
Bachelor Thesis
Econometrics and operations research

The Influence of Non-Strategic Customers in Service
Networks

Zoutendijk, R.W. 458391
Supervisor: Oosterom, C.D. van

Second assessor: Vester, J.S.

July 7, 2019

Abstract

I study the behaviour of strategic customers in the presence of non-strategic cus-

tomers in an open routing service network. This network consists of two stations,

which customers have to visit both. When a customer arrives, he chooses his

route through the system. Strategic customers want to minimise their system time,

non-strategic customers choose their route randomly. I compare two systems in a

simulation study, one with strategic customers only and one with a combination of

strategic and non-strategic customers. I find that strategic customers herd, which

means they all choose the same route. If non-strategic customers are present in the

system, this behaviour is even stronger.

The views stated in this thesis are those of the author and not necessarily those of Erasmus School of

Economics or Erasmus University Rotterdam.

Contents

1 Introduction 2

2 Literature review 3

3 Service network with two stations 4

4 Simulation study 5

4.1 Set-up . 5

4.2 Strategic Customers . 5

4.3 Non-strategic Customers . 6

4.4 Comparison . 6

5 Results 7

5.1 Case 1 . 7

5.2 Case 2 . 9

6 Conclusion 10

7 Appendix 13

1

1 Introduction

A long wait in a queue is something that almost every customer tries to avoid. The same

holds in many service networks in which services are provided at multiple stations and

where customers are free to decide in which order they visit the stations. For example,

think about an amusement park. There are a few attractions you want to visit, but when

you are at the entrance of the park you do not know how long the queue at each attraction

is. At that point, you got to decide which route you are going to follow. Many visitors

try to avoid long waiting times and base their routing choice on past experiences or their

expectations of waiting times. Those visitors are called strategic. However, some visitors

follow the directions of an employee of the park or they just visit the stations in random

order, regardless of their expectations and past experiences.

The situation stated above is called open routing in service networks. Open routing

means that customers can choose in which order they want to visit the stations. This is

a complex situation because all customers can have an impact on each other’s waiting

times. Whenever they choose a different route they can still end up at the same station

at the same time. Arlotto et al. (2019) studied the behaviour of strategic customers in an

open routing service network with two stations. They find that strategic customers show

herding behaviour, which means they all choose the same route.

However, in many real-life service networks, not all customers are strategic. That is

where my research comes in. I look at the behaviour of strategic customers when non-

strategic customers are present in the system. I do this by performing a simulation study

with two different cases. In the first case, I use a system with strategic customers only,

just like the simulation of Arlotto et al. (2019). In the second case, the customers can be

strategic or non-strategic. For these non-strategic customers, their route is determined

exogenously, as in the example in the first paragraph. The strategic customers do not

have any knowledge about the routes of non-strategic customers. Do the strategic cus-

tomers still show herding behaviour in this situation with uncertainty about the routes

of non-strategic customers or does this behaviour vanish in the presence of non-strategic

customers?

The paper is structured in the following way: In Section 2 I review the literature. Section

3 describes the model that I use for this research. Section 4 explains the simulation study

with the two different cases. Section 5 analyses the output from the simulation study

2

and compares the output with the results from Arlotto et al. (2019). Finally, Section 6

concludes the paper. The code from the simulation study is provided in the appendix.

2 Literature review

In this section, I review the existing literature on open routing in service networks. Hassin

and Haviv (2003) provide a general overview of the queueing literature and more recent

work about this topic is covered in Hassin (2016).

Since I replicate and extend a part of Arlotto et al. (2019) this paper gives some very useful

information because it analyses the same situation. At first, they come up with some

analytical results concerning herding behaviour in a setting with deterministic service

times and a random arrival order. They show that if the number of customers is big

enough the routing game has a Nash equilibrium in which all players herd at one of the

stations. Furthermore, if one of the stations serves twice (or more) as slow as the other

station, then attending the slow station first is a dominant strategy. These Nash equilibria

are proved to be the only existing Nash equilibria.

Arlotto et al. (2019) also show some analytical results for a case with strategic and

non-strategic customers. The implementation of non-strategic customers is a bit different

compared to my implementation: a non-strategic customer always chooses the same route

and strategic customers know the route choices of the non-strategic customers. The results

show that in this case strategic customers still herd. However, the non-strategic customers

play a role in which herding profile is a Nash equilibrium.

Another closely related paper is from Parlaktürk and Kumar (2004). They analyse

a stochastic system with two stations and customers who have to visit both stations to

perform two tasks, which can be completed at both stations. They show the existence of

unstable Nash equilibria. In this system, the stations got two queues, one for each task,

and a system manager determines which queue is served at a certain time. That is the

main difference with my system, where both stations have one queue and customers are

served in the same order as they arrive.

If the addressed routing choice situation is more closely examined, it can be explained as

a game with incomplete information. All customers make a decision and their choices

3

influence each other. It is called a game with incomplete information since all customers

make their decision without any knowledge about the current state of the system, their

position in it or the decisions of other customers. This results in higher uncertainty for

customers in making the best choice. The interested reader is referred to Tadelis (2013)

for more information about this game.

3 Service network with two stations

In this section, I describe the model that is used in the simulation study, which is based

on the model from Arlotto et al. (2019). A visual explanation is provided in Figure 1.

The model consists of a service network with two stations, A and B. Both stations have

their own service rates, µA and µB respectively, and serve customers based on the FCFS

rule. This means that the customers are served in the same order as they arrive. Service

rate µA is assumed to be smaller than µB, so the expected service time at station A is

greater than at station B. The network serves N customers who all have to visit both

stations once. At arrival, a customer can decide which route, AB or BA, he wants to

follow. If a customer chooses route AB he attends station A and subsequently station B,

for route BA the opposite holds.

To implement the non-strategic customers I add NS to the model. This is the total

number of strategic customers, which is smaller or equal to N . The other N −NS cus-

tomers are non-strategic. The route of non-strategic customers is determined exogenously.

They choose, independently of each other, route AB with probability pAB and route BA

with probability pBA.

Figure 1: The service network

Station	A

Station	B

Row	A

Row	B

Start	of	service End	of	service

Blue	=	Route	AB,	Red	=	Route	BA

4

4 Simulation study

For my research, I use a simulation study. I choose this method because it requires less

restrictive conditions and assumptions. Compared to the analytical results from Arlotto

et al. (2019), discussed in the literature section, a simulation requires almost no conditions

on modelling the arrival and service times. Furthermore, it allows for modeling a wide

range of learning rules to describe the dynamics of customers.

The simulation study consists of two cases. The simulation set-up is based on the

set-up from Arlotto et al. (2019). In the first case, I analyse a system with only strategic

customers, which is the same situation as studied by Arlotto et al. (2019). In the second

case, I implement non-strategic customers in the system.

4.1 Set-up

In the simulation study, the behaviour of the customers is analysed. In both cases N = 50

customers. To let them learn from previous experiences 250 rounds are simulated and

the results from the last round are analysed. All customers choose their route at the

beginning of each round, without any knowledge about the choices of other customers.

At the end of each round, the customers know their system time, but also observe which

system time they would have had if they had chosen the opposite route when the choices

of all other customers remain the same.

In every round customer i’s arrival time is uniformly distributed on the interval [iγ − φ,
iγ + φ]. Parameters γ and φ are used to adjust the mean and the variance, respectively.

The services times at both stations are exponentially distributed. The service rate at

station B, µB, is constant and equal to 1, the service rate µA is a parameter which can

take multiple values. The values for the parameters mentioned above are as follows:

µA ∈ {0.1, 0.25, 0.5, 0.75}, γ ∈ {0.001, 0.1, 0.25, 0.5, 0.75, 1} and φ ∈ {0, 0.25, 0.5, 0.75, 1}.
This leads to 120 different combinations of parameters and for every combination the

simulation is carried out 100 times.

4.2 Strategic Customers

In the first case, all customers are strategic, which means they want to minimise their

system time. That is why they use the historical system times in their route choice by

taking the average of all historical system times and choosing the route which has the

5

smallest average historical system time. In the first round, the choice is completely random

because there is no historical information yet.

4.3 Non-strategic Customers

In the second case, non-strategic customers are present in the system. I simulate the

system for NS ∈ {30, 40}. Before the start of the simulation for all rounds I randomly

take N −NS customer indices to assign which N −NS customers are non-strategic that

round. Since they are non-strategic their route is not based on historical system times.

They choose, independently of each other, route AB with probability pAB = 0.5 and route

BA with probability pBA = 1− pAB = 0.5. After every round, I use the system times of

customers who had a strategic role that round to update their historical average system

times, on which they base their route choice. The historical average system times of the

customers who had a non-strategic role that round remains the same. I use this set-up to

keep the number of customers consistent with case 1. However, the results from case 1

are coming from 50 customers which are strategic in 250 rounds. That is why I adjust the

number of rounds in the following way:

#Rounds = 250 ∗ N
NS

(1)

To make a good comparison I increase the number of rounds so every customer in case 2

has the expectation to be strategic in 250 rounds. After the last round, I use the historical

average waiting times to see how many customers would now choose route AB and how

many would choose route BA.

4.4 Comparison

In their paper, Arlotto et al. (2019) only present a selection of sample means, without

providing any information about the standard deviation. To be able to compare the results

from the first part of my research with the outcomes from Arlotto et al. (2019) I use a

one-sample t-test, which tests whether my sample mean is significantly different compared

to their sample mean and only uses the standard deviation of my sample. I do this for every

parameter set to get to the general conclusion whether the distributions of the number of

AB customers are the same. However, due to the lack of information I now assume the

mean of Arlotto et al. (2019) to be the true mean. This means that I underestimate the

variance of the difference between both samples and that I reject the null hypothesis faster.

6

The test statistic is determined in the following way:

t =
X̄ − µ
σ/
√
n

(2)

in which X̄ is my sample mean, µ equals the sample mean to compare with, σ is the

standard deviation of my sample and n is the number of observations in my sample. This

test statistic assumes that the sample mean is normally distributed. This is not exactly

the case here. However, the central limit theory states that if the sample size is large

enough the distribution of the mean is approximately normal. Kwak and Kim (2017)

show that this holds for a sample size of 30 or more. Since I deal with a sample size of 50,

using this t-test is still reasonable.

5 Results

5.1 Case 1

Table 1 shows some sample means and ranges of the number of customers who choose AB

in the last round for a situation in which the arrival times are deterministic and the arrival

order is constant for every round, since φ = 0 and γ = 0.001. This situation is related to

an analytical result from Arlotto et al. (2019) since they also analysed a situation with

deterministic service times and a fixed arrival order. The main difference here is that

customers can not observe moves from customers who are in the system already. The

present an equilibrium in which the first 49 customers choose AB and the last one chooses

BA. All results from Table 1 are close to this value. However, possibly due to the fact

that I now deal with stochastic service times, not all outcomes are 49, but there is a range

in which all outcomes are situated, as shown in the table.

Table 1: Sample means and ranges of the number of AB

customers in the last round with γ = 0.001 and φ = 0

µA 0.1 0.25 0.5 0.75

Mean 49.30 49.99 48.92 47.71

Range 49 - 50 49 - 50 48 - 50 45 - 50

When all simulations are compared, Arlotto et al. (2019) notice that herding at BA only

happens when γ = 0.001. The same holds in my simulations. Table 2 and 3 only show

results with γ ≥ 0.1, so the means are a good indicator for herding behaviour. The closer

7

the mean is to 50, the stronger the herding behaviour is.

All results in Table 3 are at least 47.16 and are greater than the corresponding val-

ues in Table 2. This supports the analytical results from Arlotto et al. (2019) and shows

that if the amount of time you have to wait behind another customer at station A increases,

more people tend to choose route AB. Furthermore, we can see that, in general, if γ

increases the number of AB customers decreases. This can be explained by the fact that

if γ increases, arrivals occur less frequently and people influence each other less. For φ

the general effect is a bit harder to observe, because we need to compare it with γ. If φ is

greater than γ the arrival intervals of individuals overlap, so there is more uncertainty

about the arrival order. If γ increases, the influence of φ decreases. As an example, I

look at Table 2 with γ = 0.1. If φ = 1, customer 25 his arrival position can be between

sixth en forty-forth, but when φ = 0 his arrival position is twenty-fifth. This difference in

uncertainty about positions leads to the difference in means, which is clearly visible in

this situation, but not for all values of γ.

Table 2: Sample means of the number of customers who choose AB in the last round with

µA = 0.75. My results are on the left, results from Arlotto et al. (2019) are on the right.

φ φ

γ 0 0.25 0.5 0.75 1 γ 0 0.25 0.5 0.75 1

0.1 46.53 46.50 45.66 47.54 48.99* 0.1 46.22 46.61 45.42 47.45 49.20

0.25 46.38 45.95 45.87 46.23 45.94 0.25 46.55 45.83 46.22 46.07 45.72

0.5 44.29* 44.21* 45.06 44.53 44.64 0.5 45.20 45.27 45.00 44.64 44.32

0.75 41.91 41.25* 42.30 41.94 40.98* 0.75 41.68 42.70 41.59 41.73 42.46

1 36.78 36.46* 36.67 37.05 37.62 1 35.90 37.38 36.47 36.23 38.17

Notes: * denotes a significant difference in means at the 5% level.

8

Table 3: Sample means of the number of customers who choose AB in the last round with

µA = 0.5. My results are on the left, results from Arlotto et al. (2019) are on the right.

φ φ

γ 0 0.25 0.5 0.75 1 γ 0 0.25 0.5 0.75 1

0.1 48.62 48.47 49.99 50.00 50.00 0.1 48.47 48.53 49.98 50.00 50.00

0.25 48.53* 48.49 47.83 48.60 49.25 0.25 48.34 48.39 47.81 48.61 49.18

0.5 48.13 47.97 48.01* 48.13 47.67 0.5 48.05 48.07 48.30 48.10 47.82

0.75 47.75 47.84 47.71 47.67 47.81 0.75 47.88 47.9 47.81 47.80 47.76

1 47.43 47.16 47.22* 47.40 47.35 1 47.48 47.42 47.47 47.52 47.33

Notes: * denotes a significant difference in means at the 5% level.

5.2 Case 2

The results for the case with non-strategic customers can be found in Tables 4 and 5.

Compared to the results from case 1 all outcomes are higher. Furthermore, if we compare

the situation of NS = 30 with NS = 40 we see the outcomes of NS = 30 are higher.

The addition of non-strategic customers does not seem to lower the herding behaviour of

strategic customers. A possible explanation for the higher number of AB customers in the

presence of non-strategic customers could be the threat for a strategic customer that the

large majority of customers that enter the system after him, but choose route BA, arrives

before him at station B if he chooses route AB. This threat is lower in the situation with

non-strategic customers, because they choose routes AB and BA with equal probabilities

so a large majority is very rare here. This thread is one of the reasons why customers can

choose BA and since this thread is lower in a situation with more non-strategic customers,

it could be an explanation why we see more AB customers in a setting with non-strategic

customers.

9

Table 4: Sample means of the number of customers who choose AB in the last round with

µA = 0.75. Results with NS = 30 are on the left, those with NS = 40 are on the right.

φ φ

γ 0 0.25 0.5 0.75 1 γ 0 0.25 0.5 0.75 1

0.1 50.00 50.00 50.00 50.00 50.00 0.1 49.84 50.00 50.00 50.00 50.00

0.25 50.00 50.00 50.00 50.00 50.00 0.25 47.77 47.88 48.19 48.84 49.39

0.5 49.23 49.15 49.42 49.58 49.75 0.5 46.95 46.78 46.93 46.83 46.73

0.75 46.56 46.43 46.38 46.63 46.72 0.75 44.63 44.64 44.96 45.04 44.95

1 38.64 38.90 39.34 39.60 40.60 1 37.86 37.79 38.57 38.79 39.14

Table 5: Sample means of the number of customers who choose AB in the last round with

µA = 0.50. Results with NS = 30 are on the left, those with NS = 40 are on the right.

φ φ

γ 0 0.25 0.5 0.75 1 γ 0 0.25 0.5 0.75 1

0.1 50.00 50.00 50.00 50.00 50.00 0.1 50.00 50.00 50.00 50.00 50.00

0.25 50.00 50.00 50.00 50.00 50.00 0.25 49.99 50.00 50.00 50.00 50.00

0.5 50.00 50.00 50.00 50.00 50.00 0.5 48.59 48.75 48.70 49.08 49.27

0.75 49.25 49.19 49.33 49.45 49.70 0.75 48.32 48.29 48.35 48.17 48.14

1 48.07 48.33 48.23 48.39 48.55 1 47.93 47.95 47.98 47.75 47.77

6 Conclusion

I use the model from Arlotto et al. (2019) about a service network with two stations to

analyse the behaviour of strategic customers in the presence of non-strategic customers.

All customers need service at both stations and are free to choose their route through the

system. If all customers are strategic they show herding behaviour, which means that

all customers choose the same route. They do this to avoid long waiting times at the

congested station. A bigger difference between the service rates increases the tendency

to visit the slow station first. If the arrival times of customers are further apart, which

means the system is less congested, the herding behaviour decreases. Apparently, there

are some differences between my implication and the implication of Arlotto et al. (2019).

Further research could explain these differences.

10

The presence of non-strategic customers even strengthens the herding behaviour of strate-

gic customers. The uncertainty for a strategic customer about the choices of customers

who arrive after him can play a role in this effect. The implementation of non-strategic

customers can be developed in further research. I choose to keep the number of customers

consistent with the case with strategic customers only and every round I randomly select

N −NS customer indices to give them a non-strategic role. Another option could be to

keep the number of strategic customers consistent and to increase the total number of

customers. The difficulty of this implication is the influence of the customer index. This

index is a factor in the arrival interval, so the allocation of indices over strategic and

non-strategic customers is important here.

In this service network is assumed that customers can not observe the status of the

system when they arrive. It could be interesting to analyse a system in which customers

can base their routing choice on historical average system times and on the current status

of system. Besides, it could also be interesting to adjust the utility function. Now cus-

tomers only want to minimise their system time, but perhaps there are other preferences

which should be incorporated too.

11

References

Arlotto, A., Frazelle, A. E., and Weib, Y. (2019). Strategic open routing in service

networks. Management Science, 65(2):735–750.

Hassin, R. (2016). Rational queueing. Chapman and Hall/CRC.

Hassin, R. and Haviv, M. (2003). To queue or not to queue: Equilibrium behavior in

queueing systems, volume 59. Springer Science & Business Media.

Kwak, S. G. and Kim, J. H. (2017). Central limit theorem: the cornerstone of modern

statistics. Korean journal of anesthesiology, 70(2):144.

Parlaktürk, A. K. and Kumar, S. (2004). Self-interested routing in queueing networks.

Management Science, 50(7):949–966.

Tadelis, S. (2013). Game theory: an introduction. Princeton University Press.

12

7 Appendix

###

Simulation study for all parameter sets

###

#A time function to see how long the program runs

startTime <- Sys.time()

#Set the parameter values

gammas <- c(0.001, 0.1, 0.25, 0.5, 0.75, 1)

phis <- c(0, 0.25, 0.5, 0.75, 1)

muAs <- c(0.1, 0.25, 0.5, 0.75)

muB <- 1

#Set the amount of customers, rounds and trials

N <- 50

R <- 250

A <- 100

G <- 6

P <- 5

M <- 4

#Create a matrix to save the results

results <- matrix(0, nrow = A, ncol = G*P*M)

#Select a seed for the main program

set.seed(200)

for (g in 1:G){

gamma <- gammas[g]

for (p in 1:P) {

phi <- phis[p]

for (m in 1:M) {

muA <- muAs[m]

for (a in 1:A){

13

#Create matrices for the expected system times, the chosen

strategies and the arrivals

expectedSystemTimes <- matrix(NA, nrow = R, ncol = 2*N)

strategies <- matrix(NA, nrow = R, ncol = N)

arrivalOrder <- matrix(NA, nrow = R, ncol = N)

#Generate the first strategies random

strategies[1,] <- rbinom(N, 1, 0.5)

#Start simulating a round

for (r in 1:R){

serviceTimes <- matrix(NA, nrow = N, ncol = 2)

serviceTimes[,1] <- rexp(n = N, rate = muA)

serviceTimes[,2] <- rexp(n = N, rate = muB)

arrivalTimes <- matrix(NA, nrow = N, ncol = 2)

arrivalTimes[,1] <- c(1:50)

for (i in 1:N){

#Choose the strategy based on the expected system times

if (r!=1) {

if (expectedSystemTimes[r-1, 2*i-1] <= expectedSystemTimes[r

-1, 2*i]){

strategies[r,i] <- 1

}

else{

strategies[r,i] <- 0

}

}

#Generate the arrival times

arrivalTimes[i,2] <- runif(1, min = i*gamma - phi, max = i*

gamma + phi)

}

#Order the arrivals

arrivalOrder[r,] <- arrivalTimes[order(arrivalTimes[,2])]

14

#Create a matrix to store the system times

systemTimes <- matrix(NA, nrow = N, ncol = 2)

#Initialise some variables

servedCustomersA <- 0

servedCustomersB <- 0

arrivedCustomers <- 0

arrivedCustomersA <- 0

arrivedCustomersB <- 0

queuelengthA <- 0

queuelengthB <- 0

#Create matrices to keep track of order in which the customers

visit the stations

queueA <- matrix(NA, nrow = N, ncol = 1)

queueB <- matrix(NA, nrow = N, ncol = 1)

#The times for the next events

arrival <- Inf

departureA <- Inf

departureB <- Inf

#Simulate the first arrival

arrivedCustomers <- arrivedCustomers+1

time <- arrivalTimes[arrivalOrder[r, arrivedCustomers],2]

arrival <- arrivalTimes[arrivalOrder[r, arrivedCustomers+1],2]

if(strategies[r, arrivalOrder[r, arrivedCustomers]]==1){

departureA <- time + serviceTimes[arrivalOrder[r,

arrivedCustomers],1]

queuelengthA <- queuelengthA+1

arrivedCustomersA <- arrivedCustomersA+1

queueA[arrivedCustomersA] <- arrivalOrder[r, arrivedCustomers]

}

else{

15

departureB <- time + serviceTimes[arrivalOrder[r,

arrivedCustomers],2]

queuelengthB <- queuelengthB+1

arrivedCustomersB <- arrivedCustomersB+1

queueB[arrivedCustomersB] <- arrivalOrder[r, arrivedCustomers]

}

#This keeps running until everybody is out of the system

while(servedCustomersA<N | servedCustomersB<N){

#The steps that need to be taken if the next event is an

arrival

if(min(arrival, departureA, departureB)==arrival){

arrivedCustomers <- arrivedCustomers+1

time <- arrival

if(arrivedCustomers<50){

arrival <- arrivalTimes[arrivalOrder[r, arrivedCustomers

+1],2]

}

else{

arrival <- Inf

}

if(strategies[r, arrivalOrder[r, arrivedCustomers]]==1){

arrivedCustomersA <- arrivedCustomersA+1

queueA[arrivedCustomersA] <- arrivalOrder[r,

arrivedCustomers]

if(queuelengthA==0){

departureA <- time + serviceTimes[queueA[

arrivedCustomersA],1]

}

queuelengthA <- queuelengthA+1

}

else{

arrivedCustomersB <- arrivedCustomersB+1

queueB[arrivedCustomersB] <- arrivalOrder[r,

16

arrivedCustomers]

if(queuelengthB==0){

departureB <- time + serviceTimes[queueB[

arrivedCustomersB],2]

}

queuelengthB <- queuelengthB+1

}

}

#The steps that need to be taken if the next event is a

departure at station A

else if(min(arrival, departureA, departureB)==departureA){

servedCustomersA <- servedCustomersA+1

time <- departureA

queuelengthA <- queuelengthA-1

if(queuelengthA!=0){

departureA <- time + serviceTimes[queueA[servedCustomersA

+1],1]

}

else{

departureA <- Inf

}

if(strategies[r, queueA[servedCustomersA]]==1){

if(queuelengthB==0){

departureB <- time + serviceTimes[queueA[servedCustomersA

],2]

}

queuelengthB <- queuelengthB+1

arrivedCustomersB <- arrivedCustomersB+1

queueB[arrivedCustomersB] <- queueA[servedCustomersA]

}

else{

systemTimes[queueA[servedCustomersA],2] <- time -

arrivalTimes[queueA[servedCustomersA],2]

}

17

}

#The steps that need to be taken if the next event is a

departure at station B

else if(min(arrival, departureA, departureB)==departureB){

servedCustomersB <- servedCustomersB+1

time <- departureB

queuelengthB <- queuelengthB-1

if(queuelengthB!=0){

departureB <- time + serviceTimes[queueB[servedCustomersB

+1],2]

}

else{

departureB <- Inf

}

if(strategies[r, queueB[servedCustomersB]] == 0){

if(queuelengthA==0){

departureA <- time + serviceTimes[queueB[servedCustomersB

],1]

}

queuelengthA <- queuelengthA+1

arrivedCustomersA <- arrivedCustomersA+1

queueA[arrivedCustomersA] <- queueB[servedCustomersB]

}

else{

systemTimes[queueB[servedCustomersB],1] <- time -

arrivalTimes[queueB[servedCustomersB],2]

}

}

}

#Run the system another 50 times, each time change the strategy

of one customer to obtain his system time if the other

strategy was chosen

for(i in 1:N){

18

if(strategies[r,i]==1){

strategies[r,i] <- 0

}

else{

strategies[r,i] <- 1

}

#Initialise a new variable, stop the system if customer i is

served at both stations

customerServed <- 0

#Initialise some variables

servedCustomersA <- 0

servedCustomersB <- 0

arrivedCustomers <- 0

arrivedCustomersA <- 0

arrivedCustomersB <- 0

queuelengthA <- 0

queuelengthB <- 0

#Create matrices to keep track of order in which the customers

visit the stations

queueA <- matrix(NA, nrow = N, ncol = 1)

queueB <- matrix(NA, nrow = N, ncol = 1)

#The times for the next events

arrival <- Inf

departureA <- Inf

departureB <- Inf

#Simulate the first arrival

arrivedCustomers <- arrivedCustomers+1

time <- arrivalTimes[arrivalOrder[r, arrivedCustomers],2]

arrival <- arrivalTimes[arrivalOrder[r, arrivedCustomers+1],2]

19

if (strategies[r, arrivalOrder[r, arrivedCustomers]]==1){

departureA <- time + serviceTimes[arrivalOrder[r,

arrivedCustomers],1]

queuelengthA <- queuelengthA+1

arrivedCustomersA <- arrivedCustomersA+1

queueA[arrivedCustomersA] <- arrivalOrder[r,

arrivedCustomers]

}

else{

departureB <- time + serviceTimes[arrivalOrder[r,

arrivedCustomers],2]

queuelengthB <- queuelengthB+1

arrivedCustomersB <- arrivedCustomersB+1

queueB[arrivedCustomersB] <- arrivalOrder[r,

arrivedCustomers]

}

#This keeps running until customer i is out of the system

while(customerServed < 1){

#The steps that need to be taken if the next event is an

arrival

if(min(arrival, departureA, departureB)==arrival){

arrivedCustomers <- arrivedCustomers+1

time <- arrival

if(arrivedCustomers<50){

arrival <- arrivalTimes[arrivalOrder[r, arrivedCustomers

+1],2]

}

else{

arrival <- Inf

}

if (strategies[r, arrivalOrder[r, arrivedCustomers]]==1){

arrivedCustomersA <- arrivedCustomersA+1

queueA[arrivedCustomersA] <- arrivalOrder[r,

20

arrivedCustomers]

if(queuelengthA==0){

departureA <- time + serviceTimes[queueA[

arrivedCustomersA],1]

}

queuelengthA <- queuelengthA+1

}

else{

arrivedCustomersB <- arrivedCustomersB+1

queueB[arrivedCustomersB] <- arrivalOrder[r,

arrivedCustomers]

if(queuelengthB==0){

departureB <- time + serviceTimes[queueB[

arrivedCustomersB],2]

}

queuelengthB <- queuelengthB+1

}

}

#The steps that need to be taken if the next event is a

departure at station A

else if(min(arrival, departureA, departureB)==departureA){

servedCustomersA <- servedCustomersA+1

time <- departureA

queuelengthA <- queuelengthA-1

if(queuelengthA!=0){

departureA <- time + serviceTimes[queueA[servedCustomersA

+1],1]

}

else{

departureA <- Inf

}

if(strategies[r, queueA[servedCustomersA]]==1){

if(queuelengthB==0){

departureB <- time + serviceTimes[queueA[

21

servedCustomersA],2]

}

queuelengthB <- queuelengthB+1

arrivedCustomersB <- arrivedCustomersB+1

queueB[arrivedCustomersB] <- queueA[servedCustomersA]

}

else{

if(queueA[servedCustomersA]==i){

systemTimes[queueA[servedCustomersA],2] <- time -

arrivalTimes[queueA[servedCustomersA],2]

customerServed <- 1

}

}

}

#The steps that need to be taken if the next event is a

departure at station B

else if(min(arrival, departureA, departureB)==departureB){

servedCustomersB <- servedCustomersB+1

time <- departureB

queuelengthB <- queuelengthB-1

if(queuelengthB!=0){

departureB <- time + serviceTimes[queueB[servedCustomersB

+1],2]

}

else{

departureB <- Inf

}

if(strategies[r, queueB[servedCustomersB]]==0){

if(queuelengthA==0){

departureA <- time + serviceTimes[queueB[

servedCustomersB],1]

}

queuelengthA <- queuelengthA+1

arrivedCustomersA <- arrivedCustomersA+1

22

queueA[arrivedCustomersA] <- queueB[servedCustomersB]

}

else{

if(queueB[servedCustomersB]==i){

systemTimes[queueB[servedCustomersB],1] <- time -

arrivalTimes[queueB[servedCustomersB],2]

customerServed <- 1

}

}

}

}

#Change the strategy of player i to its initial choice

if(strategies[r,i]==1){

strategies[r,i] <- 0

}

else{

strategies[r,i] <- 1

}

}

#update expected system times

if(r==1){

for(i in 1:N){

expectedSystemTimes[r, 2*i-1] <- systemTimes[i,1]

expectedSystemTimes[r, 2*i] <- systemTimes[i,2]

}

}

else{

for(i in 1:N){

expectedSystemTimes[r, 2*i-1] <- ((r-1)*expectedSystemTimes[

r-1, 2*i-1] + systemTimes[i,1])/r

expectedSystemTimes[r, 2*i] <- ((r-1)*expectedSystemTimes[r

-1, 2*i] + systemTimes[i,2])/r

}

}

}

23

#Check how many times strategy 1 is chosen

for (i in 1:N){

if (strategies[R,i] == 1){

results[a, m + (p-1)*M + (g-1)*P*M] <- results[a, m + (p-1)*M

+ (g-1)*P*M]+1

}

}

}

}

}

}

count <- matrix(0, nrow = N, ncol = G*P*M)

gemiddeld <- matrix(NA, nrow = G*P*M, ncol = 1)

for (j in 1:(G*P*M)){

for (i in 1:A){

count[results[i,j],j] <- count[results[i,j],j] + 1

}

}

for (j in 1:(G*P*M)){

teller <- 0

for (i in 1:N){

teller <- teller + count[i,j]*i

}

gemiddeld[j] <- teller/A

}

#Check how long the program has run

endTime <- Sys.time()

timeTaken <- endTime - startTime

beep(sound=3, expr=NULL)

24

##

Simulation study for all parameter sets with strategic and non-

strategic customers

##

#A time function to see how long the program runs

startTime <- Sys.time()

#Set the parameter values

gammas <- c(0.001, 0.1, 0.25, 0.5, 0.75, 1)

phis <- c(0, 0.25, 0.5, 0.75, 1)

muAs <- c(0.1, 0.25, 0.5, 0.75)

muB <- 1

pAB <- 0.5

#Set the amount of customers, rounds and trials

N <- 50

N_S <- 40

R <- 312

A <- 100

#Set the length of parameter vectors

G <- 6

P <- 5

M <- 4

#Create a matrix to save the results

results <- matrix(0, nrow = A, ncol = G*P*M)

#Select a seed for the selection of customers

set.seed(100)

#Randomly select which customers are non-strategic for every round in

every trial

types <- matrix(NA, nrow = (R*A), ncol = N)

25

typesVector <- matrix(NA, nrow = N, ncol = 1)

for(i in 1:N){

if(i<=(N-N_S)){

typesVector[i] <- 1

}

else{

typesVector[i] <- 0

}

}

for(i in 1:(R*A)){

types[i,] <- typesVector[sample(nrow(typesVector)),]

}

#Select a seed for the main program

set.seed(200)

for (g in 1:G){

gamma <- gammas[g]

for (p in 1:P) {

phi <- phis[p]

for (m in 1:M) {

muA <- muAs[m]

for (a in 1:A){

#Create matrices for the expected system times, the chosen

strategies and the arrivals

expectedSystemTimes <- matrix(NA, nrow = R, ncol = 2*N)

strategies <- matrix(NA, nrow = R, ncol = N)

arrivalOrder <- matrix(NA, nrow = R, ncol = N)

#Generate the first strategies

for(i in 1:N){

if(types[(1+((a-1)*R)),i]==1){

strategies[1,i] <- rbinom(1, 1, pAB)

}

26

else{

strategies[1,i] <- rbinom(1, 1, 0.5)

}

}

#Start simulating a round

for (r in 1:R){

serviceTimes <- matrix(NA, nrow = N, ncol = 2)

serviceTimes[,1] <- rexp(n = N, rate = muA)

serviceTimes[,2] <- rexp(n = N, rate = muB)

arrivalTimes <- matrix(NA, nrow = N, ncol = 2)

arrivalTimes[,1] <- c(1:50)

for (i in 1:N){

#Choose the strategy based on the expected system times

if(r!=1){

if(types[(r+((a-1)*R)),i]!=1){

if (expectedSystemTimes[r-1, 2*i-1] < expectedSystemTimes[r

-1, 2*i]){

strategies[r,i] <- 1

}

else if(expectedSystemTimes[r-1, 2*i-1] >

expectedSystemTimes[r-1, 2*i]){

strategies[r,i] <- 0

}

else if(expectedSystemTimes[r-1, 2*i-1] ==

expectedSystemTimes[r-1, 2*i]){

strategies[r,i] <- rbinom(1, 1, 0.5)

}

}

else{

strategies[r,i] <- rbinom(1, 1, pAB)

}

}

#Generate the arrival times

27

arrivalTimes[i,2] <- runif(1, min = i*gamma - phi, max = i*

gamma + phi)

}

#Order the arrivals

arrivalOrder[r,] <- arrivalTimes[order(arrivalTimes[,2])]

#Create a matrix to store the system times

systemTimes <- matrix(NA, nrow = N, ncol = 2)

#Initialise some variables

servedCustomersA <- 0

servedCustomersB <- 0

arrivedCustomers <- 0

arrivedCustomersA <- 0

arrivedCustomersB <- 0

queuelengthA <- 0

queuelengthB <- 0

#Create matrices to keep track of order in which the customers

visit the stations

queueA <- matrix(NA, nrow = N, ncol = 1)

queueB <- matrix(NA, nrow = N, ncol = 1)

#The times for the next events

arrival <- Inf

departureA <- Inf

departureB <- Inf

#Simulate the first arrival

arrivedCustomers <- arrivedCustomers+1

time <- arrivalTimes[arrivalOrder[r, arrivedCustomers],2]

arrival <- arrivalTimes[arrivalOrder[r, arrivedCustomers+1],2]

if(strategies[r, arrivalOrder[r, arrivedCustomers]]==1){

departureA <- time + serviceTimes[arrivalOrder[r,

28

arrivedCustomers],1]

queuelengthA <- queuelengthA+1

arrivedCustomersA <- arrivedCustomersA+1

queueA[arrivedCustomersA] <- arrivalOrder[r, arrivedCustomers]

}

else{

departureB <- time + serviceTimes[arrivalOrder[r,

arrivedCustomers],2]

queuelengthB <- queuelengthB+1

arrivedCustomersB <- arrivedCustomersB+1

queueB[arrivedCustomersB] <- arrivalOrder[r, arrivedCustomers]

}

#This keeps running until everybody is out of the system

while(servedCustomersA<N | servedCustomersB<N){

#The steps that need to be taken if the next event is an

arrival

if(min(arrival, departureA, departureB)==arrival){

arrivedCustomers <- arrivedCustomers+1

time <- arrival

if(arrivedCustomers<50){

arrival <- arrivalTimes[arrivalOrder[r, arrivedCustomers

+1],2]

}

else{

arrival <- Inf

}

if(strategies[r, arrivalOrder[r, arrivedCustomers]]==1){

arrivedCustomersA <- arrivedCustomersA+1

queueA[arrivedCustomersA] <- arrivalOrder[r,

arrivedCustomers]

if(queuelengthA==0){

departureA <- time + serviceTimes[queueA[

arrivedCustomersA],1]

29

}

queuelengthA <- queuelengthA+1

}

else{

arrivedCustomersB <- arrivedCustomersB+1

queueB[arrivedCustomersB] <- arrivalOrder[r,

arrivedCustomers]

if(queuelengthB==0){

departureB <- time + serviceTimes[queueB[

arrivedCustomersB],2]

}

queuelengthB <- queuelengthB+1

}

}

#The steps that need to be taken if the next event is a

departure at station A

else if(min(arrival, departureA, departureB)==departureA){

servedCustomersA <- servedCustomersA+1

time <- departureA

queuelengthA <- queuelengthA-1

if(queuelengthA!=0){

departureA <- time + serviceTimes[queueA[servedCustomersA

+1],1]

}

else{

departureA <- Inf

}

if(strategies[r, queueA[servedCustomersA]]==1){

if(queuelengthB==0){

departureB <- time + serviceTimes[queueA[servedCustomersA

],2]

}

queuelengthB <- queuelengthB+1

arrivedCustomersB <- arrivedCustomersB+1

30

queueB[arrivedCustomersB] <- queueA[servedCustomersA]

}

else{

systemTimes[queueA[servedCustomersA],2] <- time -

arrivalTimes[queueA[servedCustomersA],2]

}

}

#The steps that need to be taken if the next event is a

departure at station B

else if(min(arrival, departureA, departureB)==departureB){

servedCustomersB <- servedCustomersB+1

time <- departureB

queuelengthB <- queuelengthB-1

if(queuelengthB!=0){

departureB <- time + serviceTimes[queueB[servedCustomersB

+1],2]

}

else{

departureB <- Inf

}

if(strategies[r, queueB[servedCustomersB]] == 0){

if(queuelengthA==0){

departureA <- time + serviceTimes[queueB[servedCustomersB

],1]

}

queuelengthA <- queuelengthA+1

arrivedCustomersA <- arrivedCustomersA+1

queueA[arrivedCustomersA] <- queueB[servedCustomersB]

}

else{

systemTimes[queueB[servedCustomersB],1] <- time -

arrivalTimes[queueB[servedCustomersB],2]

}

}

31

}

#Run the system another N-N_S times, each time change the

strategy of one customer to obtain his system time if the

other strategy was chosen

for(i in 1:N){

if(types[(r+((a-1)*R)),i]!=1){

if(strategies[r,i]==1){

strategies[r,i] <- 0

}

else{

strategies[r,i] <- 1

}

#Initialise a new variable, stop the system if customer i is

served at both stations

customerServed <- 0

#Initialise some variables

servedCustomersA <- 0

servedCustomersB <- 0

arrivedCustomers <- 0

arrivedCustomersA <- 0

arrivedCustomersB <- 0

queuelengthA <- 0

queuelengthB <- 0

#Create matrices to keep track of order in which the

customers visit the stations

queueA <- matrix(NA, nrow = N, ncol = 1)

queueB <- matrix(NA, nrow = N, ncol = 1)

#The times for the next events

arrival <- Inf

32

departureA <- Inf

departureB <- Inf

#Simulate the first arrival

arrivedCustomers <- arrivedCustomers+1

time <- arrivalTimes[arrivalOrder[r, arrivedCustomers],2]

arrival <- arrivalTimes[arrivalOrder[r, arrivedCustomers

+1],2]

if (strategies[r, arrivalOrder[r, arrivedCustomers]]==1){

departureA <- time + serviceTimes[arrivalOrder[r,

arrivedCustomers],1]

queuelengthA <- queuelengthA+1

arrivedCustomersA <- arrivedCustomersA+1

queueA[arrivedCustomersA] <- arrivalOrder[r,

arrivedCustomers]

}

else{

departureB <- time + serviceTimes[arrivalOrder[r,

arrivedCustomers],2]

queuelengthB <- queuelengthB+1

arrivedCustomersB <- arrivedCustomersB+1

queueB[arrivedCustomersB] <- arrivalOrder[r,

arrivedCustomers]

}

#This keeps running until customer i is out of the system

while(customerServed < 1){

#The steps that need to be taken if the next event is an

arrival

if(min(arrival, departureA, departureB)==arrival){

arrivedCustomers <- arrivedCustomers+1

time <- arrival

if(arrivedCustomers<50){

33

arrival <- arrivalTimes[arrivalOrder[r,

arrivedCustomers+1],2]

}

else{

arrival <- Inf

}

if (strategies[r, arrivalOrder[r, arrivedCustomers]]==1){

arrivedCustomersA <- arrivedCustomersA+1

queueA[arrivedCustomersA] <- arrivalOrder[r,

arrivedCustomers]

if(queuelengthA==0){

departureA <- time + serviceTimes[queueA[

arrivedCustomersA],1]

}

queuelengthA <- queuelengthA+1

}

else{

arrivedCustomersB <- arrivedCustomersB+1

queueB[arrivedCustomersB] <- arrivalOrder[r,

arrivedCustomers]

if(queuelengthB==0){

departureB <- time + serviceTimes[queueB[

arrivedCustomersB],2]

}

queuelengthB <- queuelengthB+1

}

}

#The steps that need to be taken if the next event is a

departure at station A

else if(min(arrival, departureA, departureB)==departureA){

servedCustomersA <- servedCustomersA+1

time <- departureA

queuelengthA <- queuelengthA-1

if(queuelengthA!=0){

34

departureA <- time + serviceTimes[queueA[

servedCustomersA+1],1]

}

else{

departureA <- Inf

}

if(strategies[r, queueA[servedCustomersA]]==1){

if(queuelengthB==0){

departureB <- time + serviceTimes[queueA[

servedCustomersA],2]

}

queuelengthB <- queuelengthB+1

arrivedCustomersB <- arrivedCustomersB+1

queueB[arrivedCustomersB] <- queueA[servedCustomersA]

}

else{

if(queueA[servedCustomersA]==i){

systemTimes[queueA[servedCustomersA],2] <- time -

arrivalTimes[queueA[servedCustomersA],2]

customerServed <- 1

}

}

}

#The steps that need to be taken if the next event is a

departure at station B

else if(min(arrival, departureA, departureB)==departureB){

servedCustomersB <- servedCustomersB+1

time <- departureB

queuelengthB <- queuelengthB-1

if(queuelengthB!=0){

departureB <- time + serviceTimes[queueB[

servedCustomersB+1],2]

}

else{

35

departureB <- Inf

}

if(strategies[r, queueB[servedCustomersB]]==0){

if(queuelengthA==0){

departureA <- time + serviceTimes[queueB[

servedCustomersB],1]

}

queuelengthA <- queuelengthA+1

arrivedCustomersA <- arrivedCustomersA+1

queueA[arrivedCustomersA] <- queueB[servedCustomersB]

}

else{

if(queueB[servedCustomersB]==i){

systemTimes[queueB[servedCustomersB],1] <- time -

arrivalTimes[queueB[servedCustomersB],2]

customerServed <- 1

}

}

}

}

#Change the strategy of player i to its initial choice

if(strategies[r,i]==1){

strategies[r,i] <- 0

}

else{

strategies[r,i] <- 1

}

}

}

#update expected system times

if(r==1){

for(i in 1:N){

if(types[(r+((a-1)*R)),i]!=1){

expectedSystemTimes[r, 2*i-1] <- systemTimes[i,1]

expectedSystemTimes[r, 2*i] <- systemTimes[i,2]

36

}

else{

expectedSystemTimes[r, 2*i-1] <- 0

expectedSystemTimes[r, 2*i] <- 0

}

}

}

else{

for(i in 1:N){

if(types[(r+((a-1)*R)),i]!=1 & expectedSystemTimes[r-1, 2*i

-1]!=0){

expectedSystemTimes[r, 2*i-1] <- ((r-1)*

expectedSystemTimes[r-1, 2*i-1] + systemTimes[i,1])/r

expectedSystemTimes[r, 2*i] <- ((r-1)*expectedSystemTimes[r

-1, 2*i] + systemTimes[i,2])/r

}

else if(types[(r+((a-1)*R)),i]!=1){

expectedSystemTimes[r, 2*i-1] <- systemTimes[i,1]

expectedSystemTimes[r, 2*i] <- systemTimes[i,2]

}

else{

expectedSystemTimes[r, 2*i-1] <- expectedSystemTimes[r-1,

2*i-1]

expectedSystemTimes[r, 2*i] <- expectedSystemTimes[r-1, 2*

i]

}

}

}

}

#Check how many times strategy 1 is the best strategy

for (i in 1:N){

if (expectedSystemTimes[R, 2*i-1] <= expectedSystemTimes[R, 2*i

]){

results[a, m + (p-1)*M + (g-1)*P*M] <- results[a, m + (p-1)*M

+ (g-1)*P*M]+1

37

}

}

}

}

}

}

count <- matrix(0, nrow = N, ncol = G*P*M)

gemiddeld <- matrix(NA, nrow = G*P*M, ncol = 1)

for (j in 1:(G*P*M)){

for (i in 1:A){

count[results[i,j],j] <- count[results[i,j],j] + 1

}

}

for (j in 1:(G*P*M)){

teller <- 0

for (i in 1:N){

teller <- teller + count[i,j]*i

}

gemiddeld[j] <- teller/A

}

#Check how long the program has run

endTime <- Sys.time()

timeTaken <- endTime - startTime

beep(sound=3, expr=NULL)

38

	Introduction
	Literature review
	Service network with two stations
	Simulation study
	Set-up
	Strategic Customers
	Non-strategic Customers
	Comparison

	Results
	Case 1
	Case 2

	Conclusion
	Appendix

