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Abstract

The traditional numerical integration method for estimating the mixed multinomial logit

model is Monte Carlo Simulation, either based on pseudo-random or quasi-random sequences.

The quasi-random sequence used in this paper is the Halton sequence. In recent years, a differ-

ent approach to numerical integration, called probabilistic integration, has gained more trac-

tion. Probabilistic integration uses the uncertainty inherent to numerical integration caused by

the impossibility of being able to evaluate the integrand at an infinite amount of points. This

paper seeks to explore the possibility of applying one such method called Bayesian cubature

to the estimation of the mixed multinomial logit model, and see if it is a viable method for

this estimation process. To illustrate Bayesian cubature, Bayesian Quasi-Monte Carlo with

a Gaussian kernel is used. The results of this type of Bayesian cubature do not approach

the results obtained by the traditional methods for a mixed logit with a normal distribution.

However, more advanced Bayesian cubature methods might yield stronger results, especially

when more complex distributions are used for the mixed logit, and drawing many states is

computationally intensive.

∗The views stated in this thesis are those of the author and not necessarily those of Erasmus School

of Economics or Erasmus University Rotterdam.
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1 Introduction

Multinomial logistic regression is one of the

most common and popular models for multi-

nomial classification problems. According to

Google trends in the past ten years, the search

term ’Logistic regression’ has a worldwide

relative average interest score of 42. In

comparison with ’Linear regression’, which

has a score of 65, ’econometrics’ a score of 36,

and ’Erasmus university Rotterdam’ a score

of 33. Finalised by McFadden in 1974, logistic

regression has since been a standard model in

an econometrician’s or economist’s toolbox as

it has a multitude of practical applications.

Ranging from recognizing handwritten digits,

to what product a consumer would buy; in any

categorical problem the multinomial logit has

a use. The strong points of the multinomial

logit are that it is easy to estimate, allows

for in-depth analysis, and clear interpreta-

tion. Train (2009) elucidates three possible

limitations of the multinomial logit: it can

only represent non-random taste variation,

independent of irrelevant alternatives, and no

correlation in unobserved factors over time.

A general model which mitigates these

problems, and can approximate all models

based on unobserved utility, is the mixed

multinomial logit model (Mcfadden and Train,

2000). The main difference between the multi-

nomial logit model and the mixed logit model

is that for the mixed logit the coefficients are

drawn from a distribution. Even though the

mixed logit mitigate the problems present

in the multinomial logit and allows for more

flexible structures, estimating a mixed logit

model comes with its own challenges. The

main challenge the estimation process faces

is the computationally intensive integral that

is present in the choice probability, and thus

the log-likelihood. As the integral is difficult

or impossible to solve analytically, methods

called numerical integration are developed

to approximate these integrals. One of the

most common numerical integration methods

relies on simulating the integral. The method

of choice for the mixed logit is called Monte

Carlo Simulation (Bhat, 2001).

Monte Carlo simulation relies on drawing

random numbers, calculating the function

value for these random draws and then simply

averaging them. This integration method

relies heavily on the sampling distribution of

the drawn random numbers, as it is impossible

to draw an infinite amount of numbers. On

top of that, the estimation returns a single

numerical value and ignores the potential error

which is inherent to Monte Carlo methods,

due the fact that it relies on random numbers.

O’Hagan (1987) goes more in depth as to

why Monte Carlo is, as O’Hagan even calls it,

’Fundamentally unsound’ and states that it

violates the Likelihood Principle. In essence,

O’Hagan concludes that integral estimation

is not a numerical, but instead a statistical

problem. The estimation process should not

return a single numerical value, but a dis-

tribution which encompasses the uncertainty

in the prediction. This field of thinking is

called Probabilistic numerics, and is heavily

correlated with Bayesian statistics.

Hennig et al. (2015) delivers a ’call to
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arms’ for Probabilistic numerics for numer-

ical analysis, such as numerical integration,

which inherently exhibits uncertainty. Not

only could probabilistic integration provide

more accurate and sound estimations, but

also better estimations with fewer iterations,

especially when the evaluation of the function

over which the integral is calculated is difficult

to evaluate. This is what this paper seeks

to do; explore the possibility of applying one

such technique called Bayesian cubature to

the estimation process of the mixed logit. To

achieve this, a tour d’horizon is presented

for the Bayesian cubature method, with the

traditional Monte Carlo methods in mind.

This is done by differentiating the differ-

ent terminologies used in the literature, and

discussing how the different kinds of Bayesian

cubature methods relate to each other. It is

beyond the scope of this paper to examine

all Bayesian cubature methods. Therefore, to

illustrate Bayesian cubature, the method used

in this paper is the method introduced by

Rasmussen and Ghahramani (2003). However,

effort is made to generalise Bayesian cubature

as such that other more advanced types of

Bayesian cubature can be understood as well.

Subsequently, this method is compared with

the more traditional methods which rely on

Monte Carlo simulation and figure out which

method is more appropriate and/or better.

The Bayesian cubature results presented in

this paper do not approach the traditional

Monte Carlo methods. Nonetheless, other

types of Bayesian cubature could still prove

to be useful in certain mixed logit models.

Thus, this paper contributes to the discussion

of when probabilistic numerics is appropriate

and when it is not, and ’unsound’ methods

might yield more practical results.

This thesis will start off with a literature

review in which three main subjects are dis-

cussed: the (mixed) multinomial logit model,

Monte Carlo methods, and Bayesian method.

Secondly, the methods are discussed in the

methodology. First the model specification,

and afterwards the numerical integration

methods. After each section the corresponding

parameter estimation will be touched upon.

Thirdly, the simulation study is discussed and

the DGP is specified. Hereafter, the results

of this simulation study are presented and

subsequently discussed.

2 Literature

2.1 (Mixed) Multinomial Logit

McFadden (1973) first introduced the con-

ditional logit model, which has become

synonymous with the multinomial logit.

McFadden was not the first to introduce

the logistic regression, it first developed by

Berkson (1944). After its introduction, it

has since been researched extensively. Train

(2009) attributes this in chapter 3.1, due to

the fact that the function takes a closed form

and is readily interpretable. Even though the

multinomial logit model is a powerful model

with many uses, it does have its constraints.

In chapter 6.1, Train (2009) names three

constraints that the mixed logit mitigates.

The first constraint is that the multino-
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mial logit cannot represent random variation

in preference for brands across individuals.

In other words, the coefficients are equal

for all individuals. For some purposes this

assumption might be valid, but for numerous

other purposes, it is not. Namely models

which concern brand preference, an underlying

income difference might heavily influence the

outcome. Without knowing exactly which

individuals correspond to higher or lower

incomes, it is impossible for the multinomial

logit to encompass this.

The second constraint is the independence

of irrelevant alternatives (IIA) property. For

the multinomial logit model, the ratio of two

choice probabilities is independent from other

choice probabilities. This property fails if a

third probability changes. The sum of all

probabilities must equal to one, so one of the

other two probabilities has to change. Conse-

quentially, the ratio of the two probabilities

changes and the IIA property is violated.

The famous bus example is given to illustrate

the IIA property. Suppose that in order

to travel from A to point B, an individual

can choose either a car or a blue bus. The

probability to choose either the car or bus

is equal such that P(car) = P(busblue) = 1
2 .

Now imagine that a second identical bus

is introduced, except that it is red in-

stead of blue. It would be expected that

P(car) = 1
2 and P(busblue) = P(busred) = 1

4 .

Except the multinomial logit will predict

P(car) = P(busblue) = P(busred) = 1
3 . Train

(2009) goes in depth as to what the further

consequence of the IIA property are, and also

discusses the advantages that the IIA property

brings to the table.

The third constraint concerns panel data,

specifically correlation between unobserved

explanatory variables. If the variables are

independent from each other, they can be

incorporated in the multinomial logit model.

An explanatory variable from period t−1 is for

example allowed to be used as an explanatory

variables for the next period, as long as there

is not a unobserved variable that influences

the dependent variable for both periods t − 1

and t. Except this assumption is quite strict in

the sense that it is likely that some unobserved

variable both influences period t− 1 and t.

The mixed logit relaxes the three constraints

inherent to the multinomial logit, and can also

approximate all models based on unobserved

utility (Mcfadden and Train, 2000). However,

the mixed logit is not without its own limita-

tions. First, the integral present in the choice

probability function hinders the estimation

process. This can mainly be contributed to the

fact that for every coefficient which is drawn

from a distribution, the dimensionality of the

integral increases. Second, the estimation

process is also hampered when drawing from

the distribution is difficult or computationally

complex.

2.2 Monte Carlo Simulation

The most straightforward way of estimat-

ing the choice probabilities is with Monte

Carlo simulation using either pseudo-random

sequences, or quasi-random sequences.

Pseudo-random sequences try to emulate

’true’ randomness, whereas quasi-random
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sequences try to be as evenly distributed

as possible. This results in quasi-random

sequences being a deterministic method.

Section 3.2 discusses both methods in-depth.

Bhat (2001) performs an extensive simulation

study to compare Monte Carlo simulation

using pseudo-random sequences, quasi-random

Halton sequences, and a more traditional

polynomial-based cubature method. How

Halton sequences are precisely generated is

discussed in section 3.2.2. He concluded

that QMC needs significantly less draws

and a fraction of the computation time to

obtain comparable root mean square errors

and mean absolute percentage errors. The

polynomial-based method provided adequate

estimates, especially for lower dimensions.

The only exception is for higher dimensions

as adding draws imposes a significant increase

in computation time. Overall, QMC is not

only the better, but also the faster method. It

takes about 100 quasi-random Halton draws to

obtain the same result as 1000 pseudo-random

draws in 1-5 dimensions, (Bhat, 2001). The

downside of using quasi-random sequences is

that they do not allow for statistical analyses

of the estimation error as the quasi-random

sequences are generated deterministically.

Moreover, for higher dimensions Halton se-

quences also run into trouble as it is more

likely that at some point a correlation occurs

between two sequences.

Each downside motivates the use of a

modified Halton sequences. Bhat (2003) pro-

poses the use of a randomized and scrambled

Halton sequence. The randomization tries to

combat the statistical analyses problem by

combining both quasi and random sequences

to induce a small amount of randomness to

each quasi-random point. Scrambling combats

the correlation in higher dimensions using per-

mutations. Bhat (2003) compares the newly

created Halton sequence with the standard

Halton sequence and concludes that the strong

results presented in Bhat (2001) still hold,

but are less significant as first thought when

estimating high, in this case 10, dimensional

integrals. 150 standard Halton draws is about

as accurate as 500 pseudo-random draws,

whilst the scrambled Halton draws only needs

100 draws. Additionally, 100 scrambled

Halton draws are more accurate than 1000

pseudo-random draws. Bhat did not evaluate

more than 150 draws for the standard Halton

sequence.

There was still more to improve and Sivaku-

mar et al. (2005) compared all aforementioned,

as well as quasi-random (scrambled) Faure

sequences for the estimation process of the

mixed multinomial logit model. Faure se-

quences are similar to Halton sequences as

in that they are the same when generating

one dimensional sequences. However, for

multi dimensional sequences, whilst Halton

sequences simply pair one dimensional se-

quences, Faure sequences are generated using

values from lower dimensions. Sivakumar

et al. (2005) concludes that overall the Faure

sequence outperforms the Halton sequence,

and scrambling a sequence will result in more

accurate estimates for both sequences.
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2.3 Bayesian Monte Carlo

So far, the focus has been on Monte Carlo

simulation for the estimation of the choice

probabilities. However, a different view which

has gained more traction lately (Hennig et al.,

2015), is the field of probabilistic integration.

Probabilistic integration is a sub-field of a

bigger field, called probabilistic numerics.

Probabilistic numerics applies statistical

inference to numerical algorithms that return

a value with a certain amount of uncertainty.

For probabilistic integration this uncertainty

arises from the impossibility of evaluating

a function at an infinite amount of draws.

In practice, even less draws are evaluated

as increasing the amount draws imposes a

heavy computational burden. Probabilistic

integration utilises this uncertainty instead.

This Bayesian approach to numerical problems

can be traced as far back as Poincaré (1896),

(Diaconis, 1988).

After criticising the use of Monte Carlo

methods, O’Hagan developed a Bayesian

cubature method which uses statistical infer-

ence to estimate integrals, (O’Hagan, 1991).

His ’Bayesian-Hermite quadrature’ method

places a Gaussian prior on the integrand,

and derives a posterior distribution for the

integrand and the integral itself. Moreover,

O’Hagan (1991) also uses a Gaussian kernel

to obtain analytical results of the integral of

a covariance and selects states the same way

as for Gaussian quadrature methods. States

are the values for which the integrand has

to be evaluated. O’Hagan (1991) focuses on

single integral evaluations in one- and multi-

dimensional integrals, and obtains promising

results. Rasmussen and Ghahramani (2003)

followed up with introducing ’Bayesian Monte

Carlo’ (BMC).

Before this method is discussed, this mo-

ment is taken to clarify the term ’Bayesian

Monte Carlo’. This term can be quite confus-

ing as it suggests that Monte Carlo simulation

is done in a Bayesian way. This is not true.

Bayesian Monte Carlo as in Rasmussen and

Ghahramani (2003) is essentially the Bayesian-

Hermite method, and has hardly anything to

do with Monte Carlo Simulation. Rasmussen

and Ghahramani (2003) obtains in an exam-

ple the same specification of the posterior

distribution as the Bayes-Hermite Quadrature

rule, but introduces Bayesian Monte Carlo

as a more general term. The reason that

they call it Bayesian Monte Carlo is because

the states are generated the same way states

are generated for Monte Carlo simulation.

This could be based on pseudo-random, or

quasi-random sequences. Because of this, the

name has stuck. A better name for the general

method, without kernel specification, as used

in Briol et al. (2019), would be ’Bayesian

Cubature’. Which would make Bayesian

Monte Carlo, Bayesian cubature with states

drawn the same way as for Monte Carlo sim-

ulation. Bayesian Quasi-Monte Carlo would

for example mean that states are generated

according to a quasi-random sequences. Other

naming conventions are generated similarly.

Now that the term Bayesian Monte Carlo

has been clarified, BMC as in Rasmussen

and Ghahramani (2003) will be discussed.
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Rasmussen and Ghahramani (2003) obtains

promising results for single integral evalu-

ations like O’Hagan (1991). Especially as

not as many function evaluations are needed,

which could save significant computational

time. They also note the possibility of

using different kernels or different prior speci-

fication, which could result in better estimates.

In recent years, probabilistic numerics,

and likewise probabilistic integration, has

gotten more attention. Briol et al. (2019)

names multiple papers from recent years

which further optimize the Bayesian cubature

method first introduced by O’Hagan (1991).

Briol et al. (2019) discusses in depth how

Bayesian cubature in itself could be useful,

and specifically provides convergence rates

for BMC, BQMC and Bayesian Markov

Chain Monte Carlo (BMCMC). BMCMC

is a Bayesian cubature method for which

the states are generated as they would have

been generated for MCMC which is by using

Markov chains. Briol et al. (2019) shows

that for a random effects regression, BMCMC

obtains comparable results as MCMC and

the 95% confidence intervals for the BMCMC

sketch a more realistic picture. Opposed to

all other papers, Xi et al. (2018) discusses

the case when one has to evaluate multiple

integrals, as opposed to having to evaluate a

single integral, and obtains a joint model for

evaluating a finite amount of integrals. This

would be highly relevant for the mixed logit,

as in the log-likelihood multiple integrals are

present, and for the maximization of the log-

likelihood, the integrals have to be evaluated

many times. Sadly, this is out of scope for this

paper. This paper instead performs Bayesian

cubature as in Rasmussen and Ghahramani

(2003), with states generated quasi-randomly

instead of pseudo-randomly.

3 Methodology

3.1 Model Specification

A key part of the mixed logit, is that it is very

similar to the multinomial logit. For this rea-

son, the multinomial logit is first derived, after

which the mixed logit is derived.

3.1.1 Multinomial logit

First, utility Uijt is introduced. Here, every

person i can choose a alternative j during pur-

chase occasion t and each alternative has a cor-

responding utility

Uijt = X ′ijtβ + εijt for i = {1, . . . , N},

j = {0, . . . , J},

and t = {1, . . . , T}. (1)

εijt is i.i.d. extreme value distributed, with

scale parameter set to one for identification and

β is a vector of coefficients. β contains coeffi-

cient for each choice specific explanatory vari-

able, as there are different values across choice

options. Xijt contains the choice specific ex-

planatory variables corresponding to choice j

that individual i observes during purchase oc-

casion t. Yit represents the predicted chosen

alternatives of i during t. yit is the realised cho-

sen alternative. As εijt is i.i.d. extreme value

distributed, the choice probability for the con-
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ditional logit can be derived (McFadden, 1973):

Sijt(β) = P[Yit = j | X,β] =
exp(X ′ijtβ)∑J
l=0 exp(X ′iltβ)

.

(2)

3.1.2 Mixed Multinomial Logit

To derive the mixed multinomial logit model,

the first constraint of the multinomial logit

will be relaxed. In other words, what happens

to the model when the coefficient β is allowed

to differ across observations? This implies

that for all i = {1, . . . , N}, βi differs. Of

course, a naive way of achieving this would

be by estimating N logit models. However,

there are multiple reason why this would not

be desirable. For example, when N is large,

every individual has few observations, or when

correlation between individuals is desired.

A different approach to implement this, is

to draw βi from a probability distribution

p(βi | θ). p(βi | θ) can be any probability

distribution, where θ denotes the parameters

of the distribution. In this paper, p(βi | θ)
is the normal distribution with mean θµ and

variance θσ.

A repercussion from this is that when

calculating the choice probability, βi is essen-

tially unknown. Consequentially, the integral

over βi has to be taken to weigh Sijt by the

distribution of βi, which is conditional on θ.

This is equal to the expected value of Sijt

with respect to the random variable βi. This

results in the following choice probability

that individual i chooses category j during

purchase occasion t, which corresponds to the

the mixed multinomial logit model,

Pijt[Yit = j | X, θ] =

∫
Sijt(βi)p(βi | θ)dβi.

(3)

As βi is drawn from a distribution, θ is

the parameter which is to be estimated, not

β as in the case of the multinomial logit model.

For panel data, individual i chooses a se-

quence of alternatives j = {j1 . . . jT } instead of

a single alternative. Because εijt in equation

(3) is independently identically distributed,

one can simply take the product of all pur-

chase occasions for individual i to obtain the

choice probability that individual i chooses a

sequence of alternatives. This probability is

defined as follows:

Si(βi) =
T∏
t=1

J∏
j=1

[
Sijt(βi)I[yit = j]

]
,

Pi[Yi = j |X, θ] =

∫
Si(βi)p(βi | θ)dβi. (4)

3.1.3 Parameter Estimation I

The objective of the mixed logit model is to

obtain a model with choice probabilities. To

be able to train the model coefficient θ, a loss

or likelihood function which can be optimized

needs to be defined first. The likelihood func-

tion used in this paper, is the log-likelihood

function, which is defined as follows:

L[θ | X] =

N∑
i=1

logPi. (5)

To obtain estimates of θ, L[θ | X] is maxi-

mized. However, as Pi is not calculated analyt-

ically, simulated log-likelihood has to be used.

This will be discussed in section 3.2.4
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3.2 Numerical Integration

The purpose of numerical integration is to eval-

uate integrals that are analytically hard or im-

possible to compute. The goal of every method

is to sample from the function over which the

integral is to be calculated, and to weight ev-

ery evaluated sample. This is also known as a

cubature rule; Let R denote the total amount

of drawn samples, {wr}Rr=1 the weights, Pi an

abbreviation of equation (3), and P̂i the esti-

mated value of Pi. Then the following equation

describes any cubature rule:

P̂i =

R∑
r=1

wrSi(βir). (6)

Every numerical integration method tries to

cleverly calculate the weights and/or tries to

draw βir in an efficient way. For the mixed

logit model, the states are drawn from the dis-

tribution p(βi | θ).

3.2.1 Standard Monte Carlo

The first method for integral estimation that

will be discussed is Monte Carlo simulation.

Standard Monte Carlo (MC) simulation is a

non-deterministic method. Monte Carlo esti-

mation draws R states, and to obtain an esti-

mate, the average is taken; {wr}Rr=1 = 1
R . The

cubature rule for Monte Carlo estimation can

be described as follows:

P̂i =
1

R

R∑
r=1

Si(βr). (7)

As ’pure’ random draws are only possible

theoretically, the standard way of Monte

Carlo simulation is based on pseudo-random

numbers which tries to emulate pure random

draws.

As R approaches infinity, the estimate

converges to the true value of the integral

because of the law of large numbers. The

strong points of SMC are that it is easy to

implement and also twice differential and pos-

itive definite for any amount of draws, (Bhat,

2001). SMC does however have its downsides.

Additionally, because of the pseudo-random

sequence, for each SMC estimate a variance

can be calculated.

As the states {βir}Rr=1 are drawn ran-

domly, R has to be very large to give a good

estimation as it is desirable that the states

reflect the function well and this is only

consistently obtained with a high R. If a

function evaluation is also costly, then SMC

can be even slower.

3.2.2 Quasi-Monte Carlo

The second Monte Carlo method is based

on quasi-random numbers. As discussed in

the section above, drawing pseudo-randomly

may not be desirable for integral estimation.

Pseudo-random sequences are not designed

to reflect the input space as a whole. To the

contrary, they are designed to be truly random

and thus many states have to be drawn to

ensure that the entire space is represented

correctly. Quasi-random numbers are instead

not random numbers. They are a sequence of

numbers which try to be as evenly distributed

as possible in a set range. Quasi-random num-

ber sequences are also called low-discrepency

sequences. The only difference between SMC

and QMC is thus how the states are drawn.
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The quasi-random sequence used in this

paper are Halton sequences. Halton sequences

are sequences on the domain [0, 1) and are

calculated iteratively where the amount of

iterations depends on how long the sequences

has to be. Let Hu be the Halton sequence

at iteration u, with H0 = 0. Every Halton

sequence starts with choosing a prime α that

is used to generate each iteration. The only

restriction is α > 1. The goal of each iteration

is to add points to the sequence which evenly

’fill in’ the gaps in the domain. In general,

the sequence at iteration u can be defined as

follows:

Hu = {Hu−1, Hu−1 +
1

αu
} for u ∈ Z (8)

As becomes clear from Figure 1, each subse-

quent iteration generates values which fill in

the gaps created by the previous iteration. Se-

quences for different primes are created simi-

larly.

1
2

1
2

1
4

3
4

1
2

1
4

3
4

1
8

3
8

5
8

7
8

Figure 1: Three iterations for a Halton

sequence with α = 2

Halton sequences for higher dimensions

are generated by defining a prime for each

dimension, to ensure that both sequences

are independent from each other. Moreover,

the first 10 values are deleted as they are

potentially correlated. This is the same

reason why primes are used in the first place:

to minimize potential correlation between

sequences created by different primes.

To obtain the necessary Halton draws,

one N × R + 10 Halton sequence, with cor-

responding dimension, is drawn. To obtain

individual specific sequence, the first the

first 10 results are discarded, then, the first

R values correspond to the first individual,

the second R to the second, et cetera. This

way, no correlation between simulation errors

across individuals is present. As the values

generated by the Halton sequence are on the

domain [0,1), the values are transformed by

the inverse CDF of the distribution p(βi | θ).

3.2.3 Bayesian Cubature

To transform the problem of estimating Equa-

tion (4) into a Bayesian problem, instead of see-

ing Pi as being solely random as choice proba-

bility, the outcome of the integral itself is also

random for a given θ and X. This might not

be an intuitive approach, but it is inline with

Bayesian thinking. In this case, uncertainty

rises from the impossibility of being able to

evaluate Si(βi) at every single point. For ease

of notation, let Si denote Si(βi). As Pi depends

on Si, a prior is first placed on Si. Combining

this with known samples, a posterior of Pi is

obtained. The known samples are the follow-

ing set: Ωi = {(βir, Si(βir)) | r = 1 . . . R} The

most straightforward way of putting priors over

functions, is through Gaussian Processes. For

a Gaussian prior, the joint distribution of Si

for the draws {β}Rr=1 is defined as follows:

Si = (Si(βi1), . . . , Si(βiR))T ∼ N(0, C), (9)
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where the mean of the prior is set to zero, with-

out loss of generality (Briol et al., 2019). C can

be any covariance function. By putting a prior

over Si, the posterior distribution δ(Si | Ωi)

has the following posterior mean and covari-

ance function, (Rasmussen and Ghahramani,

2003).

mi(Si | Ω) = E[Si | Ωi]

=

∫
Siδ(Si | Ωi)dSi

= c(βi, Bi)C
−1Si(Bi)

Vi(Si | Ωi) = c(βi, β
′
i)− c(βi, Bi)C−1c(Bi, βi),

here, Bi = (βi1 . . . βiR), c(Bi, Bi) = C

with entries Cpq = c(βip, βiq) and

c(βi, Bi) = (c(βi, βi1), . . . , c(βi, βiR)). It

is important to note that here βi is an un-

known input variable, and βir is a drawn and

known input variable.

To calculate the expected value of Pi, Pi

is defined as: Pi = u(Si | Ω). Where u is a lin-

ear projection, (Rasmussen and Ghahramani,

2003). Then, with the help of theorem 5.2.1

in chapter 5.2 of Bain and Engelhardt (1992),

the expected value of Pi yields the following

result.

E[Pi] = E[u(Si | Ω)] (10)

=

∫
u(Si | Ω)δ(Si | Ω)dSi

=

∫ ∫
Sip(βi | θ)dβiδ(Si | Ωi)dSi

=

∫ (∫
Siδ(Si | Ωi)dSi

)
p(βi | θ)dβi

=

∫
mi(Si | Ω)p(βi | θ)dβi

=

∫
c(βi, Bi)p(βi | θ)dβiC−1Si(Bi)

= zC−1Si(Bi). (11)

The obtained result can be in closed form if

the kernel mean (
∫
c(βi, Bi)p(βi | θ)dβi), also

called the representer of integration can be ob-

tained in closed form and can thus encom-

pass prior knowledge about the covariance, (Xi

et al., 2018). To obtain P̂i, the mode of the

posterior is used. As the Gaussian prior is a

conjugate prior, the posterior is also Gaussian

and for a Gaussian the mode equals the mean

thus P̂i = E[Pi]. Using this result, the Bayesian

cubature rule is defined as follows:

P̂i = E[Pi] = zC−1Si(Bi)

=
R∑
r=1

wrSi(βi), (12)

where w =
∫
c(βi, Bi)p(βi | θ)dβiC−1 = zC−1.

This result becomes Bayesian Monte Carlo

when the observations or samples or states

{βi}Rr=1 are generated using pseudo-random

sequences, Bayesian Quasi-Monte Carlo when

the states are generated using quasi-random

sequences, or Bayesian Markov Chain Monte

Carlo when the states are generated using

a Markov chain. Xi et al. (2018) suggests

the use of the Matérn covariance function

as kernel. For the sake of simplicity, this

paper follows the methods used in Rasmussen

and Ghahramani (2003) with quasi-random

sequences, which will now be explained.

Rasmussen and Ghahramani use the following

Gaussian kernel: N(ar = βir, A = (v20, . . . , v
2
R)

and the following following covariance func-

tion:

Cpq = Cov(Si(βip), Si(βiq))

= v0

D∑
d=1

(βdip − βdiq)2

vd
, (13)
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where D is defined as follows; βir ∈ RD. v are

the hyper parameters of the Gaussian process.

The optimization of the hyper parameters are

discussed in depth by Williams and Rasmussen

(1996), but for this paper v = 1. Rasmussen

and Ghahramani (2003) obtains the following

analytical result for this kernel when p(βi | θ)
is also Gaussian. This result is the same as

the Bayesian-Hermite quadrature in O’Hagan

(1991). Let p(βi | θ) ∼ N(k = θµ,K =

diag(θ2σ), then z in Equation (11) is:

zr = v0| A−1K + I |−
1
2×

exp(−0.5(a− k)T(A+K)−1(a− b)). (14)

V[Pi] can be obtained in a similar way, (Ras-

mussen and Ghahramani, 2003). In this paper

emphasise is placed on the derivation of the

expected value as that is used to estimate Pi.

V [Pi] = v0| 2A−1K + I |−
1
2 − zTC−1z (15)

Finally, for the Bayesian cubature method used

in this paper, the states {βir}Rr=1 are generated

using Halton sequences as, according to section

4.2, they will prove to be superior to pseudo-

random sequences.

3.2.4 Parameter Estimation II

In section 3.1.3 the log-likelihood is introduced,

now the simulated log-likelihood is introduced.

To obtain the simulated log-likelihood, the es-

timated choice probabilities P̂i will be inserted

into equation (5).

L̂[θ | X] =
N∑
i=1

log P̂i (16)

To maximize the simulated log-likelihood

function, the L-BFGS algortihm will be used.

L-BFGS approximates the BFGS algorithm,

but uses limited computed memory. L-BFGS,

like BFGS, does not requires the specification

of a gradient. This method was chosen as the

gradient of the Bayesian Monte Carlo method

discussed in section 3.2.3 is hard to evaluate.

Granted, the fact that a optimizer which uses

a derivative cannot be used for BMC has

to be taken into account when comparing

integration methods.

Everything was programmed in Python,

relying mostly on the NumPy package for

calculations, and the minimize function from

the SciPy package to maximize the simulated

the log-likelihood.

4 Simulation study

4.1 DGP

To accurately compare the different numerical

integration methods, a data set is simulated.

The base dataset comes from Jain et al. (1994).

This dataset contains the purchase history

of 300 households in Springfield, Missouri,

who purchased different kinds of ketchup.

The integer after the brand name denotes the

bottle size. For every purchase event, three

variables were measured: display (if the item

was displayed prominently in the store at

the time of purchase), feature (if there was

a newspaper advertisement) and price of the

item. Display and feature are binary variables,

where 1 denotes that the event happened, and

0 if it did not. Price is the actual price for

the item sold, and the shelf price for the other

items. Let N denote the total sample size of

2798, and J = 4 the amount of choice specific

13



variables. Lastly, yit contains the purchased

item for each observation.

To accurately compare all estimation methods,

the y provided by Jain et al. (1994) is not used;

instead y will be generated by quasi-random

draws from a data generating process. For

each purchase occasion, the corresponding

utility and yit is calculated as follows:

Uijt = Xijtβi + εijt

Yit = argmaxj(Uijt). (17)

βi is the choice specific parameter, with β ∼
N(θ) to denote the DGP. εijt is i.i.d. extreme

value distributed and models the random ef-

fects inherent to the multinomial mixed logit.

To obtain estimates for θ, Standard Monte

Carlo simulation is used with 200 draws. For

the display variable the mean and standard

deviation are 1.4, 0.4, for the feature variable

(1.0, 0.1) and for the price −1.1, 0.6.

4.2 Results

To evaluate the numerical estimation meth-

ods, the methods are measured by their

ability to recover the true parameters and

choice probabilities for each alternative for

every purchase incidence, and computation

time. The first two are compared using

their root mean squared error (RMSE) and

mean absolute percentage error (MAPE). The

computation time is the time it takes one

method to compute all choice probabilities for

every individual. The amount of operations

needed would have been less dependent on

computational power, except, to speed up the

calculations, the Python package ’Numba’

was used. This made it difficult to obtain

the precise amount of operations needed to

optimize one mixed logit model. To combat

the dependency on local computational power

and obtain more reproducible results, the

computation times were obtained using the

free online cloud service Google Colab.

This results in four performance measures and

additionally the computation time, for every

estimation method. To compute the ’true’

probability benchmark, a Quasi-Monte Carlo

simulation with 20.000 draws was done. There

is, of course, still some error present in these

probabilities, as it is still an estimation. How-

ever, the expected error will be small enough

that the results can serve as a benchmark.

The results of the simulation study can be

found in Table 1.

Firstly, Table 1a illustrates that increasing

the amount of draws increases the estimation

precision and 2000 draws is significantly better

than fewer draws. However, at the same time,

increasing the amount of draws also increases

the computation time. Both error measures

for the ability to retrieve the true parameters

and choice probabilities decrease each from

250 to 2000 draws with roughly 20%, and

60% respectively, whilst the computation time

increases with 444%.

Turning now to the estimation results of

the QMC method in Table 1b, it is evi-

dent that that QMC with Halton draws

outperforms SMC. As few as 100 Halton

draws obtains better parameter estimates

and more accurate choice probabilities than

1000 pseudo-random draws. Additionally, 75

14



Table 1: Maximum simulated log-likelihood estimation results

(a) Estimation results for Standard Monte Carlo (SMC)

Evaluation Performance SMC

basis measure Number of draws

250 500 1000 2000

Parameters MAPE 15.98 15.55 14.79 12.77

RMSE (×10−2) 4.09 3.99 3.62 3.17

Choice MAPE 2.35 1.63 1.25 0.84

probabilities RMSE (×10−3) 5.06 3.36 2.59 1.74

Computation time 0.55 0.80 1.66 2.99

(b) Estimation results for Quasi Monte Carlo (QMC)

Evaluation Performance QMC

basis measure Number of draws

25 50 75 100 125

Parameters MAPE 13.17 14.45 16.41 13.78 11.49

RMSE (×10−2) 4.55 3.92 4.02 3.42 2.85

Choice MAPE 2.16 1.55 1.07 0.69 0.58

probabilities RMSE (×10−3) 3.65 2.73 1.88 1.21 0.95

Computation time 0.19 0.25 0.32 0.36 0.41

(c) Estimation results for Bayesian Quasi Monte Carlo (BQMC)

Evaluation Performance BQMC

basis measure Number of draws

10 15 20 25 30

Parameters MAPE 54.61 36.72 50.89 49.68 36.22

RMSE (×10−2) 41.14 26.79 26.70 25.86 21.89

Choice MAPE 48.95 43.32 36.54 32.52 30.95

probabilities RMSE (×10−3) 176.55 162.99 145.15 132.42 126.23

Computation time 0.40 0.59 0.80 1.09 1.31

This table contains the maximum simulated log-likelihood results for SMC, QMC and BQMC. The performance

measures evaluate each model’s ability to retrieve the model parameters or choice probabilities. MAPE is the

mean absolute percentage error, RMSE the root mean squared error. Computation time is measured in seconds.
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Halton draws provide more accurate choice

probabilities than 1000 pseudo-random draws,

and 100 Halton draws better than both 1000

and 2000 pseudo-random draws. Moreover,

QMC is much faster across the board. Adding

more draws to increase the the accuracy of

QMC is significantly more attractive than for

SMC. Performing 125 draws instead of 25

decreases the error rates for the parameters

and choice probabilities each with roughly

60% (for the RMSE), and 70% respectively,

whilst the computation time increases with

112%. Comparing these results with the above

results from SMC, it is clear that QMC is not

only more efficient computation wise when

adding draws, but also more accurate for fewer

draws.

It is also surprising to see that the only

parameter MAPE for 25 draws is lower than

all draws but 125 draws. At the same time the

corresponding RMSE is higher than all other

draws, same for both choice probability mea-

sures. Furthermore, both parameter measures

for 75 draws do not follow the downward trend

expected. Bhat (2001) observes a similar

result for 100 draws when also estimating

three dimensional integrals.

In the final part of Table 1, Table 1c,

the results of the Bayesian cubature method

are found. The Bayesian cubature method

evaluated in this paper is the Bayesian Quasi-

Monte Carlo method, which uses Halton

sequences. What immediately can be observed

is that the results for BQMC do not stack up

against both QMC and SMC. All measures for

both the ability to retrieve the parameters and

choice probabilities are significantly worse. A

downward sloping trend of the performance

measures by adding more draws is observed.

However, when combining the initial error

and added computation time, increasing the

draws to approach the errors achieved by SMC

or QMC is not feasible. The computation

time for 50 draws is 4.7 seconds, and for

75 draws 8.13 seconds, which showcases the

computational burden of adding more points.

As with QMC with 25 draws, the param-

eter MAPE for 15 draws is significantly lower

than the expected, whilst the other measures

are inline with the other draws.

5 Discussion

When comparing the results for SMC and

QMC with a similar study, (Bhat, 2001),

the same downward trend in error measure

when adding draws is observed, as well as

the superiority of QMC with respect to SMC.

This is as expected as Halton draws are evenly

distributed across the sample space, and thus

would be a more efficient way of generating

draws for Monte Carlo simulation. The only

aberrant observations which do not adhere

to the statement that more draws equals

betters estimations, is the parameter MAPE

for 25 QMC draws and 15 BQMC draws, and

both parameters measures for 75 draws. The

phenomenon observed for 75 draws is also

observed for 100 draws in Bhat (2001). As

such, this will first be discussed.

This phenomenon can be explained due

to the way the Halton sequences for each indi-
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vidual are generated. Section 3.2.2 states that

to generate the necessary Halton sequence,

one D dimensional N × R + 10 sequence

is generated, and that the first R values

belong to the first individual, et cetera. A

consequence of this sampling scheme is that

when performing R + 20 draws instead of

R, each individual does not ’keep’ their old

R draws, with 20 new draws added. To the

contrary, a new set of values is assigned to

every individual. This results in the possibility

that for a certain amount of draws, less draws

could result in a better estimation opposed

to more draws with new and different values.

However, this is a minor aberration and should

not imply a causation between more draws

and less accurate estimations, (Bhat, 2001).

The second aberrant observation, the counter

intuitive observation that the parameter

MAPE for 25 QMC and 15 BQMC draws

does not adhere to the general trend of more

draws equals more precise estimations whilst

the RMSE does, could be attributed to a

fault inherent to the MAPE measure. One

critique for the MAPE is that is it asymmetric

when results are strictly positive, which is

the case for the predicted standard errors,

(Makridakis, 1993). A consequence of this is

that if a prediction is lower than the actual,

there is a upper bound for the maximum error,

100%, as the lowest worst prediction is 0. To

the contrary, there is no upper bound for the

maximum error for prediction higher than

the actual. This results in a larger penalty

for predictions which are larger than the true

value. To give a small example, let x = 0.5

and x̄ = 0.1. When x is the true value, the

MAPE equals 100% | 0.5−0.10.5 |= 80%. Suppose

now that x̄ is the true value. In this case,

the MAPE equals 100% | 0.1−0.5
0.1 |= 400%.

The same difference results in two different

errors. Especially when keeping in mind that

the parameter RMSE does follow the general

trend, the aberrant MAPE value for both 25

QMC and 15 BQMC draws, does not indicate

a different general trend and can be ignored.

In this section, the BQMC results are dis-

cussed. Although the method is theoretically

sound, it does not deliver adequate results

in practice. Besides having large estimation

errors, there is also a large computational

burden for adding draws to obtain more

accurate estimates. The major limitation

of this study was that the BQMC method

discussed uses a simple Gaussian kernel mean,

with no hyper parameter tuning. State of

the art results for a random utility model

provided by Briol et al. (2019) case study #3

were obtained with a more complex kernel,

which utilises prior knowledge about the co-

variance. Furthermore, Si itself is not difficult

to evaluate, so drawing many samples is not

computationally expensive and putting a prior

on Si might over complicate calculations and

unnecessarily simplify Si. Moreover, every

single choice probability is estimated, instead

of a joint distribution. As such, single errors

in choice probabilities accumulate. It would

be interesting to see how the method in Xi

et al. (2018), which focuses on estimating

multiple integrals instead of a single integral

and thus might be more suited to the mixed

logit model, would perform.
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A benefit of employing any Bayesian method

is that it allows for statistical inference of

the estimation result. However, the Bayesian

cubature method employed in this paper

estimates every single choice probability sep-

arately, instead of L[θ | X] itself. Effort was

made to obtain this probability distributions

from the separate choice probabilities, but

the resulting value proved to be impossible to

analyze, or because of the log. This resulted in

not being able to analyze the estimates given

by BQMC.

Does this mean that there is no place for

BQMC when estimating the mixed logit

model? Not necessarily. Bayesian cubature is

a broad method, and the Bayesian cubature

method used in this paper is the most simple

variant. Bayesian cubature with a kernel more

suited for the mixed logit would probably

increase the estimation results significantly,

and more resemble the results obtained by

Briol et al. (2019) in case study #3. But,

for the BQMC method used in this paper,

estimation results were not competitive with

both Monte Carlo methods.

One can raise the question why anyone

would even consider applying probabilistic

integration and a Bayesian cubature method

to a mixed logit model. The argument that

Monte Carlo is unsound is more fundamen-

tal in nature, but might not gain practical

footing. Especially when easier Monte Carlo

based methods with quasi-random obtain

accurate results efficiently. Moreover, the

different quasi-random sequences mentioned

in 2.1 perform even better than the Halton

sequence used in this paper. The state of

the art results obtained by these methods,

are hard to approach for a standard mixed

logit model. But how would these methods

perform when the distribution from which the

coefficients are drawn, is not easy to compute.

In this case, drawing 50 (computation time

of 4.7 seconds)or even 25 draws might be

computationally too expensive. In such a

case, Bayesian cubature for multiple integrals

with a kernel more suited for the mixed logit

might outperform the Monte Carlo methods,

as it theoretically needs much less draws to

obtain sufficient estimates. Perhaps such a

Bayesian cubature method can even compete

with Monte Carlo methods for a standard

mixed logit. This would be a fruitful area for

further work.

6 Conclusion

This paper investigated whether probabilistic

integration can be applied to the mixed logit

model, and how it stacks up against tradi-

tional estimation methods. These traditional

methods are standard Monte Carlo with

pseudo-random draws and Quasi-Monte Carlo

with quasi-random Halton sequences. First, a

more fundamental argument was made about

the elementary limitations of Monte Carlo

methods, after which, the practical results

are discussed. Of these well known methods,

QMC with Halton sequences proves to be the

best estimation method. Not only does it need

fewer points to obtain more accurate results,

computationally wise it is also more efficient.

The probabilistic integration method used in

this paper is a Bayesian cubature method with
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a Gaussian kernel, which is also known as the

Bayesian-Hermite quadrature method, but

instead of states drawn using pseudo-random

sequences, quasi-random Halton sequences are

used. This method is also known as Bayesian

Quasi Monte Carlo with a Gaussian kernel.

For BQMC, a downward trend for adding

draws is observed. Nevertheless, the esti-

mation results can not compete with the

results obtained by the traditional estimation

methods. Additionally, the added computa-

tional burden of adding draws to decrease

the estimation error is too large. Does this

mean there is no place for Bayesian cubature

for estimating the mixed logit model? At

least not for the mixed logit model described

in this paper. However, for different kind of

mixed logit models, more advanced Bayesian

cubature might yet prove to be competitive

with Monte Carlo methods.

A Code overview

To give insight in how the results are

obtained, and to increase reproducibil-

ity, a quick over view of the Python

code used is given. The github reposi-

tory can be found by following this link:

https://github.com/njajanssen/Thesis.

• To back-end of the code can be found

in the mmnl.py file. This contains the

main class which is used to perform all es-

timations. For each estimation method,

the MMNL class contains functions to

perform the necessary calculations. To

start the estimation process, provide the

constructor with a set of explanatory,

dependent variables, amount of draws,

amount of choice specific variables, and

the method used. To start the optimiza-

tion, simply call the solver method.

• The qmc.py file contains the QMC class

which generates the necessary Halton

draws.

• To calculate the results, the result calc

jupyter notebook is used. Simply load the

dgp, set the amount of draws and estima-

tion method, and which Y ’s from the dgp

have to be used by stating a start and end

value.

• In order to analyse the results, the re-

sult analyse notebook is used. This con-

tains functions to load the obtained re-

sults, and calculate the performance mea-

sures.

• The results folders for each method con-

taining all obtained results.

• In the data folder two more notebooks can

be found. The dgp notebook, as the name

suggest, creates the DGP. The data note-

book was used to load the raw data ob-

tained through R and pickle the data as a

NumPy array. The folder also contains all

data used.
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Poincaré, H. (1896). Calcul des probabilitées.
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holmsmässan, Stockholm Sweden. PMLR.

21


	Introduction
	Literature
	(Mixed) Multinomial Logit
	Monte Carlo Simulation
	Bayesian Monte Carlo

	Methodology
	Model Specification
	Multinomial logit
	Mixed Multinomial Logit
	Parameter Estimation I

	Numerical Integration
	Standard Monte Carlo
	Quasi-Monte Carlo
	Bayesian Cubature
	Parameter Estimation II


	Simulation study
	DGP
	Results

	Discussion
	Conclusion
	Code overview

