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Abstract

In this thesis we examine the occurrence of “herding” in open network services described in
the paper by Arlotto et al. (2019). We analyze a simulation where customers arrive at

different times and choose their route before they enter the system. We find that, under
certain restrictions, customers learn to choose the same route as all the other customers,

instead of preferring a strategy where they avoid the route that most other customers take.
We further analyze what impact a change in disutility between the waiting time for the first

line and for the second line has on the prevalence of “herding” in the simulation.
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1 Introduction

Strategic routing is a part of time management optimization that is interesting and useful for
the advancement of economics and economic theory, and is often a part of everyday life. When
choosing which line to wait in first at an amusement park, or deciding which store to go to first
on a trip, we often look for a strategy to decide which route to take. The desire is to choose the
route that is “the best”, the route with the shortest total waiting time. These two examples of
routing networks have in common that there is not necessarily a preference in the order that
the two stations are visited, and the customer has the choice of which route to take. In the
work of Arlotto et al. (2019), as well as in this thesis, this is referred to as “open routing”.

Arlotto et al. (2019) show that it can be analytically proven that under certain conditions
there is a Nash equilibrium where customers show “herding” behavior in systems that have two
service stations and customers that need to visit both stations. In this thesis we analyze the
simulation presented by Arlotto et al. (2019) that shows herding behavior for a network where
the customers all choose their route at the same time and the arrival times of the customers
vary. In this thesis, the terms “customer” and “player” are used interchangeably.

We further analyze a network where customers experience a decrease or increase in disutility
for the waiting line at the second station. We analyze by simulation if there is still herding
behavior where all customers end up choosing to take the same route. We look at whether there
is a difference in whether or not herding occurs when the waiting time at the second station
weighs more heavily than at the first station (for example, in a fitness center where a player
might prefer waiting a longer time for the first machine as they feel that waiting in the second
line after working at the first machine is more exhausting). We also look at instances where the
waiting time at the first station weighs more heavily than at the second station (for example,
in a park with a food truck and an ice cream truck one might expect that the customer will be
partly satisfied in the first station and thus will not experience the waiting time for the second
line as poorly as with the first line). We introduce a weighing factor w (which is constant for
each customer) for being served at the second station. We assume that the waiting time for
the second line weighs w times heavier than the waiting time for the first line. In this thesis,
weighing factor is sometimes shortened to weight.

The thesis is structured as follows: Section 2 reviews the existing literature on similar open
routing networks. Section 3 defines the characteristics of the service network that we analyze,
and some of the propositions of the system are defined in Section 4. In Section 5 we explain
the simulation model of Arlotto et al. (2019) as well as the extension with different waiting
disutilities. The results of the simulation are analyzed in Section 6, and we give our conclusion,
as well as possibilities for further research, in Section 7.

2 Literature Review

There are other examples of open routing networks that have been the subject of studies in the
past. Baron et al. (2016) showcase an example of a hospital service that consists of tests that
patients have to undertake. Theirs is an example of open routing where the company and not
the customers get to choose the routes for each customer. This is an open routing network in
which the goal of the optimal routing is defined by the company, for example the routing that
has the shortest accumulative waiting time.

Arlotto et al. (2019) reference Hassin and Haviv (2003) and Hassin (2016), which respectively
give a summary of what had been written on the subject of queuing systems and game theory
and a summary of more recently written research on the subject. Their work most closely
resembles the work of Parlaktürk and Kumar (2004) which handles a two-station queuing
network where customers go through two operations and they choose which operation they
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begin with. The first operation takes on average a shorter time. There are two stations that
can both perform each operation that the customer needs, and both stations have two queues,
one for Operation 1 and another for Operation 2. The system overseer decides which queue is
helped next, so it draws a distinction between the customers. Unlike the work of Parlaktürk
and Kumar (2004), this thesis and the paper of Arlotto et al. (2019) use a network in which the
two stations can only perform one operation, and each station has only one queue that works
on a First-Come-First-Serve basis (i.e., the first person to join the queue is the first person to
be served), so it can make no distinctions between what type of customer is being served.

3 Service Network Definition

We consider a service network with two stations in which customers visit both stations, like
in the work of Arlotto et al. (2019). Suppose there are two stations, station A and station B,
both of which need to be visited by N customers in no particular order. The stations work on
a FCFS basis. We focus on the case in which the stations have a different service rate. We
define µA and µB as the service rates of station A and station B, respectively, with µA < µB.
Since µA < µB the expected service time at station A is longer than at station B.

A new customer gets introduced into the system by joining the queue at station A or B.
Once in the queue, the customer has to wait until everyone ahead of them in the queue is done,
at which point they begin being served. After service at the first station is over, the customer
joins the queue at the other station and waits for service. The customer leaves the system after
they have been served at both stations. For two stations, customers have a choice between two
options: they first go to station A and then go to station B (this route will be referred to as
route AB), or they first go to station B and then go to station A (this route will be referred
to as route BA).

Arlotto et al. (2019) assume that customers prefer to minimize the total time that they
spend in the system. However, customers might prefer to wait longer in the line for the second
station they visit if that means that they do not have to wait as long in the line for the first
station they visit. In our extension, we use a weighing factor w to describe the difference in
disutility for the waiting times, where the waiting time for the second line that the customers
wait in weigh w times heavier than the waiting time for the first line. We assume that the
weighing factor only applies for the time that a customer has to wait to be served, but it does
not apply to the time that the customer is being served themselves. Even though we use the
word disutility, we still refer to the total system time as the variable that customers want to
minimize when we include the weighing factor in the system.

4 Analysis

4.1 Analysis 1: (Arlotto et al. 2019)

Arlotto et al. (2019) prove that for cases where the players all choose their strategy, and then
get a randomly assigned place in line before the system starts, certain Nash equilibria can be
found. For this, they assume a deterministic service time at station A with service rate µA and
station B with service rate µB. For a network with these properties, one might imagine the
optimal strategy to be to avoid the other customers and go to the route that is less traveled.
However, Arlotto et al. (2019) find that under certain restrictions customers will “herd” to the
same route.
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Proposition 1 (i) If N ≥ 2µA/µB + 1, then there is a Nash equilibrium where all players take
route AB. Also, (ii) if µB < 2µA and N ≥max{µB/µA+1, (2µA+µB)/(2µA−µB)}, then there
is also a Nash equilibrium where all players take route BA. (Proposition 1 of Arlotto et al.
2019).

Arlotto et al. (2019) give an intuitive explanation for this proposition. Say that all customers
take route AB. On average, a customer will have half of the customers in front and half behind
them if they visit station A first. However, if the customer chooses to visit station B first they
will also visit station A last, and since the service time at station A is longer, it holds that as
long as N is large enough, (since µA/µB < 1, this always holds when N ≥ 3), the customer will
be better off also visiting station A first like the others. Similarly, if all the other customers
visit station B first, and N is large, it is then optimal for the customer to choose route BA as
well. If they choose route AB they will then have to wait for all the customers at station B to
be done, which takes longer than waiting for on average half of the customers at station B. A
proof of an extended version of this proposition is given in Section 4.2.

Furthermore, we can simplify the restriction on N in part (ii) of Proposition 1. Note that

N ≥ µB/µA + 1 =
(µB/µA + 1)(2µA − µB)

2µA − µB
=

2µA + µB − µ2
B/µA

2µA − µB
=

2µA + µB
2µA − µB

− µ2
B/µA

2µA − µB
.

Since we already assume that µB < 2µA and µB > µA > 0 we have
µ2B/µA
2µA−µB

> 0. We get

max{µB/µA+ 1, (2µA+µB)/(2µA−µB)} = (2µA+µB)/(2µA−µB). Thus, the restriction of N
can be simplified and we get the following: (ii) If µB < 2µA and N ≥ (2µA + µB)/(2µA − µB),
then there is also a Nash equilibrium where all players take route BA. Arlotto et al. (2019)
also prove that, when N is big enough, these “herding” equilibria are the only equilibria in this
system in their Proposition 4:

Proposition 2 If N > 2µB/µA+1, then there is no Nash equilibrium where some players have
a mixed strategy and other players have a pure strategy, and any Nash equilibrium where all
players use a mixed strategy is unstable, i.e., a small disturbance in the strategy of any of the
players will result in other players preferring a pure strategy. (Proposition 4 of Arlotto et al.
2019).

Arlotto et al. (2019) also find that under specific circumstances—specifically, if N is large
enough and if the service at station B is more than twice as fast on average as the service at
station A—then AB is a strictly dominant strategy for every player. Together with Proposition
1 and 2 this indicates that “herding” behavior is the preferred strategy in open routing service
networks where customers arrive in the system at the same time.

4.2 Analysis 2: Extension

We analyze what happens to Proposition 1 when a weighing factor w gets added to the disutility
of the waiting time at the second station. Again, we assume that the weighing factor only
influences the time that players have to wait to be served at the second station, and has no
influence on the time that the player is served themselves. We first follow the first part of the
proof of Proposition 1 by Arlotto et al. (2019). We assume a position where all players take
route AB. Arlotto et al. (2019) prove that player i will always find station B empty when they
finish at station A. Thus, when player i is j-th in line, the system time of player j is the time
that they have to wait to be served at station A, plus the serving time at station B. Let SA(j)
denote the total system time when customer i takes route AB at priority j. We get
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SA(j) =
j

µA
+

1

µB
, j = 1, ..., N.

Note that since customer i finds the second station empty, the weighing factor has no influence
on the total system time here.

Now, let T (1,m) denote the expected system time that player i experiences if they choose
route AB and m other players also choose route AB, and let T (0,m) denote the expected
system time that player i experiences if they choose route BA and m other players choose
route AB. We get

T (1, N − 1) =
1

N

N∑
j=1

SA(j) =
1

µB
+
N + 1

2µA
.

Again, since SA(j) does not depend on w, T (1, N − 1) also does not depend on w.
Now we analyze what happens to T (0,m) when w gets introduced. If player i takes route

BA, they will be served immediately at station B, and then they will have to wait until all the
other players are finished at station A. Thus, the total system time T (0,m) is given by

T (0, N − 1) =
1

µB
+ w(

N − 1

µA
− 1

µB
) +

1

µA
= (1− w)(

1

µB
+

1

µA
) + w

N

µA
.

We note that when w = 1, we get the standard case of T (0,m) = N/µA from Arlotto et al.
(2019). We note that when N/µA ≥ 1/µB + 1/µA ⇒ N ≥ µA/µB + 1, we have a system time
T (0,m) that increases when w > 1 and decreases when w < 1. Since we already assume that
N ≥ 2µA/µB + 1 we do not have to adjust our restrictions for N .

We note that when w = 1, since we assume that N ≥ 2µA/µB + 1, we get

1

µB
+

1

2µA
≤ N

2µA
=⇒ 1

µB
+

1

2µA
+

N

2µA
≤ N

2µA
+

N

2µA
=⇒ 1

µB
+
N + 1

2µA
≤ N

µA
.

This implies, for w = 1, that the system time for player i will be lower when they also choose
route AB first, so we have a Nash equilibrium. As w > 1 increases T (0, N − 1), this Nash
equilibrium will not change when w increases. However, as w < 1 decreases T (0, N − 1), we
get a Nash equilibrium if it holds that

1

µB
+
N + 1

2µA
≤ 1

µB
+ w(

N − 1

µA
− 1

µB
) +

1

µA
⇐⇒ N − 1

2µA
≤ w(

N − 1

µA
− 1

µB
) ⇐⇒

w ≥ 1

2− 2µA
µB(N−1)

.

We can rewrite the assumption N ≥ 2µA/µB +1 to get 2µA/(µB(N−1)) ≤ 1. We note that for
2µA/(µB(N − 1)) = 1, the condition of a Nash equilibrium at AB becomes w ≥ 1/(2− 1) = 1.
This result suggests that for some values of 2µA/(µB(N − 1)), we can decrease w to a point
where there is no Nash equilibrium at station AB anymore.

Now we follow the second part of the proof of Proposition 1. We assume that µB < 2µA and
N ≥ (2µA + µB)/(2µA − µB), and that all players go for route BA. Because N ≥ µB/µA + 1,
if player i takes route AB, station B will still be serving customers when player i finishes at

4



station A. Now we can write the expected system time when a player takes route AB and the
other players take route BA as

T (1, 0) =
1

µA
+ w(

N − 1

µB
− 1

µA
) +

1

µB
= (1− w)(

1

µA
+

1

µB
) + w

N

µB
.

Again, we note that w = 1 gives the standard case of T (1, 0) = N/µB from Arlotto et al. (2019).
Now, say that all customers take route BA and customer i has a 1/N chance of getting

priority j, where j = 1, ..., N . When the system begins, station A has no players, and will only
start when the first player has been served at station B, which is 1/µB. After that, player i
will be served at station A after the j − 1 customers have finished before them at station A.
We get

SB(j) =
j

µB
+ w(

j − 1

µA
− j − 1

µB
) +

1

µA
.

Again, we note that with w = 1 we get the standard case of SB(j) = j/µA+1/µB from Arlotto
et al. (2019). Now we get an expected total system time T (0, 0) of

T (0, 0) =
1

N

N∑
j=1

SB(j) =
1

N

N∑
j=1

(
j

µB
+ w(

j − 1

µA
− j − 1

µB
) +

1

µA
)

=
N + 1

2µB
+ w(

N − 1

2µA
− N − 1

2µB
) +

1

µA
.

Again, we note that w = 1 gives the standard case of T (0, 0) = 1/µB + (N + 1)/2µA from
Arlotto et al. (2019).

When w = 1 we can use the assumptions that µB < 2µA and N ≥ (2µA + µB)/(2µA − µB)
to get

2µA + µB ≤ (2µA − µB)N =⇒ 1

µB
+
N + 1

2µA
≤ N

µB
.

Thus, for w = 1, we have a Nash equilibrium where player i will be better off going to route
BA with all the other players than to switch. In general, this equilibrium holds when

N + 1

2µB
+ w(

N − 1

2µA
− N − 1

2µB
) +

1

µA
≤ 1

µA
+ w(

N − 1

µB
− 1

µA
) +

1

µB
⇐⇒

N − 1

2µB
≤ w(

N − 1

µB
− 1

µA
) ⇐⇒ w ≥ 1

2− 2µB
µA(N−1)

.

Given these results, we can now extend Proposition 1 to

Proposition 3 (i) In a system with weighing factor w ≥ 1/(2 − 2µA/µB(N − 1)) and N ≥
2µA/µB +1, there is a Nash equilibrium where all players take route AB. Also, (ii) in a system
with weighing factor w ≥ 1/(2− 2µB/µA(N − 1)), µB < 2µA and N ≥ (2µA +µB)/(2µA−µB),
there is also a Nash equilibrium where all players take route BA.
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5 Simulation

We are now interested in service networks where the players have different arrival times. As
Arlotto et al. (2019) point out, it is hard to define a Nash equilibrium in a service network
with arrival times on varying intervals. Arlotto et al. (2019) use a simulation where all the
customers arrive at a different time and all customers choose a route before the system starts
to show that, subject to certain restrictions, “herding” behavior takes place. In the simulation,
the customers go through the system a certain number of times and learn from the process, and
update their strategy according to their previous results. They do this by first picking a route.
After all the customers pick a route, they then go through the system, and they observe the
time they spent in the system. They also observe the time they would have spent in the system
had they chosen the other route and all the other customers kept taking the same route. In
the first round the moves are randomly generated, and the next round, every customer chooses
the route that would have given them a shorter expected running time. The expected running
time for the route is based on the average running time of that route in all the previous rounds
for that customer.

5.1 Simulation 1: (Arlotto et al. 2019)

Arlotto et al. (2019) use two parameters—γ and φ, respectively—to denote the mean of the
times between customer arrivals and the variance of the arrival time of the players, respectively.
For every player i the arrival time of the player will follow the uniform distribution over the
region [iγ−φ, iγ+φ]. Arlotto et al. (2019) use exponential service times with a fixed service rate
of 1 for station B, and simulate all possible combinations for γ ∈ {0.001, 0.1, 0.25, 0.5, 0.75, 1},
φ ∈ {0, 0.25, 0.5, 0.75, 1} and µA ∈ {0.1, 0.25, 0.5, 0.75}, a total of 120 experiments. For each
set of parameters Arlotto et al. (2019) run 100 independent trials, with 250 learning rounds
per trial, and a total number of N = 50 customers. This is the base case of the study, in our
extension this case would have weight w = 1.

5.2 Simulation 2: Extension

For the extension we look at a network where the waiting time for the first station that the
player visits has a different weight than the second station. We simulate all combinations
for the weighing factor w ∈ {0.5, 0.75, 0.95, 1.05, 1.25, 1.5}, and the other parameters γ ∈
{0.001, 0.1, 0.250.5, 0.75, 1}, φ ∈ {0, 0.25, 0.5, 0.75, 1} and µA ∈ {0.5, 0.75}, and we check if
there are any notable differences in the prevalence of herding compared to the standard case
in Simulation 5.1 where w = 1.

Intuitively, the hypothesis is that the simulation will show that a weighing factor larger
than 1 will increase the likelihood that a customer chooses route AB while a weighing factor
smaller than 1 will decrease the likelihood. This is because customers have a longer waiting
line at station A than station B for the same number of customers in front of them. In other
words, the expected waiting time at station A is longer than station B. When w > 1 the utility
at route AB will increase based on the waiting time at station B while the utility at route BA
will increase based on the waiting time at station A. As a result, while w is a constant, the
impact will be greater for route BA than for route AB, thus making route AB more attractive.
Similarly, when w < 1 the utility at route AB will decrease based on the waiting time at
station B while the utility at route BA will decrease based on the waiting time at station A,
thus making route BA more attractive. Another reason why w > 1 will encourage herding is
that if N − 1 customers choose route AB and a new customer starts at station B, they will
join the back of the line at station A. When w > 1, the punishment for joining the back of the
line at the second station is greater, thus it might be more important to limit the amount of
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customers in front of you at the busier station, and thus all customers might be more tempted
to herd.

6 Results

6.1 Arlotto et al. (2019): w = 1

The results of the simulation described by Arlotto et al. (2019) with γ = 0.001 for several levels
of µA and φ are shown in Figure 1 for the standard case where w = 1. The left panel in Figure
1 shows the case where the arrival times of the customers are nearly equal, and consistent (e.g.
customer 1 will always arrive first). We notice that there is a preference for the AB route for
all three levels of µA, with the total number of AB customers being more consistently close to
50 when the difference between µA and µB increases. In other words, a higher expected service
time at station A compared to station B means that the route where station A gets chosen first
gets a higher average preference. In the right graph of Figure 1, we examine the case where
the arrival times have a high variation, and the order of arrivals are not very dependent on the
index of the customer (e.g. customer 1 can be in any position in every round). We note that
for a service rate at station A that is 25 or 50 percent of the service rate at station B, the
customers all herd to the AB route. For a service rate of 75 percent we see that herding takes
place at route AB in 98% of all cases, whereas the other 2% of the trials see the customers
herding at route BA. This aligns with Proposition 1 and 2 which states the customers herd
to one of the two stations when N is sufficiently large, and that there is only one dominant
strategy (i.e. all customers herd to station AB) when the service rate of station B is bigger
than the service rate of station A by a factor of at least 2.
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Figure 1: Number of customers who chose route AB in the 250-th round after 100 trials, with
w = 1.

Table 1 and 2 show the average and first quartile of AB customers in the simulation for
µA = 0.75 and µA = 0.5 respectively. We use a Student’s t-test to compare the new results
to the results of Arlotto et al. (2019). We assume the same variance in both distributions.
Since we do not know the total number of AB customers per trial of Arlotto et al. (2019), we
calculate the unbiased estimators of the variances of the new sample and we assume that this
estimator is the same for the sample by Arlotto et al. (2019). Since N = 50, we have a total of
2 · 50− 2 = 98 degrees of freedom. For a significance level of 0.05 and a two-sided test we get
a critical value of 1.984. Table 3 shows the t-statistics for comparing these new results with
the results of Arlotto et al. (2019). Since all values in the table are smaller than the critical
value, we do not find a significant difference between the new values and the values by Arlotto
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et al. (2019). Note that some values have no t-statistic because in these cases the customers
completely herd to AB (i.e. after 250 rounds all customers herd to AB in all 100 trials), thus
the variation is 0.

Like in the results by Arlotto et al. (2019), we find that complete herding to AB, only occurs
when γ is small, and does not occur when γ > 0.1. However, we see for all three choices of
µA that most of the customers end up choosing the route AB, (since µA = 0.25 sees customers
herding to AB very consistently, we abandon this value in our further analysis). We also notice
that, when w = 1, complete herding at BA never occurs when γ > 0.1. In both tables we
observe a decrease in the number of AB customers as γ increases, and a bigger φ does not seem
to have a great impact on the prevalence of herding. When we look at the difference between
the results of Table 1 and Table 2 we see that for µA = 0.5 the values are all greater than the
values for the larger µA = 0.75. This indicates that the “herding” behavior is driven greatly by
how much longer extra they have to wait for being behind one more player.

Table 1: Summary of results with µA = 0.75 and w = 1 from simulation for number of AB
customers after all 100 trials

Sample mean Sample first quartile
w = 1 φ w = 1 φ
γ 0 0.25 0.5 0.75 1 γ 0 0.25 0.5 0.75 1
0.1 46.55 46.6 45.55 47.73 49.26 0.1 45 44.5 44 47 49
0.25 45.89 45.72 46.29 45.9 46.26 0.25 44.5 44 44 44 44
0.5 44.88 45.17 44.9 44.81 44.49 0.5 43 43 42 42 42
0.75 41.77 42.42 42.08 41.62 41.98 0.75 39.5 40 39.5 39.5 40
1 35.97 36.89 37.48 37.33 37.36 1 32.5 35 35 34.5 35

Table 2: Summary of results with µA = 0.5 and w = 1 from simulation for number of AB
customers after all 100 trials

Sample mean Sample first quartile
w = 1 φ w = 1 φ
γ 0 0.25 0.5 0.75 1 γ 0 0.25 0.5 0.75 1
0.1 48.67 48.5 50 50 50 0.1 48 48 50 50 50
0.25 48.21 48.36 48.01 48.75 49.23 0.25 47 48 47 48.5 49
0.5 48.02 48.23 48.16 48.26 47.72 0.5 47 47.5 47 47 47
0.75 47.8 47.62 47.67 47.68 47.81 0.75 47 47 47 47 47
1 47.39 47.5 47.27 47.41 47.49 1 47 47 46 47 47

Table 3: Summary of t-statistics for the distributions of the new results and the results from
Arlotto et al. (2019)

µA = 0.75 µA = 0.5
w = 1 φ w = 1 φ
γ 0 0.25 0.5 0.75 1 γ 0 0.25 0.5 0.75 1
0.1 0.8436 0.0227 0.4221 1.8027 0.4891 0.1 1.0849 0.2681 - - -
0.25 1.5021 0.2292 0.1382 0.3325 1.1484 0.25 0.6448 0.1618 1.2537 1.6085 0.5603
0.5 0.4773 0.1420 0.1510 0.2646 0.2033 0.5 0.1398 0.7531 0.6219 0.7616 0.5557
0.75 0.0795 0.3032 0.4940 0.1004 0.4445 0.75 0.3207 1.2431 0.6202 0.5124 0.2316
1 0.0733 0.5558 1.1840 1.3811 0.9652 1 0.3542 0.3504 0.8243 0.4407 0.7009
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6.2 Extension: w 6= 1

Figure 2 shows the number of AB customers after 100 trials for different weights. On the top
left panel we see the results with a small arrival interval, γ = 0.001, no variation in the arrival
times, φ = 0 and a weight of 0.95 (i.e. the second line weighs 0.95 times heavier than the first
line). We see that for all cases of µA there is a significant decrease in the number of times the
total number of AB customers nears 50.

In the bottom left panel we see the results with γ = 0.001 and φ = 0 and w = 1.05. Here
we see that the customers all herd at AB for µA = 0.25 and µA = 0.5, while the number of
customers who choose AB greatly increases compared to no weighing factor for µA = 0.75.

The top right and bottom right panels denote the observations of AB customers with a close
arrival rate but with a big variation, φ = 0.75, with a weight of 0.95 and 1.05, respectively.
In both cases we have once again that all customers herd to AB for µA = 0.25 and µA = 0.5,
while µA = 0.75 sees customers herding to BA in 5% of all trials for a weight of 0.95, and in
2% of all trials for a weight of 1.05.
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Figure 2: Number of customers who chose route AB in the 250-th round after 100 trials with
w = 0.95 (top) and w = 1.05 (bottom).
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The results of the extension for µA = 0.75 with γ ≥ 0.001 are shown in Table 4. The
six panels at the top represent the results for the sample mean and sample first quartile for
w = 0.5, w = 0.75 and w = 0.95, respectively. Compared to the results in Table 1, we can
see that lowering the weight for visiting the second station greatly decreases the number of
AB customers. For w = 0.5 the difference is far bigger than the difference for w = 0.75 and
w = 0.95, which indicates that increasing the disutility difference has an increasingly powerful
effect on whether or not herding will occur. As in the standard weighing factor w = 1, we see
that a smaller γ leads to more customers choosing route AB, and we notice that the instance
where the arrival times happen almost simultaneously (i.e. γ = 0.001 and φ = 0) there is
a great decrease in the number of AB customers compared to cases with bigger variances in
arrival times. When w = 0.5 we see that when γ = 1, almost all customers herd to BA. We also
observe that when γ is small, customers will still herd to AB more than BA, which indicates
that the waiting disutility only has a big influence when the weighing factor gets further away
from 1.

The six panels at the bottom represent the results for the sample mean and sample first
quartile for w = 1.05, w = 1.25 and w = 1.5, respectively. They all show a noticeable increase in
the number of AB customers compared to the results in Table 1. Similarly to the lower weights,
the further the weighing factor gets away from w = 1, the larger the difference is between the
average number of AB customers. At w = 1.05 we find that when γ = 0.1 and φ > 0.5 all
customers will herd to the AB route. We note that in every instance except for γ = 0.1 and
φ = 0.5, setting w = 1.05 causes around a 50% decrease in the number of customers who do
not choose the AB route (i.e. customers who choose the BA route). As w increases further,
more customers herd to AB. When w = 1.25, we notice that all customers herd to AB for
every instance of γ except for γ = 0.001 and γ = 1. However, in the case of γ = 0.1 we notice
some instances where all the customers herd to BA, whereas in the case of γ = 1 we always see
all or almost all of the customers herding at AB. As w further increases to 1.5, we notice that
customers now also herd at AB when γ = 1, and we notice an increase in the number of times
customers herd at BA when γ = 0.001.

In Table 5 the results are shown when µA = 0.5. The weights again show similar increases
and decreases compared to the results in Table 2. Every observation where w < 1 shows a
decrease in the average and first quartile of every observation (except for some cases where the
customers continue to all herd at AB) compared to when w = 1. However, unlike the standard
case of Arlotto et al. (2019), when w < 1 we observe some instances where the number of AB
customers is higher when µA = 0.75 compared to when µA = 0.5. For every observation where
w > 1 we see no more customers herding at BA, and almost every observation has all customers
herding to AB (except for one instance where it is very close to all of them).

Table 6 gives a summary of the sample means for the first and last 10 customers when the
customers all arrive with no variation in the arrivals (i.e. φ = 0). We see that the first 10
customers tend to show more herding behavior at both stations than the last 10 customers.
We see that even with a weighing factor smaller than 1, the first 10 customers often either all
herd at AB or BA. Even at the standard case when w = 1 we see that the last 10 customers
have a sample mean that is closer to the middle, signifying there are more customers in this
group that choose not to herd to AB. We notice that for both groups of customers, raising
the weighing factor above 1 increases the number of AB customers and lowering the weighing
factor below 1 decreases the number of AB customers in almost every case. It seems that the
addition of a weighing factor has a similar impact on the first group of players in the system
as on the last group of players who enter the system.
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Table 4: Summary of results with µA = 0.75 and varying weights from simulation for number
of AB customers after all 100 trials

Sample mean Sample first quartile
w = 0.5 φ w = 0.5 φ
γ 0 0.25 0.5 0.75 1 γ 0 0.25 0.5 0.75 1
0.001 27.73 40.13 41.13 40.53 39.69 0.001 18 39 40 39 39
0.1 26.82 23.83 26.9 26.6 25.89 0.1 16 15 18.5 19.5 21
0.25 23.68 24.35 23.82 22.13 25.62 0.25 16.5 17 17 16 20
0.5 18.15 18.6 18.85 18.1 18.41 0.5 13.5 14 15 15 15
0.75 5.81 5.71 6.03 6.85 6.2 0.75 3 3 3 4 3
1 0 0.01 0.05 0.04 0.06 1 0 0 0 0 0

Sample mean Sample first quartile
w = 0.75 φ w = 0.75 φ
γ 0 0.25 0.5 0.75 1 γ 0 0.25 0.5 0.75 1
0.001 34.2 50 50 50 50 0.001 26 50 50 50 50
0.1 32.87 32.76 36.73 32.91 32.8 0.1 22 24 27 23 23
0.25 31.55 33.84 31.24 33.93 32.78 0.25 20.5 25.5 23 25 23
0.5 28.55 29.47 29.53 30.66 27.92 0.5 21.5 26 23 25 22
0.75 19.22 18.73 19.39 20.05 19.72 0.75 16 15 15 16 16
1 1.39 1.91 2.05 2.3 2.58 1 0 0 0 1 1

Sample mean Sample first quartile
w = 0.95 φ w = 0.95 φ
γ 0 0.25 0.5 0.75 1 γ 0 0.25 0.5 0.75 1
0.001 44.76 49 48.5 48.5 50 0.001 42 50 50 50 50
0.1 43.74 44.24 44.41 43.17 42.82 0.1 41 41 42 41 42
0.25 43.82 43.32 43.06 43.9 42.99 0.25 41 40 40.5 41 40
0.5 41.2 41.45 41.14 41.08 41.44 0.5 38 38 38 38 39
0.75 37.51 38.45 38.65 37.99 37.28 0.75 34 35 36 35 33.5
1 27.07 27.85 28.55 28.38 28.44 1 24 25 25 25 25

Sample mean Sample first quartile
w = 1.05 φ w = 1.05 φ
γ 0 0.25 0.5 0.75 1 γ 0 0.25 0.5 0.75 1
0.001 48.78 47.5 47.5 46.5 47 0.001 48 50 50 50 50
0.1 48.51 49.27 49.99 50 50 0.1 48 49 50 50 50
0.25 48.25 48.33 48.06 48.6 49.39 0.25 47 47 47 48 49
0.5 47.36 47.51 47.35 47.74 47.4 0.5 46 46 46 46.5 46
0.75 45.32 45.43 45.68 44.75 45.39 0.75 43 44 43.5 43 43.5
1 42.52 42.03 42.1 42.02 41.48 1 41 39 40 39.5 38

Sample mean Sample first quartile
w = 1.25 φ w = 1.25 φ
γ 0 0.25 0.5 0.75 1 γ 0 0.25 0.5 0.75 1
0.001 50 49 48.5 48 49 0.001 50 50 50 50 50
0.1 50 50 50 50 50 0.1 50 50 50 50 50
0.25 50 50 50 50 50 0.25 50 50 50 50 50
0.5 50 50 50 50 50 0.5 50 50 50 50 50
0.75 50 50 50 50 50 0.75 50 50 50 50 50
1 49.17 49.31 49.21 49.49 49.41 1 49 49 49 49 49

Sample mean Sample first quartile
w = 1.5 φ w = 1.5 φ
γ 0 0.25 0.5 0.75 1 γ 0 0.25 0.5 0.75 1
0.001 50 45.5 45 44.5 46.5 0.001 50 50 50 50 50
0.1 50 50 50 50 50 0.1 50 50 50 50 50
0.25 50 50 50 50 50 0.25 50 50 50 50 50
0.5 50 50 50 50 50 0.5 50 50 50 50 50
0.75 50 50 50 50 50 0.75 50 50 50 50 50
1 50 50 50 50 50 1 50 50 50 50 50
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Table 5: Summary of results with µA = 0.5 and varying weights from simulation for number of
AB customers after all 100 trials

Sample mean Sample first quartile
w = 0.5 φ w = 0.5 φ
γ 0 0.25 0.5 0.75 1 γ 0 0.25 0.5 0.75 1
0.001 27.69 42.22 42.68 41.79 40.89 0.001 20.5 41 42 41 40
0.1 27.46 27.17 27.37 26.24 26.01 0.1 23 23 25.5 24 24
0.25 23.04 22.21 22.2 22.13 21.07 0.25 18 17 18 18 18
0.5 11.2 11.6 12.43 12.4 11.46 0.5 7 8 7 10 8
0.75 0.67 0.45 0.49 0.76 0.54 0.75 0 0 0 0 0
1 0 0 0 0 0 1 0 0 0 0 0

Sample mean Sample first quartile
w = 0.75 φ w = 0.75 φ
γ 0 0.25 0.5 0.75 1 γ 0 0.25 0.5 0.75 1
0.001 37.25 50 50 50 50 0.001 32.5 50 50 50 50
0.1 36.03 36.8 36.83 36.26 36.68 0.1 34 34.5 34 35 35
0.25 33.21 33.01 33.67 33.26 33.89 0.25 31 30 31.5 31 31.5
0.5 25.57 26.21 26.78 26.68 27.28 0.5 22 23 23 24 24
0.75 12.59 12.91 14.14 14.33 14.22 0.75 9 9 11 11 11
1 0 0 0 0.01 0.01 1 0 0 0 0 0

Sample mean Sample first quartile
w = 0.95 φ w = 0.95 φ
γ 0 0.25 0.5 0.75 1 γ 0 0.25 0.5 0.75 1
0.001 46.03 50 50 50 50 0.001 44 50 50 50 50
0.1 45.95 46.36 45.49 46.29 47.76 0.1 44 45 45 46 47
0.25 45.63 45.69 45.61 45.88 45.38 0.25 44 44 45 45 44
0.5 44.83 44.79 45.03 45.05 44.62 0.5 43.5 44 44 44 43
0.75 42.17 42.44 42.6 42.74 42.74 0.75 41 41 41 41 41
1 34.74 35.04 35.88 36.26 36.78 1 33 33 34 34 35

Sample mean Sample first quartile
w = 1.05 φ w = 1.05 φ
γ 0 0.25 0.5 0.75 1 γ 0 0.25 0.5 0.75 1
0.001 50 50 50 50 50 0.001 50 50 50 50 50
0.1 50 50 50 50 50 0.1 50 50 50 50 50
0.25 50 50 50 50 50 0.25 50 50 50 50 50
0.5 50 50 50 50 50 0.5 50 50 50 50 50
0.75 50 50 50 50 50 0.75 50 50 50 50 50
1 50 49.99 50 50 50 1 50 50 50 50 50

Sample mean Sample first quartile
w = 1.25 φ w = 1.25 φ
γ 0 0.25 0.5 0.75 1 γ 0 0.25 0.5 0.75 1
0.001 50 50 50 50 50 0.001 50 50 50 50 50
0.1 50 50 50 50 50 0.1 50 50 50 50 50
0.25 50 50 50 50 50 0.25 50 50 50 50 50
0.5 50 50 50 50 50 0.5 50 50 50 50 50
0.75 50 50 50 50 50 0.75 50 50 50 50 50
1 50 50 50 50 50 1 50 50 50 50 50

Sample mean Sample first quartile
w = 1.5 φ w = 1.5 φ
γ 0 0.25 0.5 0.75 1 γ 0 0.25 0.5 0.75 1
0.001 50 50 50 50 50 0.001 50 50 50 50 50
0.1 50 50 50 50 50 0.1 50 50 50 50 50
0.25 50 50 50 50 50 0.25 50 50 50 50 50
0.5 50 50 50 50 50 0.5 50 50 50 50 50
0.75 50 50 50 50 50 0.75 50 50 50 50 50
1 50 50 50 50 50 1 50 50 50 50 50
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Table 6: Summary of the results with φ = 0 and other varying parameters for number of AB
customers in the first and last group of 10 customers after all 100 trials

Sample mean first 10 customers Sample mean last 10 customers
µA = 0.75 γ µA = 0.75 γ
w 0.001 0.1 0.25 0.5 0.75 1 w 0.001 0.1 0.25 0.5 0.75 1
0.5 7.74 5.96 5.06 2.8 0.06 0 0.5 4.65 5.4 3.64 4.14 2.05 0
0.75 10 8.63 7.48 6.1 2.5 0.02 0.75 5.32 5.04 5.04 4.19 3.72 1.56
0.95 10 10 10 9.9 9.05 5.19 0.95 4.93 5.45 5.36 5.18 5.42 5.02
1 10 10 10 10 9.8 8.29 1 6.84 6.05 5.89 6.06 6.7 5.47
1.05 10 10 10 10 10 9.73 1.05 8.7 8.69 8.4 7.32 6.76 6.54
1.25 10 10 10 10 10 10 1.25 10 10 10 10 10 9.17
1.5 10 10 10 10 10 10 1.5 10 10 10 10 10 10

µA = 0.5 γ µA = 0.5 γ
w 0.001 0.1 0.25 0.5 0.75 1 w 0.001 0.1 0.25 0.5 0.75 1
0.5 10 7.56 5.26 1.59 0 0 0.5 4.66 4.59 2.76 2.1 0.4 0
0.75 10 10 9.04 6.55 1.73 0 0.75 4.97 3.83 3.88 3.54 1.91 0
0.95 10 10 10 10 10 8.74 0.95 6.17 6.04 5.9 5.9 5.13 4.38
1 10 10 10 10 10 10 1 8.65 8.76 8.44 7.93 7.78 7.5
1.05 10 10 10 10 10 10 1.05 10 10 10 10 10 9.98
1.25 10 10 10 10 10 10 1.25 10 10 10 10 10 10
1.5 10 10 10 10 10 10 1.5 10 10 10 10 10 10

7 Conclusion

We simulate an open routing service network similar to Arlotto et al. (2019) where all customers
choose their own route and adapt their strategy depending on which route they expect to be
faster. We extend on this network with a weighing factor for the waiting disutility in the
second line, i.e., the second waiting line has a different weight than the first waiting line. We
note the analysis by Arlotto et al. (2019) that states there is a dominant strategy in a two-
station service network where all customers are in the system as it starts, and try to see via
simulation whether this remains the (only) dominant strategy in situations where the system
has customers arriving at different times. We observe that customers prefer herding at this
strategy under these circumstances, when the network holds to certain restrictions, but as the
weighing factor for the second line decreases, the number of times the dominant strategy gets
chosen decreases, and when the weighing factor decreases far enough, the other strategy gets
preferred and the customers will herd to that strategy. We observe that increasing the weighing
factor for the second line increases the number of times the customers choose the dominant
strategy. Furthermore, we observe that the influence of the weighing factor is prevalent for
customers who arrive early and customers who arrive later in the system.

For this research, we added a weighing factor that is constant for all customers. Further
research could look at weighing factors that vary between customers (one customer might prefer
waiting in the first line more than the other customer). Analyzing other optimization goals, like
minimizing the maximum waiting time in one line could also be a way to expand on this thesis.
Finally, expanding this theory of weighing factors to other service networks, like networks with
more than two servers, could be of interest in future work.
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A Code for Service Network Simulation

1 function [av_AB_customers, fp_AB_customers] = Openroutingextension

2 tic;

3 gammas(1) = 0.001;

4 gammas(2) = 0.1;

5 gammas(3) = 0.25;

6 gammas(4) = 0.5;

7 gammas(5) = 0.75;

8 gammas(6) = 1;

9 phis(1) = 0;

10 phis(2) = 0.25;

11 phis(3) = 0.5;

12 phis(4) = 0.75;

13 phis(5) = 1;

14 mus(1) = 0.25;

15 mus(2) = 0.5;

16 mus(3) = 0.75;

17 weights(1) = 0.5;

18 weights(2) = 0.75;

19 weights(3) = 0.95;

20 weights(4) = 1;

21 weights(5) = 1.05;

22 weights(6) = 1.25;

23 weights(7) = 1.5;

24 trials = 100;

25 mu_B = 1;

26 N = 50;

27 rounds = 250;

28 for c_gam = 1:6

29 gam = gammas(c_gam);

30 for c_phi = 1:5

31 phi = phis(c_phi);

32 for c_mu = 1:3

33 mu_A = mus(c_mu);

34 for c_w = 1:7

35 w = weights(c_w);

36 for trial = 1:trials

37 route_cust = randi(2,[1,N]); %Route 1 = AB; Route 2 = BA

38 total_time_AB = zeros(1,50);

39 total_time_BA = zeros(1,50);

40 for ronde = 1:rounds

41 rando = rand([1,N]);

42 for i=1:N

43 arr(i) = i*gam + phi*(2*rando(i) - 1); %Arrival time

customer i

44 end

45 serve_time_A = exprnd(1/mu_A,[1,N]);

46 serve_time_B = exprnd(1/mu_B,[1,N]);

47 for z=1:N+1
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48 beginA = zeros(1,N);

49 beginB = zeros(1,N);

50 for i=1:N

51 eindeA(i) = -100000000; %not yet served at A

52 eindeB(i) = -100000000; %not yet served at B

53 if route_cust(i) == 1

54 arrA(i) = arr(i);

55 arrB(i) = 100000000; %arrival time of

customer i at B still unknown

56 else

57 arrA(i) = 100000000; %arrival time customer i

at A still unknown

58 arrB(i) = arr(i);

59 end

60 end

61 finished = 0; %number of customers that finished at

both stations

62 while finished < N %while there are still customers

in the system

63 next_event = arrA(1);

64 cust = 1;

65 A = 1;

66 for i=1:N

67 for j=1:2

68 if (j == 1)

69 if (arrA(i) < next_event)

70 next_event = arrA(i);

71 cust = i; %next event is by

customer i

72 A = 1; %next event is at station A

73 end

74 else

75 if (arrB(i) < next_event)

76 next_event = arrB(i);

77 cust = i; %next event is by

customer i

78 A = 2; %%next event is at station B

79 end

80 end

81 end

82 end

83
84 if (A == 1) %customer arrives at station A

85 last_service_A = eindeA(1); %initial number

86 for i = 2:N

87 if (eindeA(i) > last_service_A)

88 last_service_A = eindeA(i); %last

helped customer at A after new

arrival

89 end
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90 end

91 if (last_service_A > next_event) %if last

customer still being served with new

arrival

92 beginA(cust) = last_service_A; %new

customer waits until line is empty

93 else

94 beginA(cust) = next_event; %row is already

empty

95 end

96
97 eindeA(cust) = beginA(cust) + serve_time_A(

cust);

98 if (arrB(cust) > 99999999) %not already

served at B

99 arrB(cust) = eindeA(cust);

100 elseif (z==1) %already served at B

101 total_time(cust) = eindeA(cust) - beginA(

cust) + w*(beginA(cust) - eindeB(cust))

+ eindeB(cust) - arr(cust);

102 total_time_BA(cust) = total_time_BA(cust)

+ total_time(cust); %accumulative

waiting time for this route after all

rounds so far

103 finished = finished + 1;

104 else %z>=2

105 if cust == z-1 %the one taking the

alternative route

106 alt_total_time(cust) = eindeA(cust) -

beginA(cust) + w*(beginA(cust) -

eindeB(cust)) + eindeB(cust) - arr(

cust);

107 total_time_BA(cust) = total_time_BA(

cust) + alt_total_time(cust); %

accumulative waiting time for this

route after all rounds so far

108 end

109 finished = finished + 1;

110 end

111 arrA(cust) = 99999998; %no service at station

A anymore

112 else %customer arrives at station B

113 last_service_B = eindeB(1);

114 for i = 2:N

115 if (eindeB(i) > last_service_B)

116 last_service_B = eindeB(i); %last

helped customer at A after new

arrival

117 end

118 end
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119 if (last_service_B > next_event)

120 beginB(cust) = last_service_B; %new

customer waits until line is empty

121 beginB(cust) = next_event; %row is already

empty

122 end

123
124 eindeB(cust) = beginB(cust) + serve_time_B(

cust);

125 if (arrA(cust) > 99999999) %not already

served at A

126 arrA(cust) = eindeB(cust);

127 elseif (z==1) %already served at A

128 total_time(cust) = eindeB(cust) -beginB(

cust) + w*(beginB(cust) - eindeA(cust))

+ eindeA(cust) - arr(cust);

129 total_time_AB(cust) = total_time_AB(cust)

+ total_time(cust);

130 finished = finished + 1;

131 else %z>=2

132 if cust == z-1

133 alt_total_time(cust) = eindeB(cust) -

beginB(cust) + w*(beginB(cust) -

eindeA(cust)) + eindeA(cust) - arr(

cust);

134 total_time_AB(cust) = total_time_AB(

cust) + alt_total_time(cust);

135 end

136 finished = finished + 1;

137 end

138 arrB(cust) = 99999998; %no service at station

B anymore

139 end

140 if (finished == N)

141 if (z<N+1) %alt time

142 route_cust(z) = 3 - route_cust(z);

143 if (z > 1)

144 route_cust(z-1) = 3 - route_cust(z-1);

%reset previous route

145 end

146 else %z=N+1

147 route_cust(z-1) = 3 - route_cust(z-1); %

reset final route

148 end

149 end

150 end

151 end

152
153
154 %now checking if alternate route was better
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155 for x = 1:N

156 if ((total_time_AB(x) < total_time_BA(x) &&

route_cust(x) == 2) || (total_time_BA(x) <

total_time_AB(x) && route_cust(x) == 1))

157 route_cust(x) = 3 - route_cust(x);

158 end

159 end

160
161 end

162 AB_customers = 2 - route_cust; %%1 if AB, 0 if BA

163 routes(c_gam,c_phi,c_mu,c_w,trial,:) = AB_customers;

164 H(trial) = sum(AB_customers,’all’);

165 end

166 Histogrs(c_gam,c_phi,c_mu,c_w,:) = H;

167 av_AB_customers(c_gam,c_phi,c_mu,c_w) = sum(H,’all’)/trials;

168 fp_AB_customers(c_gam,c_phi,c_mu,c_w) = prctile(H,25);

169 end

170 end

171 end

172 end

173 time = toc;

B Code for Figure 1

1 function hist = histog(Histogrs)

2 %%Draws the histogram of a given set of values. The value Histogrs is taken

from the results of Appendix A.

3 deze = zeros(51,7);

4 for frst = 1:51

5 deze(frst, 1) = frst - 1;

6 for trial = 1:100

7 if Histogrs(1,1,1,4,trial) == frst - 1

8 deze(frst, 2) = deze(frst, 2) + 1;

9 end

10 if Histogrs(1,1,2,4,trial) == frst - 1

11 deze(frst, 3) = deze(frst, 3) + 1;

12 end

13 if Histogrs(1,1,3,4,trial) == frst - 1

14 deze(frst, 4) = deze(frst, 4) + 1;

15 end

16 if Histogrs(1,4,1,4,trial) == frst - 1

17 deze(frst, 5) = deze(frst, 5) + 1;

18 end

19 if Histogrs(1,4,2,4,trial) == frst - 1

20 deze(frst, 6) = deze(frst, 6) + 1;

21 end

22 if Histogrs(1,4,3,4,trial) == frst - 1

23 deze(frst, 7) = deze(frst, 7) + 1;

24 end
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25 end

26 end

27
28 Y1 = deze(:,2:4);

29 Y2 = deze(:,5:7);

30 X = deze(:,1);

31 ax1 = subplot(1,2,1);

32 plot(X,Y1(:,1),’d’, ’MarkerFaceColor’, [0,0,0.6], ’Color’, ’k’)

33 hold on

34 plot(X,Y1(:,2),’o’, ’MarkerFaceColor’, [0.6,0,0], ’Color’, ’k’)

35 hold on

36 plot(X,Y1(:,3),’s’, ’MarkerFaceColor’, [0,0.6,0], ’Color’, ’k’)

37 title(ax1,’i) \phi = 0; \gamma = 0.001’)

38 ylabel(ax1,’Frequency’)

39 xlabel(ax1, ’#AB customers (out of 50)’)

40 ylim([0 100])

41 legend(ax1, ’\mu_A = 0.25’, ’\mu_A = 0.5’, ’\mu_A = 0.75’, ’Location’,’

northwest’);

42 ax2 = subplot(1,2,2);

43 plot(X,Y2(:,1),’d’, ’MarkerFaceColor’, [0,0,0.6], ’Color’, ’k’)

44 hold on

45 plot(X,Y2(:,2),’o’, ’MarkerFaceColor’, [0.6,0,0], ’Color’, ’k’)

46 hold on

47 plot(X,Y2(:,3),’s’, ’MarkerFaceColor’, [0,0.6,0], ’Color’, ’k’)

48 title(ax2,’ii) \phi = 0.75; \gamma = 0.001’)

49 ylabel(ax2,’Frequency’)

50 xlabel(ax2, ’#AB customers (out of 50)’)

51 end

C Code for Calculating t-statistics

1 function tvals = ttests(Histogrs,av_AB_customers,arlottos)

2 %%Calculates the t-statistics shown in Table 3. The parameter arlottos

represent the values in Table 2 and 3 of Arlotto et al. (2019).

3 for q = 1:5

4 for r = 1:5

5 for s = 1:2

6 upp(q,r,s) = (av_AB_customers(q+1,r,s+1,4) - arlottos(q,r,s));

7 devs(q,r,s) = std(Histogrs(q+1,r,s+1,4,:));

8 tvals(q,r,s) = abs(upp(q,r,s)/(devs(q,r,s)*sqrt(2/50)));

9 end

10 end

11 end

12 devs

13 end
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