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2.1.1 The Fréchet case . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Serial dependence case . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Peak-over-threshold approach 7
3.1 I.i.d. case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1.1 Motivating the estimator . . . . . . . . . . . . . . . . . . 7
3.1.2 Conditions for asymptotic theory . . . . . . . . . . . . . . 8
3.1.3 Auxiliary lemmas . . . . . . . . . . . . . . . . . . . . . . . 9
3.1.4 Main result . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 Serial dependence case . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2.1 Motivating the estimator . . . . . . . . . . . . . . . . . . 12
3.2.2 Conditions for asymptotic theory . . . . . . . . . . . . . . 13
3.2.3 Auxiliary lemmas . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.4 Main result . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Block maxima method 18
4.1 Maximum likelihood estimation . . . . . . . . . . . . . . . . . . . 19
4.2 Motivating the estimator . . . . . . . . . . . . . . . . . . . . . . . 20
4.3 I.i.d. case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.3.1 Conditions for asymptotic theory . . . . . . . . . . . . . . 21
4.3.2 Auxiliary lemma . . . . . . . . . . . . . . . . . . . . . . . 21
4.3.3 Main result . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.4 Serial dependence case . . . . . . . . . . . . . . . . . . . . . . . . 24
4.4.1 Conditions for asymptotic theory . . . . . . . . . . . . . . 24
4.4.2 Auxiliary lemma . . . . . . . . . . . . . . . . . . . . . . . 25
4.4.3 Main result . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.4.4 Discussion on conditions . . . . . . . . . . . . . . . . . . . 26

5 Comparison between the POT approach and the BM method 30
5.1 I.i.d. case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.2 Serial dependence case . . . . . . . . . . . . . . . . . . . . . . . . 32

5.2.1 Autoregressive model . . . . . . . . . . . . . . . . . . . . 33
5.2.2 Moving average model . . . . . . . . . . . . . . . . . . . . 37

6 Conclusion 40

References 41

2



1 Introduction
Natural disasters such as earthquakes and floods often have a catastrophic soci-
etal impact. Modeling and analyzing such events is thus essential, particularly
for risk management. For example, risk measures are used to determine the
height of the dikes in the Netherlands of which approximately 30% is below sea
level. In environmental risk management, a common used risk measure is the
so-called return level defined as follows. Let {X1, X2, ...} be a sequence of obser-
vations. Denote Mm = max(X1, ..., Xm) as the maximum over m observations.
Let Fm(x) = P(Mm ≤ x). For y ≥ 1, the return level Rm,y is the quantile
satisfying

P (Mm > Rm,y) = 1/y. (1)

In other words, the y-return level is defined as the 1/y-th quantile of Fm,

Rm,y = F←m (1− 1/y) = inf{x ∈ R : Fm(x) ≥ 1− 1/y}.

It will take on average y blocks of size m until encountering the first such block
whose maximum exceeds Rm,y. For example, the Dutch government sets a
return level for the dikes such that the sea level may only exceed this level once
in ten thousand years, on average. In this case yearly maxima are considered,
i.e. m = 365. Here, "once in ten thousand years" corresponds to y = 10000.
This thesis studies the estimation of the return level.

Estimating the return level relies on modeling the tail region of the distri-
bution function of the observations. Making statistical inference for the tail is
challenging due to the scarcity of data. Extreme value theory (EVT) offers a
solid theoretical basis and framework for such a purpose. Different from the
central limit theorem which studies the limit behavior of partial sums, extreme
value theory is concerned with the limit behavior of sample extremes. Proba-
bilistic EVT was developed by Fréchet (1927), Fisher and Tippett (1928) and
von Mises (1936). The limit theory was completed by Gnedenko (1943) and the
statistical theory was initiated by Pickands (1975).

By examining data in an intermediate region close to the tail, extreme value
statistics exploit models to extrapolate intermediate properties to the tail re-
gion. Two fundamental approaches in classical extreme value statistics are the
peak-over-threshold (POT) approach and the block maxima (BM) method. The
POT approach consists of selecting the observations in a sample that exceed a
certain high threshold. Such excesses are approximately generalized Pareto dis-
tributed (Pickands, 1975). The BM method consists of dividing the observed
sample into non-overlapping blocks of equal size and restricting attention to
the largest observation in each block (Gumbel, 1958). The block maxima fol-
low approximately an extreme value distribution. Both methods often assume
independent and identically distributed (i.i.d.) observations. However, this as-
sumption is usually violated in practice since many financial and environmental
data typically exhibit serial dependence.

The aim of this thesis is to determine which of the two methods is theoret-
ically better for estimating the return level both for i.i.d. observations and for
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observations which exhibit serial dependence. For both dependence structures
and both methods, we take the same steps. First, we motivate the estimator for
the return level. Then, we present the (regularity) conditions and auxiliary lem-
mas necessary for the asymptotic theory and prove the asymptotic normality for
the return level estimator. Finally, we provide a theoretical comparative study
of these methods for specific time series models by explicitly calculating the
asymptotic variances for the return level estimators based on the two methods.

Under independence, it is a general consensus among researchers in extreme
value statistics that the POT approach makes use of extreme observations more
efficiently than the BM method. The major heuristic reason is that the POT
approach uses all large observations, while the BM method may miss some
large observations falling into the same block (Bücher & Zhou, 2018). On the
other hand, the available data often consists of block maxima alone, e.g. yearly
maxima of a sea level. Then a researcher might only rely on the BM method.
Under serial dependence, both methods are still valid; only the asymptotic
variance of the estimators may differ from that in the i.i.d. case. Estimators
based on the POT approach usually have a higher asymptotic variance (Drees,
2003), whereas the asymptotic variance of estimators based on the BM method
stays the same, because the block maxima are usually distant from each other
with very weak dependence and thus can be regarded as i.i.d (Bücher & Segers,
2018b).

Our theoretical comparison shows that both under independence and serial
dependence, the BM method outperforms the POT approach in terms of having
a lower asymptotic variance. This paper contributes to the existing literature
of extreme value statistics by making at least three theoretical improvements.
Firstly, for the POT approach, we reveal that the asymptotic distribution of the
return level estimator is not dominated by the asymptotic distribution derived
from estimating the extreme value index. This is often the case for estimating
other tail related characteristics such as high quantiles; see, for example, The-
orem 4.2 in De Haan, Mercadier, and Zhou (2016) and Theorem 2.2 in Drees
(2003). We derive the joint asymptotic distribution of the respective estimators
for different components of the return level estimator as shown in the proof
of Theorem 3.4 and Theorem 3.9. Secondly, for the BM method under serial
dependence, a difficult condition in Bücher and Segers (2018b) needs to be veri-
fied to prove the asymptotic normality for the return level estimator. In Section
4.4.4, we provide a different, slightly stronger, condition which is easier verifi-
able. Thirdly, to the best of our knowledge, there is no theoretical comparison
between the BM method and the POT approach for return level estimation yet.

The paper is organized as follows. Section 2 reviews the fundamentals of
EVT. Section 3 and 4 study the POT approach and the BMmethod respectively.
Section 5 provides a theoretical comparison between the POT approach and
the BM method for specific time series models. These sections all make the
distinction between a simplified model with i.i.d. observations and a general
model with serial dependent observations. Section 6 concludes the paper.
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2 Extreme value theory
We introduce EVT under the assumption of i.i.d. observations (Section 2.1).
Next, we present EVT for time series (Section 2.2).

2.1 I.i.d. case
Let {X1, X2, ...} be an i.i.d. sequence of random variables with a common
distribution function F . EVT studies the limit behavior of sample extremes
Mm = max(X1, ..., Xm) and relies on the following fundamental domain of at-
traction condition: there exist a constant γ ∈ R and sequences am > 0 and bm,
m ∈ N, such that for all 1 + γx > 0,

lim
m→∞

P
(
Mm − bm

am
≤ x

)
= lim
m→∞

Fm(amx+ bm) = Gγ(x), (2)

where Gγ(x) = exp
(
−(1 + γx)−1/γ

)
is called the generalized extreme value

(GEV) distribution. The limit appears unnecessarily specific, but it is in fact
the only possible non-degenerate limit of the expression on the left-hand side if
am and bm are properly chosen (Fisher and Tippett (1928), Gnedenko (1943)).
If (2) holds, then F is said to be in the domain of attraction of Gγ , denoted as
F ∈ D(Gγ).

The shape parameter of the GEV distribution, γ, is called the extreme value
index. The GEV distribution subsumes three types of distributions depending
on the sign of γ; the Weibull distribution (γ < 0), the Gumbel distribution
(γ = 0) and the Fréchet distribution (γ > 0, Fréchet (1927)). If F ∈ D(Gγ)
with γ > 0, then F is called a heavy-tailed distribution.

2.1.1 The Fréchet case

In this research, we only consider distributions in the Fréchet domain of at-
traction (γ > 0) because financial data usual exhibits heavy tails (Jansen &
De Vries, 1991). The domain of attraction condition for the Fréchet case can
be represented in different ways. We state the following two theorems where
U := (1/(1− F ))← denotes the left-continuous inverse function of 1/(1− F ).

Theorem 2.1 (Corollary 1.2.10, de Haan and Ferreira (2007)). Suppose that
F ∈ D(Gγ) with γ > 0. Then there exists a positive number γ such that

lim
t→∞

U(tx)

U(t)
= xγ , (3)

for x > 0.

Theorem 2.2 (Corollary 1.2.4, de Haan and Ferreira (2007)). Suppose that
F ∈ D(Gγ) with γ > 0. Then for x > 0,

lim
m→∞

P
(
Mm

am
≤ x

)
= lim
m→∞

Fm(amx) = exp
(
−x−1/γ

)
, (4)
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with am = U(m).

In statistical analysis, the peak-over-threshold approach (Section 3) is moti-
vated by (3) and the block maxima method (Section 4) is motivated by (4).

2.2 Serial dependence case
Let {X1, X2, ...} be a strictly stationary time series with a common distribution
function F . That is, for any n ∈ N and h, i1, ..., in ∈ Z, the distribution of
{Xi1+h, ..., Xin+h} is the same as the distribution of {Xi1 , ..., Xin} (Bücher &
Segers, 2018b). Under serial dependence, the first equality in (4) may not hold.
Hence, more sophisticated arguments must be found to establish limiting theory
similar to the i.i.d. case. We state the following theorem.

Theorem 2.3 (Leadbetter (1983), Bücher and Zhou (2018)). Suppose that
F ∈ D(Gγ) with γ > 0. Assume that mild conditions on the serial dependence
structure (known as D(un)-conditions) are met. Then there exists a constant
θ ∈ [0, 1] such that

lim
m→∞

P
(
Mm

am
≤ x

)
= exp

(
−θx−1/γ

)
, (5)

for all x ∈ R and with am = U(m).

The constant θ is called the extremal index and can be interpreted as a sum-
mary measure for the strength of serial dependence between extremes (Bücher
& Segers, 2018a). For an i.i.d. process θ = 1 and if θ → 0, there is increasing
dependence between the extremes of the process.

By using (4) and (5), we obtain that as m→∞,

P
(
Mm

am
≤ x

)
∼ P

(
M̃bmθc

am
≤ x

)
, (6)

for all x ∈ R and where M̃bmθc = max(X̃1, ..., X̃bmθc) with X̃i, i ∈ N, an
associated i.i.d. series with the same distribution function F .1 Intuitively, the
maximum of m observations from the stationary series with extremal index θ
behaves like the maximum of bmθc < m observations from the associated i.i.d.
series (McNeil, 1998). Hence, the serial dependence between large observations
reduces the effective sample size by the factor θ (Drees, 2003).

If θ > 0, then letting ãm = amθ
γ and by using (5), we obtain that

lim
m→∞

P
(
Mm

ãm
≤ x

)
= exp

(
−θ(θγx)−1/γ

)
= exp

(
−x−1/γ

)
, (7)

for every x ∈ R. Notice that, unless θ = 1, ãm is different from am.
1Here cm ∼ dm means cm/dm → 1 as m → ∞, and bxc denotes the largest integer less

than or equal to x.
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3 Peak-over-threshold approach
We discuss the peak-over-threshold approach for estimating the return level.
Both under a simplified model without serial dependence (Section 3.1) and under
a general model with serial dependence (Section 3.2), we can express the return
level as a high quantile. The POT approach provides an extrapolation method
to estimate a high quantile and consequently leads to an estimator for the return
level.

For both the i.i.d. case and the serial dependence case, we start by moti-
vating the estimator for the return level. Then we present the conditions and
auxiliary lemmas necessary for the asymptotic theory. Finally, we state and
prove the main theorem on the asymptotic normality of the estimator for the
return level.

3.1 I.i.d. case
Let {X1, X2, ...} be an i.i.d. sequence of random variables with a common
distribution function F . We assume that this distribution function belongs to
the Fréchet domain of attraction (γ > 0).

3.1.1 Motivating the estimator

The return level, Rm,y, refers to a quantile of Fm(x) = P(Mm ≤ x), where
Mm = max(X1, ..., Xm). From (1), we deduce that

F (Rm,y) = (1− 1/y)1/m. (8)

Hence, the return level is equal to the 1− (1− 1/y)1/m-th quantile of F ,

Rm,y = x1−(1−1/y)1/m , (9)

where xα = F−1(1− α) denotes the α-th quantile.
Recall the domain of attraction condition in (3) and notice that U(n) =

x1/n. The limit relation (3) determines how a high quantile, say U(tx), can be
extrapolated from an intermediate quantile U(t) (De Haan et al., 2016). By
using (3), we obtain

xα = F−1(1− α) ≈ F−1
(

1− k

n

)(
k

nα

)γ
≈ Xn−k,n

(
k

nα

)γ̂
=: x̂α, (10)

where γ̂ denotes a suitable estimator of the extreme value index γ and X1,n ≤
X2,n ≤ · · · ≤ Xn,n are the order statistics of {X1, ..., Xn}. Notice that x̂α is
exactly a Weisman-type estimator (Weissman, 1978). To justify the first ap-
proximation k/n must be small. On the other hand, k should be sufficiently
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large such that the (n − k)-th order statistic Xn−k,n estimates the intermedi-
ate quantile F−1(1 − k/n) well (Drees, 2003). We thus require that k is an
intermediate sequence, that is, k →∞ and k/n→ 0 as n→∞.

In the Fréchet case, Hill (1975) proposes for estimating γ the so-called Hill
estimator

γ̂H :=
1

k

k∑
i=1

logXn−i+1,n − logXn−k,n, (11)

where k is an intermediate sequence. The Hill estimator is consistent under the
domain of attraction condition (3) (see de Haan and Ferreira (2007), Theorem
3.2.2).

From (9), a suitable estimator for the return level is an estimator for the
high quantile. By using (10), we propose the following estimator for the return
level

R̂m,y := Xn−k,n

(
k

n(1− (1− 1/y)1/m)

)γ̂H
, (12)

where γ̂H is the Hill estimator defined in (11) and k is an intermediate sequence.

3.1.2 Conditions for asymptotic theory

We present the conditions for establishing the asymptotic normality of the return
level estimator (12) in Section 3.1.4. We need a second order reinforcement of
the domain of attraction condition (3) in combination with a growth restriction
on the number of blocks.

Second order condition (Theorem 2.3.9, de Haan and Ferreira (2007)) Sup-
pose that there exist a positive or negative function A with limt→∞A(t) = 0
and a real number ρ < 0 such that

lim
t→∞

U(tx)
U(t) − x

γ

A(t)
= xγ

xρ − 1

ρ
, (13)

for all x > 0.
The second order condition quantifies the speed of convergence in (3). The

parameter ρ controls the speed of convergence for the return level estimator
towards a normal distribution.

Condition on k Suppose that the intermediate sequence k satisfies

lim
n→∞

√
kA
(n
k

)
= 0. (14)

The condition (14) imposes an upper bound on the speed at which k goes
to infinity. As it appears below, it assumes away the asymptotic bias for the
estimator for the return level.
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3.1.3 Auxiliary lemmas

The following three lemmas are useful in the proof of the asymptotic normality
of the estimator for the return level (Theorem 3.4).

Lemma 3.1 (Theorem 3.2.5, de Haan and Ferreira (2007)). Suppose that
{X1, X2, ...} is an i.i.d. sequence of random variables with a common distribu-
tion function F . Assume that F satisfies the second order condition (13) with
parameters γ > 0 and ρ ≤ 0. Suppose that the intermediate sequence k satisfies
(14). Then as n→∞,

√
k(γ̂H − γ)

d−→ N
(
0, γ2

)
.

Lemma 3.2. Suppose that k = bn/mc. Assume that both m→∞ and k →∞
as n→∞. Then as n→∞,

k

n
(
1− (1− 1/y)1/m

) ∼ 1

− log(1− 1/y)
.

Proof. Consider the expansion

(1− 1/y)1/m = exp

(
log(1− 1/y)

1

m

)
.

Because ex ∼ 1 + x as x→ 0, we get that as n→∞,

(1− 1/y)1/m ∼ 1 +
log(1− 1/y)

m
.

Hence,
n
(

1− (1− 1/y)1/m
)
∼ −k log(1− 1/y),

and the lemma is proved.

Lemma 3.3 (Theorem 2.4.8, de Haan and Ferreira (2007)). Suppose that
{X1, X2, ...} is an i.i.d. sequence of random variables with a common distri-
bution function F . Let X1,n ≤ X2,n ≤ ... ≤ Xn,n be the order statistics of
{X1, ..., Xn}. Assume that F satisfies the second order condition (13) with pa-
rameters γ > 0 and ρ ≤ 0. Suppose that the intermediate sequence k satisfies
(14). Then there exists a sequence of Brownian motions {Wn(s)}s≥0 such that
as n→∞,

sup
0<s≤1

sγ+1/2+ε

∣∣∣∣∣√k
(
Xn−bksc,n

U
(
n
k

) − s−γ
)
− γs−γ−1Wn(s)

∣∣∣∣∣ P−→ 0,

for each ε > 0.
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3.1.4 Main result

The asymptotic normality of the return level estimator (12) is given by the
following theorem.

Theorem 3.4. Suppose that {X1, X2, ...} is an i.i.d. sequence of random vari-
ables with a common distribution function F . Assume that F satisfies the second
order condition (13) with parameters γ > 0 and ρ < 0. Suppose that the inter-
mediate sequence k satisfies (14). Then as n→∞,

√
k

(
R̂m,y
Rm,y

− 1

)
d−→ N

(
0,
(
1 + log2(cy)

)
γ2
)
,

with cy = − log(1− 1/y).

Proof. Consider the expansion

R̂m,y
Rm,y

=
Xn−k,n

(
k

n(1−(1−1/y)1/m)

)γ̂H
U(nk )

(
k

n(1−(1−1/y)1/m)

)γ ·
U(nk )

(
k

n(1−(1−1/y)1/m)

)γ
Rm,y

=: I1 · I2.

Rewrite I1 as

I1 =
Xn−k,n

U(nk )
·
(

k

n(1− (1− 1/y)1/m)

)γ̂H−γ
=: I11 · I12.

By taking s = 1 in Lemma 3.3, we get that as n→∞,

√
k

(
Xn−k,n

U
(
n
k

) − 1

)
− γWn(1)

P−→ 0.

Hence, √
k(I11 − 1)

d−→ B ∼ N (0, γ2),

where B = γWn(1). Rewrite I12 as

I12 = exp

 log
(

k
n(1−(1−1/y)1/m)

)
√
k

√
k(γ̂H − γ)

 .

From Lemma 3.1, we get that as n→∞,
√
k(γ̂H − γ)

d−→ Γ ∼ N
(
0, γ2

)
,

From the second proof of Theorem 3.2.5 in de Haan and Ferreira (2007), p. 76,
and by using (14), it follows that

Γ = γ

(∫ 1

0

s−1Wn(s)ds−Wn(1)

)
.

10



By using Lemma 3.2, we get that as n→∞,

log

(
k

n
(
1− (1− 1/y)1/m

))→ − log (− log(1− 1/y)) = − log cy.

According to the Cramér’s delta method (Cramér, 1946) and Slutsky’s theorem
(Slutsky, 1925), we get that as n→∞,

√
k(I12 − 1)

d−→ − log cyΓ ∼ N
(
0, log2(cy)γ2

)
.

We compute the covariance between Γ and B as follows

Cov (Γ, B) = Cov
(
γ

(∫ 1

0

s−1Wn(s)ds−Wn(1)

)
, γWn(1)

)
= γ2

(
Cov

(∫ 1

0

s−1Wn(s)ds,Wn(1)

)
− Cov (Wn(1),Wn(1))

)
= γ2

(∫ 1

0

s−1E (Wn(s)Wn(1)) ds− 1

)
= γ2

(∫ 1

0

s−1 min(s, 1)ds− 1

)
= 0.

Hence, and according to the Cramér’s delta method, we get that as n→∞,
√
k (I1 − 1)

d−→ B − log(cy)Γ ∼ N
(
0,
(
1 + log2(cy)

)
γ2
)
.

For I2, consider the expansion

√
kA
(n
k

) I2 − 1

A
(
n
k

) .
From Theorem 2.3.9 in de Haan and Ferreira (2007), we get that as n→∞,

I2 − 1

A
(
n
k

) → −1

ρ
. (15)

Combining (14) with (15), we get that as n→∞,
√
k(I2 − 1)→ 0.

The theorem is proved by combining the limit properties of the two terms in
the expansion. According to Cramér’s delta method, we get that as n→∞,

√
k

(
R̂m,y
Rm,y

− 1

)
d−→ N

(
0,
(
1 + log2(cy)

)
γ2
)
.
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3.2 Serial dependence case
Let {X1, X2, ...} be a strictly stationary time series with a common distribution
function F . We assume that this distribution function belongs to the Fréchet
domain of attraction (γ > 0).

3.2.1 Motivating the estimator

Under serial dependence, the identity (8) may not hold. This section shows that
we are still able to express the return level as a high quantile. However, the
probability level is related to the extremal index (McNeil, 1998).

By using (1) and (6), we obtain as m→∞,

F (Rm,y) ∼ (1− 1/y)1/(mθ).

Hence, the return level is approximately equal to the 1−(1−1/y)1/(mθ)-quantile
of F ,

Rm,y ≈ x1−(1−1/y)1/(mθ) . (16)

For the estimation of the return level, we need an accurate estimator for the
extremal index θ.

Regarding the estimation of the extremal index, a large variety of estimators
has been studied in the literature (see Bücher and Zhou (2018), Section 3.2, for
an overview). We use the estimator proposed in Berghaus and Bücher (2018)
which is defined as follows. Suppose that we observe a stretch of length n
from the time series {X1, X2, ...}. Divide the sample into k blocks of length
m. For simplicity, we assume that n = k ·m (otherwise, the final block would
consist of less than m observations and should be omitted). For i = 1, ..., k,
let Mmi = max(X(i−1)m+1, ..., Xim) denote the maximum of the i-th block of
observations. Then, the estimator for the extremal index is given as

θ̂B =

(
1

k

k∑
i=1

Ẑni

)−1
, (17)

where Ẑni = m(1− F̂n(Mmi)) and F̂n(x) = 1
n

∑n
s=1 1{Xs≤x} denotes the empir-

ical distribution function of {X1, ..., Xn}.
From (16), an estimator for the high quantile is still a suitable estimator

for the return level. By using (10), we propose the following estimator for the
return level

R̂m,y := Xn−k,n

(
k

n(1− (1− 1/y)1/(mθ̂B))

)γ̂H
, (18)

where γ̂H is the Hill estimator defined in (11), θ̂B is the estimator for the extremal
index defined in (17) and k is an intermediate sequence.
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3.2.2 Conditions for asymptotic theory

We present the regularity conditions for establishing the asymptotic normality of
the return level estimator (18) in Section 3.2.4. The serial dependence structure
follows from the so-called β-mixing conditions. The β-mixing conditions have
been introduced by Rootzén (1995), Drees (2000), Drees (2003) and Rootzén
(2009) as follows. The sequence {X1, X2, ...} is called β-mixing (or absolutely
regular) if as `→∞,

β(`) := sup
j∈N

E

(
sup

E∈B∞j+`+1

∣∣∣P(E|Bj1)− P(E)
∣∣∣)→ 0,

where Bj1 and B∞j+`+1 denote the σ-fields generated by (Xi)1≤i≤j and (Xi)j+`+1≤i,
respectively. The coefficients β(`) are called the β-mixing constants of the se-
quence.

The following first three conditions are condition (C1), (11) and (13) in Drees
(2003). The last two conditions are a slightly adaption of conditions (C4) and
(C5) in Drees (2003). In fact, they imply that conditions (C4) and (C5) are
correct (see De Haan et al. (2016), Section 3).

Regularity conditions Suppose there exist a constant ε > 0, a function
c(·, ·), an intermediate sequence k, a sequence ln, n ∈ N, a positive or negative
function A with limt→∞A(t) = 0 and a real number ρ < 0 such that

Condition 3.1.
lim
n→∞

β(ln)

ln
n+ lnk

−1/2log2k = 0;

Condition 3.2.

lim
n→∞

n

lnk
Cov

(
ln∑
i=1

1{Xi>F−1(1−kx/n)},

ln∑
i=1

1{Xi>F−1(1−ky/n)}

)
= c(x, y),

for all 0 < x, y ≤ 1 + ε;

Condition 3.3. For some constant D > 0,

n

lnk
E

( ln∑
i=1

1{F−1(1−ky/n)<Xi≤F−1(1−kx/n)}

)4
 ≤ D(y − x),

for all 0 < x, y ≤ 1 + ε and n ∈ N;

Condition 3.4.

lim
t→∞

U(tx)
U(t) − x

γ

A(t)
= xγ

xρ − 1

ρ
,

for all x > 0;

13



Condition 3.5.
lim
n→∞

√
kA
(n
k

)
= 0;

We discuss these conditions one by one. The β-mixing constants measure
the influence of the past on future events. Intuitively, the condition 3.1 states
that this influence disappears sufficiently fast as past and future are separated
by a time interval of increasing length (Drees, 2003). Drees (2000) shows that
condition 3.1 is fulfilled if the original time series {X1, X2, ...} is geometrically
β-mixing, that is, β(`) = O(η`) for some η ∈ (0, 1). In that case, one may
take ln = −2 log n/ log η (De Haan et al., 2016). Condition 3.2 is satisfied if all
vectors (X1, X1+m) belong to the domain of attraction of a bivariate extreme
value distribution (see Drees (2003), Remark 2.1). In that case, for any sequence
k, one may take a sequence ln such that ln = o(n/k). The limit function
c(x, y) depends only on the tail dependence structure of (X1, X1+m) for m ∈ N
(De Haan et al., 2016). These two sufficient versions of conditions 3.1 and 3.2
hold for the ARMA models, see Section 5.2 below. Furthermore, condition 3.3
has been verified for these models as well (De Haan et al., 2016). Condition 3.4
is the second order condition (13). Condition 3.5 imposes an upper bound on
the speed at which k goes to infinity to assume away the asymptotic bias for
the estimator for the return level.

3.2.3 Auxiliary lemmas

The following four lemmas are useful in the proof of the asymptotic normality
of the estimator for the return level (Theorem 3.9).

Lemma 3.5 (Drees (1998a), Drees (1998b), Theorem 2.2 in Drees (2003)).
Suppose that {X1, X2, ...} is a stationary β-mixing time series with common
distribution function F . Suppose that the regularity conditions 3.1-3.5 hold.
Then as n→∞, √

k(γ̂H − γ)
d−→ N

(
0, σ2

H

)
,

where
σ2

H = γ2
∫
(0,1]

∫
(0,1]

(st)−(γ+1)c(s, t)νH(ds)νH(dt),

where c(·, ·) is defined in the regularity condition 3.2 and with signed measure

νH(dt) = tγdt− ε1(dt),

where ε1 denotes the Dirac measure with mass 1 at 1.

Lemma 3.6. Suppose that k = bn/mc. Assume that both m→∞ and k →∞
as n→∞. Then as n→∞,

k

n
(
1− (1− 1/y)1/(mθ)

) ∼ θ

− log(1− 1/y)
.

Proof. The proof is similar to that of Lemma 3.2.

14



Lemma 3.7 (Theorem 2.1, Drees (2003)). Suppose that {X1, X2, ...} is a sta-
tionary β-mixing time series with common distribution function F . Let X1,n ≤
X2,n ≤ ... ≤ Xn,n be the order statistics of {X1, ..., Xn}. Suppose that the regu-
larity conditions 3.1-3.5 hold. Then there exists a sequence of centred Gaussian
processes {en(s)}s≥0 with covariance function c defined in the regularity condi-
tion 3.2 such that as n→∞,

sup
0<s≤1

sγ+3/4+ε

∣∣∣∣∣√k
(
Xn−bksc,n

U
(
n
k

) − s−γ
)
− γs−γ−1en(s)

∣∣∣∣∣ P−→ 0,

for each ε > 0.

The asymptotic normality of the estimator for the extremal index (17) has
been established with some extra conditions. The following lemma is proved in
Theorem 3.2 in Berghaus and Bücher (2018).

Lemma 3.8. Suppose that Condition 2.1 and (2.2) in Berghaus and Bücher
(2018) are met. Then as n→∞,

√
k(θ̂B − θ) d−→ N

(
0, θ4σ2

B

)
,

where σ2
B is a complicated expression.

3.2.4 Main result

The asymptotic normality of the return level estimator (18) is given by the
following theorem.

Theorem 3.9. Suppose that {X1, X2, ...} is a stationary β-mixing time series
with common distribution function F . Assume that Condition 2.1 and (2.2) in
Berghaus and Bücher (2018) are met with an intermediate sequence k1 such that
k/k1 → 0. Assume in addition that as n→∞,

A (m)

(
x1−(1−1/y)1/(mθ)

Rm,y
− 1

)
→ 0. (19)

Suppose that the regularity conditions 3.1-3.5 hold. Then as n→∞,

√
k

(
R̂m,y
Rm,y

− 1

)
d−→ N (0, β(y, θ)′Σγβ(y, θ)) ,

where β(y, θ) =
(

log
(
θ
cy

)
, 1
)′

with cy = − log(1− 1/y) and

Σγ =

 σ2
H γ2

(∫ 1

0
s−1c(s, 1)ds− c(1, 1)

)
γ2
(∫ 1

0
s−1c(s, 1)ds− c(1, 1)

)
γ2c(1, 1)

 ,

with σ2
H and c(·, ·) as defined in Lemma 3.5 and in the regularity condition 3.2

respectively.
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Proof. Consider the expansion

R̂m,y
Rm,y

=
Xn−k,n

U
(
n
k

) ·
(

k

n(1−(1−1/y)1/(mθ̂B))

)γ̂H(
k

n(1−(1−1/y)1/(mθ))

)γ · U
(
n
k

) (
k

n(1−(1−1/y)1/(mθ))

)γ
x1−(1−1/y)1/(mθ)

·
x1−(1−1/y)1/(mθ)

Rm,y

=: I1 · I2 · I3 · I4.

By taking s = 1 in Lemma 3.7, we get that as n→∞,

√
k

(
Xn−k,n

U
(
n
k

) − 1

)
− γen(1)

P−→ 0.

Hence, √
k(I1 − 1)

d−→ B ∼ N
(
0, γ2c(1, 1)

)
,

where B = γen(1) and with c as defined in the regularity condition 3.2.
For I2, consider the expansion

I2 =

(
k

n(1−(1−1/y)1/(mθ̂B))

)γ̂H(
k

n(1−(1−1/y)1/(mθ̂B))

)γ ·
(

k

n(1−(1−1/y)1/(mθ̂B))

)γ
(

k
n(1−(1−1/y)1/(mθ))

)γ
=

(
k

n(1− (1− 1/y)1/(mθ̂B))

)γ̂H−γ
·

(
1− (1− 1/y)1/(mθ)

1− (1− 1/y)1/(mθ̂B)

)γ
=: I21 · I22.

Rewrite I21 as

I21 = exp

 log
(

k

n(1−(1−1/y)1/(mθ̂B))

)
√
k

√
k(γ̂H − γ)


From Lemma 3.5, we get that as n→∞,

√
k(γ̂H − γ)

d−→ Γ ∼ N
(
0, σ2

H

)
,

with σ2
H as defined in Lemma 3.5. From the proof of Theorem 2.2 in Drees

(2003), p. 626, it follows that

Γ = γ

∫ 1

0

s−γ−1en(s)νH(ds),

with νH as defined in Lemma 3.5. From Lemma 3.6 and Lemma 3.8, we get that
as n→∞,

log

 k

n
(

1− (1− 1/y)1/(mθ̂B)
)
→ log

(
θ

− log(1− 1/y)

)
= log

(
θ

cy

)
.
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According to the Cramér’s delta method (Cramér, 1946) and Slutsky’s theorem
(Slutsky, 1925), we get that as n→∞,

√
k(I21 − 1)

d−→ log

(
θ

cy

)
Γ ∼ N

(
0, log2

(
θ

cy

)
γ2
)
.

By using Lemma 3.6, we get that as n→∞,

1− (1− 1/y)1/(mθ)

1− (1− 1/y)1/(mθ̂B)
∼ θ̂B

θ
.

From Lemma 3.8 with k1, we get that as n→∞,√
k1 (I22 − 1) = OP(1),

Because k
k1
→ 0, we get that as n→∞,

√
k (I22 − 1) = oP(1).

By combining the limit properties of I21 and I22 and according to Cramèr’s
delta method, we get that as n→∞,

√
k(I2 − 1)

d−→ log

(
θ

cy

)
Γ ∼ N

(
0, log2

(
θ

cy

)
γ2
)
.

We compute the covariance between Γ and B as follows

Cov (Γ, B) = Cov
(
γ

∫ 1

0

s−γ−1en(s) (sγds− ε1(ds)) , γen(1)

)
= γ2 Cov

(∫ 1

0

s−1en(s)ds− en(1), en(1)

)
= γ2

(
Cov

(∫ 1

0

s−1en(s)ds, en(1)

)
− Cov (en(1), en(1))

)
= γ2

(∫ 1

0

s−1c (s, 1) ds− c(1, 1)

)
.

Hence, and according to the Cramér’s delta method, we get that as n→∞,
√
k(I1I2 − 1)

d−→ N (0, β(y, θ)′Σβ(y, θ)) .

For I3, consider the expansion

√
kA
(n
k

) I3 − 1

A
(
n
k

) .
From Theorem 2.3.9 in de Haan and Ferreira (2007), we get that as n→∞,

I3 − 1

A
(
n
k

) → −1

ρ
, (20)
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as n → ∞. Combining the regularity condition 3.5 with (20), we get that as
n→∞, √

k(I3 − 1)→ 0.

From again the regularity condition 3.5 and (19), we get that as n→∞,

√
kA
(n
k

)
(I4 − 1)→ 0.

The theorem is proved by combining the limit properties of the four terms in
the expansion. According to Cramèr’s delta method, we get that as n→∞,

√
k

(
R̂m,y
Rm,y

− 1

)
d−→ N (0, β(y, θ)′Σγβ(y, θ)) .

Remark 3.10. In typical high quantile estimation, normally it is assumed that

lim
n→∞

1√
k

log(nα) = 0, lim
n→∞

nα/k = 0. (21)

where α is the tail probability of the quantile xα to be estimated; see, for
example, (15) in Drees (2003) and Theorem 4.2 in De Haan et al. (2016). With
assumption (21) only the limit of the estimator for the extreme value index
contributes to the final asymptotic limit of the estimator for the high quantile.
In our case, by Lemma 3.6, one can actually verify that (21) does not hold.
Therefore, both the limit of the order statistic and the Hill estimator contribute
to the final asymptotic limit of the estimator for the return level. This situation
occurs for both the i.i.d. case and the serial dependence case.

4 Block maxima method
We discuss the block maxima method for estimating the return level. Let
{X1, X2, ..., Xn} be a sample of observations. For a given block size m ∈
{1, ..., n}, divide the data into k = bn/mc blocks of length m (and a possibly
remaining block of smaller size which has to be omitted). Denote the maximum
within the i-th disjoint block of observations of size m as

Mi,m = max(X(i−1)m+1, ..., Xim),

for i = 1, ..., k. By the domain of attraction condition (4), for large block
sizes m, the sample of block maxima {M1,m, ...,Mk,m} is approximately Fréchet
distributed. Let Gγ,am denote the Fréchet distribution with shape parameter γ
and scale parameter am, defined by its cumulative distribution function

Gγ,am(x) = exp
(
−(x/am)−1/γ

)
, (22)
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for x > 0. We apply the maximum likelihood procedure to fit the Fréchet
distribution (Section 4.1).

Both under a simplified model without serial dependence (Section 4.3) and
under a general model with serial dependence (Section 4.4), we can approximate
the return level by the same quantile of the Fréchet distribution. Consequently,
the estimator for the return level will be the same in both cases (Section 4.2).
The quantile function of the Fréchet distribution is given by

G−1γ,am(x) = am(− log(x))−γ , (23)

for x > 0.

4.1 Maximum likelihood estimation
We derive the maximum likelihood estimators for the parameters of the Fréchet
distribution, Gγ,am , given in (22). Let x = (x1, ..., xk) ∈ (0,∞)k be a sample
vector to which the Fréchet distribution is to be fitted. The maximum likelihood
estimator is defined as

(γ̂ML, âm) = arg max
(γ,am)∈(0,∞)2

k∑
i=1

`γ,am(xi),

where `γ,am is the log-likelihood function equal to

`γ,am(x) = − log(γ)− log(am)− (x/am)−1/γ − (1/γ + 1) log(x/am),

for x > 0. By Lemma 2.1 in Bücher and Segers (2018b), the maximizer exists
and is unique as soon as the scalars x1, ..., xk are not all identical. By The-
orem 2.3 in Bücher and Segers (2018b), the maximum likelihood estimator is
consistent in the sense that under mild conditions as n→∞,

(γ̂ML, âm/am)
P−→ (γ, 1). (24)

The maximum likelihood estimators for the extreme value index and the
scale, γ̂ML and âm, are obtained by solving the likelihood equations. The likeli-
hood equations are

k∑
i=1

(
− 1

am
− 1

γ
x
−1/γ
i a1/γ−1m +

(
1

γ
+ 1

)
1

am

)
= 0, (25)

k∑
i=1

(
− 1

γ
− (xi/am)−1/γ log(xi/am)

1

γ2
+

1

γ2
log(xi/am)

)
= 0. (26)

Equation (25) can be simplified to

1

am

1

γ

(
k −

k∑
i=1

(xi/am)−1/γ

)
= 0,
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which implies that

k − a1/γm

k∑
i=1

x
−1/γ
i = 0. (27)

The maximum likelihood estimator for the scale parameter, âm, is equal to the
explicit solution of (27) once γ̂ML is solved,

âm =

(
1

k

k∑
i=1

x
−1/γ̂ML
i

)−γ̂ML

.

The likelihood equation (26) can be simplified to

1

k

k∑
i=1

log(xi) = γ + a1/γm

1

k

k∑
i=1

x
−1/γ
i log(xi) + log(am)

(
1− a1/γm

1

k

k∑
i=1

x
−1/γ
i

)
.

(28)
By using (27), the last term in (28) becomes zero and we get that

γ +
k∑k

i=1 x
−1/γ
i

1

k

k∑
i=1

x
−1/γ
i log(xi)−

1

k

k∑
i=1

log(xi) = 0. (29)

The maximum likelihood estimator for the extreme value index, γ̂ML, is equal
to the unique zero of (29).

4.2 Motivating the estimator
From (1), (7) and (22), we deduce that as m→∞,

P(Mm ≤ Rm,y) = 1− 1/y ≈ exp
(
−(Rm,y/ãm)−1/γ

)
= Gγ,ãm(Rm,y),

where ãm = amθ
γ with θ ∈ (0, 1] the extremal index. Hence, both under inde-

pendence (θ = 1) and under serial dependence, the return level is approximately
equal to the 1/y-th quantile of the Fréchet distribution.

By using (23), we propose the following estimator for the return level

R̂m,y := âmc
−γ̂ML
y , (30)

with cy = − log(1 − 1/y) and where (γ̂ML, âm) is the maximum likelihood esti-
mator studied in Section 4.1.

For both the i.i.d. case (Section 4.3) and the serial dependence case (Section
4.4), the structure is similar to the POT approach in Section 3. First, we present
the conditions and the auxiliary lemma necessary for the asymptotic theory.
Then we state and prove the main theorem on the asymptotic normality of the
estimator for the return level.
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4.3 I.i.d. case
Let {X1, X2, ...} be an i.i.d. sequence of random variables with a common
distribution function F . We assume that this distribution function belongs to
the Fréchet domain of attraction (γ > 0).

4.3.1 Conditions for asymptotic theory

We present the conditions for establishing the asymptotic normality of the return
level estimator (30) in Section 4.3.3. Similar to the POT approach in Section
3.1.2, we need a second order reinforcement of the domain of attraction condition
(4) in combination with a growth restriction on the number of blocks.

Second order condition Let V := (1/(− logF ))← be the left-continuous
inverse function of 1/(− logF ). Suppose that there exist a positive or negative
function A with limt→∞A(t) = 0 and a real number ρ < 0 such that

lim
t→∞

V (tx)
V (t) − x

γ

A(t)
= xγ

xρ − 1

ρ
, (31)

for all x > 0.
The second order condition captures the speed of convergence in the domain

of attraction condition (4). By (4.3) in Bücher and Segers (2018b), p. 10, the
scaling constants in (4) may be chosen as any sequence am, m ∈ N that satisfies

lim
m→∞

m(− logF (am)) = 1. (32)

Hence, in the i.i.d. case, we choose am = V (m).

Condition on k Suppose that the number of blocks k satisfies

lim
n→∞

√
kA
(n
k

)
= 0. (33)

The condition (33) imposes an upper bound on the speed at which k goes
to infinity. As it appears below, it assumes away the asymptotic bias for the
estimator for the return level.

4.3.2 Auxiliary lemma

The following lemma is useful in the proof of the asymptotic normality of the
estimator for the return level (Theorem 4.2).

Lemma 4.1 (Theorem 4.2 and Lemma B.3, Bücher and Segers (2018b)). Sup-
pose that {X1, X2, ...} is an i.i.d. sequence of random variables with a common
distribution function F . Assume that F satisfies the second order condition (31)
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with parameters γ > 0 and ρ < 0. Assume that both m → ∞ and k → ∞ as
n→∞. Suppose that k satisfies (33). Then as n→∞,

√
k

( 1
γ̂ML
− 1

γ

âm
V (m) − 1

)
d−→ N2

((
0

0

)
,Σγ

)
,

where
Σγ =

6

π2

(
γ−2 (g − 1)

(g − 1) γ2
(
(1− g)2 + π2/6

)) ,
with g = 0.5772... the Euler-Mascheroni constant.

4.3.3 Main result

The asymptotic normality of the return level estimator (30) is given by the
following theorem.

Theorem 4.2. Suppose that {X1, X2, ...} is an i.i.d. sequence of random vari-
ables with a common distribution function F . Assume that F satisfies the sec-
ond order condition (31) with parameters γ > 0 and ρ < 0. Assume that both
m→∞ and k →∞ as n→∞. Suppose that k satisfies (33). Then as n→∞,

√
k

(
R̂m,y
Rm,y

− 1

)
d−→ N (0, β(y, γ)′Σγβ(y, γ)) ,

where β(y, γ) = (γ2 log(cy), 1)′ and with Σγ as defined in Lemma 4.1.

Proof. Consider the expansion

R̂m,y
Rm,y

=
âmc

−γ̂ML
y

V (m)c−γy
·
V (m)c−γy
Rm,y

=: I1 · I2.

For I1, consider the expansion

√
k (I1 − 1) =

√
k

(
âm
V (m)

− 1

)(
cγ−γ̂ML
y − 1

)
+
√
k(cγ−γ̂ML

y − 1) +
√
k

(
âm
V (m)

− 1

)
=: I11 + I12 + I13.

From (24), we get that I11 = oP(1) as n→∞. Denote the limit of
√
k
(

1
γ̂ML
− 1

γ

)
as Γ. Then according to Cramér’s delta method (Cramér, 1946), we get that as
n→∞,

I12
d−→ γ2 log(cy)Γ.

By applying Lemma 4.1, we get that as n→∞,

I12 + I13 =
(
γ2 log(cy), 1

)
·
√
k

( 1
γ̂ML
− 1

γ

âm
V (m) − 1

)
d−→ N (0, β(y, γ)′Σγβ(y, γ)) .
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By combining the limit properties of I11, I12 and I13, we get that as n→∞,
√
k (I1 − 1)

d−→ N (0, β(y, γ)′Σγβ(y, γ)) .

Lastly, we deal with the term I2. The second order condition (31) implies
that as n→∞,

V (mx)
V (m) − x

γ

A(m)
→ xγ

xρ − 1

ρ
.

By using Vervaat’s lemma (see de Haan and Ferreira (2007), Lemma A.0.2), we
get that as n→∞,

1
−m logF (V (m)x) − x

1/γ

A(m)
→ −x1/γ x

ρ/γ − 1

ργ
.

According to Cramér’s delta method, we get that as n→∞,

−m logF (V (m)x)− x−1/γ

A(m)
→ x−1/γ

xρ/γ − 1

ργ
. (34)

We can find a x0 such that x = 1 − 1/y ≥ x0. Then the right side of (34) is
uniformly bounded for all x > x0. By using (33), we get that as n→∞,

√
k
(
−m logF (V (m)x)− x−1/γ

)
→ 0.

By using again the Cramér’s delta method, we get that as n→∞,
√
k
(
Fm(V (m)x)− exp

(
−x−1/γ

))
→ 0.

By again applying Vervaat’s lemma and then set x = 1 − 1/y, we get that as
n→∞,

√
k

(
Rm,y
V (m)

− c−γy
)
→ 0.

Hence, we get that as n→∞,
√
k(I2 − 1)→ 0.

The theorem is proved by combining the limit properties of the two terms in
the expansion. According to Cramèr’s delta method, we get that as n→∞,

√
k

(
R̂m,y
Rm,y

− 1

)
d−→ N (0, β(y, γ)′Σγβ(y, γ)) .
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4.4 Serial dependence case
Let {X1, X2, ...} be a strictly stationary time series with a common distribution
function F . We assume that this distribution function belongs to the Fréchet
domain of attraction (γ > 0). Additionally, we assume that the series possesses
a positive extremal index (θ ∈ (0, 1)). Hence, the limit relation (7) holds with
ãm = amθ

γ .

4.4.1 Conditions for asymptotic theory

We present the regularity conditions for establishing the asymptotic normality of
the return level estimator (30) in Section 4.4.3. The serial dependence structure
follows from the so-called α-mixing conditions. The α-mixing conditions have
been introduced by Rosenblatt (1956) as follows. The sequence {X1, X2, ...} is
called α-mixing (or strongly mixing) if as `→∞,

α(`) := sup
(
|P(A ∩B)− P(A)P(B)| : A ∈ B0−∞, B ∈ B∞`

)
→ 0,

where B0−∞ and B∞` denote the σ-fields generated by (Xi)i≤0 and (Xi)i≥`, re-
spectively. The coefficients α(`) are called the α-mixing constants of the se-
quence.

The following four conditions are Conditions 3.2, 3.3, 3.4 and 3.5 in Bücher
and Segers (2018b).

Regularity conditions Suppose that lim`→∞ α(`) = 0 and there exist a
constant ε > 0, some ν > 2/ε and a constant d > 0 such that

Condition 4.1. For every c ∈ (0,∞),

lim
n→∞

P (min (M1,m, ...,Mk,m) ≤ c) = 0;

Condition 4.2.
lim
n→∞

k1+εα(m) = 0;

Condition 4.3.
lim sup
n→∞

E(gν,γ((Mm ∨ 1)/ãm)) <∞,

where gν,γ(x) =
(
x−1/γ1{x≤e} + log(x)1{x>e}

)2+ν
;

Condition 4.4. For j = 1, 2, 3

lim
n→∞

√
k

(
E(fj((Mm ∨ d)/ãm))−

∫ ∞
0

fj(x)fγ(x)dx
)

= 0,

where
f1(x) = x−1/γ log(x), f2(x) = x−1/γ , f3(x) = log(x).

and
fγ(x) =

1

γ
exp

(
−x−1/γ

)
x−1/γ−1. (35)
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We discuss these conditions one by one. Condition 4.1 ensures that all block
maxima diverge (Bücher & Segers, 2018b). To control the serial dependence
within the time series, condition 4.2 requires that the α-mixing coefficients decay
sufficiently fast (Bücher & Segers, 2018b). Furthermore, this condition ensures
that the block sizes m are sufficiently large such that maxima over large disjoint
blocks are asymptotically independent. Condition 4.3 is an asymptotic bound
on certain moments of the block maxima (Bücher & Segers, 2018b). Condition
4.4 guarantees that the asymptotic distribution in Theorem 4.4 is centred and
the return level estimator is asymptotically unbiased.

4.4.2 Auxiliary lemma

The following lemma is useful in the proof of the asymptotic normality of the
estimator for the return level (Theorem 4.4).

Lemma 4.3 (Theorem 3.6, Bücher and Segers (2018b)). Suppose that {X1, X2, ...}
is a strictly stationary α-mixing time series with common distribution function
F . Assume that F ∈ D(Gγ) with γ > 0 and that the series has extremal index
θ ∈ (0, 1). Assume that both m→∞ and k →∞ as n→∞. Suppose that the
regularity conditions 4.1-4.4 hold. Then as n→∞,

√
k

( 1
γ̂ML
− 1

γ

âm
ãm
− 1

)
d−→ N2

((
0

0

)
,Σγ

)
,

where ãm = amθ
γ and with Σγ as defined in Lemma 4.1.

4.4.3 Main result

The asymptotic normality of the return level estimator (30) is given by the
following theorem.

Theorem 4.4. Suppose that {X1, X2, ...} is a strictly stationary α-mixing time
series with common distribution function F . Assume that F ∈ D(Gγ) with
γ > 0 and that the series has extremal index θ ∈ (0, 1). Assume that both
m→∞ and k →∞ as n→∞. Suppose that there exists a positive or negative
function A with limt→∞A(t) = 0 such that

P
(
Mm

ãm
≤ x

)
− exp

(
−x−1/γ

)
= O (A (m)) , (36)

where ãm = amθ
γ . Assume in addition that k satisfies

lim
n→∞

√
kA
(n
k

)
= 0. (37)

Suppose that the regularity conditions 4.1-4.4 hold. Then as n→∞,

√
k

(
R̂m,y
Rm,y

− 1

)
d−→ N (0, β(y, γ)′Σγβ(y, γ)) ,

where β(y, γ) = (γ2 log(cy), 1)′ and with Σγ as defined in Lemma 4.1.
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Proof. Consider the expansion

R̂m,y
Rm,y

=
âmc

−γ̂ML
y

ãmc
−γ
y

·
ãmc

−γ
y

Rm,y

=: I1 · I2.

Similar to the first part of the proof of Theorem 4.2, we get that as n→∞,
√
k (I1 − 1)

d−→ N (0, β(y, γ)′Σγβ(y, γ)) .

From (36) and (37), we get that as n→∞,

√
k

(
P
(
Mm

ãm
≤ x

)
− exp

(
−x−1/γ

))
→ 0.

By applying Vervaat’s lemma (see de Haan and Ferreira (2007), Lemma A.0.2)
and then set x = 1− 1/y, we get that as n→∞,

√
k

(
Rm,y
ãm

− c−γy
)
→ 0.

Hence, we get that as n→∞,
√
k(I2 − 1)→ 0.

The theorem is proved by combining the limit properties of the two terms in
the expansion. According to Cramèr’s delta method, we get that as n→∞,

√
k

(
R̂m,y
Rm,y

− 1

)
d−→ N (0, β(y, γ)′Σγβ(y, γ)) .

Remark 4.5. Both under independence and serial dependence, both the limits
of the maximum likelihood estimators for the parameters of the Fréchet distri-
bution, âm and γ̂ML, contribute to the final asymptotic limit of the estimator
for the return level. This situation is similar to the POT approach where both
the limit of the order statistic and the limit of the Hill estimator contribute to
the final asymptotic limit, as mentioned in Remark 3.10.

4.4.4 Discussion on conditions

We finish this section with some remarks on the conditions used in the serial
dependence case. Conditions (36) and (37) together almost imply the regularity
condition 4.4. In fact, if we assume a stronger version of (36), the condition 4.4
is implied as shown in the following lemma.
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Lemma 4.6. Let Hm(x) = P
(
Mm

ãm
≤ x

)
and G(x) = Gγ,1(x). Suppose that

there exist a positive or negative function A with limt→∞A(t) = 0 and a function
G̃ such that for any constant d > 0 and x ≥ d/ãm,∣∣∣∣Hm(x)−G(x)

A (m)

∣∣∣∣ ≤ G̃(x) (38)

and ∫ ∞
0

G̃(x)xcdx <∞, (39)

for all c ≤ −1. Assume in addition that k satisfies (37). Then the regularity
condition 4.4 holds.

Proof. For j = 1, 2, 3, write

A(fj) :=

∫ ∞
0

fj

(
x ∨ d

ãm

)
dHm(x)−

∫ ∞
0

fj(x)dG(x)

= fj

(
d

ãm

)
Hm

(
d

ãm

)
−
∫ d/ãm

0

fj(x)dG(x) +

∫ ∞
d/ãm

fj(x)dHm(x)−
∫ ∞
d/ãm

fj(x)dG(x)

=: A1(fj)−A2(fj) +A3(fj)−A4(fj).

By partial integration,

A2(fj) =

[
fj(x)G(x)

]d/ãm
0

−
∫ d/ãm

0

G(x)dfj(x)

= fj

(
d

ãm

)
G

(
d

ãm

)
−
∫ d/ãm

0

G(x)dfj(x).

For A3(fj) and A4(fj), we first consider j = 1, 2 with f1(x) = x−1/γ log(x)
and f2(x) = x−1/γ . By partial integration, these two integrals can be calculated
as follows

A3(fj) =

[
fj(x)Hm(x)

]∞
d/ãm

−
∫ ∞
d/ãm

Hm(x)dfj(x)

= −fj
(
d

ãm

)
Hm

(
d

ãm

)
−
∫ ∞
d/ãm

Hm(x)dfj(x),

A4(fj) =

[
fj(x)G(x)

]∞
d/ãm

−
∫ ∞
d/ãm

G(x)dfj(x)

= −fj
(
d

ãm

)
G

(
d

ãm

)
−
∫ ∞
d/ãm

G(x)dfj(x).

Combining the expressions for A1(fj)-A4(fj), we get that for j = 1, 2,

A(fj) =

∫ d/ãm

0

G(x)dfj(x)−
∫ ∞
d/ãm

(Hm(x)−G(x)) dfj(x). (40)
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Secondly, we consider j = 3 with f3(x) = log(x). By again partial integra-
tion, A3(f3) and A4(f3) can be calculated as follows

A3(f3) = −
∫ ∞
d/ãm

f3(x)d(1−Hm(x))

= −
[
f3(x)(1−Hm(x))

]∞
d/ãm

+

∫ ∞
d/ãm

(1−Hm(x))df3(x)

= f3

(
d

ãm

)(
1−Hm

(
d

ãm

))
+

∫ ∞
d/ãm

(1−Hm(x))df3(x),

A4(f3) = −
∫ ∞
d/ãm

f3(x)d(1−G(x))

= −
[
f3(x)(1−G(x))

]∞
d/ãm

+

∫ ∞
d/ãm

(1−G(x))df3(x)

= f3

(
d

ãm

)(
1−G

(
d

ãm

))
+

∫ ∞
d/ãm

(1−G(x))df3(x).

Combining the expressions for A1(fj)-A4(fj), we get that

A(f3) =

∫ d/ãm

0

G(x)df3(x) +

∫ ∞
d/ãm

((1−Hm(x))− (1−G(x)))df3(x)

=

∫ d/ãm

0

G(x)df3(x)−
∫ ∞
d/ãm

(Hm(x)−G(x)) df3(x),

which is equivalent to (40).
Hence, for j = 1, 2, 3, we get that

√
k ·A(fj) =

√
k

∫ d/ãm

0

G(x)dfj(x)−
√
k

∫ ∞
d/ãm

(Hm(x)−G(x)) dfj(x). (41)

From the proof of Lemma 5.1 in Bücher and Segers (2018b), p. 33, it follows
that the first integral in (41) converges to zero as n→∞.

From (38), it follows that∣∣∣∣∣√k
∫ ∞
d/ãm

(Hm(x)−G(x)) fj(x)dx

∣∣∣∣∣ ≤ √kA(nk)
∫ ∞
d/ãm

∣∣∣∣∣Hm(x)−G(x)

A
(
n
k

) ∣∣∣∣∣ fj(x)dx

≤
√
kA
(n
k

)∫ ∞
0

G̃(x)fj(x)dx. (42)

For j = 1, 2 it holds that, up to a factor, f ′j(x) ≤ x−1/γ−1±δ for some δ < 1/γ.
The symbol ± means taking the suitable sign according to whether x is higher
or lower than 1. If x is above 1, we take +δ and if x is below 1 we take −δ.
Hence, we get that∫ ∞

0

G̃(x)dfj(x) ≤
∫ ∞
0

G̃(x)x−1/γ−1±δdx <∞. (43)
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Notice that we use (39) with c = −1/γ − 1± δ ≤ −1. For j = 3, by using again
(39) with c = −1, we get that∫ ∞

0

G̃(x)df3(x) =

∫ ∞
0

G̃(x)x−1dx <∞. (44)

From (37), (42), (43) and (44), it follows that for j = 1, 2, 3, the second integral
in (41) converges to zero as n→∞.

Hence, we conclude that for j = 1, 2, 3, limn→∞
√
k · A(fj) = 0 and the

lemma is proved.

The essential part to prove the regularity condition 4.4, is that conditions
(38) and (39) hold. Then we can prove that the second integral in (41) converges
to zero as n→∞. For the i.i.d. case, the second order condition (31) guarantees
that conditions (38) and (39) are satisfied as shown in Example 4.7. Bücher and
Segers (2018b) also prove that under i.i.d. the regularity condition 4.4 is satisfied
(see pp. 25-28 in their paper). However, our alternative proof of Lemma 4.6 is
easier to understand and shows the essence of the proof, namely that conditions
(38) and (39) need to hold.

Example 4.7. Under i.i.d, it holds that ãm = V (m). By using (32) and (34),
we get that as n→∞,

x1/γ − logF (V (m)x)
− logF (V (m)) − 1

A(m)
→ xρ/γ − 1

ργ
.

By applying Theorem B.2.18 in de Haan and Ferreira (2007), accredited to Drees
(1998a), we get that for all c, ε > 0,∣∣∣∣∣∣x

1/γ − logF (V (m)x)
− logF (V (m)) − 1

A0(m)
− xρ/γ − 1

ργ

∣∣∣∣∣∣ ≤ cxρ/γ±ε,
for V (m)x > d. Or, equivalently,∣∣∣∣∣∣x

1/γ − logF (V (m)x)
− logF (V (m)) − 1

A0(m)

∣∣∣∣∣∣ ≤ c1xρ/γ±ε + c2,

which implies ∣∣∣∣ logHm(x) + x−1/γ

A0(m)

∣∣∣∣ ≤ x−1/γ (c1xρ/γ±ε + c2

)
and ∣∣∣∣Hm(x)−G(x)

A0(m)

∣∣∣∣ ≤ G(x)x−1/γ
(
c̃1x

ρ/γ±ε + c̃2

)
,
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for V (m)x > d. In the i.i.d. case, we get that condition (38) holds with

G̃(x) = exp
(
−x−1/γ

)
x−1/γ

(
c̃1x

ρ/γ±ε + c̃2

)
= xfγ(x)

(
c̃1x

ρ/γ±ε + c̃2

)
,

with fγ(x) = G′(x), see also (35) in the regularity condition 4.4. Hence, we get
that ∫ ∞

0

G̃(x)xcdx =

∫ ∞
0

xc+1fγ(x)
(
c̃1x

ρ/γ±ε + c̃2

)
dx.

Let Z be a Fréchet distributed random variable. The rth moment of the Fréchet
distribution is finite if r < 1/γ (Zayed & Butt, 2017). Hence, we get that for all
c ≤ −1, ∫ ∞

0

G̃(x)xcdx = c̃1E
(
Zc+1+ρ/γ±ε

)
+ c̃2E

(
Zc+1

)
.

Notice that by choosing ε small c+ 1 +ρ/γ± ε < 1/γ and c+ 1 < 1/γ to ensure
that these moments of the Fréchet distribution are finite and thus (39) holds.

5 Comparison between the POT approach and
the BM method

We provide a theoretical comparison between the POT approach and the BM
method. For i.i.d. observations (Section 5.1), the autoregressive model (Section
5.2.1) and the moving average model (Section 5.2.2), we derive explicit expres-
sions of the asymptotic variances for the return level estimators based on the
two methods and make a comparison. To invoke the asymptotic theories, we
verify that the (regularity) conditions hold for the models.

A key tuning parameter in the statistical analysis is the intermediate se-
quence k, which is defined as either the number of large order statistics in the
POT approach, or the number of blocks in the BM method. We use the same k
level for both the POT approach and the BM method. Hence, the comparison
is made at the level of asymptotic variance.

5.1 I.i.d. case
We compare the POT approach with the BM method under the assumption
that the sample of observations {X1, X2, ...} is i.i.d. with a common distri-
bution function F . We assume that this distribution function belongs to the
Fréchet domain of attraction (γ > 0) and that F satisfies the second order con-
ditions (13) and (31) for the POT approach and the BM method, respectively.
The second order auxiliary functions |APOT| and |ABM| are necessarily regularly
varying with index ρPOT and ρBM, respectively (Bücher & Zhou, 2018). For the
theoretical comparison, we consider the case ρ = ρPOT = ρBM ∈ [−1, 0) such
that the comparison is made at the level of asymptotic variance. We refer to
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Section 2 in Bücher and Zhou (2018) for a detailed comparison of the second
order conditions. Furthermore, we assume that as n → ∞, k → ∞, k/n → 0,
m→∞, and

√
kAz

(
n
k

)
→ 0 with z ∈ {POT, BM}.

Let σ̃2
POT denote the asymptotic variance of the estimator for the return level

based on the POT approach under independence. From Theorem 3.4, we get
that as n→∞,

σ̃2
POT = γ2

(
1 + log2(cy)

)
,

with cy = − log(1 − 1/y). Let σ2
BM denote the asymptotic variance of the esti-

mator for the return level based on the BM method. From Theorem 4.2, we get
that as n→∞,

σ2
BM = γ2

(
6

π2

(
log2(cy) + 2 log(cy)(g − 1) + (1− g)2

)
+ 1

)
,

with cy = − log(1− 1/y) and g = 0.5772... the Euler-Mascheroni constant.
For y > 1, we compare the asymptotic variances for the two methods by

calculating the following ratio

σ̃2
POT

σ2
BM

=
1 + log2(cy)

6
π2

(
log2(cy) + 2 log(cy)(g − 1) + (1− g)2

)
+ 1

, (45)

with cy = − log(1− 1/y) and g = 0.5772... the Euler-Mascheroni constant.

Figure 1: Ratio between the asymptotic variances for the POT approach and the BM method
under independence, for y ∈ (1, 6] (left) and y ∈ (1, 10000] (right). The dashed line corresponds
to the ratio equal to one.

In Figure 1, we plot this ratio against the parameter y. From the left fig-
ure, we observe that only for y ∈ (1.43, 4.98) the ratio in (45) is less than one
and consequently σ2

BM is higher than σ̃2
POT. Otherwise, σ2

BM is lower than σ̃2
POT

and therefore the BM method outperforms the POT approach in terms of hav-
ing a lower asymptotic variance. Notice that the difference between the two
asymptotic variances is not very large as σ̃2

POT/σ
2
BM → π2/6 as y → ∞, i.e.

σ̃2
POT <

π2

6 · σ
2
BM for all y > 1.08.
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5.2 Serial dependence case
We compare the POT approach with the BM method under the AR(1) model
(Section 5.2.1) and under the MA(1) model (Section 5.2.2). In the POT frame-
work, we model the serial dependence by the β-mixing condition and the regu-
larity conditions 3.1-3.5. In order to establish the asymptotic normality of the
estimator for the extremal index, we need Condition 2.1 and (2.2) in Berghaus
and Bücher (2018) to hold. In the BM framework, we model the serial depen-
dence by the α-mixing condition and the regularity conditions 4.1-4.4. Notice
that β-mixing implies α-mixing (see Bradley et al. (2005), Section 2.1).

Condition 2.1 in Berghaus and Bücher (2018) consists of seven separate
conditions which we will not discuss in detail. However, we make a few remarks.
Condition 2.1 (iii) and regularity condition 4.2 are both conditions on the α-
mixing constant. In fact, Condition 2.1 (iii) is more restrictive than regularity
condition 4.2. Condition 2.1 (iv) is comparable with regularity condition 3.3
which in a slightly different form concerns only the tail. Hence, regularity
condition 3.3 is more restrictive than Condition 2.1 (iv). Condition 2.1 (v) is
similar to regularity condition 4.1 and both conditions ensure that all block
maxima diverge. In fact, Condition 2.1 (v) is more restrictive than regularity
condition 4.1.

Both the AR(1) model and the MA(1) model satisfy the regularity conditions
3.1-3.5 (see Drees (2003), Section 3.2). We assume that Condition 2.1 (i)-(iii),
(v)-(vii) and (2.2) in Berghaus and Bücher (2018) hold for both models. From
Section 5.1 in Bücher and Segers (2018b), we quote: "For many stationary time
series models, the distribution of the sample maximum is a difficult object to
work with. This is true even for linear time series models, since the maximum
operator is non-linear. In such cases, checking the conditions of Section 3 may be
hard or even impossible task2." For that reason, we assume that the regularity
conditions 4.3 and 4.4 hold for both the AR(1) model and the MA(1) model.
Notice that we have taken into account that some conditions can be replaced
by others, as discussed above.

Let σ2
POT denote the asymptotic variance of the estimator for the return level

based on the POT approach under serial dependence. From Theorem 3.9, we
get that as n→∞,

σ2
POT = log2

(
θ

cy

)
σ2

H + 2γ2 log

(
θ

cy

)(∫ 1

0

s−1c(s, 1)ds− c(1, 1)

)
+ γ2c(1, 1),

(46)
where θ is the extremal index and with cy = − log(1 − 1/y), σ2

H as defined in
Lemma 3.5 and c(·, ·) as defined in the regularity condition 3.2. From Drees
(2000) (see also Stărică (1999)), we get that under serial dependence, σ2

H =
γ2c(1, 1). Let σ2

BM denote the asymptotic variance of the estimator for the return
2Regularity conditions 4.1-4.4 are Conditions 3.2-3.5 of Section 3 in Bücher and Segers

(2018b), as mentioned in Section 4.4.1.
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level based on the BM method. From Theorem 4.4, we get that as n→∞,

σ2
BM = γ2

(
6

π2

(
log2(cy) + 2 log(cy)(g − 1) + (1− g)2

)
+ 1

)
, (47)

with cy = − log(1 − 1/y) and g = 0.5772... the Euler-Mascheroni constant.
Notice that for the BM method the asymptotic variance is unaffected by serial
dependence since, even for time series, maxima over large disjoint blocks are
asymptotically independent because of the regularity condition 4.2 (Bücher &
Segers, 2018b).

5.2.1 Autoregressive model

Consider the stationary solution of the AR(1) equation

Xi = φXi−1 + Ui, (48)

for some φ ∈ (0, 1) and i.i.d. random variables Ui. Let Fu denote the distribution
function of the innovations. Assume that Fu possesses a positive Lebesgue
density fu. Then the time series Xi, i ∈ N, is geometrically β-mixing (see
Doukhan (1994), Theorem 2.4.6). In model (48), the variables Xi are heavy-
tailed if and only if the innovations have heavy tails. Hence, we assume that Fu
has balanced heavy tails, that is,

1− Fu(x) ∼ px−1/γ l(x) and Fu(−x) ∼ (1− p)x−1/γ l(x), (49)

as x → ∞, for some slowly varying function l and p ∈ (0, 1). From Section 5.1
of De Haan et al. (2016), we get that the regularity conditions 3.1-3.5 hold with

c(s, t) = s ∧ t+

∞∑
m=1

(
s ∧ tφm/γ + t ∧ sφm/γ

)
. (50)

Under serial dependence, the asymptotic variance of the estimator for the
return level based on the POT approach is given by (46). From (50), we deduce
that c(1, 1) = 1 + 2 · φ1/γ/

(
1− φ1/γ

)
(see also Drees (2003), Section 3.2). The

extremal index for the AR(1) model is equal to θ = 1− φ (see Chernick, Hsing,
and McCormick (1991), p. 843). Chernick et al. (1991) use an AR(1) model
with Cauchy marginals. Indeed, the Cauchy distribution has regularly varying
tails and satisfies the tail balancing condition (49) with p = 1/2. Combining all
these parts, we get that

σ2
POT = γ2

(
1 + 2

φ1/γ

1− φ1/γ

)(
log2

(
1− φ
cy

)
− 2 log

(
1− φ
cy

)
+ 1

)
+ γ22 log

(
1− φ
cy

)(
1− 2

φ1/γ

φ1/γ − 1
− log φ

φ1/γ

γ
(
φ1/γ − 1

)2
)
,

with cy = − log(1− 1/y).
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For y > 1, we compare σ2
POT with σ2

BM, which is equal to (47), by calculating
the following ratio

σ2
POT

σ2
BM

=

(
1 + 2 φ1/γ

1−φ1/γ

)(
log2

(
1−φ
cy

)
− 2 log

(
1−φ
cy

)
+ 1
)

6
π2

(
log2(cy) + 2 log(cy)(g − 1) + (1− g)2

)
+ 1

+

2 log
(

1−φ
cy

)(
1− 2 φ1/γ

φ1/γ−1 − log φ φ1/γ

γ(φ1/γ−1)
2

)
6
π2

(
log2(cy) + 2 log(cy)(g − 1) + (1− g)2

)
+ 1

, (51)

with cy = − log(1 − 1/y) and g = 0.5772... the Euler-Mascheroni constant.
Only for y ≥ 155000, we obtain the ratio in (51) is always higher than one and
consequently σ2

BM is lower than σ2
POT for all φ and γ. Otherwise, there are values

for φ and γ such that σ2
BM is higher than σ2

POT.
In Figure 2, we plot this ratio against the extreme value index γ for different

values of the parameters φ and y. From Figure 2, we can draw the following
conclusions:

• By comparing the distinct y values represented by the different colors, we
conclude that the higher the y, the higher the ratio in (51) for all Figs.
2(a)-2(d) (except for Fig. 2(d), y = 5).

• For all Figs. 2(a)-2(d), the ratio in (51) has the same pattern as γ in-
creases. The ratio starts flat for low value of γ and for γ above a certain
threshold, the ratio is increasing in γ. Hence, we conclude that the more
heavy-tailed, the higher the ratio in (51).

• By comparing across Figs. 2(a)-2(d), we conclude that the more depen-
dence, the higher the ratio in (51) at γ = 1.

Let γ∗ denote the value of γ for which σ2
POT is equal to σ2

BM. For γ > γ∗, it
holds that the ratio in (51) is greater than one and consequently σ2

POT is higher
than σ2

BM. Similarly, for γ < γ∗, it holds that σ2
POT is lower than σ2

BM. In Table
1, we report γ∗ for φ ∈ {0.1, 0.3, 0.5, 0.9}. From Table 1, we observe that the
higher the y, the lower the γ∗ (except for φ = 0.9 and y = 5). By comparing
across the rows, we note that the more dependence, the lower the γ∗.

In Figure 3, we plot the ratio in (51) against the parameter φ for different
values of the extreme value index γ and y. Let Iφ denote the specific interval
for φ such that the ratio in (51) is less than one and consequently σ2

BM is higher
than σ2

POT. From Figure 3, we observe that only for y = 5 and y = 10 (and
y = 100 in Fig. 3(a)) such an interval exists. In Table 4, we report Iφ for
γ ∈ {0.1, 0.2, 0.3, 0.4}. From the table, we observe that the higher the γ, the
narrower the interval Iφ.

In conclusion, the BM method outperforms the POT approach in terms of
having a lower asymptotic variance for both high y, high γ and high φ in com-
bination with high γ. The parameter y represents the average number of blocks
of size m until encountering the first such block whose maximum exceeds the
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return level, Rm,y. Hence, high y actually means more extreme events. Under
serial dependence, the POT approach first approximates the return level by a
high quantile and then offers an extrapolation method to estimate this quan-
tile. The BM method directly approximates the return level by a quantile of the
Fréchet distribution. The indirect approximation of the POT approach becomes
worse in the far tail due to the inaccuracy in the approximation. Only when
y is very low, the approximation is actually good enough to use it. The direct
approximation of the BM method works well even in the far tail. The extreme
value index γ determines the tail behaviour of a distribution and indicates the
heaviness of the tail. Hence, high γ also means that observations may contain
more extreme events. The parameter φ measures the dependence. The higher
the φ, the stronger the dependence and the more complex the dependence struc-
ture. The indirect approximation formula for the POT approach becomes less
accurate for higher φ. Therefore, the direct approach for the BM method is
better for high φ in combination with high γ.

(a) φ = 0.1 (b) φ = 0.3

(c) φ = 0.5 (d) φ = 0.9

Figure 2: Ratio between the asymptotic variances for the POT approach and the BM method
under AR(1). The dashed line corresponds to the ratio equal to one.
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(a) γ = 0.1 (b) γ = 0.2

(c) γ = 0.3 (d) γ = 0.4

Figure 3: Ratio between the asymptotic variances for the POT approach and the BM method
under AR(1). The dashed line corresponds to the ratio equal to one.

Table 1: γ∗ under AR(1)

y 5 10 100 1000 10000
φ = 0.1 0.57 - - - -
φ = 0.3 0.48 0.35 - - -
φ = 0.5 0.43 0.32 0.098 - -
φ = 0.9 0.19 0.29 0.096 0.056 0.037

Table 2: Iφ under AR(1)

y 5 10
γ = 0.1 (0, 0.900] (0.153, 0.900]
γ = 0.2 (0, 0.897) (0.154, 0.900]
γ = 0.3 (0, 0.865) (0.174, 0.635)
γ = 0.4 (0, 0.759) -
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5.2.2 Moving average model

Consider the stationary solution of the MA(1) equation

Xi = φUi−1 + Ui,

for some φ ∈ (0, 1) and where the innovation U satisfies the same conditions as
in the AR(1) model in the previous section. From Section 5.2 of De Haan et al.
(2016), we get that the regularity conditions 3.1-3.5 hold with

c(s, t) = s ∧ t+
1

1 + φ1/γ

(
s ∧ tφ1/γ + t ∧ sφ1/γ

)
. (52)

Under serial dependence, the asymptotic variance of the estimator for the
return level based on the POT approach is given by (46). From (52), we deduce
that c(1, 1) = 1 + 2 ·φ1/γ/

(
1 + φ1/γ

)
. The extremal index for the MA(1) model

is equal to θ = 1/
(
1 + φ1/γ

)
(see Chernick et al. (1991), Proposition 2.1).

Combining all these parts, we get that

σ2
POT = γ2

(
1 + 2

φ1/γ

1 + φ1/γ

)(
log2

(
cy

(
1 + φ1/γ

))
+ 2 log

(
cy

(
1 + φ1/γ

))
+ 1
)

− γ22 log
(
cy

(
1 + φ1/γ

))(
1 +

φ1/γ

1 + φ1/γ

(
2− 1

γ
log φ

))
,

with cy = − log(1− 1/y).
For y > 1, we compare σ2

POT with σ2
BM, which is equal to (47), by calculating

the following ratio

σ2
POT

σ2
BM

=

(
1 + 2 φ1/γ

1+φ1/γ

) (
log2

(
cy
(
1 + φ1/γ

))
+ 2 log

(
cy
(
1 + φ1/γ

))
+ 1
)

6
π2

(
log2(cy) + 2 log(cy)(g − 1) + (1− g)2

)
+ 1

−
2 log

(
cy
(
1 + φ1/γ

)) (
1 + φ1/γ

1+φ1/γ

(
2− 1

γ log φ
))

6
π2

(
log2(cy) + 2 log(cy)(g − 1) + (1− g)2

)
+ 1

, (53)

with cy = − log(1−1/y) and g = 0.5772... the Euler-Mascheroni constant. Only
for y ∈ (1.43, 4.98), we obtain there are values for φ and γ such that the ratio
in (53) is less than one and consequently σ2

BM is higher than σ2
POT. Otherwise,

σ2
BM is lower than σ2

POT for all φ and γ.
In Figure 4, we plot this ratio against the the extreme value index γ for

different values of the parameters φ and y. The general feature is comparable
to that observed from Figure 2. Notice that γ is between 0 and 2 instead of
0 and 1 as in Figure 2. A notable difference between Figures 2 and 4 is the
convexities with respect to γ: we observe a concave (resp., convex) relation in
γ under the MA(1) (resp., AR(1)) model. Hence, for high γ, the ratio between
the asymptotic variances is much lower for the MA(1) model. For example, by
comparing between Figure 2(d) and Figure 4(d) with γ = 1 and y = 10000, the
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ratio under the AR(1) model is equal to 18.4 and the ratio under the MA(1)
model is equal to 2.5.

Let γ∗ denote the value of γ for which σ2
POT is equal to σ2

BM. From Figure 4,
we observe that only if y = 3 there is a γ∗. In Table 3, we report γ∗ for different
values of the parameter φ. By comparing across rows, we note that, similar to
the AR(1) model, the more dependence, the lower the γ∗.

In Figure 5, we plot the ratio in (53) against the parameter φ for different
values of the extreme value index γ and y. Let Iφ denote the specific interval
for φ such that the ratio in (53) is less than one and consequently σ2

BM is higher
than σ2

POT. From Figure 5, we observe that only for y = 3 the specific interval
Iφ exists. In Table 4, we report Iφ for γ ∈ {0.1, 0.2, 0.3, 0.4}. From the table, we
observe that, similar to the AR(1) model, the more heavy tailed, the narrower
the interval Iφ.

In conclusion, the BM method outperforms the POT approach in terms of
having a lower asymptotic variance for y > 4.98. For γ and φ, there is no clear
pattern.

(a) φ = 0.1 (b) φ = 0.3

(c) φ = 0.5 (d) φ = 0.9

Figure 4: Ratio between the asymptotic variances for the POT approach and the BM method
under MA(1). The dashed line corresponds to the ratio equal to one.
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(a) γ = 0.1 (b) γ = 0.2

(c) γ = 0.3 (d) γ = 0.4

Figure 5: Ratio between the asymptotic variances for the POT approach and the BM method
under MA(1). The dashed line corresponds to the ratio equal to one.

Table 3: γ∗ under MA(1)

y 3
φ = 0.1 0.69
φ = 0.3 0.36
φ = 0.5 0.21
φ = 0.9 0.031

Table 4: Iφ under MA(1)

y 3
γ = 0.1 (0, 0.715)
γ = 0.2 (0, 0.511)
γ = 0.3 (0, 0.365)
γ = 0.4 (0, 0.261)
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6 Conclusion
In this thesis, we study and compare the POT approach and the BM method
for estimating the return level. We first analyze the two methods both for i.i.d.
observations and for observations which exhibit serial dependence. For the i.i.d.
model, the autoregressive model and the moving average model, we explicitly
calculate the asymptotic variances for the two methods and make a comparison.

Under independence and under the MA(1) model, we conclude that for y >
4.98 the BM method theoretically outperforms the POT approach in terms of
having a lower asymptotic variance for all φ and γ. Hence, if we consider yearly
maxima, i.e. m = 365, and we look at the 5-year or higher return level, we
should use the BM method. Under the AR(1) model, we conclude that for
y ≥ 155000 the BM method theoretically outperforms the POT approach in
terms of having a lower asymptotic variance for all φ and γ. For y ≤ 10 and
γ < 0.2, the POT approach outperforms the BM method in terms of having
a lower asymptotic variance for all φ ∈ (0.15, 0.90). For y ∈ (10, 155000) and
γ > 0.1, the BM method outperforms the POT approach in terms of having a
lower asymptotic variance for all φ. Overall, we conclude that the BM method
is superior for estimating the return level both under independence and under
serial dependence.

This research can be improved in at least two ways. Firstly, for the POT
approach under serial dependence, we need to estimate the extremal index. In
the proof of the asymptotic normality of the estimator for the return level, the
asymptotic distribution of the estimator for the extremal index plays a role. In
the current proof, for the extremal index, we use an intermediate sequence k1
such that as n → ∞, k/k1 → ∞. With such a choise of k1, the asymptotic
distribution of the estimator for the extremal index does not have an influence
on the asymptotic distribution of the estimator for the return level. In other
words, we assume away the potential impact. Handling the estimator for the
extremal index at the same k level is left for future research. Secondly, for the
POT approach under serial dependence, we approximate the return level by a
quantile. In (19), we assume that the quantile and the return level are close
enough. The proof of this assumption is also left for future research.
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Société Polonaise de Mathematique, 6 , 93-116.

Gnedenko, B. (1943). Sur la distribution limite du terme maximum d’une serie
aleatoire. Annals of mathematics, 44 , 423–453.

Gumbel, E. J. (1958). Statistics of extremes. Columbia University Press.
Hill, B. M. (1975). A simple general approach to inference about the tail of a

distribution. The Annals of Statistics, 3 , 1163–1174.

41



Jansen, D. W., & De Vries, C. G. (1991). On the frequency of large stock
returns: Putting booms and busts into perspective. Review of Economics
and Statistics, 73 (1), 18–24.

Leadbetter, M. R. (1983). Extremes and local dependence in stationary se-
quences. Probability Theory and Related Fields, 65 (2), 291–306.

McNeil, A. J. (1998). Calculating quantile risk measures for financial return
series using extreme value theory (Tech. Rep.). ETH Zurich.

Pickands, J. (1975). Statistical inference using extreme order statistics. the
Annals of Statistics, 3 (1), 119–131.

Rootzén, H. (1995). The tail empirical process for stationary sequences (Tech.
Rep.). Chalmers University of Technology.

Rootzén, H. (2009). Weak convergence of the tail empirical process for de-
pendent sequences. Stochastic Processes and their Applications, 119 (2),
468–490.

Rosenblatt, M. (1956). A central limit theorem and a strong mixing condition.
Proceedings of the National Academy of Sciences of the United States of
America, 42 (1), 43.

Slutsky, E. (1925). Über stochastische asymptoten und grenzwerte. Metron, 5 ,
3–89.

Stărică, C. (1999). On the tail empirical process of solutions of stochastic
difference equations. Preprint, Chalmers University of Gothenburg .

von Mises, R. (1936). La distribution de la plus grande de n valeurs. Rev. math.
Union interbalcanique, 1 , 141–160.

Weissman, I. (1978). Estimation of parameters and large quantiles based on the
k largest observations. Journal of the American Statistical Association,
73 (364), 812–815.

Zayed, M., & Butt, N. S. (2017). The extended fréchet distribution: Properties
and applications. Pakistan Journal of Statistics and Operation Research,
13 (3), 529–543.

42


	Introduction
	Extreme value theory
	I.i.d. case
	The Frchet case

	Serial dependence case

	Peak-over-threshold approach
	I.i.d. case
	Motivating the estimator
	Conditions for asymptotic theory
	Auxiliary lemmas
	Main result

	Serial dependence case
	Motivating the estimator
	Conditions for asymptotic theory
	Auxiliary lemmas
	Main result


	Block maxima method
	Maximum likelihood estimation
	Motivating the estimator
	I.i.d. case
	Conditions for asymptotic theory
	Auxiliary lemma
	Main result

	Serial dependence case
	Conditions for asymptotic theory
	Auxiliary lemma
	Main result
	Discussion on conditions


	Comparison between the POT approach and the BM method
	I.i.d. case
	Serial dependence case
	Autoregressive model
	Moving average model


	Conclusion
	References

