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Abstract

In this paper, a novel artificial neural network extension is proposed that draws inspiration
from the fact that actual biological brains consist of various types of neurons. The method
known as “neuron specialization" consists of training not only the output neurons, but also the
hidden neurons to activate for specific classes. This creates neurons that the output neurons
can easily rely on and improves the interpretation of the hidden neurons. The first part of this
research consists of exploring the neural network model intricacies and performances. Afterwards,
the neural network extension is tested using two case studies: a marketing case and an image
recognition case. The neural specialization extension is able to achieve significant performance
boosts and interpretation improvements for several different neural network architectures.
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1 Introduction
Artificial Neural Networks are an extremely popular Machine Learning method that are based on
the efficient learning structure of real neurons and have abundantly many applications (Liu et al.,
2017). Although neural network models can achieve state-of-the-art results in many different fields,
there are still crucial differences between a neural network and the actual biological brain structure
that it is based on. For example, the human brain is split up into different sections with each section
being responsible for different cognitive abilities. There are separate sections and neurons assigned
to interpret language, evaluate input signals from vision, store memories etc. (Hines, 2018). Within
these sections, different types of neurons are found that are thought to have specific functions,
like face neurons are used to recognize faces (Axelrod et al., 2019). One could say these various
neuron types have particular roles. Unfortunately, researchers have not yet found a definite way
to fully classify all these neurons, which means it is not known how specific and well-defined these
functions are (Kepecs and Fishell, 2014). Nonetheless, even though we are far from being able to
fully understand and simulate these complexities of actual neurons found in the human brain, the
concept of neurons with roles or specializations can still be applied to an Artificial Neural Network
made for classification purposes.

In this paper, a novel Artificial Neural Network extension is proposed that incorporates the concept
of neuron specialization by assigning roles to neurons. This is implemented by training neurons
to only activate for a specific class or classes. Thus, each node is specialized to extract features
for those particular classes. The concept of neuron specialization does not only hold merit due to
its biological similarities. In this paper, the actual practical advantages and disadvantages of this
method will be discussed in detail.

The first step in this research is exploring the workings of the neural network architecture and
ensuring the mechanisms and performances of this model are clear. This is done by evaluating a
regular neural network implementation and comparing it to another typical classification technique:
the Multinomial Logistic Regression model. As such, the first research question to answer is as
follows:

How does an Artificial Neural Network perform compared to a standard classification method such
as a Multinomial Logistic Regression model?

Similarly to Agrawal and Schorling (1996), the methods are assessed in a marketing context where
the models are required to predict the purchase decisions made by customers. Many factors are
taken into account when evaluating the performances. The most obvious performance measure
would be the prediction error rate, since the main goal of any classification method is generally to
accurately classify or predict data records. Nevertheless, other factors such as fitting times, predic-
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tion times and interpretation are also taken into account. After the exploratory research, the neural
network model will be extended by introducing specialized neurons. To test this extension, not
only will the two marketing data sets mentioned before be used, but also two image classification
databases. The performances of the neuron specialization model will be compared to the previous
model implementations for the purpose of answering the second research question:

Can Artificial Neural Network models be improved through the use of neuron specialization?

The outline of this paper is as follows. The paper starts with a literature review on the meth-
ods and problem domains in Section 2. Then, the multinomial logit model, neural network model,
and the neuron specialization extension are discussed in Section 3. Following that, an analysis is
given of the four datasets used in this paper in Section 4. Lastly, the model architectures and
comparisons are discussed in Section 5, followed by the final conclusions in Section 6.

2 Literature Review
The first part of this research is an exploratory research that is performed through a model com-
parison similarly to Agrawal and Schorling (1996), using similar models and data. In the paper by
Agrawal and Schorling (1996), a comparison between a neural network and a multinomial logistic
regression model is made based on their performances when forecasting market shares. The authors
used different data sets and various data groupings to test and compare these models in different
situations. They conclude that in the majority of situations, the neural network outperforms the
multinomial logistic regression model. However, it was also concluded that the results of the lo-
gistic regression model are significantly easier to interpret. Nevertheless, neural networks still are
a popular choice when performing such a prediction task. For example, Fish et al. (2004) used a
neural network implementation combined with a genetic algorithm to model brand shares.

In contrast to Agrawal and Schorling (1996) who predicted brand market shares, the model compar-
ison in this paper are made based on individual brand choice predictions. Brand choice modelling
is a topic that has been researched quite extensively in the past. For example, (Paap and Franses,
2000) used a dynamic multinomial probit model with different long-run and short-run effects to
model the brand choices for saltine crackers. Other models such as Mixed- and Latent Markov
Models (Poulsen, 1990), and Multiple Brand Choice models (Baltas, 2004) have been developed for
this problem domain. Unsurprisingly, neural networks are also a popular choice for this application.
For example, Vroomen et al. (2004) use a neural network to model consideration sets and brand
choice. Bentz and Merunka (2000) even propose a hybrid method consisting of both a neural net-
work model and the multinomial logistic model to predict instant coffee brand choices.
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The second part of this research consists of testing the proposed extension of neuron specialization.
As to my knowledge, there is no mention in the literature of this concept. To test this method,
not only will it be implemented for brand choice modelling, but also for image classification. Just
like brand choice modelling, image classification is an extensively researched topic, even having sev-
eral competitions such as the ILSVR Challenge (Russakovsky et al., 2015) attached to the subject.
Many classification methods such as Linear Models, K-Nearest Neighbours, Neural Networks and
many others can be used to classify images. For example, LeCun et al. (1995) compare and contrast
the performances of several classification methods when used for classifying images of handwritten
digits. Bhatnagar et al. (2017) use Convolutional Neural Networks to classify images of fashion
products and achieve state-of-the-art results. In the literature one can often find that these (Deep)
Convolutional Neural Networks generally obtain the best results in this problem domain (LeCun
et al., 1995) (Russakovsky et al., 2015).

3 Methodology
This section covers the methods and techniques used in this paper. Section 3.1 starts by explaining
the basics of the multinomial logistic regression model. Section 3.2 continues with the most impor-
tant aspects of the neural network model and Section 3.3 explains in detail the specialized neuron
extension. Finally, an overview of the implementation and testing methods is given in Section 3.4.
To be clear, this paper is not meant as a complete learner’s guide to neural networks and multino-
mial logistic regression. As such, this section will only discuss the basics of these models and the
elements that are necessary to understand the results. For further information on the multinomial
logit model and the neural network model, one can look into the works by Paap (2001) and Haykin
(1994).

3.1 Multinomial Logistic Regression Model
The model used to benchmark the neural network model is the multinomial logistic regression model.
The multinomial logistic regression model is a regression model based on the softmax function and
is specifically designed for classification. This model predicts the probabilities of a record being a
label by evaluating the explanatory variables attached to that record. Two different versions of this
model are used in this paper. Firstly, the standard multinomial logistic regression model which will
be referred to as the MNL model. Suppose a record ri consists of nx explanatory variables that are
contained in the vector Xi = (xi,1, xi,2, ..., xi,nx). Then, the probability of the label yi of record ri

being equal to j is given by the following equations:

Pr(yi = j|Xi) = Pi,j = exp(β0,j +X ′iβj)
1 +

∑J−1
h=0 exp(β0,h +X ′iβh)

for j = 0, ..., J − 1, (1)

Pr(yi = J |Xi) = Pi,J = 1
1 +

∑J−1
h=0 exp(β0,h +X ′iβh)

. (2)
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Where J is the total number of classes, yi is the label of record i, βj = (β1,j , β2,j , ..., βnx,j) is the
weights vector for class j, and β0,j is the bias parameter of class j. To prevent identification issues,
βJ is a fixed vector of zeros and β0,J is also fixed to zero.

Secondly, a variant of the multinomial logistic regression model called the conditional logistic regres-
sion model, or CNL, is also used. This variant is better suited to data where there are class-specific
explanatory variables. Suppose a record ri has nz explanatory variables for each class that are
contained in the vectors Zi,j = (zi,j,1, zi,j,2, ..., zi,j,nz ) for j = 1, ..., J . Then, the probability of the
label yi of record ri being equal to j is equal to

Pr(yi = j|Zi) = Pi,j =
exp(β0,j + Z ′i,jγ)∑J

h=0 exp(β0,h + Z ′i,hγ)
for j = 0, ..., J. (3)

Where γ = (γ1, γ2, ..., γnz) is a vector of weights, β0,j is the bias parameter for class j, and Zi =
(Zi,1, Zi,2, ..., Zi,J) is the matrix containing all the class-specific explanatory variables for each class.
To prevent identification issues, the bias parameter β0,J is fixed to zero. The weights in both the
CNL as well as the MNL model can be learned through the maximum likelihood estimation method.
The likelihood function that needs to be maximized can be defined as follows:

L(θ) =
n∏

i=1

J∏
h=1

P
I[yi=h]
i,h . (4)

Where n is the total number of records contained in the training set, θ represents all the parameters
that need to be learned and I[yi=h] is an indicator function that is equal to 1 if yi = h and 0
otherwise. The problem with this function, however, is that the term Pi,h is between 0 and 1,
and the product of such numbers becomes extremely small very fast. To prevent this problem, the
log-likelihood function is used instead:

l(θ) =
n∑

i=1

J∑
h=1

I[yi=h]log(Pi,h). (5)

By maximizing l(θ), parameter estimates for θ can be derived which can then be used to predict new
records. The estimated coefficients can quite easily be interpreted using the odds ratios Ωj|l(Xi),
or the log of these ratios. These ratios can be defined as follows:

Ωj|l(Xi) = Pr(yi = j|Zi)
Pr(yi = l|Zi)

=
exp(β0,j + Z ′i,jγ))
exp(β0,l + Z ′i,lγ)) , (6)

log(Ωj|l(Xi)) = (β0,j − β0,l) + (Z ′i,j − Z ′i,l)γ. (7)

For example, suppose that γk > 0, then an increase in zi,j,k−zi,l,k would result in an increase in the
log-odds ratio making it more likely that class j is chosen over class l. Lastly, the way new records
are classified is done by simply predicting the label that has the highest estimated probability to
be the correct label based on the estimated coefficients θ̂: ŷi = argmaxh(P̂i,h).
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3.2 Artificial Neural Network
The inspiration behind the Artificial Neural Network model is to imitate the structure of the biolog-
ical brain. A neural network is a layered structure of neurons where the knowledge of the network
is contained within the connections, or weights, between the neurons. The very first layer of the
network contains the input variables and the final layer contains the output neurons. The layers in
between these are called hidden layers. When a data record is evaluated using the input variables,
the activations of the input layer neurons activate the neurons in the first hidden layer through the
connections. This way, the activations travel through the network till the output layer is reached
where the final prediction is determined by predicting the label of the output node with the highest
activation value. The idea is that is that each neuron in each layer captures a feature in the data,
and each layer combines the features of the previous layer into larger features. When trying to
understand what features a neuron can capture, one can think of price differences between brand
choices or patterns in purchase behaviour in a marketing dataset. Another example would be the
shapes and components of different digits when classifying images of digits. Before moving on to the
more in-depth workings of a neural network, some notation is introduced with the aid of Figure 1.
The notation used in this paper is highly similar to the notation defined in the Stanford University
CS230 course (Ng and Katanforoosh).

Figure 1: Architecture of a Neural Network model with two hidden layers. Input neurons are highlighted
in blue, bias neurons in yellow, hidden neurons in red, and output neurons in green.
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Nomenclature
y(i) The correct label of record i.

x(i) Vector of input variables for record i: x(i) = (x(i)
1 , x

(i)
2 , ..., x

(i)
nx−1, x

(i)
nx ).

t(i) Target vector for record i: t(i) = (t(i)
1 , t

(i)
2 , ..., t

(i)
nL−1, t

(i)
nL ).

a[l] Vector of the activations of the neurons in layer l: a[l] = (a[l]
1 , a

[l]
2 , ..., a

[l]
nl−1, a

[l]
nl ).

bl Bias neuron of layer l.

W (l) Weight matrix of size nl−1 × nl containing the weights between the neurons in the (l − 1)’th layer and the
(l)’th layer.

L Number of layers (L = 3 in the example architecture of figure 1).

n Number of records in the training data.

nx Number of input neurons.

nl Number of neurons in layer l.

The activation of a neuron is determined by the linear combination of the activations in the previous
layer multiplied by the corresponding set of weights. However, neural networks are often used in
highly complex situations which usually result in non-linear relations. Thus, the linear activations of
the neurons are not sufficient to capture all the relations in the data. As such, every neural network
needs activation functions to transform the inputs of the neurons to introduce non-linearity into the
network. Suppose there is a hidden neuron h in layer l > 1 with activation function Rh(x). Then,
the activation of neuron h is equal to Rh(a[l−1]′W

[l]
∗,h). A classic activation function is the sigmoid

function. However, this function often suffers from various problems such as vanishing gradients
and a non-zero mean that slow down the training process (LeCun et al., 1998). These problems
can be solved by using a Rectified Linear Unit (ReLu) activation function (Glorot et al., 2011) or
the leaky ReLu function (Maas et al., 2013). For the output layer however, a softmax function is
recommended for multinomial classification tasks (Dunne and Campbell, 1997).

Figure 2: Plots of the sigmoid function, the Relu function, and the leaky ReLu function, respectively.
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The weights in the network are trained by defining a loss function and minimizing it. The loss
function can be defined in various ways. A classic form of the loss function is the Mean Squared
Error (MSE) loss, but a more suitable function for a multinomial classification task is the Cross-
Entropy loss function (Kline and Berardi, 2005);

MSE: E = 1
n

n∑
i=1

nL∑
j=1

(t(i)j − a
[L]
j )2, Cross-Entropy: E = −

n∑
i=1

nL∑
j=1

t
(i)
j log(a[L]

j ). (8)

If a record i has label y(i) = c, then the target value t(i)c must be equal to 1 and t(i)j for j 6= c must be
equal to 0. To minimize the loss function, the familiar optimization method called gradient descent
is used due to its simplicity. The entire training process consists of two steps:

Forward propagation: First, a training record is fed through the network and the activations of
every single neuron in the network are recorded.
Backpropagation: Next, the errors, or the loss, at the output nodes are passed back through the
network and are used to update the weights along the way according to a gradient descent step.

The backpropagation step is arguably the most important step to understand when trying to com-
prehend neural networks. To update the weights that are further down the network, it is required
to know the error at the corresponding hidden neurons. The errors at the hidden neurons are
calculated based on the errors from the output layer. During implementation, the output errors
are quite literally moved from the output layer through the hidden layers. For clarity, a gradient
descent step for a random weight w[l]

i,j in the network can be determined using Formula 9:

∆w[l]
i,j = −α ∗ ∂E

∂w
[l]
i,j

. (9)

Where ∆w[l]
i,j is the update to the weight w[l]

i,j , E is the total loss function, and α is a predetermined
learning rate. However, before one can train the weights, the weights must first be initialized. Due
to the nature of the algorithm, if we initialize all the weights the same, for example all weights
are initialized to zero, then all the updates to the weights will be identical. This would make a
significant part of the network useless. Fortunately, this can be prevented by simply initializing the
weights based on a random distribution such as the normal or the uniform distribution.

3.3 Neuron Specialization
The goal of any neural network is to train the output neurons such that they are only equal to 1
for records with the correct label and 0 otherwise. As such, one could say that these output nodes
already have a role or specialization. However, for a specific output node to activate, it needs to
use the features in the previous layer. As such, it would be ideal if these features act similarly to

8



the output node. If there are neurons in the previous layer that also only equal to 1 for records
with the correct label and 0 otherwise, then the output node can very reliably use these features.
This is the premise behind this method. Neuron specialization is a technique where not only the
output nodes, but also hidden nodes are trained to activate for specific classes. This boils down to
a relatively simple extension of the loss function. Namely, a loss function is not only defined for the
output layer, but also for the hidden layers. Thus, the total loss is the sum of the loss function of
every single layer:

Espec =
L∑

l=1
τ [l]E[l]

spec. (10)

Where Espec is the total loss function in a specialized neuron network, E[l]
spec is the loss of layer l in

a specialized neuron network, and τ [l] is a predetermined variable known as the “importance factor"
of layer l and is set somewhere between 0 and 1. The importance factor is necessary to alleviate
the restriction of the extra loss terms in the hidden layers. Namely, one of the problems with a
neural network is that the error generally decreases when backpropagated through the network due
to the zero-mean initialization of the weights. As such, if the loss functions of the hidden layers
are not properly scaled, then they might drown out the error from the output layer, the error that
actually matters. This is also why the parameters are called “importance factors". Namely, the loss
of the output layer is the most important since this determines the actual outputs. As such, the
importance factor for this layer τ [L] will be set equal to 1. The last hidden layer is not the layer
that determines the output, but it does directly influence the output layer. As such the importance
factor will be fairly large but not quite equal to 1. The idea is that the layers that are further away
from the output layer directly influence the output loss to a lesser extent and their loss functions
are therefore less important to focus on. Thus, one should have decreasing importance factors when
going backwards from the output layer. Now suppose that every single layer in a neural network
uses MSE as the loss function. Then, the total loss that needs to be minimized is equal to

Espec =
L∑

l=1
τ [l] 1

n

n∑
i=1

nl∑
j=1

(t[l](i)j − a[l]
j )2 = 1

n

n∑
i=1

L∑
l=1

τ [l]
nl∑

j=1
(t[l](i)j − a[l]

j )2. (11)

To accommodate for the new neuron roles, the notation of t(i)j has been changed to t[l](i)j , which now
indicates the target value of neuron j in layer l for record i. These target values are determined
by the roles of the neurons. The role of neuron j in layer l is indicated by r[l]

j . This role is defined
as an integer between 0 and nL (exclusive). However, for reasons that will be explained later, it is
advantageous to not only exclusively have specialized neurons in the network. As such, r[l]

j is defined
such that it can also take the value of -1 to indicate a regular neuron. Using this information, the
target variable can be defined as follows:

t
[l](i)
j =


1, if r[l]

j = y(i)

a
[l]
j , if r

[l]
j = −1

0, else
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The new loss function described in formula 10 can again be minimized using the backpropagation
method and gradient descent as explained in section 3.2. Fortunately, the new gradient descent
step is easy to derive:

∆w[k]
i,j = −α ∗ ∂Espec

∂w
[k]
i,j

= −α ∗ ∂

∂w
[k]
i,j

L∑
l=1

τ [l]E[l]
spec = −α ∗

L∑
l=1

τ [l]∂E
[l]
spec

∂w
[k]
i,j

. (12)

From Formula 12, it is easy to see that to determine the weight update, one can simply sum over
the derivatives of each loss function for every layer. The term ∂E

[l]
spec

∂w
[k]
i,j

is the exact same gradient as

one would use for a loss function of a regular neural network and can be derived in the exact same
way. Due to the fact that ∂E

[l]
spec

∂w
[k]
i,j

= 0 if k > l, this could be interpreted as backpropagating the

error from each layer individually. Yet, a significantly simpler implementation exists. As explained
in Section 3.2, backpropagation boils down to moving the error from the output layer back through
the hidden layers and updating the weights along the way. Suppose the error from the output
layer has been backpropagated to the last hidden layer. Now both the backpropagated error from
the output layer, as well as the error of the specialized neurons in the current hidden layer need
to be backpropagated further through the network. Thus, one can simply add these two errors
together and backpropagate the resulting sum. As such, the backpropagation algorithm is adjusted
as follows:

Algorithm 1 Backpropagation with specialized neurons:
Initialize current_layer equal to L.
Initialize EB

spec equal to a vector of zeros of length nL. (This variable will be used to keep track of
the backpropagated error)
Step 1: Calculate the error E[current_layer]

spec at the neurons in the current layer.
Step 2: EB

spec = EB
spec + τ [currentlayer]E

[current_layer]
spec

Step 3: Propagate EB
spec back one layer and update the weights W [current_layer] according to a

gradient descent step. Set EB
spec equal to the backpropagated errors.

Step 4: current_layer = current_layer − 1
Step 5: If current_layer = 0, stop. Else, go back to step 1.

This implementation adds very little complexity to the algorithm compared to the regular back-
propagation method. The only difference being that one must calculate the errors at every layer
instead of only the output layer, but this takes very little time in practice. Additionally, if the
hidden layers in the neural network do not contain any specialized neurons, then the E[current_layer]

spec

term will simply be equal to zero at the hidden layers. Thus, the regular backpropagation algorithm
can be recovered.

Another aspect that is worth mentioning is weight initialization in the case of neuron special-
ization. By all means, one can simply initialize all the weights completely randomly as is done
with regular neural networks. However, the fact that the behaviour of specialized neurons can be
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predicted is information that can be exploited. Namely, if neurons in different layers have the same
role, then it is to be expected that these neurons have similar activation patterns. Thus, it is to be
expected that these neurons will eventually have strong positive connections between them. As is
often said in the fields of psychology and neuroscience, “Neurons that fire together, wire together".
Using the fact that one can predict which neurons will fire together, an improved initialization can
be achieved by giving these neurons strong positive weights from the start. Similarly, specialized
neurons that do not have the same role can be given negative weights.

As mentioned before, it is not optimal to create a neural network with only specialized neurons.
The reason for this is the fact that the constraints on these neurons are quite restrictive. Essentially,
a specialized neuron is trained to activate only for a specific class and no others. This implies two
things. First, the pattern captured by this neuron has to exist for every single record of that class.
While this makes the feature quite reliable, this also means that features that only exist within a
part of the class data cannot be captured even though those patterns are exclusive to that class.
Furthermore, features that are shared between classes cannot be captured by specialized neurons.
The latter problem can be solved by simply introducing neurons are specifically meant to extract
shared features. Although, this does significantly increase the amount of neurons needed to capture
all the shared features due to the many combinations of classes possible. For ten classes this is man-
ageable. However, assume there are 100 classes. Then there are

(100
2
)

= 4950 different combinations
of two classes. Let alone if one wants to include features shared between three or more classes. Both
problems are in part solved by the importance factors τ [l] since these alleviate the strict restrictions
of the specialized neurons. Yet, another solution for both problems is to create a hybrid network
consisting of both the very specific specialized neurons and the highly flexible standard neurons.

3.4 Implementation and Testing
The methods mentioned are implemented using the programming language Python (Rossum, 1995).
The methods are implemented from scratch using only the highly useful mathematical computation
packages from the SciPy library (Jones et al., 01 ) as support. The Python implementations for the
models are based on code from a previous paper (Brauwers et al., 2019). The methods are tested
on a 3.4 GHz Intel Core i5 processor.

The exploratory research into the workings of a neural network is performed using two brand
choice datasets about Catsup purchases and Cracker purchases due to their simplicity. The neural
network implementation is evaluated on performance and compared to a multinomial logistic re-
gression model for reference. Furthermore, the interpretation possibilities of both models are also
analysed. After, the neural specialization is implemented to see how this influences the performance
and interpretation of the neural network. To get more definitive results, the neuron specialization
method is also tested using two image classification datasets focussing on handwritten digit recog-
nition and clothing item classification.
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To tune the hyper-parameters for the models used in this paper, cross-validation is used. The
test sets are only used to obtain the final results and not during the process of tuning the model
parameters. For the two image classification datasets, the data has already been split into a training
and test set. As such, a 5-fold cross validation with stratified sampling from the training data is
simply implemented. However, the marketing datasets first have to be split up into testing and
training sets. For the Catsup dataset, the last two records of each individual is used as the testing
set and the two purchases before those are used as the validation set during cross-validation. For
the Cracker dataset, a similar split of the data is made but with the last five purchases of each
individual. This way the test sets and the validation sets for both datasets contain approximately
20% of the data.

4 Data

4.1 Brand Choice Datasets
The two marketing datasets used in this research contain cross-sectional data about Catsup and
Cracker purchases and are accessed through the R (R Core Team, 2017) package Ecdat (Croissant,
2016). The Catsup dataset (McFadden and Train, 2000) contains data from multiple purchase de-
cisions of 300 individuals combining to a total of 2798 observations. There are 4 possible brand
choices with each brand having 3 specific marketing-mix variables. The display variable is a binary
variable that indicates whether the brand is on display at the time of purchase. The feature variable
is also a binary variable that indicates whether there is a newspaper feature advertisement for that
brand. Finally, the price variable is a continuous variable that indicates the price of that brand.
Thus, in total the Catsup dataset contains 12 explanatory variables.

The Cracker dataset (Jain et al., 1994) contains data from 136 individuals granting a total num-
ber of 3292 purchase observations. Again, this dataset contains 4 brand choices with each brand
having 3 marketing-mix variables. These marketing-mix variables are defined exactly the same as
for the Catsup dataset. Both datasets are adjusted such that each purchase record also contains
the marketing-mix variables of the previous two purchase records so that patterns through time
can also be investigated. To investigate brand loyalty, the purchase decisions of the previous two
purchases are also included in the form of dummy variables.

4.2 Image Classification Datasets
The first image classification database that is used is the well-known Machine Learning dataset
MNIST constructed by LeCun and Cortes (2010). This database is a modified subset of the Na-
tional Institute of Standards and Technology (NIST) database and is famous for being a highly
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suitable dataset for testing Machine Learning methods on. It contains 70000 images of handwritten
digits. These images are split up into a training set of 60000 images and a testing set of 10000
images. The images of the digits are of size 28 by 28 pixels where each pixel is represented by a
single grayscale value ranging from 0 (white) to 255 (black).

An alternative to the MNIST database is the Fashion-MNIST database released by Xiao et al.
(2017). Xiao et al. (2017) argue that there are some significant shortcomings with the MNIST
dataset. Namely, the images are generally too easy to classify and ideas tested on MNIST may not
transfer well to other datasets. As such, the Fashion-MNIST dataset was designed to be a direct
replacement for MNIST. Hence, this database is exactly the same in structure and format as the
MNIST set, but it contains images of clothing articles instead of handwritten digits. Similarly to
MNIST, it has a training set of 60000 images and a testing set of 10000. The images are all of
format 28 by 28 pixels with each pixel being represented by a grayscale value. Finally, both the
MNIST and the Fashion-MNIST datasets are formatted such that the images become row vectors
with the image label at index 0 and the pixel values after that.

Figure 3: Example images taken from MNIST (left) and Fashion-MNIST (right) training sets.

The pictures found in Figure 3 are the first ten pictures of every class found in the training sets.
Starting with the MNIST images, one can observe that there is quite a bit of variety in writing
style, especially in the slanting of the digits and the way the loops are formed. Nevertheless, the
classes are still quite easily differentiated from each other. The Fashion-MNIST images, on the
other hand, contain significantly more variation within the classes themselves. There is a large
variety in the shapes and patterns of different sandals, bags and dresses, for example. There are
also many different shades present within the classes which is significantly less prominent in the
MNIST images. These factors indicate that the Fashion-MNIST data poses a larger challenge for
the classifiers than the MNIST dataset.
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5 Results
In this section, the results from implementing the various models on the different datasets will
be discussed. Section 5.1 starts with a performance comparison between the multinomial logit
model and the neural network model based on the marketing datasets. A comparison based on the
interpretation possibilities is also made. Then, the neuron specialization extension of the neural
network model is evaluated. Section 5.2 continues with a similar analysis for the same methods
based on the image classification datasets.

5.1 Brand Choice Prediction
Similarly to Agrawal and Schorling (1996), the neural network setup used for the marketing datasets
is fairly small with only one hidden layer consisting of 20 neurons. The neural network models are
trained with mini-batch gradient descent with a batch size of 32 and a decaying learning rate. The
learning rates for the Catsup dataset starts at 0.3 and quickly decays to 0.01. For the Cracker
dataset, the learning rate starts at only 0.05 since the training process converges significantly faster
for this dataset. The loss function that is minimized in this process is the cross-entropy loss function
with a softmax activation function. The hidden neurons in the network have leaky ReLu activation
functions with a leaky factor of 0.01. Furthermore, the input values are normalized between 0 and
1 to speed up convergence. The weights are initialized from a standard normal distribution that is
scaled using the method proposed by He et al. (2015) to prevent exploding gradients; the weights
are multiplied with a factor equal to

√
2
nl
, with nl being the number of input neurons in the previous

layer. The neural network training is stopped early after 100 epochs to prevent overfitting. Since
both datasets contain choice-specific variables, the conditional logistic model is used to compare the
neural network with. The log-likelihood function of the CNL model is maximized using the BFGS
optimization method (Fletcher, 1987) using a line search based on the Wolfe conditions (Wolfe,
1969) to determine the step sizes. The CNL model is trained till convergence.

Table 1: Model results for the marketing datasets.

Catsup Dataset Neural Network CNL Cracker Dataset Neural Network CNL
Fitting Time (s) 9.59 38.74 Fitting Time (s) 12.17 56.70
Prediction Time (ms) 0.00136 0.000845 Prediction Time (ms) 0.00124 0.000701
Error Rate (%) 31.67 30.83 Error Rate (%) 19.56 18.68

Firstly, one would expect the neural network to outperform the CNL model based on the error rate
due to the neural network’s improved ability to capture non-linear relations. Yet, the error rates
of the CNL model are lower for both datasets. This could be explained by the fact that the neural
network has significantly many more parameters that allow the model to overfit to a much higher
degree. Another explanations could be that the CNL model performs better simply due to the
BFGS algorithm being superior to the gradient descent algorithm. Although the BFGS algorithm
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is also the reason for the fitting times being significantly higher for the CNL model. However, fitting
times are generally not extremely important in practice since one only has to train the model once
and the times achieved here are below one minute anyway. What does matter in practice however,
is the prediction time per record. If large amounts of records need to consistently be classified, then
it is important that the prediction times are as low as possible. As one can observe, the prediction
times of the neural network are significantly higher due to the extra layer of calculations.

Sometimes one needs to predict records as accurately as possible, yet other times one may want to
find out how the explanatory variables influence these predictions. This is the concept of “prediction
versus explanation" and shows that not only the prediction performances are important, but also the
interpretability of the model. As such, the next step is to compare the interpretation possibilities
for both models. The model interpretations are compared using the coefficient estimates learned for
the Cracker dataset. The CNL coefficients for this dataset can be found in Table 2. The subscripts
of the variables indicate the time at which the variable was recorded.

Table 2: CNL model coefficient estimates.

Variable displayt featuret pricet displayt−1 featuret−1 pricet−1 purchaset−1 displayt−2 featuret−2 pricet−2 purchaset−2

Coefficient 0.1674 0.6303 -2.9867 -0.06854 -0.1128 1.7502 1.4791 0.06041 -0.09656 0.92269 1.0915

The coefficients from the CNL model can very easily be interpreted using log odds ratios as defined
in Formula 6. For example, since the estimated coefficient for pricet is negative, if the price for
brand sunshine is higher than the price of brand kleebler at time t, then the probability of the
individual choosing for sunshine decreases. Similarly, since the estimated coefficient for purchaset−1

is positive, if the individual bought brand sunshine at time t− 1, the probability of the individual
choosing sunshine again increases. These are all logical patterns that are to be expected. The
interpretation of the coefficients of a neural network is substantially more difficult. Tracking the
exact influence of a specific variable on a particular class is challenging due to the many connections
and the activation functions. All one can really do is investigate the neurons in the first hidden
layer of the network. The coefficient estimates for a single neuron from the hidden layer of the
neural network trained on the Cracker dataset are shown in Table 3.

Table 3: Neural network weight estimates for a single neuron.

displayt featuret pricet displayt−1 featuret−1 pricet−1 purchaset−1 displayt−2 featuret−2 pricet−2 purchaset−2

sunshine -0.0699 0.0339 -0.2367 -0.1549 -0.3591 -0.1260 0.3110 -0.0396 0.0930 0.1149 -0.3586
kleebler -0.0812 -0.2636 -0.1149 0.4369 -0.2977 -0.5134 0.2135 -0.0720 0.2152 -0.3760 -0.0480
nabisco -0.0730 -0.1876 0.2336 -0.2297 0.2897 -0.3046 0.1884 -0.4220 -0.0118 -0.1735 0.4838
private -0.4824 0.1027 0.0729 0.0592 0.0106 0.5593 -0.0150 -0.0102 0.1265 0.1137 -0.0416

Each hidden neuron has a weight attached to every single input neuron, which can make interpre-
tation confusing. For example, the coefficients of purchaset−1 and purchaset−2 are quite large for
brand nabisco. Since individuals often like to buy the same brands as also demonstrated by the
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CNL model, this would indicate that this neuron will have a positive activation when a nabisco
prediction is made. Yet, the pricet also has a positive coefficient for the nabisco brand. Apparently,
this neuron has a higher activation when the individual has chosen nabisco in the past, but also
when the price of nabisco is high. Such patterns generally do not make sense to us, yet the model
still uses such patterns to correctly classify records. The neural network model does not seem to
perform particularly well on these datasets, but perhaps the neuron specialization can help the
model.

The neuron specialization model has the exact same architecture as the standard neural network
implementation, but half the neurons in the hidden layer are specialized. These specialized neurons
use a mean squared error loss function since it works better with the ReLu activation functions
and is significantly easier to calculate. Furthermore, the importance factor is set to 0.5. Also, the
weight initialization is adjusted slightly to make use of the fact that the behaviours of the neurons
are predictable. Namely, weights between specialized neurons are still initialized from the same
normal distribution, but weights between neurons with the same role are made strictly positive and
weights between neurons with different specializations are made strictly negative.

Table 4: Specialized neuron model results for the marketing datasets.

Catsup Cracker
Fitting Time (s) 10.82 11.47
Prediction Time (ms) 0.00131 0.00141
Error Rate (%) 31.50 18.97

Although the neuron specialization achieves slightly lower error rates than the standard neural
network, it still does not outperform the CNL model. The fitting times and prediction times seem
to be quite similar to the standard neural network. Again, it is also important to inverstigate the
interpretability of the model. As such, the weights for a neuron specialized to extract patterns for
the nabisco brand are presented in Table 5.

Table 5: Neural network weight estimates for a single neuron that is specialized to extract patterns for the
nabisco class.

displayt featuret pricet displayt−1 featuret−1 pricet−1 purchaset−1 displayt−2 featuret−2 pricet−2 purchaset−2

sunshine 0.0008 0.0093 0.2127 0.0614 0.0855 0.2440 0.0495 0.0300 0.0711 0.1280 0.0346
kleebler 0.0562 -0.1170 0.1535 0.0062 -0.0136 -0.2178 -0.0550 -0.0014 0.0273 -0.2095 0.1024
nabisco 0.0075 0.0719 -0.5609 -0.0317 -0.0208 0.0643 0.4104 0.0253 0.0722 0.1373 0.3159
private 0.0516 -0.0992 -0.0173 0.0230 -0.0335 0.0755 -0.1058 -0.0999 0.2171 0.0520 -0.0367

The patterns found within this specialized neuron are more logical than the ones found in Table
3. For example, when pricet for nabisco increases, the neuron will have a lower activation value.
Inversely, when the prices of other brands increase, the activation of this neuron also increases.
Moreover, when the individual chose nabisco in the past, the activation of this neuron will also
increase. These are patterns that are easy to understand and allow one to more easily find out
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which variables influence the choice for nabisco positively or negatively. The performances and the
interpretability of the neural network model certainly seem to improve when neuron specialization
is introduced. Yet, the CNL model still outshines the neural network model either way. To get
more definitive answers on the effects of neuron specialization, the neuron specialization extension
is also tested on datasets where the neural network model performs significantly better.

5.2 Image Classification
For the image classification datasets, various model architectures are tested for comparison purposes.
Multiple standard three-layered neural network architectures are implemented with and without
neuron specialization. Except for the learning rates and the hidden layer structures, the neural
network models used for image classification have the exact same architecture as the ones used for
the brand choice prediction datasets as it is a general classification architecture that can be used
for any classification task. The learning rate used is equal to 0.05 for the MNIST dataset and 0.01
for the Fashion-MNIST dataset as this suits the data better. For the specialized neuron models,
the importance factors for the hidden layers are, in order, 0.01 and 0.5. Due to time and hardware
restrictions it was not possible to train every model till convergence. As such, every neural network
model in this list has been trained for only 50 epochs which still produces adequate results. Since
these datasets do not contain any class-specific variables, the MNL model is used to benchmark the
neural network. The performances for the MNIST dataset are displayed in Table 6.

Table 6: MNIST test results. (NN = Neural Network, HU = Hidden Units)

Classifier Test Error (%) Prediction Time (ms) Fitting Time (s)
MNL model 8.04 0.0112 2035.48
3-layer NN, 400 + 400 HU 1.86 0.0505 1680.03
3-layer NN, 400 + 400 HU, 50% specialization 1.50 0.0491 1722.41
3-layer NN, 800 + 800 HU 1.69 0.0763 3760.00
3-layer NN, 800 + 800 HU, 50% specialization 1.26 0.0715 3739.46
3-layer NN, 1200 + 1200 HU 1.71 0.0921 7594.12
3-layer NN, 1200 + 1200 HU, 50% specialization 1.34 0.0919 7751.95

First of all, it is clear that the MNL model is not the most suitable model for this problem.
Although the classification rates are surprisingly high and the prediction times are lower than those
of the neural network models, the error rates of the neural network models are significantly better.
Furthermore, the error rate of every standard neural network model is improved significantly by
adding neuron specialization. Moreover, even the specialized neuron model with only 400 neurons
in each hidden layer has a lower test error rate than every single standard model. To investigate
this increase in performance, it may be interesting to examine the test and training errors after
every epoch and plot the error minimization process. In Figure 4, the training and test errors of
the three-layered neural network with 800 hidden units in each layer have been plotted, with and
without specialization.
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Figure 4: Plot of the test errors (full lines) and training errors (dashed lines) for the specialized (blue) and
non-specialized (red) models.

Firstly, both models seem to overfit quite extensively. Yet, the addition of the specialized neurons
still provides consistently lower test errors throughout the entire training process. Furthermore, the
training error for the specialized neuron model is minimized faster in the beginning, but it quickly
slows down and is overtaken by the training error of the regular model. This is most probably caused
by the fact that the standard model fully focuses on minimizing the training error at the output
neurons while the specialized neuron model must also focus on training the specialized neurons in
the hidden layers. The same models used for the MNIST dataset have also been implemented on
the Fashion-MNIST data. The results are shown in Table 7.

Table 7: Fashion-MNIST test results. (NN = Neural Network, HU = Hidden Units)

Classifier Test Error (%) Prediction Time (ms) Fitting Time (s)
MNL Model 15.79 0.0101 1280.36
3-layer NN, 400 + 400 HU 10.15 0.0423 1612.59
3-layer NN, 400 + 400 HU, 50% specialization 9.96 0.0430 1629.43
3-layer NN, 800 + 800 HU 9.94 0.0770 3630.31
3-layer NN, 800 + 800 HU, 50% specialization 9.31 0.0829 3708.13
3-layer NN, 1200 + 1200 HU 9.77 0.0914 7534.73
3-layer NN, 1200 + 1200 HU, 50% specialization 9.23 0.0911 7762.42

Similar results as for the MNIST data are achieved for the Fashion-MNIST dataset. Each neural
network model with neuron specialization sees a consistent improvement in test error rate compared
to its standard non-specialized counterpart. Although, the relative improvement is smaller for
this dataset. The MNIST models achieved approximately a 20 percent decrease in the amount of
misclassified test records while the Fashion-MNIST models achieve only around a 5 percent decrease.
For further comparison, the test error results of various other classifiers are shown in Table 8 and
Table 9. From these tables one can see that the methods used in this paper are quite competitive
compared to other methods.
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Table 8: MNIST error rates of various classifiers im-
plemented by Lecun et al. (1998).

Classifier Error Rate (%)
2-layer NN, 300 HU 4.7
3-layer NN, 500+150 HU 2.95
K-NearestNeighbors, L2 Distance 2.4
SVM, Gaussian 1.4
CNN LeNet-5 with distortions 0.8

Table 9: Fashion-MNIST benchmark results. (Xiao
et al.).

Classifier Error Rate (%)
K-NearestNeighbors, L2 Distance 14.0
MLPClassifier, 100 HU 12.3
RandomForest, 100 estimators 12.1
GradientBoosting, 100 estimators 11.2
SVC, Poly 10.3

It is clear now that specialized neurons can improve performance of neural network models. The
question that remains is why this is possible. In theory, the extension of the loss function should
only make the model perform less adequately since it shifts the focus away from minimizing the
actual output error terms. To understand why the specialized neurons still increase model accuracy
significantly, one can inspect the behaviours of the neurons themselves. In Figure 6, the average
activations of the specialized neurons are depicted. The model used for this is, again, the three-
layered neural network with 800 hidden units in each layer with 50% specialization. The averages
are calculated for each hidden layer separately to investigate the effects of the importance factors.
The averages are obtained by first calculating the activations of the neurons for all the 10,000 records
in the MNIST test set. Then, the averages are calculated for both the activations when neurons
activate for the correct class they were assigned to, and the activations when they activate for the
incorrect class. The averages are then taken over both the amount of neurons and the amount of
records.

Figure 5: Bar chart depicting the average activations of the specialized neurons in the first and the second
layer for the class that they were assigned to (correct) and the classes they were not assigned to (incorrect).

It is quite clear that the behaviours of the neurons are influenced quite significantly by the special-
izations. The neurons in the second layer on average behave almost perfectly as expected. They
on average have an activation of almost 1 for the class they were assigned to and almost always
have an activation of close to 0 for classes they were not assigned to. The neurons in the first
layer do not fully behave as perfect, but this was to be expected due to the smaller importance
factor of 0.01. Nevertheless, it is quite clear that the neurons, especially those in the second layer,
are highly reliable neurons that the output layer can use to more easily correctly classify records.
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This already shows how these specialized neurons have helped improve performance, but a closer
inspection of the individual neurons is also insightful. In figure 6, typical images of both regular
neurons and specialized neurons are depicted. Each square depicts the weights of neurons trained
to extract features from the MNIST dataset. The rows in the right picture represent each digit
in order, where each row contains neurons that are specialized to extract features for that specific
digit.

Figure 6: Typical example plots of the weights of regular neurons (left) and specialized neurons (right).
Blue pixels indicate positive weights while red pixels indicate negative weights. The brighter the colour of
the pixel, the larger the value of the weight.

At first sight, the depictions on both sides seem to be relatively noisy collections of pixels, however
there are still patterns to be found. The pictures on the left seem to contain clusters and patterns
of pixels depicting the various features of the different digits. Yet, it is particularly difficult to
trace how these patterns fit into the shapes of the digits. The pictures of the specialized neurons,
however, contain more well-defined and significantly easier to recognize patterns. Each neuron
seems to represent a different form or aspect of the corresponding digit. For example, the first
row contains neurons that extract features for the digit zero. One can see that, even though some
images are more clear than others, each neuron in this row incorporates the circular shape of the
digit in one way or another. Similarly for the neurons depicting the digit one, one can observe that
each image consists of the general long familiar shape of the digit. Yet, each pattern is different
in the specific shape, size or slanting and seems to represent a different aspect of the digit. The
depictions of other digits are perhaps relatively more difficult to recognize, but the patterns are
most certainly there. It is clear that the specialization of the neurons has had a significant effect
on their behaviour.
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6 Conclusion
In this paper, a novel machine learning technique known as “neuron specialization" was proposed.
The research into this topic started with an introduction into the workings of a neural network
by comparing it to a logistic regression model using two marketing datasets. In contrast to the
paper by Agrawal and Schorling (1996), the results obtained in this paper from these datasets show
that neural networks are not always preferable in a marketing context. For such a simpler prob-
lems, a better alternative may be a simpler model such as multinomial logistic regression which
has significantly better interpretation possibilities and better performances. Nevertheless, the im-
age classification datasets do show that neural network models perform significantly better when
used for a more complex problem with more data. Thus, the answer to the first research ques-
tion, “How does an Artificial Neural Network perform compared to a standard classification method
such as a Multinomial Logistic Regression model?", would be that neural networks are preferred
for complex problems with more data, while multinomial logit models are preferred for simpler
tasks such as brand-choice prediction. Just to be clear, brand-choice prediction is not exactly “sim-
ple" since predicting human behavior is extremely difficult. However, due to the small size of the
data and the relatively small amount of variables, there are not many complex patterns to be found.

The second part of this research was to investigate the effects of implementing the neuron spe-
cialization extension. This extension was implemented and tested for both the marketing and the
image classification datasets to answer the following research question: “Can Artificial Neural Net-
work models be improved through the use of neuron specialization?" For the marketing datasets, the
neuron specialization seems to improve the neural network only slightly and the multinomial logit
model is preferred anyway. However, for the image classification datasets, the neural network with
the neuron specialization extension implemented had consistently lower error rates and easier to
interpret neurons. As such, it can be concluded that neuron specialization can improve classification
neural networks.

The question that remains however is to what extent the neuron specialization can be utilized.
The image classification datasets used in this paper were arguably easier than some other highly
complex datasets such as ImageNet (Russakovsky et al., 2015) or the Open Images Dataset (Krasin
et al., 2017). It is questionable if neuron specialization will work for these datasets. Namely, the
Fashion-MNIST dataset has around ten times higher error rates than the regular MNIST dataset.
With this increase in complexity, the relative performance boost that neuron specialization provides
seems to drop. Furthermore, the datasets used in this research consisted of either four or ten classes.
However, when a dataset contains thousands of classes, it is practically impossible to assign neurons
to every single class. Due to hardware and time constraints, it was not possible to investigate the
effects of such larger datasets in this paper. Thus, further research is required to find out if neuron
specialization can work for larger and more complex datasets.
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Appendix

Code Directory
The code used in this paper is provided separately in a different file. As such, this section describes
in short the directory and the scripts within.

Code
CNL

CNL_testing.py:
Run this script to test the CNL model.

CNL.py:
This script contains the implementation of the CNL model.

MNL

MNL_testing.py:
Run this script to test the MNL model.

MNL.py:
This script contains the implementation of the MNL model.

NeuralNetwork

NeuralNetwork_testing.py:
Run this script to test the Neural Network model.

NeuralNetwork.py:
This script contains the implementation of the neural network model with neuron
specialization that can be turned on or off.
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