasting specifications were removed. Also,
this approach of forecasting unemployment rates
is somewhat unorthodox and is typically done in
other ways, such as using labor force flows data
and multiple-state models (Barnichon et al., 2012).
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5 Conclusion

In this thesis, the research goal was to replicate the results from Gibbs and Vasnev (2018) and extend
their analysis by considering the direct modelling of ARMA terms within bias predictions to see whether
this captures the typically present serial correlation in forecast errors and whether these results would
hold for another data type as well.
For inflation data, the results are generally replicated; combining forecasts is useful and outperforms
individual models and a forward looking combination approach leads to improvement compared to a
simply strategy, an averaging benchmark, which often outperforms backward looking approaches. An
ARMA(1,1) specification is shown to be the most suitable for modifying the bias predictions for this data
type. Adding the ARMA(1,1) terms to the bias predictions leads to general improvement in comparison
to the original forecast combinations, but the forecast series that had the best performance was one of the
original series. This implies that adding autoregressive terms may overparametrize the bias prediction
of the better models, decreasing their forecasting performance. However, the general conclusion should
be that the modification substantially increases forecasting performance.
For unemployment data, the results are different. The forecast combinations do generally not outperform
the best individual model with one exception. The forward looking approach does result in improvement
over an equal weights benchmark, but most individual models are already better in terms of forecasting
performance. The AR(1) specification is shown to be more suitable than the ARMA(1,1) specification for
unemployment data. Although one method yields better results with this specification, the modification
leads to the loss of four significant improvements over the benchmark, implying that the modification
does not generally lead to better results.

6 Limitations and Discussion

There are some issues which may have had an impact on the outcome and credibility of this thesis. First
of all, it is necessary to state that the replication part was not based on the most recent version of the
paper by Gibbs and Vasnev (2018), but an older version. However, I did choose to use the most recent
data available as regressors, although I only computed forecasts up to and including 2014Q1. In terms of
forecasting this should not be a huge problem since I did use the real-time inflation and unemployment
data and over the last few years the data has not been revised substantially.
The forecast procedure used by Gibbs and Vasnev (2018) seems to use some information from the ’future’.
Since they estimate a model from 1947Q2 to 1965Q4 initially and then compute the first four-quarter-
ahead forecast in 1966Q1 it feels like the parameters used to make a forecast contain information from
three additional (future) data points. I chose to compute the first forecast in 1966Q4, leading to three
less observations in the bias prediction regressions. However, the results still hold in a general sense and
this approach does not include any future information, which is definitely preferable in my opinion.
Choosing to forecast two data types in a real-time manner, cost me quite some time to program, execute
and process into the thesis report. For unemployment data, it would be nice to examine the results
of forecast combinations excluding the poor performing direct forecasting specifications as mentioned
within the results. Due to time constraints this is not done within the thesis but it may be a good idea
for further research.
The contest about which ARMA specification is best for modification of the bias predictions consisted
only of two specifications. An idea for further research would be to examine more possible modifications
and perhaps deriving another strategy in determining which modifications are most suitable, as mine
was somewhat heuristic and hence not necessarily backed by existing literature.
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The unemployment data extension yields contradicting results to the inflation data analysis in some
cases. However, the inflation data analysis is probably more credible since the Phillips Curve style of
forecasting is widely used for this purpose. Also, the macro-economic variables considered are often
used as explanatory variables for inflation, whereas unemployment data is usually forecasted with other
models, that can have two or three states, and variables like labor force flows (Barnichon et al., 2012).
I chose to keep the same macro-economic variables (as far as possible) for both inflation and unem-
ployment to keep the results close, but further research could consist of unemployment forecasts using
different models and explanatory variables. Moreover, the direct forecasts are likely to make results worse
than necessary in case of unemployment forecasting. It also remains to be seen whether the compari-
son between inflation and unemployment forecasting is completely justified since both data types have
different characteristics and in the literature, forecasting methods for both variables are usually different.

References

A. Atkeson, L. E. Ohanian, et al. Are phillips curves useful for forecasting inflation? Federal Reserve
bank of Minneapolis quarterly review, 25(1):2–11, 2001.

R. Barnichon, C. J. Nekarda, J. HATZIUS, S. J. STEHN, and B. PETRONGOLO. The ins and outs of
forecasting unemployment: Using labor force flows to forecast the labor market [with comments and
discussion]. Brookings Papers on Economic Activity, pages 83–131, 2012.

R. T. Clemen. Combining forecasts: A review and annotated bibliography. International journal of
forecasting, 5(4):559–583, 1989.

F. X. Diebold and R. S. Mariano. Comparing predictive accuracy. Journal of Business & Economic
Statistics, 13(3), 1995.

C. Gibbs and A. L. Vasnev. Conditionally optimal weights and forward-looking approaches to combining
forecasts. Available at SSRN 2919117, 2018.

D. Harvey, S. Leybourne, and P. Newbold. Testing the equality of prediction mean squared errors.
International Journal of forecasting, 13(2):281–291, 1997.

D. F. Hendry and M. P. Clements. Pooling of forecasts. The Econometrics Journal, 7(1):1–31, 2004.

W. C. Horrace and R. L. Oaxaca. Results on the bias and inconsistency of ordinary least squares for the
linear probability model. Economics Letters, 90(3):321–327, 2006.

W. K. Newey and K. D. West. A simple, positive semi-definite, heteroskedasticity and autocorrelation-
consistent covariance matrix, 1986.

A. W. Phillips. The relation between unemployment and the rate of change of money wage rates in the
united kingdom, 1861–1957 1. economica, 25(100):283–299, 1958.

J. H. Stock and M. W. Watson. Combination forecasts of output growth in a seven-country data set.
Journal of forecasting, 23(6):405–430, 2004.

J. H. Stock and M. W. Watson. Modeling inflation after the crisis. Technical report, National Bureau
of Economic Research, 2010.

A. Timmermann. Forecast combinations. Handbook of economic forecasting, 1:135–196, 2006.

20



A List of programs written and used

estimateallgdpgrowth.prg
EViews program that makes all forecasts, computes the relevant metrics and makes the bias predictions
for inflation data.
unempestimateall.prg
EViews program that makes all forecasts, computes the relevant metrics and makes the bias predictions
for unemployment data.
main.m
Main Matlab code for acquiring the forecast combinations and their evaluation metrics of regular infla-
tion data bias predictions.
mainunemp.m
Main Matlab code for acquiring the forecast combinations and their evaluation metrics of unemployment
data bias predictions, including ARMA results.
mainarma.m
Main Matlab code for acquiring the forecast combinations and their evaluation metrics of inflation ARMA
bias predictions.
shrinkage.m
Shrinkage method for combinations.
AOcreator.m
Creates an random walk sequence.
DMstat.m
Computes Diebold Mariano statistic with Harvey correction.
exponentialweighting.m
Employs exponential weighting method.
obtainData.m
Obtains some of the regressors such as the growth gap measure.
equalweights.m
Creates equal weights.
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