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Abstract

This paper proposes the BLAME algorithm, an analytical Bayesian extension to the renowned
EM algorithm. A simulation study is conducted to understand the strengths and weaknesses of
the proposed modification and how these may affect forecasting performance. The simulation
study finds that the classical EM method is powerful for latent coefficient estimation, whereas
the BLAME method excels in observed coefficient estimation. When considering one-month-
ahead US macroeconomic forecasts, the EM algorithm performs very well, being comparable to
VARIMA and VEC models, but does not beat a random walk. The Bayesian algorithm performs
worse than expected, producing respectable forecasts only for inflation, the output gap, and
cyclical unemployment. Overall, this research remains a strong advocate for the theoretical
soundness of the applied shrinkage techniques exemplified by the general BLAME algorithm.
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Prologue

“One should remember that estimating the true parameters of the sys-

tem is possible only in simulated scenarios and in real applications the

models used will be more or less wrong anyway. On the other hand,

we should be careful not to ruin already probably inaccurate models

with bad approximations of filters and smoothers.” – Simo Särkkä
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1 Introduction

The impact of macroeconomic policy on everyday life is indisputable. Changes in monetary

policy are the government’s way of preemptively reacting to future (unexpected) shifts in the

country’s economy. In many cases, these changes are made in an attempt to curb or control

certain unwanted outcomes, such as hyperinflation. The ability to gain accurate future insight

into an economy’s movements both in the long and short run is thus an invaluable asset to

any government/central bank. It is therefore of high priority to these central bodies to create

a time series model that is as flexible as the economy it attempts to emulate. This does not

necessarily mean that the model need be as complex as the economy, but rather that the model

be as adaptable as possible when supplied with new incoming information. As we perceive the

economy to be in different states through time, it is reasonable to assume that the parameters

governing the system can be time-varying or, more specifically, non-deterministic random

variables. The natural way to estimate such a time series model is to use Bayesian learning

methods. This type of statistical inference allows us to continually learn about an economy’s

underlying dynamics, and shift parameters according to how the economy shifts in a natrual

manner.

The primary aim of this research is to create such a Bayesian learning time series model that

will challenge ordinary frequentist models such as VARs and VECMs (as in e.g. Ang and Piazzesi

(2003), Stock and Watson (2009) and Stock and Watson (2011)) when it comes to in-sample fit

and out-of-sample forecasting power. This is achieved by proposing a closed-form Bayesian

extension to the well-established EM algorithm, named the BLAME (Bayesian LineAr Minimisation

of Energy algorithm. In general, the application of the EM algorithm itself to multidimensional

macroeconomic factor models has not been thoroughly explored in the literature, and so this

research provides a new perspective on inferential methods for multidimensional factor models

that do not rely on built-in optimisation routines.

When it comes to forecasting macroeconomic variables, a lot of effort has been put into

dynamic factor models (DFMs), as in Stock and Watson (2002) who study statistically constructed

diffusion indices as latent drivers of the observed variables. They conclude that a handful of

condensed indices are strong sources of information for the general macroeconomy, especially

at long forecasting horizons. A problem that typically exists in such models is deciding whether

or not certain macroeconomic relations, such as the Phillips curve, hold at every time period, as

1



Thesis MSc Quantitative Finance

is studied by Stock and Watson (2009). In this research, this problem is dealt with by having a

rolling estimation window. Should a relation not hold at a specific window, this will be reflected

within the estimated parameters within this window. As the parameters are allowed to be

time-varying, so will their influence on the model.

While it is appealing to construct the underlying macroeconomic drivers using statistical

means (e.g. Principal Component Analysis), another string of literature shifts its focus to

iteratively filtering out the latent drivers by means of state space estimation, which is also the

focus of this research. The most straightforward application of state space filtering uses the

celebrated Kalman (1960) filter, which assumes that the observation and state equations are

linear and have Gaussian errors. Key advances in this area of research are attributed to the

works of de Jong (2000), Dai and Singleton (2000) and Diebold et al. (2006), the latter of which

include macroeconomic information in the observation equation. A key conclusion of Diebold

et al. (2006) is that the macroeconomy has more explanatory power over the term structure of

interest rates, rather than the reverse. This aligns with the natural process of US policy-making,

which attempts to diagnose the state of the economy and adjust the Federal rate accordingly

to achieve sustainable rates of inflation and unemployment. The attraction associated with

the Kalman filter is its computational simplicity; no simulation is needed, as the integrals can

be solved in closed form. Additionally, the Kalman estimator is also the best linear unbiased

estimator (BLUE) within the linear Gaussian framework, see e.g. Hamilton (1994).

A recent simulation study by Christensen et al. (2014) carefully orchestrated several arbitrage-

free Nelson-Siegel (AFNS) state space models of the term structure with and without stochastic

volatility. A key finding is that there is a significant upward bias in the estimation of the mean-

reversion parameter of the NS level factor, owing to its near unit-root dynamics. This upward

bias decreases in magnitude for the respective slope and curvature factors, due to their lower

persistence. Estimates of parameters for Q-dynamic observations experience no bias whatsoever,

so this problem is an inherent issue with the nature of the level factor behaving similarly to

a random walk. They also find that by decreasing the frequency of the data from monthly to

weekly observations this finite-sample upward bias to its latent state estimates is worsened.

This occurs because at lower frequencies, the parameter standard deviations arising from the

optimised likelihood are too low, a feature not heavily affected by the inclusion of stochastic

volatility.

2



Thesis MSc Quantitative Finance

Consequently, more elaborate state space models have been investigated. One subset of

models investigates nonlinearities in either the observation or state equation, or both. When

nonlinearities are present, the standard Kalman filter fails to give accurate estimates, and thus

other methods such as the extended Kalman filter (EKF) or the unscented Kalman filter (UKF) are

used to capture the nonlinear nature of the model. A notable paper that employs these methods

to (simulated) ATSMs is that of Christoffersen et al. (2014). They find that the UKF performs

better than the EKF when the observation equation is nonlinear, and may perform just as well as

a Bayesian filter at a fraction of the computational cost. An older study by Lund (1997) applies an

iterative, extended Kalman filter (IEKF) to exponentially-ATSMs and estimated the parameters

using quasi-maximum likelihood (QML). The author finds that the inconsistency associated

with the theoretical QML estimator is economically insignificant, however this conclusion is

based again on simulated in-sample fitting.

The Kalman filter is readily accompanied by the Rauch-Tung-Striebel (RTS) smoother (Rauch

et al. (1965)), which performs a backward-propagating smoothing of the Kalman filtered states

conditioned on the full data set. These “smoothed” state estimates are key to one of the most

widely applied analytical parameter estimation techniques: the Expectation Maximisation (EM)

algorithm. The algorithm is theoretically underpinned by the assumption that, given a set of

observed data, researchers can estimate parameters that maximise the expected likelihood of

the observed data. Creal and Wu (2015) apply the classical EM algorithm to a 3-factor term

structure of interest rates, while also including and fine-tuning stochastic volatility. They find

that the EM estimated parameters are identical to the estimated parameters using numerical

optimisation routines. This highlights the prowess of the classical EM algorithm, even for a

system as large as a 10-dimensional observed interest rate vector being driven by a 3-dimensional

latent state vector. In a more recent study on sparse factor models, Maanan et al. (2018) develop

a modification to the EM algorithm based on a maximum entropy principle for the purpose of

model selection for multivariate time series data. In many cases, matrix sparsity, especially in

the covariance matrices, can cause problems throughout the EM loop. If singular covariance

matrices occur during the optimisation process, the likelihood diverges and the algorithm fails.

When the number of parameters that need to be estimated become substantial, the possibility of

this divergence increases and the algorithm becomes increasingly sensitive to the “initial guess”

supplied by the researcher. This research proposes a modification to the EM algorithm that
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detracts from a single initialisation of the estimation process by specifying prior distributions

for the parameters in a Bayesian setting. This injection of extra information can be based on

the researcher’s prior belief, be data driven, or be based on macroeconomic theory. In the limit

of diffuse priors, one then recovers the classical EM algorithm. Thus, the classical EM loop

provides a starting point on which the proposed Bayesian algorithm builds, allowing for a

straightforward extension to existing EM codes.

The classic frequentist method of parameter estimation and point forecasts becomes worrying

when considering the possibility of extreme events. It is more informative to, say, policy-makers

to describe a probability distribution of possible outcomes rather than a single value. This

is where Bayesian inferential methods become prominent. Contrary to frequentist methods,

Bayesians do not assume fixed unknown parameters. Rather, they assume the parameter

values to be random variables that have uncertainty inherent to them. Although this method

of parameter estimation is more natural, attempts to implement this more than 30 years ago

were limited due to the lack of required computational power. At first, most attempts to apply

Bayesian estimation methods to time series models were focused on deviations from the classic

Kalman filter, specifically, nonlinear and/or non-Gaussian state space models, e.g. Dorfman and

Havenner (1992), Carlin et al. (1992), Tanizaki and Mariano (1998) and Durbin and Koopman

(2002). These papers investigate the effectiveness of particle filters, which rely on Monte Carlo

simulations, on a variety of state space models including e.g. ones with a discrete observed

variable or Student-t errors. For a complete and self-contained overview on the various types

of Bayesian models that can be applied to state space models, in particular those that include

Markov chain Monte Carlo (MCMC) simulations, the reader is encouraged to read Andrieu et al.

(2010).

Ever since the literature became aware of the strengths and flexibility of Bayesian modelling,

such methods have become prominent in the financial econometrics literature, see e.g. Geweke

(1989), Chib and Greenberg (1996), Lopes and Tsay (2010). Most applications have been geared

towards estimation of parameters driving stochastic volatility models, such as in Chib et al.

(2002), Jacquier et al. (2004), and Sakaria and Griffin (2017). However, and perhaps more relevant

to this study, there has been a growing number of papers that apply Bayesian estimation methods

to the term structure of interest rates. Even though this area of research is still in its infancy, there

have been some notable advances over the last two decades. A study by Thompson (2008) uses
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Bayesian updating to identify volatility parameters of the term structure, in particular for the

short end. The author finds that the identification of volatility parameters relevant to the yield

curve is highly sensitive to the estimation technique, but does not test the economic significance

of the discrepancies in the obtained values. A much earlier study by Mikkelsen (2001) (in fact,

the very first) successfully applies MCMC directly to the term structure of interest rates having

assumed a nonlinear mapping of the latent variables to the observed yield curve dynamics. The

author concludes that MCMC techniques are extremely well suited for parameter estimation

problems when nonlinear mappings arise. Other notable works are those of Sanford and

Martin (2005) and Batista and Laurini (2016). The former study applies a hybrid Gibbs/MCMC

methodology to “augmented” yield curve data, while the latter apply a Hamiltonian Monte

Carlo method, advocating the strengths of this variation of MCMC simulation.

What (almost) all previous works on this subject have lacked is their study of out-of-sample

performance. Bayesian models are very rarely tested on this due to the massive computational

strain their estimation demands. This research bridges that gap. The proposed Bayesian

modification to the classical EM algorithm allows for a full Bayesian treatment of a macrofinance

model entwining the term structure and the macroeconomy, while still remaining analytically

tractable in terms of filtering and parameter estimation. The only simulation required is the

sampling from parameter prior distributions. This is followed by solving closed-form equations

for each set of prior values yielding a correct analytical posterior distribution of parameters.

Because of this, a proper study of the Bayesian macrofinance model’s out-of-sample forecasting

performance becomes a reality and is directly comparable to classical models.

This research fits into the literature under the context of Bayesian state space models applied

to financial time series, and continues a growing string of literature, namely those mentioned

above. Where this research mostly differs is in the contents of the observation equation, as

well as proposing a new modification to classical estimation techniques of multidimensional

macroeconomic factor models. Almost all previous efforts have focused on modelling the entire

(Gaussian) yield curve, which can cause problems due to its high persistence as Sanford and

Martin (2005) point out. This research solely focuses on an affine model of the short rate for

three primary reasons: (i) working under the ATSM framework defines all long-yield bonds as

affine extensions of the short rate, hence, once the short rate is obtained, the rest of the yield

curve is implicitly obtained; (ii) nonlinear mappings from states to observations is unavoidable

5



Thesis MSc Quantitative Finance

when considering the full term structure, thus, dealing with only the short rate circumvents

this complication; (iii) adding lags of macroeconomic information as exogenous variables that

drive the observation equation does not cause severe computational strain and completes a

self-contained macrofinance model. As for the proposed modification, aptly named the BLAME

(Bayesian LineAr Minimisation of Energy) algorithm, this applies as a direct extension to the

classical EM algorithm and allows for a full Bayesian treatment of linear Gaussian state space

models. This proposition solves several of the well-documented problems associated with the

classical EM algorithm, namely the degeneracy of covariance matrices arising because systems

become too large and too sparse. In addition to this, hard constraints are also implemented and

studied in both the classical and Bayesian algorithms. In order to understand the power of the

BLAME algorithm, a simulation study is conducted, and then the estimation techniques are

poised against each other on real US macroeconomic data. The simulation study shows that

the Bayesian algorithms’ in-sample fit is just as good as its classical counterparts’. On the one

hand, the (constrained) EM algorithm is stronger at identifying the coefficients of the latent

dynamical coefficients, whereas (constrained) BLAME is better at identifying the observation-

driven coefficients. When applied to US macroeconomic data on monthly short rate, inflation,

output gap, and cyclical unemployment, the Bayesian algorithms perform significantly worse

than their classical counterparts. They tend to have difficulties identifying the system parameters

when shifting from window to window, which causes their one-step-ahead forecasts to be as

much as 60 times worse than a simple random walk. More specifically, for inflation, output gap

and unemployment, BLAME performs around 5 times worse than a random walk, and is over

20 times worse for short rate forecasting. The problem does not seem to be in the theoretical

soundness of the algorithm itself, but rather in the naive assumption made on the number of

iterations required for convergence, as well as the number of prior samples being too low.

The remainder of the paper is structured as follows. Section 2 describes the macrofinance

model in detail. Section 3 presents the state space formulation of the macrofinance model, and

Section 4 is devoted to the BLAME algorithm. Section 5 applies all estimation techniques to a

simulated data set to understand the strengths and weaknesses of each method, while these

techniques are then applied to a real macroeconomic data set in Section 6. Finally, the results

from the macroeconomic data are discussed in Section 7, with the concluding remarks of the

study in Section 8.
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2 Macrofinance Model

Here I allocate an entire section to introduce the work of Rudebusch and Wu (2008) (henceforth

RW), whose macrofinance model this research builds upon. I then outline the different choices

this research takes, mostly deviating in the estimation methods. The results of the RW study and

those of this one are not directly comparable, as the RW estimated macroeconomic coefficients

are estimated in a state space-like structure using six interest rates rather than the short rate

alone. However, the interpretations and theoretical underpinnings of the latent drivers and their

relations to the observed variables are essentially the same, and these will later be investigated

and directly compared.

RW design an ATSM that combines the no-arbitrage specification of the yield curve with

well-established macroeconomic dynamics of inflation and the output gap. They first build a

“yields-only” model, which defines the short rate as an affine function of a constant and two

normalised latent factors:

it = δ0 + δ′1 ft = δ0 + Lt + St, (2.1)

where the latent factors are estimated to be the statistical level and slope factors (first two

principal components), and δ1 = [1 1]′. They also consider a second short rate model, driven by

the inflation and output gap of the economy:

it = r + πt + gπ(πt − π∗t ) + gyyt + ut,

where r is the equilibrium short term real interest rate (assumed constant), πt is the cumulative

inflation over the past year, π∗t is the target inflation, and yt is the output gap. The coefficients,

of course, are understood as the level of influence changes in the inflation and output gap

have on the short rate. This specification of the short rate is based on the famous Taylor (1993)

rule, which links the decisions made on monetary policy to the movements of the short rate.

RW investigate the two models and find similarities in the dynamics driving the short rate.

Specifically, they conclude that the level factor Lt closely follows the movement of the nominal

interest rate r + πt, and can thus be taken as a close approximation. As a result, the remainder

of the Taylor (1993) specification, gπ(πt − π∗t ) + gyyt, is approximated by the slope factor St,

representing the underlying business cycle of the economy.

7
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For their macrofinance specification, RW take the short rate to be the affine sum of latent

factors, as in the above yields-only model. The key aspect of this specification is that the

underlying latent factors are not only autoregressive, but are also explained by the observed set

of macroeconomic variables as well:

Lt = ρLLt−1 + (1− ρL)πt + εL,t, (2.2)

St = ρSSt−1 + (1− ρS)(gyyt + gπ(πt − Lt)) + uS,t, (2.3)

uS,t = ρuuS,t−1 + εS,t, (2.4)

where they specify that the latent variable St has a serially correlated error, uS,t, with its own

dynamics. RW complete their macrofinance model by specifying autoregressive dynamics for

the inflation and output gap with both forward- and backward-looking elements:

πt = µπEt[πt+1] + (1− µπ)πt−1 + αyyt + επ,t, (2.5)

yt = µyEt[yt+1] + (1− µy)yt−1 − βr(it −Et[πt+1]) + εy,t. (2.6)

In the context of macrofinance models, unemployment tends to be overlooked as a significant

source of information. With the aim of capturing as much macroeconomic information as

possible, I extend the RW specification by including what is known as the cyclical unemployment

rate in the form of the difference between the real unemployment rate, Ut and the natural

unemployment rate, U∗t :

νt = Ut −U∗t .

Cyclical unemployment is incorporated into the RW macrofinance model given as:

πt = µπ Lt + (1− µπ)[α1πt−1 + α2πt−2] + αyyt−1 − αννt−1 + επ,t, (2.7)

yt = µyEt[yt+1] + (1− µy)[β1yt−1 + β2yt−2]− βr(it−1 − Lt−1)− βννt−1 + εy,t, (2.8)

νt = µνEt[νt+1] + (1− µν)[γ1νt−1 + γ2νt−2] + εν,t. (2.9)

This specification of cyclic unemployment allows the model to capture (i) the Phillips curve for

inflation and (ii) Okun’s law for the output gap. This model is based on the macrofinance model

developed by Garutti et al. (2019) in their unpublished paper.
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3 Classical Parameter Estimation

In this section, I present the EM alongside its constrained counterpart. First, the state space

macrofinance model to which all estimation techniques are applied is laid out. Deviations from

the original RW set up will be pinpointed and justified.

3.1 General State Space Macrofinance Framework

Let the latent state q-vector be ξt. Let the observation r-vector be xt, and thus the g-vector

of explanatory macroeconomic variables be zt ⊆ xt, with g ≤ r. Deviating from the RW

macrofinance structure from Equations (2.2) and (2.3), the state transition equation will therefore

be defined as:

ξt+1 = F
[q×q]

ξt + vt+1, vt+1 ∼ N
(
0, Q

)
(3.1)

where the state vector is defined as ξt = [Lt St]′, and the error term is normally distributed

with zero mean and q× q covariance matrix Q for q = 2. In the RW set up, they state that the

latent variables are dependent on the observed inflation and output gap. As the latent variables

in a state space model are precisely that, I separate them from the observed variables and do

not specify a cyclic dependence in the model. In the filtering process, the dependence of the

observed variables on the latent states is clear and one-sided; due to the iterative nature of the

EM algorithm, an unidentified system may arise should a feedback effect of the observations

be present in the state transition dynamics. Another deviation from the RW set up removes

the serially correlated error term of St and is absorbed into vt = [εL,t εS,t]
′. The correspondence

between (the adjusted) Equations (2.2)-(2.3) and Equation (3.1) can be explicitly stated with the

coefficients in the state system matrix written as

F =

ρL 0

ρS (ρS − 1)gπ

 .

Now, let the observation vector be defined as xt = it ∪ zt = [it πt yt νt]′. In this paper, as

opposed to RW, I consider only the short rate and not the full term structure. Assume that the

short rate’s observations have an associated measurement error:

it+1 = δ′1ξt+1 + ε i,t+1,

9
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where the latent state coefficients are not restricted to be normalised to 1, that is, δ1 = [δL δS]
′,

and a constant is not estimated. Therefore, the full observation equation driven by the state

equation in (3.1) is given as:

xt+1 = H
[r×q]

ξt+1 + K1
[r×g]

zt + K2
[r×g]

zt−1 + wt+1, wt+1 ∼ N
(
0, R

)
(3.2)

where the error term, wt = [ε i,t επ,t εy,t εν,t], has r× r covariance matrix R, thus r = 4 and g = 3.

The modified RW macrofinance specification from Equations (2.7)-(2.9) is preserved by setting:

H =


δL δS

µπ 0

0 −βr

µν,L µν,S

 , K1 =


0 0 0

(1− µπ)α1 αy −αν

0 (1− µy)β1 −βν

0 0 (1− µν,L − µν,S)γ1

 ,

K2 =


0 0 0

(1− µπ)α2 0 0

0 (1− µy)β2 0

0 0 (1− µν,L − µν,S)γ2

 .

There are a couple of important adjustments to the original RW set up: (i) the expectational

quantity Et[πt+1] is set to be equivalent to the underlying state variable Lt; (ii) Et[yt+1] is omitted

from the estimation specification since the direct influence of St is felt through the value of

−βr(it −Et[πt+1]); and (iii) the expectational quantity for cyclical unemployment Et[νt+1] is

split into an affine sum of the latent factors with corresponding coefficients µν,L and µν,S, so as

to emulate an “underlying” Phillips curve and Okun’s law.

The classical EM algorithm, originally developed by Dempster et al. (1977), is an iterative

updating process that takes a set of initial parameters and approximates a lower bound for the

marginal likelihood of the observations based on the full set of filtered, and thus smoothed,

states. The expectation (‘E’) step uses a predefined set of parameters θ(k) to calculate the expected

value of the marginal likelihood across all states Q, and then the maximisation (‘M’) step finds

new parameters θ(k+1) that maximise this expected value. This new set of parameters is used to

calculate a new expected likelihood, and so on until convergence. In the context of this research,

the relevant maximising quantities are shown in Appendix C.

10
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3.2 Constrained System Matrices

The classical EM algorithm is unconstrained, that is, the resulting parameter values are unre-

stricted. When the dimensionality of the problem becomes substantial, which is mostly the

case in dynamic multifactor term structure/DSGE models, reliable parameter estimates become

harder to obtain. It is more desirable to impose certain macroeconomic restrictions on the system

matrices, in this case, {F, H, K1, K2}. In principle, it is also possible to constrain the covariance

matrices {Q, R}, but this is not explored in this research. The macrofinance model as given

by RW has system matrix restrictions in the form of zeros in some elements. The analysis of

the Q-maximising quantities changes in this case, where one requires the maximisation of the

constrained version of Q. The full derivation of the Qcon-maximising quantity for the F system

matrix is given in Appendix D, and the key result is quoted below:

vec (Fcon) = vec (Func) +

(
Ω−1B′

(
BΩ−1B′

)−1
B
)
(b− Bvec (Func)) , (3.3)

where Ω−1 =
(

∑T
t=1 ξ̂t|T ξ̂ ′t|T + Pt|T

)−1
⊗Q; it is given that the system matrix has linear con-

straints given by Bvec (F) = b; and the vectorised form of the unconstrained solution is given

as:

vec (Func) =
T

∑
t=1

( T

∑
t=1

ξ̂t−1|T ξ̂ ′t−1|T + Pt−1|T

)−1

⊗ Iq

 [ξ̂t−1|T ⊗ ξ̂t|T + vec
(
Pt,t−1|T

) ]
.

From the above expression, it is evident that the constrained version of the EM solution

is equal to the unconstrained version plus a “penalty” that one incurs having imposed the

necessary restrictions. Clearly, imposing B = b = 0 recovers the classical unconstrained solution.

All of the remaining system matrices have the same form as Equation (3.3), thus, I quote only

the unconstrained vectorised solutions, as well as the form of their respective Ω’s:

vec (Hunc) =
T

∑
t=3

( T

∑
t=3

ξ̂t|T ξ̂ ′t|T + Pt|T

)−1

ξ̂t|T

⊗ (xt −K1zt−1 −K2zt−2) ; (3.4)

Ω−1

[rq×rq]
=

(
T

∑
t=3

ξ̂t|T ξ̂ ′t|T + Pt|T

)−1

⊗R,

11
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vec (K1,unc) =
T

∑
t=3

( T

∑
t=3

zt−1z′t−1

)−1

zt−1

⊗ (xt −H1ξ̂t|T −K2zt−2
)

; (3.5)

Ω−1

[rg×rg]
=

(
T

∑
t=3

zt−1z′t−1

)−1

⊗R,

vec (K2,unc) =
T

∑
t=3

( T

∑
t=3

zt−2z′t−2

)−1

zt−2

⊗ (xt −H1ξ̂t|T −K1zt−1
)

; (3.6)

Ω−1

[rg×rg]
=

(
T

∑
t=3

zt−2z′t−2

)−1

⊗R.

In the next section, I outline the BLAME modification and showcase its technical advantages

over the classical EM algorithm.

4 BLAME

This modified EM algorithm is in the spirit of the famous Hamiltonian Monte Carlo (HMC)

method developed by Duane et al. (1987). Their algorithm uses Langevin dynamics to specify a

thermal potential under which the system’s particles are influenced. The dynamics of the parti-

cles are dictated (specifically, restricted) by the specification of the Hamiltonian, i.e. the energy

of the system. In this research, the underlying states themselves are not deeply investigated, but

rather are the parameters θ. To correctly estimate the parameters, it is desirable to integrate the

states out yielding the actual posterior of interest:

p(θ|x1:T) =
∫ ∫

. . .
∫

p(ξ0:T, θ|x1:T) dξ0dξ1 . . . dξT. (4.1)

This T + 1 dimensional integral is impossible to compute analytically, and becomes increasingly

difficult the more observations we have. Instead of attempting to numerically compute the

above quantity directly, the marginal posterior is proportional to

p(θ|x1:T) ∝ p(x1:T|θ)p(θ).

For implementation of the proposed BLAME algorithm, it is easier to replace the posterior

distribution with another quantity, the energy function (Särkkä (2013)). This is simply the

12
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unnormalised negative logarithm of the above posterior:

φT(θ) = − log p(θ)− log p(x1:T|θ). (4.2)

The crux of parameter estimation in the BLAME algorithm therefore lies in the computation

of the observation marginal log-likelihood observations log p(x1:T|θ) and the log-prior distri-

bution. The beauty of the BLAME algorithm is that it can be applied when considering both

unconstrained and constrained macroeconomic systems, without requiring much additional

computation power over the regular (constrained) EM algorithm. We can thus approximate the

posterior distribution as:

φT(θn) = − log p(θn)−Q
(

θn, θ
(k)
n

)
. (4.3)

4.1 Prior Distributions

In order to move forward, it is necessary to now make assumptions about the prior distributions

of the parameters θn. In principle, any prior distribution can be handled by the BLAME

algorithm, since only the analytic form of the probability density function is required, with the

only requirement that its derivative exists. Given that the macrofinance state space model is

linear Gaussian, for the purposes of this research I specify the system matrices F, H, K1 and

K2 to follow matricvariate normal prior distributions, while the covariance matrices Q and R

will follow inverse Wishart distributions. More specifically, the prior distributions are given as

follows:

Θs ∼MN
(

Ms, Us, Vs

)
∝ e−

1
2 tr[V−1

s (Θs−Ms)′U−1
s (Θs−Ms)], for s ∈ {F, H, K1, K2}, (4.4)

Θc ∼ W−1
(

Ψ, ν
)

∝ |Θc|−(ν+p+1)/2e−
1
2 tr(ΨΘ−1

c ), for c ∈ {Q, R}. (4.5)

4.2 The BLAME Algorithm

Using the previous information, we are now ready to state the BLAME algorithm. The result is

an important modification of the classical EM algorithm, and I outline it in Proposition 1 at the

top of the next page.
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Proposition 1 (BLAME). Let the linear Gaussian state space system be given by Equations (3.1)

and (3.2):

ξt+1 =Fξt + vt+1,

xt+1 =Hξt+1 + K1zt + K2zt−1 + wt+1,

where vt ∼ N
(
0, Q

)
and wt ∼ N

(
0, R

)
. The d-vector of unknown system and covariance

parameters is thus given as θ
(k)
n = {µ0, P0, F, H, K1, K2, Q, R}. Let the parameters have prior

distribution:

θ
(k)
n ∼ p

(
θ
(k)
n

)
,

specifically, those given in Equations (4.4) and (4.5). Let the parameters also have p ≤ d linear

restrictions dictated by the linear equation

Bθ
(k)
n = b.

Then, the ‘M’ step of the EM algorithm is given by the argmin of the energy function (4.3):

θ
(k+1)
n = argmin

θn∈Θ,λ∈Rp

[
− log p

(
θ
(k)
n

)
−Q

(
θn, θ

(k)
n

)
+ λ(Bθ

(k)
n − b)

]

Convergence of the BLAME algorithm is guaranteed on the basis of it having the same structure

as the classical EM algorithm, with the only added modification of analytically tractable prior

information and linear restrictions. Nuances regarding exact convergences in certain situations

with specific priors are left to further research. Nevertheless, the choice of prior should be

appropriate such that convergence is not hindered. In fact, we recover the classical EM algorithm

in the limit that every parameter has an uninformative prior and no restrictions.

Corollary 1.1. If all parameters have uninformative priors, that is, p(θn) ∝ 1, then the log-prior is 0. If

there are no linear restrictions, then B = 0 and b = 0. Therefore, the BLAME algorithm solves:

argmin
θn∈Θ

[
−Q

(
θn, θ

(k)
n

)]
⇐⇒ argmax

θn∈Θ
Q
(

θn, θ
(k)
n

)
,

and thus we yield the classical EM algorithm.
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In order to move forward, and to make a distinction between constrained and unconstrained

systems, the unconstrained version of the BLAME algorithm will simply be referred to as

BLAME, whereas the (more general) constrained version will be referred to as Con-BLAME. This

is to keep consistency with the distinction made between EM and Con-EM. To illustrate this,

below I quote the (unconstrained) BLAME quantities for the latent state autoregressive system

matrix and latent state covariance matrix. The full derivations of these, as well as the remaining

parameter matrices, can be found in Appendix E. Let F be matricvariate normally distributed:

p(F) ∼MN q×q (M, U, V) .

Then, the energy minimising quantity is given by:

argmin
θn=F

φT(θn) = vec (Fblame) = E
[
vec(F̂)|IT

]
= Y−1vec (Γ) , (4.6)

where

Y = Iq ⊗
(

QU−1
)
+

[
V

(
T

∑
t=1

ξ̂t−1|T ξ̂ ′t−1|T + Pt−1|T

)′]
⊗ Iq,

and

Γ =

(
T

∑
t=1

ξ̂t|T ξ̂ ′t−1|T + Pt,t−1|T

)
V + QU−1M.

Now let Q be inverse Wishart distributed:

p(Q) ∼ W−1(T, ν).

Then, the energy minimising quantity for the state covariance matrix is given by:

argmin
θn=Q

φT(θn) =E
[
Q̂|IT

]
=

1
T + ν + q

T

∑
t=1

[
ξ̂t|T ξ̂ ′t|T + Pt|T −

(
ξ̂t|T ξ̂ ′t−1|T + Pt,t−1|T

)
F′ − F

(
ξ̂t−1|T ξ̂ ′t|T + Pt−1,t|T

)
+ F

(
ξ̂t−1|T ξ̂ ′t−1|T + Pt−1|T

)
F′
]
+

1
T + ν + q

T′. (4.7)

Equations (4.6), (4.7), and (E.3)-(E.8) combined give the BLAME loop used for analytically

calculating the posterior distribution of the parameters. Most importantly, the energy minimising
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quantities for the covariance matrices are of the form:

argmin
θn∈{Q,R}

φT(θn) = Classical EM Q-maximiser + Scaled Prior Hyperparameters.

Of course, it is obvious that the strength of the prior via the hyperparameters determines the

amount of shrinkage one gets throughout the BLAME loops. The computational complexity of

this modification is comparable to the classical EM algorithm, albeit slightly more strenuous for

specific parameters. The resultant energy minimising quantities at most require the inversion

of matrices that scale according to the square of the dimensionality of the states, or whichever

the largest dimension is reached based on the multiplied dimensions between q, g or r. In this

application, 2 states imply the inversion of a 4× 4 matrix for the minimising step of F. This

is not a substantial problem in general for a q-state system, especially when one considers the

form of the matrix to be inverted. These constitute a sum of a positive (semi-)definite block

covariance matrix and a block matrix of the outer product of the smoothed states. The problem

of degeneracy of the outer product is solved by the addition of the block covariance matrix.

Finally, for most macrofinance applications, ATSMs almost never exceed 3-factor models, hence,

this dimensional scaling effect does not play a part for state system parameter estimation. Things

might start to become computationally demanding should one fill the observation equation

with the full term structure of interest rates along with exogenous macroeconomic information;

then the dimensional scaling effect may need to be addressed more closely. Nonetheless, this

does not overshadow the gain one has by implementing the mentioned modification and the

aforementioned capabilities of the BLAME algorithm showcase the computational advantage

and flexibility of this modified version over the classical EM algorithm.

4.3 Constrained BLAME

I now treat the general form of the BLAME algorithm from Proposition 1, henceforth referred

to as Con-BLAME. To illustrate the Con-BLAME algorithm, I revisit the system matrix F and

quote the constrained energy minimising quantity, where the full derivation can be found in

Appendix E.2. Considering the case again where F follows a matricvariate normal distribution,
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the solution is given as:

vec (Fcon-blame) =

[
Iq2 −Φ−1B′

(
BΦ−1B′

)−1
B
]

×
[[

Iq2 −Ω−1J
(

D−1 + J′Ω−1J
)−1

J′
]

vec (Func) + Φ−1 (V⊗U)−1 vec (M)

]
+ Φ−1B′

(
BΦ−1B′

)−1
b. (4.8)

The above expression is identical for all system matrices with the key differences being the

dimensions of the identity matrices, as well as the expressions for Ω, and thus Φ, and the

corresponding vectorised unconstrained EM system parameters. If no constraints are present,

i.e. B = 0 and b = 0, then Equation (4.8) reduces to

vec (Fcon-blame) = vec (Func)−Ω−1J
(

D−1 + J′Ω−1J
)−1

J′︸ ︷︷ ︸
=Φ−1Ω−Iq2

vec (Func) + Φ−1 (V⊗U)−1 vec (M)

= Φ−1Ωvec (Func) + Φ−1 (V⊗U)−1 vec (M) ,

which is understood as a scaled unconstrained EM solution with a scaled shift associated with

the prior hyperparameters. Of course, the smaller in magnitude the elements of V⊗U are, its

inverse becomes increasingly large. This puts a much larger emphasis on the prior mean given

to F. The prior covariance is clearly understood as the strength of the prior belief on the location

of F, that is, the amount of shrinkage we apply to F.

4.4 Hierarchical BLAME

The versatility of the energy function allows for a direct specification of a hierarchical Bayesian

structure. The advantage of doing so lies in any sensitivity of the algorithm to the choice of prior

hyperparameters. Should the system matrices become of sizeable dimensions, then choosing

appropriate locations and scales for their priors becomes tricky. Therefore, it is more favourable

to define a distribution of hyperparameters and minimise the energy function with respect to

these as well, yielding energy minimising quantities in terms of hierarchical hyperparameters.

This is a direct extension of the BLAME algorithm, as we simply need to add extra information

in the form of a hierarchical log-prior to the energy function and solve the first order condition

with respect to the prior hyperparameters. However, this implementation would lead to an
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extra layer of prior samples for which the model needs to be estimated, and this increases the

computational strain by a few orders of magnitude becoming questionable if its implementation

would add anything significant. Exploring this area is left for further research, as it detracts

from the results of the standalone (constrained) BLAME algorithm.

4.5 Extending to Non-Gaussian State Space Models

When either the states or the observations are modelled to be non-Gaussian, the classical Kalman

filter breaks down. Depending on the nature of the model, straightforward modifications may

be implemented to adjust for certain degrees of non-Gaussianity or non-linearity. These can

be in the form of the extended Kalman filter (EKF), or the unscented Kalman filter (UKF),

and are readily implementable at the start of each BLAME loop with the aim of capturing

non-Gaussianities or nonlinearities in either the state or observation equations. In principle,

the addition of Bayesian prior information within the BLAME loops provide the fix required

that usually cause a lot of the problems seen in implementations of the above Kalman filter

modifications, including the severe biases the EKF may experience due to the linearisation of

heavily non-linear functions. Should the model be so complex as to not be fully captured by

the BLAME algorithm alongside a UKF/EKF, then this falls outside the scope of the analytical

BLAME algorithm altogether, as Monte Carlo simulation is needed to approximate the Bayesian

filtering equations. In these cases, particle filters in the form of sequential importance resamplers

and Markov chain Monte Carlo (MCMC) methods for parameter estimation are implemented,

effectively replacing the BLAME loop entirely. Therefore, I do not explore this area any further,

and the non-Gaussian and/or nonlinear implementation of the BLAME algorithm is also left to

further research.

5 Simulation Study

In this section, I conduct a simulation study inspired by the Jobson and Korkie (1980) paper

in order to test the in-sample fit of: (i) classical EM; (ii) constrained EM; (iii) BLAME; (iv)

constrained BLAME. The true parameters are loosely based on the RW estimates. The hard

constraints imposed follow the RW specification of the macrofinance model. First, I discuss how

the data is generated and then the section concludes with the results of the simulation study.
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5.1 Time Series Data Generation

The simulated observations are generated iteratively using generated underlying states. Since

all variables are (multivariate) normally distributed, it suffices to generate independent normal

random numbers, and then induce a correlation based on the desired covariance matrix. The

dynamics of the system follow exactly that of the macrofinance model given by Equations (3.1)

and (3.2), so it is known that the model is not misspecified. It should be noted, that the simulated

system does not contain a simulated unemployment variable, so as to mimic the RW set up

more closely. For more in-depth information of the constraints and initialisation of the study,

please refer to Appendix G.

In this simulation study, the state error vector vt is 2× 1 and the observation error vector is

3× 1. Assume that we wish to generate a single correlated vector y of dimension d with zero

mean and covariance matrix Σ. This is done by first applying a Choleski decomposition on

Σ = ZZ′, and then computing y = Zx, where x ∼ Nd(0, Id) is a vector of independent normally

distributed variates. When d = 2, as for the states, it is most computationally efficient to generate

these using the polar Box and Muller (1958) method as pairs of standard normals are generated

at each iteration. When d = 3, as for the observations, then the inversion method proposed by

Rao et al. (2011) is preferred (and thus applied 3 times to generate one vector wt). See Appendix

F for the algorithms for these two normal random variate generators. The simulated time series

is initialised at a specified initial mean µ0. The system matrices are all specified beforehand and

are kept fixed at every iteration. The first state is then generated as:

ξ̃1 = Fsξ0 + ṽ1

where the superscript s signifies that the matrix is a user-defined matrix used for simulations.

This yields the first set of observations:

x̃1 = Hs ξ̃1 + w̃1 =⇒ z̃1 = x̃2,:
1

where the tilde explicitly specifies a simulated result and the superscript 2, : signifies that

the contemporaneous exogenous variable z is built from the 2nd to the last element of the

observations x. This is to emulate the interaction of inflation and output gap on the subsequent

observations, leaving the first element of x, the simulated short rate, a purely observed variate.
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The full simulated time series data is thus iteratively specified by:

ξ̃t+1 =Fs ξ̃t + ṽt+1

x̃t+1 =Hs ξ̃t+1 + Ks
1z̃t + Ks

2z̃t−1 + w̃t+1,

and this process is repeated 10,000 times to yield enough data for the algorithms to estimate

accurate parameter values. A plot of the first 400 simulated time series data is found in Figure 6

in Appendix J. As for prior parameter generation, the methods used are shown in Appendix H.

5.2 In-Sample Fitting

The performance of all four estimation techniques can be found alongside the “true” parameters

in Table 1. The number of EM loops is set to K = 100, although one may of course choose a

tolerance beyond which the system is considered converged. For the Bayesian algorithms, the

number of prior samples are N = 100. In order to get comparable results, when implementing

the Bayesian algorithms specifically for the matricvariate normal system matrices, the location

hyperprior M is set equal to the initialised matrices for the classical and constrained EM

algorithms. Thus, what is truly investigated is how the extra prior uncertainty affects the

estimation process and whether or not this allows more freedom for the algorithm to learn the

true locations of the parameters better than relying on a lucky initial guess.

From Table 1 it is clear that some techniques excel in certain areas and are weak in others.

Overall, classical EM performs the best when estimating the latent coefficients and does rea-

sonably well for the observed system coefficients. On average, the relative difference of the

coefficients to the true ones is −16%, as is shown in Table 9 in Appendix J. Con-EM performs

slightly less well with the latent coefficients, but is strong for the observed system coefficients.

Overall, the relative difference of Con-EM’s estimated parameters is −34%. Although it does

not come closest to the true parameters of the system, BLAME’s performance is strong with

an average relative difference of −16%, equal to its frequentist counterpart. Con-BLAME also

equals its counterpart in terms of relative difference. As can be seen from Figures 1 and 2, for

some parameters, even with as little as 100 samples and 100 loops, the Bayesian algorithms

have already yielded narrow posterior distributions despite having relatively wide prior dis-

tributions. This is not entirely the case for other parameters, however. Ideally, more samples
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Coefficient True Value EM Con-EM BLAME Con-BLAME

ρL 0.94 0.94 0.94 0.75 0.78
ρS 0.12 0.03 0.00 0.01 0.02
gπ 0.48 0.39 0.63 0.32 0.07
δL 0.05 0.09 0.03 0.14 0.07
δS −0.05 −0.07 −0.05 −0.02 −0.01
µπ 0.45 0.10 0.04 0.22 0.28
α1 1.22 0.89 1.21 1.15 1.35
α2 −0.42 −0.28 -0.31 −0.31 -0.36
αy −0.13 −0.13 −0.05 −0.09 −0.06

(1− µy)β1 0.77 0.79 0.78 0.74 0.75
(1− µy)β2 0.09 0.08 0.08 0.08 0.08

βr 0.08 0.02 -0.02 0.06 0.02

Table 1: Estimated parameter values using all four studied estimation techniques on a single
simulated sample of t = 1, . . . , 10, 000 generated time series data. The posterior mean is
quoted for the Bayesian algorithms. The true coefficients are chosen to closely follow the
outcome of the RW macrofinance model. Values in bold are the ones closest to the true value.

and longer loops would be required to get more accurate posterior mean estimates, but for the

eventual purpose of macroeconomic forecasting, a showcase of the accuracy of (Con-)BLAME

at these low sample/loop levels is far more informative. It is thus impressive that the overall

performance of the Bayesian algorithms in terms of relative difference to the true parameters is

exactly comparable to their classical counterparts at even such low sample/loop levels.

All four algorithms struggle to estimate the off-diagonal element of the latent autoregressive

matrix, most likely due to the fact that the slope autoregressive parameter (ρS− 1)gπ and the off-

diagonal parameter ρS are mutually dependent. Thus, it makes it difficult for these algorithms

to correctly identify the exact values. However, as can be seen in the top right plot of Figure

1, while the individual parameters may not be correctly identified, their interaction within the

system is well approximated. The reason why the posterior mean for ρL is underestimated

by the Bayesian algorithms is due to the bimodal posterior distribution, as is seen in the top

left plot of Figure 1. The second peak at around 0.55 biases the posterior mean, when it can

be clearly seen that if the maximum a posteriori (MAP) was taken as the posterior estimate,

then the BLAME algorithm would exactly identify this coefficient as well. This would not be

true, however, for the inflation dependence on the latent level factor through the µπ coefficient,

which is somewhat poorly estimated by all four algorithms and has a highly non-standard

posterior distribution. Should the MAP be used in this case, the algorithm would yield an
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estimate close to zero, which is not desirable. This is also the case for the Con-BLAME algorithm,

as is seen in Figure 2. Nonetheless, compared to the (Con-)EM algorithms, the prior distribution

allows more freedom for the algorithm to converge to a variety of values, of which the posterior

mean gives a better estimate of the true µπ. The remaining autoregressive parameters are well

approximated by both the BLAME and Con-BLAME algorithms, as is exemplified by the narrow,

Dirac delta-like posteriors shown in the middle row of Figures 1 and 2.
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Figure 1: Prior (cyan) and posterior (red) densities of six coefficients taken from all four of
the system matrices with the true values indicated by the black dashed vertical lines. These
estimations have been done using the BLAME algorithm.
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It is worth noting how the posterior distribution of ρL does not exhibit the bimodal nature

when estimated via Con-BLAME, as opposed to BLAME. It is not immediately clear why this

occurs, however, this seems to come at the cost of accurately estimating (ρS− 1)gπ, as is depicted

by the wider distribution in the top right plot of Figure 2. How this would affect forecasting

performance is not easily understood, but it would seem natural to assume that these trade-

offs are countered elsewhere in the estimation process. In general, the constrained algorithms

perform best when estimating the observed system, whereas the unconstrained versions perform

best when estimating the latent system. Therefore, it is expected that the constrained algorithms

will have the best forecasting power when applied to macroeconomic data.
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Figure 2: Prior (cyan) and posterior (red) densities of the same six coefficients taken from all
four of the system matrices with the true values indicated by the black dashed vertical lines.
These estimations have been done using the constrained BLAME algorithm.
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6 Application to US Macroeconomic Data

Building on the simulation study and understanding the strengths and weaknesses of each

estimation technique, I now apply these techniques to real US macroeconomic data. This section

will begin with a preliminary analysis of the data itself, providing insight in the expected

dynamics of the macrofinance model. Then, all four studied estimation procedures will be

applied to the data and the results analysed in comparison to three benchmarks, a random

walk (the control), a restricted VARIMA(2,1,0) model and an unrestricted VEC model (two

macroeconomic models).

6.1 Preliminary Data Analysis

The monthly data on the US short rate and inflation are obtained from the OECD1 online library,

and data on the US output gap, unemployment, and NAIRU are obtained from the Federal

Reserve of St. Louis (FRED)2, where output gap is only available in quarterly frequency. In order

to standardise the frequency across the entire data set, a cubic spline interpolation function is

applied to the output gap data. The full data set spans from January 1983 until December 2018,

thus 432 observations across 36 years. A graph of the data can be seen in Figure 3.

The output gap remains mostly negative, with a “seasonal” pattern associated with the

business cycle of the economy, which is expected to be captured by the latent slope factor St.

Inflation remains relatively stable, and the short rate has a downward sloping trend with the

noticeable zero-lower-bound (ZLB) following the financial crash in 2008. Cyclical unemployment

follows the same cycle as the output gap, but reacts in the opposite direction. This is exemplified

in the cross covariance and correlations in Table 10 of Appendix J. Inflation and output gap have a

fairly low full sample correlation, whereas the short rate is strongly correlated with inflation, and

unemployment is strongly negatively correlated with the output gap. A full sample regression of

the short rate on a constant, inflation and output gap yields the corresponding Taylor coefficients,

assuming a target inflation rate of 2%. The resulting coefficients are found to be r = 1.64%,

gπ = 0.397 and gy = 0.362, which is in line with the general Taylor rule. This regression is used

as a part of the forecasting procedure for the macroeconomic benchmark models, emulating the

contemporaneous dependence of the short rate on the latent factors in the SSMs.

1www.oecd.org
2fred.stlouisfed.org
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Each variable’s sample autocorrelation function (except cyclical unemployment) is plotted

in Figure 7 in Appendix J, and is normalised such that the first lag has autocorrelation 1. The

short rate is strongly persistent, with lagged rates of up to 8 years prior still having a significant

effect on next month’s rate. This is in line with the high persistence seen in previous works.

Output gap is less persistent, and inflation the least of all. Therefore, since no lags of the short

rate are modelled, it is expected that the underlying latent level factor Lt will capture most

this strong persistence and exhibit near-unit-root behaviour, whereas the latent slope factor St

should exhibit persistence similar to that of the output gap.
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Figure 3: US macroeconomic data in monthly frequency, spanning from 1983:M1-2018:M12.
The axis “Decimal” implies the decimal form of a percentage [x%/100].

Individual histograms for all four macroeconomic variables are presented in Figure 8 of

Appendix J. Each histogram is overlayed with a maximum likelihood fitted Gaussian density

(in black) along with each time series’ kernel density estimator. The kernel densities of inflation

and output gap are a close fit to the maximum likelihood Gaussian fit over the whole sample,

implying that a Gaussian model for these macroeconomic variables is a suitable assumption.

The kernel density of cyclical unemployment is less convincingly so, with a hint of bimodal

peaks. The kernel density of the short rate is clearly bimodal owing to the ZLB. This implies

that the short rate in this macrofinance model might be misspecified, however, on the basis of

the maximum likelihood fitted Gaussian, this difference is not substantial and may only affect

estimations close to the ZLB. Nonetheless, for future research, a Gaussian mixture model may

be preferred for interest rate macrofinance modelling, which can easily be added within an

EM-estimated framework via state augmentation.
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To get a better feel for the nature of the latent factors, principal component analysis is applied

to the US yield curve for the 3-, 6-, 12-, 24-, 36-, 60-, 84-, and 120-month interest rates. The data

are retrieved from the US Treasury3. The constructed yield curve spans from 1990:M1 until

2018:M12. In Figure 4, the fitted level factor L̃t is plotted against the short rate and inflation,

and the fitted slope factor S̃t is plotted against the output gap. It is clear that the slope factor

is almost an exact replica of the output gap (except for the abnormal dip around 2009), which

strongly supports the RW interpretation. On the other hand, the constructed level factor seems

to switch between following the short rate and the inflation at most points in time, and thus

may rather closely follow an amalgamation of the two. Nonetheless, the dynamics of L̃t tend to

have the same pattern as the short rate, even though it does not always stay on the same level.

This is clearly seen by its behaviour around the distinctive ZLB. The downward level shift of L̃t

around the ZLB occurs at aroud the same time as the output gap dropping to its lowest, thus,

this may be an indication of the identification problem these statistical factors face.
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Figure 4: First two principal components of the US yield curve using data from 1990:M1-
2018:M12. The slope factor is plotted against the output gap, and the level factor is plotted
against both the inflation and the short rate. The axis “Decimal” implies the decimal form of a
percentage [x%/100].

3www.treasury.gov
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6.2 Macroeconomic Benchmark Models

In order to compare the forecasting power of the four models discussed in this paper, two

macroeconomic models are estimated for comparison. The first is a restricted VARIMA(2,1,0)

model, and the second is a VEC model. In these models, the observation vector does not contain

the short rate, rather, only the macroeconomic variables zt. This is because the short rate is

handled separately in its forecasting. For the benchmark models, the corresponding macroe-

conomic model is estimated for the given window of observations, then a Taylor regression

is run on the same window. The forecasted macroeconomic variables are then utilised in the

fitted Taylor equation to yield the short rate forecast. This way, it is possible to directly compare

the benchmarks to the state space models, whose restricted forms have affine latent factor

dependencies for the short rate. Handling the Taylor regressions for the short rate separately

aim to emulate this phenomenon in the state space models.

The restricted VARIMA(2,1,0) model is an augmented and restricted version of the RW

macrofinance model. In this specification, all integrated macroeconomic variables are dependent

on only their own lags. Therefore, the autoregressive matrices of both the first and second lags

are diagonal, which directly implies that each macroeconomic variable is fitted by a simple

ARIMA(2,1,0) process collected into a VAR specification. Results of a preliminary augmented

Dickey-Fuller (ADF) test for each individual macroeconomic variable can be found in Table

11 in Appendix J. From these results, at 95% confidence, we are able only to marginally reject

the null of a unit root for inflation, whereas the other three variables we do not reject non-

stationarity. Thus, it can be safely assumed that at least three of the four macroeconomic

variables have stationary roots, i.e. are I(1) time series. This provides the justification for the use

of an integrated vector autoregressive model for forecasting purposes. Further tests on higher

orders of integration are not implemented, as they are not particularly suitable for the purposes

of this research.

It is well known that macroeconomic variables are also strongly cointegrated. The Johansen

(1991) vector error correction (VEC) model is chosen to capture the long and short run equilib-

rium inter-dynamics of the macroeconomic variables, which are not captured in rudimentary

VAR models:

∆zt = µ + Bdt + Πzt−1 +
p−1

∑
i=1

Γi∆zt−i + ηt.
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In this specification, only one lagged difference is estimated with no deterministic term nor a

constant term:

∆zt = Πzt−1 + Γ∆zt−1 + ηt,

where Γ = Π− Ig. To test the level of cointegration, I apply Johansen’s trace and maximum

eigenvalue tests (Johansen (1995)) on the above model, which are the multivariate generalisations

of the ADF test. These tests estimate the rank of Π, as this tells us the level of cointegration that

exists in the model. In general, there are three interpretations of the test outcomes: (i) Π = 0,

which implies all its eigenvalues are zero. This means that no cointegration exists in the model

and it reduces to a regular VAR model; (ii) Π has full rank g, which means all zt are stationary;

(iii) 0 < Rank(Π) = m < g, which implies that det(Π) = 0, and hence cointegration exists.

In the last case, Π can be written in terms of the g×m adjustment and cointegrating vectors

α, β, respectively: Π = αβ′. Johansen’s likelihood ratio cointegration maximum eigenvalue

test statistic is given sequentially starting at the null hypothesis that Rank(Π) = r against the

alternative Rank(Π) = r + 1 for r = 0, . . . , g− 1, where g− 1 is the maximum allowed number

of cointegrating vectors. The LR test statistic is given as:

LRMaxEig(r, r + 1) = −T log(1− λr+1),

going in order from largest to smallest eigenvalue λ. The first test at which we fail to reject the

null yields the estimator for Rank(Π) = r̂. In a similar fashion, the trace test has null hypothesis

Rank(Π) = r̂ against the alternative r < Rank(Π) ≤ g− 1. The test statistic is given as:

LRTr(r, g− 1) = −T
g−1

∑
i=r+1

log(1− λi).

As with the maximum eigenvalue test, the first null that is not rejected yields the estimated

rank of Π. The results of these tests are given in Table 2 at the top of the next page. Based

on the results of these tests, the VEC model containing inflation, the output gap and cyclical

unemployment will be fitted with two cointegrating vectors. Similarly to the VARIMA model,

the forecasts produced by the VEC model will be utilised to create a contemporaneous forecast

of the short rate using the window-fitted Taylor regression.
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Coint. Vectors

None
At most 1
At most 2

Maximum Eigenvalue

Test Stat. λ 90% 95% 99%

285,79 0,49 15,72 17,80 22,25
167,29 0,32 9,47 11,22 15,09
74,21 0,16 2,98 4,13 6,94

Trace

Test Stat. 90% 95% 99%

527,29 21,78 24,28 29,51
241,50 10,47 12,32 16,36
74,21 2,98 4,13 6,94

Table 2: Johansen maximum eigenvalue (left) and trace (right) cointegration test on the full
data sample. All tests reject the null and suggest Rank(Π) = 2 cointegrating vectors.

6.3 State Space Initialisation and Forecasting

In this research, only one-month-ahead forecasts are considered. An in-sample estimation

window of w = 372 months (31 years) is used for model calibration, which is then used to

produce an h = 1 month ahead forecast for all macroeconomic variables considered. Then, the

calibration window is rolled forward by one month and the model re-estimated for the new

window. This yields 59 months’ worth of forecasts, which is suitable for model comparison.

In order to utilise the information gained from the previous estimation window and ensure

convergence to a true optimum, for the (Con-)EM and (Con-)BLAME algorithms the initialisation

of the system and covariance matrices after the first estimation are based on the optimum

converged parameters of the previous window. The reason for this is because it is very likely

that the full dynamical structure of each window is highly correlated to the previous window

θ(K). Specifically, the initialisation of the parameters θ = {F, H, K1, K2, Q, R} at each window

wi = 1, . . . , 131 for the classical algorithms is given as:

θ
(0)
wi =


{(

F(0)
)

1
,
(

H(0)
)

1
,
(

K(0)
1

)
1

,
(

K(0)
2

)
1

,
(

Q(0)
)

1
,
(

R(0)
)

1

}
, if wi = 1,{(

F(K)
)

wi−1
,
(

H(K)
)

wi−1
,
(

K(K)
1

)
wi−1

,
(

K(K)
2

)
wi−1

,
(

Q(K)
)

wi−1
,
(

R(K)
)

wi−1

}
, otherwise.

The reason why µ0 and P0 are not updated at each window is because they pertain to the

beginning of the previous window and are not immediately relevant to the starting point of the

new window. Hence, at each window, these are kept as a diffuse initialisation at each calibration

window: (
µ
(0)
0

)
wi

=

0

0

 , and
(

P(0)
0

)
wi

=

+∞ 0

0 +∞

 , ∀ wi = 1, . . . , 131.
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In practice, the prior variances are simply set to a large number, i.e. 106. It would make sense to

initialise µ0 and P0 each window with the first smoothed state and covariance of the previous

window, ξ̂1|T and P1|T, however, it is unlikely to have a great impact on the outcome, and so this

was not implemented.

In a similar fashion for the Bayesian algorithms, the system matrices have location hyperpa-

rameters equal to the previous window’s converged values and the covariance hyperparameters

remain the same at every iteration window. In all windows, it is assumed that the prior hy-

perparameters are independent, thus these covariance hyperparameters are all diagonal. For

the covariance matrices, the scale matrix and degrees of freedom also remain the same at each

window. For more detailed information on the exact form of the prior hyperparameters, refer to

Appendix I. The one-step-ahead forecast of the macroeconomic variables xT+1 given the final

observation of the window xT is given by:

ξT+1|T = F(K)ξT,

xT+1|T = H(K)ξT+1|T + K(K)
1 zT + K(K)

2 zT−1.

6.4 Model Performance

For all models, there are two metrics assessed in terms of forecasting performance, the mean ab-

solute prediction error (MAPE) and the root mean squared prediction error (RMSPE). The reason

both are chosen is because the RMSPE heavily penalises errors which are far off the true value,

thus, if we do not see a large discrepancy between the two metrics, then it can be concluded that

the model performs in a consistent manner throughout the estimation windows. For all seven es-

timation models considered, m ∈ {R. Walk, VARIMA, VEC, EM, Con-EM, BLAME, Con-BLAME}:

MAPEm =
1

T − w− 1

T−w−1

∑
t=1

|x̂m,t+1 − xt+1| , RMSPEm =

√√√√ 1
T − w− 1

T−w−1

∑
t=1

(x̂m,t+1 − xt+1)2.

The results of the out-of-sample forecasting performance in terms of MAPE can be found in Table

3 and in terms of RMSPE in Table 4. The random walk model performs strongly for the short

rate with an MAPE of only 5 basis points. It predicts the output gap and cyclical unemployment

very well, with an MAPE of 9 and 10 basis points, respectively. The random walk performs the

least well for inflation, which is expected as inflation is the least persistent variable.
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Overall, the random walk remains a difficult model to beat. However, it is not flawless.

Several of the models studied here come very close to outperforming the random walk. Without

considering the VARIMA and VEC models, the best performing algorithm for the short rate is

Con-EM, whereas for the remaining macroeconomic variables, the best performing algorithms

are EM and Con-EM with BLAME falling not far behind. Con-BLAME performs substantially

worse on all accounts. The conclusions formed based on RMSPE do not differ at all from the

ones formed based on MAPE.

Variable Estimation Method

R. Walk VARIMA VEC EM Con-EM BLAME Con-BLAME

Short Rate 0.0005 40.93 42.00 2.72 1.89 22.99 59.60

Inflation 0.0023 0.98 1.02 1.52 1.65 6.50 9.62

Output Gap 0.0009 0.22 0.23 1.40 1.45 7.63 16.30

Cyc. Unempl. 0.0010 1.02 1.08 1.28 1.41 3.99 10.52

Table 3: Mean absolute prediction errors (MAPEs) for one-step-ahead forecasts of a random
walk, two macroeconomic models, two EM models, and two Bayesian EM models. Estimation
window is 372 months long (one month rolling), with an out-of-sample testing window of 59
months. Values quoted to the right of the random walk are calculated with respect to the ran-
dom walk’s forecast error itself, so a value below 1 implies that the model beats the random
walk by the quoted amount, and a value above 1 implies the opposite.

One particularly noticeable forecasting performance is that of the short rate for the VARIMA

and VEC models, where they perform 40 times worse (in terms of MAPE) than the random walk

control. This will have to do with the fact that the short rate was forecasted independently of the

models via the Taylor regression for each independent window. Nonetheless, the VARIMA and

VEC models perform very well when comparing the macroeconomic variable forecasts. The

fitted macroeconomic models are especially strong when it comes to forecasting the output gap

with roughly 4 times more forecasting power. However, this is because monthly output gap data

was interpolated using a cubic spline based on the quarterly data, hence the resultant values are

induced with a high autocorrelation, making them more predictable than regular data. The real

performance is seen in the relative values for inflation and cyclical unemployment, where the

VARIMA model outperforms the control only in inflation forecasting.
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Variable Estimation Method

R. Walk VARIMA VEC EM Con-EM BLAME Con-BLAME

Short Rate 0.0008 26.61 27.11 2.14 1.73 16.18 45.88

Inflation 0.0028 0.99 1.03 1.59 1.67 5.65 9.39

Output Gap 0.0012 0.25 0.22 1.51 1.61 5.94 14.81

Cyc. Unempl. 0.0013 1.07 0.88 1.29 1.38 3.47 10.06

Table 4: Root mean squared prediction errors (RMSPEs) for one-step-ahead forecasts of a
random walk, two macroeconomic models, two EM models, and two Bayesian EM models.
Estimation window is 372 months long (one month rolling), with an out-of-sample testing
window of 59 months. Values quoted to the right of the random walk are calculated with
respect to the random walk’s forecast error itself, so a value below 1 implies that the model
beats the random walk by the quoted amount, and a value above 1 implies the opposite.

The EM algorithms show strong performance, only slightly beaten by the random walk for all

variables. What is interesting to note is how Con-EM outperforms its unconstrained counterpart

with respect to the short rate, which partly confirms the conclusion reached from the simulation

study. Considering that unconstrained EM estimates 56 parameters, all macroeconomic variables

are allowed to have an influence on the short rate on top of the latent factors, thus, an inevitable

degree of overfitting has occurred. For all other macroeconomic variables, the unconstrained

EM algorithm slightly beats its constrained counterpart, but not by a significant amount.

In general, BLAME and Con-BLAME perform poorly. BLAME performs reasonably for the

macroeconomic variables being easily outperformed by its frequentist counterparts. Neither of

the Bayesian methods perform as well as expected for the short rate. Con-BLAME is on average

the worst performing model for forecasting, especially for the short rate where it is nearly 60

times worse than the random walk. To investigate the poorer-than-expected performance further,

Figure 5 shows the evolution of the posterior means for some of the estimated parameters

relevant to the short rate. The algorithm is seen to be stable, on account of the consistent

convergence of the filtered short rate variance in 5a, but does not seem completely consistent

when one looks at how the dependencies on the latent variables shift continually from window

to window in 5b and 5c. This provides an indication as to why the short rate forecasts are as

poor as they are; the algorithm has not properly converged to an optimum.
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Figure 5: Rolling window results from the Con-BLAME algorithm. The plots specifically
show: (5a) the sample short rate variance against the posterior mean short rate variance for
each rolling window; (5b) the posterior mean of the affine dependencies of the short rate on
the latent factors for each window; and (5c) the posterior mean of the latent autoregressive
parameters for each rolling window.

7 Discussion of Results

The VEC and VARIMA models are the strongest forecasting models for the macroeconomic

variables, but not for the short rate. This is because the short rate was not included in the

model specification and was handled separately via the Taylor regression. Had the short rate
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been included in these macroeconomic models, their forecasting power of the short rate would

undoubtedly be significantly higher. However, this holistic approach of including the short

rate in the VARIMA and VEC models detracts from the reason of including these models in

the first place as macroeconomic benchmarks. These models are chosen to capture as many

macroeconomic relations as possible, including Okun’s law and the Phillips curve, hence the

additional inclusion of cyclical unemployment in the model specification. Where these models

excel is in their forecasting ability for the output gap, increasing predictive power four-fold over

the random walk. As discussed earlier, this is likely due to the cubic spline interpolation applied

on the originally attained quarterly data in order to yield monthly output gap data. In future

research, it might be better to study quarterly data instead to avoid this effect.

In terms of forecasting, the classical EM algorithms are strong competitors to the macroeco-

nomic models. The constrained EM algorithm is almost as powerful as unconstrained EM when

it comes to forecasting macroeconomic variables, performing only very slightly worse than the

random walk control. The constrained EM algorithm is the strongest at forecasting the short

rate, which exemplifies the power of adding hard macroeconomic restrictions on the system.

For future research, the classical EM algorithm remains a powerful analytical alternative for

large factor model estimation.

The Bayesian algorithms perform adequately, but not up to the standard as hoped. This may

be due to a variety of reasons. A prominent one may be the fact that only 100 samples are used

for each estimation window, causing the posterior means of each parameter to be unreliable.

This is clear from the discontinuous evolution of the posterior means in Figures 5b and 5c. Future

research would need to increase the amount of samples used to at least 1000. Another potential

downfall in the research is the number of EM loops used for the Bayesian algorithms. As certain

sampled initialisations may stray far away from a given optimum of the likelihood function, 100

loops may in fact not be enough to guarantee convergence. Therefore, for future research, rather

than setting the EM loops to a standard 100, a tolerance for convergence should be set such

that the system is guaranteed to have reached an optimum, such as K = 1000. There is a caveat

to these recommendations: implementing them will significantly increasing the computation

time required to perform sound forecasting analysis, thus, a more efficient way of producing

higher samples/faster convergence is desired (such as sampling the posterior parameters with

replacement in the form of a bootstrap, for example).
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There is one final concern I have with the implementation of BLAME on the macroeconomic

data. Throughout several trial runs, I discovered that some (seemingly random) combinations of

prior parameters yield near-singular Kalman gain matrices, which in turn yield huge predicted

covariance matrices. These covariance matrices are prominent in the estimation of the latent

covariance matrix Q and the latent autoregressive matrix F, and in these trial runs it was the

covariance matrix that took the brunt of the huge predicted covariances. This is simply because

in the estimation of F, the large nature of Pt+1|t is negated through the inverse in the ‘M’ step.

Quick fixes may be implemented by using the Moore-Penrose pseudoinverse, however this does

not solve the underlying problem. Therefore, I suggest extra care be taken in future research to

test the convergence properties of the BLAME algorithm for a variety of prior distributions and

hyperparameters.

On the whole, the BLAME algorithm performs only 3-4 times as bad as its classical counter-

part, which is reasonable. However, this can only be said for the macroeconomic variables. For

the short rate, the performance is worse by a factor of 10, and it is not immediately clear why

this is the case, apart from those mentioned above. The Con-BLAME algorithm performs far

below the standard expected from a forecasting model. One aspect of its implementation that

may cause inaccuracies during the estimation procedure is imposing both hard constraints and

prior distributions for all system matrices involved. With finite sample data, it might become

cumbersome for the algorithm to handle optimising parameters within a system matrix that

contains both hard constraints and shrinkage. For future research, it may be favourable to

impose the macroeconomic (hard) constraints only on the observation system matrices, and

thus only impose prior distributions on the latent system matrices. As can be seen in Figures 5b

and 5c, the posterior means resulting from the Con-BLAME algorithm yield reasonable values,

but fluctuate quite a lot throughout the estimation windows. It is, nonetheless, difficult to

tell whether these fluctuations arise due to the naturally strongly persistent latent factors, or

the estimation procedure itself. Therefore, further research is warranted into both Bayesian

algorithms, with a possible mitigation of the types of constraints applied to the system and

covariance matrices. Additionally, since the short rate is modelled to be influenced only by the

latent factors, it should also have zero covariance with the remaining macroeconomic variables,

however, these hard constraints were not imposed on the covariance matrices; this is also an

aspect worthy of further research.
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8 Concluding Remarks

This research has explored the Bayesian inferential method for multidimensional factor model

estimation and forecasting. A self-contained macrofinance model containing the US short rate,

inflation, output gap, and cyclical unemployment is constructed in the form of a latent 2-factor

state space model, taking inspiration from the Rudebusch and Wu (2008) macrofinance model.

Both Bayesian and classical estimation techniques have been applied to an in-sample calibration

window for the purpose of evaluating one-step-ahead forecasting performance. The classical

estimation techniques are the famous Expectation Maximisation (EM) algorithm, originally

developed by Dempster et al. (1977), as well as a constrained version which utilises Lagrange

multipliers. The Bayesian algorithms are newly developed analytical extensions of the EM

algorithm, named the BLAME algorithm. The development of these extensions allow for a full

analytical Bayesian treatment of multidimensional factor model estimation without the need

for extensive computation in the form of particle filters or Markov chain Monte Carlo (MCMC)

simulations. These extensions aim to solve one of the main problems faced by the classical EM

algorithm, namely the degeneracy of covariance matrix estimation causing it to fail.

The linear Gaussian state space model allows complete freedom to the researcher to specify

any prior distribution for the system and covariance matrices; for the purposes of this research,

matricvariate normal prior distributions were chosen for the system matrices and inverse

Wishart prior distributions for the covariance matrices. These specifications yield the analytical

BLAME loop which provides exact posterior distributions of the parameters, on which one may

apply a number of posterior analyses. In order to understand the strengths and weaknesses of

the (Con-)EM and (Con-)BLAME algorithms, a simulation study is conducted on a simulated

hidden Markov system based on a latent 2-factor model and three simulated independent

Gaussian observations. The simulation study finds that the classical methods are more powerful

at identifying latent factor coefficients, whereas the Bayesian methods excel at identifying

observational coefficients, even when the number of prior samples are as low as N = 100.

Nonetheless, I believe one single simulated dataset is not fully indicative of these algorithms’

capabilities, thus I advocate the study of a more sophisticated simulation environment that

would yield a distribution of posterior parameter means rather than a single simulated dataset,

from which a more accurate depiction of how these algorithms estimate the parameters would

be clear.
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When applied to forecasting real macroeconomic data, the Bayesian algorithms do not

perform as hoped. They tend to have difficulties identifying the system parameters when

shifting from window to window, without a clear indication as to why this may be the case.

This causes their one-step-ahead forecasts to be quite inaccurate, especially for the short rate,

reaching as high as 60 times worse than a basic random walk. The reasons for this may be

caused by lack of convergence or insufficient samples to yield a correct posterior distribution.

On the other hand, this research has shown that the EM algorithm and its constrained version

are powerful competitors to standard macroeconomic models. In terms of macroeconomic

forecasting, they perform very well, being comparable in to the benchmark macroeconomic

models, but still not beating a simple random walk.

Aspects of this research that remain unanswered exist both on the theoretical side of the

BLAME algorithm, as well as on its practical implementation, including its effect in a univariate

setting. Convergence of the BLAME estimates is clearly dependent on the choice of prior; there

may well be a family of prior distributions and/or hyperparameters that produce divergent

likelihoods. This remains to be explored in future research. As out-of-sample forecasting was

a main topic of this research, the number of samples and EM loops where restricted to 100. It

would be interesting to assess the effect of increasing these values by a few orders of magnitude

on both the in-sample and out-of-sample estimations. It is expected, of course, that these will

merely improve, making BLAME an even stronger candidate for future forecasting literature.

Additionally, only the short rate has been studied. In theory, the observation equation

could be loaded with other interest rates spanning the entire yield curve. However, the high

persistence of the yield curve may cause additional issues related to overfitting. Thus, should

the entire yield curve be modelled, the constrained EM or constrained BLAME algorithms

would be preferred, in order to avoid these complications. Additionally, I recommend that

hard constraints need only be implemented for the observation system matrices, whereas the

shrinkage techniques supplied by the BLAME algorithm need only apply to the covariance

matrices and possibly the latent autoregressive matrix, as I am of the opinion that the mixing of

the two types of constraints may interfere with the optimisation procedure as well.

In conclusion, this research advocates the usage of the BLAME algorithm as a powerful

alternative to other computationally strenuous Bayesian methods. The BLAME algorithm (as

well as its constrained version) bridges the gap between retrieving analytical results and a full
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Bayesian treatment of a state space model. It allows for the injection of prior information on

higher-dimensional systems, which are notorious for having sparse specifications, while also

still remaining analytically tractable. In general, the use of the EM algorithm and its variants are

powerful tools for forecasting macroeconomic variables and their usage in multidimensional

factor models are warranted, especially for short rate modelling. In principle, one could

estimate the short rate using either EM or BLAME, and then in combination with a non-

Gaussian/nonlinear ATSM map the rest of the yield curve. One may be able to efficiently

capture the entire yield curve by capturing only the dynamics of the short rate, driven solely by

observed macroeconomic variables and filtered latent factors. Should this be successful, one

could effectively link the yield curve to the macroeconomy, and the BLAME algorithm may be

one of the steps allowing us to do so.
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Appendix

A Probability Distributions

A.1 Gaussian

Definition A.1 (Gaussian distribution). A random vector x ∈ Rn has a Gaussian distribution if

its probability distribution has the form

x ∼ N
(

µ, Σ
)
= p(x|µ, Σ) =

1
(2π)n/2|Σ|1/2 e−

1
2 (x−µ)′Σ−1(x−µ) (A.1)

given a mean µ ∈ Rn and positive semi-definite covariance matrix Σ ∈ Rn×n.

A.2 Matricvariate Normal

Definition A.2 (Matricvariate normal distribution). A random matrix X ∈ Rn×p has a matric-

variate normal distribution if its distribution has the form

X ∼MN n×p

(
M, U, V

)
= p(X|M, U, V) =

1
(2π)np/2|V|n/2|U|p/2 e−

1
2 tr[V−1(X−M)′U−1(X−M)],

(A.2)

where M is an n× p matrix, U is an n× n matrix, and V is a p× p matrix.

A.3 Inverse Wishart

Definition A.3 (Inverse Wishart distribution). Let X be a p× p symmetric, positive definite,

random matrix. Let Ψ be p× p a symmetric, positive semi-definite matrix. Let ν ≥ p represent

the degrees of freedom of X. Then X has an inverse Wishart distribution if its probability density

has the form

X ∼ W−1
p

(
Ψ, ν

)
= p(X|Ψ, ν) =

|Ψ|ν/2

2νp/2Γp(
ν
2 )
|X|−(ν+p+1)/2e−

1
2 tr(ΨX−1), (A.3)

where Γp is the multivariate gamma function as above.
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B Classical Filtering and Smoothing Results

B.1 The Kalman Filter

Expressing the observation and state equation in this probabilistic language allows us to write:

p(ξt|ξt−1, θ) = N
(

Fξt−1, Q
)

,

p(xt|ξt, θ) = N
(

Hξt + K1zt−1 + K2zt−2, R
)

.

The predicted state is thus given by

Et[ξt+1] ≡ ξ̂t+1|t = Fξ̂t|t, (B.1)

which will have covariance with the current-time state

Covt[ξ̂t+1|t, ξt] ≡ Pt+1|t = FPt|tF
′ + Q (B.2)

The prediction step is given by the Chapman-Kolmogorov equation, which is now solvable

analytically:

p(ξt+1|x1:t, θ) =
∫

p(ξt+1|ξt, θ)p(ξt|x1:t, θ) dξt

= N
(

Fξ̂t|t, Q
)
N
(

Fξt−1, Q
)

= N2

 Fξ̂t|t

Fξt−1

 ,

Pt+1|t FPt|t

Pt|tF′ Pt|t

 .

The joint distribution of the predicted states and the observations at t + 1 is now derived in

order to get the updating (filtering) step. Consider first the following:

Et[xt+1] = Hξ̂t+1|t + K1zt + K2zt−1

Vart[xt+1] = HPt+1|tH
′ + R.

Therefore, the covariance of the states and observations is given by

Covt[ξt+1, xt+1] = Covt[ξt+1, Hξt+1 + K1zt + K2zt−1 + vt+1]
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= Vart[ξt+1]H′

= Pt+1|tH
′.

Using the above relations, we are able to express the joint distribution of observations and states

as a joint normal:

xt+1

ξt+1

∣∣∣∣∣∣Ft ∼ N2

Hξ̂t+1|t + K1zt + K2zt−1

Fξ̂t|t

 ,

HPt+1|tH′ + R HPt+1|t

Pt+1|tH′ Pt+1|t

 .

We can express the Bayesian filtering distribution as the conditional distribution of ξt+1 given

the new observation xt+1, which is readily available using the joint distribution given above:

p(ξt+1|x1:t+1, θ) =
p(xt+1|ξt+1, θ)p(ξt+1|x1:t, θ)∫

p(xt+1|ξt+1, θ)p(ξt+1|x1:t, θ) dξt+1
= N

(
ξ̂t+1|t+1, Pt+1|t+1

)
.

By defining the Kalman gain and prediction error as:

J = Pt+1|tH
′ (HPt+1|tH

′ + R
)−1

et+1 = xt+1 −Hξ̂t+1|t −K1zt −K2zt−1,

we can thus express the mean and covariance of the filtering distribution as:

ξ̂t+1|t+1 = ξ̂t+1|t + Jet+1 (B.3)

Pt+1|t+1 = (I− JH)Pt+1|t. (B.4)

The set of relations defined by Equations (B.1)-(B.4) complete the Kalman filtering equations.

In the next subsection, we derive the Kalman smoothing distribution, specifically, the RTS

smoother. This is a vital stepping stone to deriving the EM algorithm for calculating the

posterior distribution of the parameters.

B.2 The Rauch-Tung-Striebel Smoother

The Bayesian smoothing distribution is the joint distribution of any two time-adjacent states

given the full observation set FT. This allows us to perform a “backward-pass” of the data given
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the filtered states and smooth out the state estimates. This joint distribution is given as:

p(ξt+1, ξt|x1:T, θ) = p(ξt|ξt+1, x1:T, θ)× p(ξt+1|x1:T, θ)

= p(ξt|ξt+1, x1:t, θ)× p(ξt+1|x1:T, θ)

= N
(

ξ̂t|t + Pt|tF
′P−1

t+1|t(ξt+1 − ξ̂t+1|t), Pt|t − Pt|tF
′P−1

t+1|tFPt|t

)
× p(ξt+1|x1:T, θ).

Now we integrate over all possible “future” states ξt+1, and thus the RTS smoothing distribution

is given as:

p(ξt|x1:T, θ) = N
(

ξ̂t|T, Pt|T

)
,

where the Kalman smoothing steps are:

ξ̂t|T = ξ̂t|t + Pt|tF
′P−1

t+1|t(ξ̂t+1|T − ξ̂t+1|t) (B.5)

Pt|T = Pt|t − Pt|tF
′P−1

t+1|t(Pt+1|t − Pt+1|T)P
−1
t+1|tFPt|t. (B.6)

Collected altogether and in full form, the Kalman filtering, updating and RTS smoothing

quantities for the LGau-SSM system are:

Kalman prediction step: ξ̂t+1|t = Fξ̂t|t

: Pt+1|t = FPt|tF
′ + Q

Kalman update step: ξ̂t+1|t+1 = ξ̂t+1|t + Pt+1|tH
′ (HPt+1|tH

′ + R
)−1 (xt+1 −Hξ̂t+1|t −K1zt −K2zt−1

)
: Pt+1|t+1 =

(
Iq − Pt+1|tH

′ (HPt+1|tH
′ + R

)−1 H
)

Pt+1|t

RTS smoothing step: ξ̂t|T = ξ̂t|t + Pt|tF
′P−1

t+1|t
(
ξ̂t+1|T − ξ̂t+1|t

)
: Pt|T = Pt|t − Pt|tF

′P−1
t+1|t

(
Pt+1|t − Pt+1|T

)
P−1

t+1|tFPt|t

: Pt+1,t|T = Pt+1|TP−1
t+1|tFPt+1|t+1,

where Pt+1,t|T is the cross covariance between the latent states ξ̂t+1 and ξ̂t, given by their joint

normal distribution.
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C Classical EM Results

The quantity to be maximised given a set of chosen parameters is:

Q
(

θ, θ(k)
)
= E

[
log p(ξ0:T, x1:T|θ)| θ(k)

]
=
∫

p
(

ξ0:T|x1:T, θ(k)
)

log p(ξ0:T, x1:T|θ) dξ0:T

=
∫

p
(

ξ0:T|x1:T, θ(k)
)

log p
(

ξ0|θ(k)
)

dξ0

+
T

∑
t=1

∫
p
(

ξt, ξt−1|x1:T, θ(k)
)

log p
(

ξt|ξt−1, θ(k)
)

dξtdξt−1

+
T

∑
t=1

∫
p
(

ξt|x1:T, θ(k)
)

log p
(

xt|ξt, θ(k)
)

dξt

=− 2T − 2
2

log(2π) +
1
2

log
∣∣∣P−1

0

∣∣∣− 1
2
(ξ0 − µ0)

′ P−1
0 (ξ0 − µ0)

+
T − 1

2
log
∣∣∣Q−1

∣∣∣− 1
2

T

∑
t=1

(ξt − Fξt−1)
′Q−1 (ξt − Fξt−1)

+
T − 2

2
log
∣∣∣R−1

∣∣∣− 1
2

T

∑
t=3

(xt −Hξt −K1zt−1 −K2zt−2)
′ R−1 (xt −Hξt −K1zt−1 −K2zt−2) .

(C.1)

The algorithm is initialised given a set of prior parameters θ(k), which may or may not be

based on the nature of the data or problem. Equation (C.1) is effectively the ‘E’ step of the EM

algorithm. What remains is to maximise this quantity with respect to the parameter vector

θ = {µ0, P0, F, H, K1, K2, Q, R}, which is the ‘M’ step. The Q-maximising quantities are given

below. I omit their derivations as they are standard procedure (Särkkä (2013)) and form a part of

the BLAME algorithm seen later. For the system matrices we have:

F(k+1) =

(
T

∑
t=1

ξ̂t|T ξ̂ ′t−1|T + Pt,t−1|T

)(
T

∑
t=1

ξ̂t−1|T ξ̂ ′t−1|T + Pt−1|T

)−1

, (C.2)

H(k+1)|K(k)
1 , K(k)

2 =

(
T

∑
t=3

(
xt −K(k)

1 zt−1 −K(k)
2 zt−2

)
ξ̂ ′t|T

)(
T

∑
t=3

ξ̂t|T ξ̂ ′t|T + Pt|T

)−1

, (C.3)

K(k+1)
1 |H(k+1), K(k)

2 =

(
T

∑
t=3

(
xt −H(k+1)ξ̂t|T −K(k)

2 zt−2

)
z′t−1

)(
T

∑
t=3

zt−1z′t−1

)−1

, (C.4)

K(k+1)
2 |H(k+1), K(k+1)

1 =

(
T

∑
t=3

(
xt −H(k+1)ξ̂t|T −K(k)

1 zt−1

)
z′t−2

)(
T

∑
t=3

zt−2z′t−2

)−1

, (C.5)
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and for the covariance matrices we have:

Q(k+1)|F(k+1) =
T

∑
t=1

[
ξ̂t|T ξ̂ ′t|T + Pt|T −

(
ξ̂t|T ξ̂ ′t−1|T + Pt,t−1|T

)
F
′(k+1) (C.6)

− F(k+1)
(

ξ̂t−1|T ξ̂ ′t|T + Pt−1,t|T

)
+ F(k+1)

(
ξ̂t−1|T ξ̂ ′t−1|T + Pt−1|T

)
F
′(k+1)

]
(C.7)

R(k+1)|H(k+1), K(k+1)
1 , K(k+1)

2 =
T

∑
t=3

[(
xt −K(k+1)

1 zt−1 −K(k+1)
2 zt−2

)(
xt −K(k+1)

1 zt−1 −K(k+1)
2 zt−2

)′
−H(k+1)ξ̂t|T

(
xt −K(k+1)

1 zt−1 −K(k+1)
2 zt−2

)′
−
(

xt −K(k+1)
1 zt−1 −K(k+1)

2 zt−2

)
ξ̂ ′t|TH

′(k+1)

+ H(k+1)
[
ξ̂t|T ξ̂ ′t|T + Pt|T

]
H
′(k+1)

]
. (C.8)

D Constrained EM Derivation

In what follows, I explicitly derive the Qcon-maximising quantity for the system matrix F. This

derivation is based on a note written by Lange (2019), who does so for the H system matrix of a

more general state space model.

When applying constraints to a system, the most appropriate way of doing so is in the form

of Lagrange multipliers. To do so for a matrix, it is required to express its elements in vector

format, i.e. we need to vectorise it. Suppose we impose p ≤ q2 restrictions on the values of the

elements of the state autoregressive matrix F, which will thus be written in the form:

Bvec (F) = b,

where B is the p× q2 matrix of ones and zeros picking out the specific elements of vec (F) to

equal the corresponding elements of the p× 1 vector b. Specifically, for F, we have only one

restriction: F1,2 = b = 0, hence we have in fact B = [0 0 1 0]. For better illustration, the constraint
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matrix and values for vec (K1) would be

B
[p×rg]

=



1 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0


; b

[p×1]
=



0

0

0

0

0

0


.

Returning to the specification for vec (F), the state transition equation in vectorised form is thus

written as:

ξt+1 = vec (Fξt) + vt+1

= vec
(
IqFξt

)
+ vt+1

=
(
ξ ′t ⊗ Iq

)
vec (F) + vt+1

where we use vec (ABC) = (C′ ⊗A) vec (B). Using this formulation, the constrained expected

log-likelihood (with only the terms relevant to vec (F)) is therefore written as:

Qcon|θ=vec(F) = −
1
2

T

∑
t=1

[
ξt −

(
ξ ′t ⊗ Iq

)
vec (F)

]′Q−1 [ξt −
(
ξ ′t ⊗ Iq

)
vec (F)

]
− λ′ (Bvec (F)− b) ,

where λ is the Lagrange multiplier of appropriate dimensions. The maximisation of this quantity

requires setting the first order condition with respect to both vec (F) and λ to zero:

∂Qcon

∂λ
= Bvec (F)− b = 0

∂Qcon

∂vec (F)
=

T

∑
t=1

(
ξ ′t ⊗ Iq

)′Q−1 [ξt −
(
ξ ′t ⊗ Iq

)
vec (F)

]
− B′λ

= −
T

∑
t=1

(
ξ ′t ⊗ Iq

)′Q−1 (ξ ′t ⊗ Iq
)

vec (F) +
T

∑
t=2

(
ξ ′t ⊗ Iq

)′Q−1ξt − B′λ = 0.

It is thus possible to combine the two conditions into one system solution expressed as:

Ω B′

B 0p

vec (F)

λ

 =

∑T
t=1
(
ξ ′t ⊗ Iq

)′Q−1ξt

b

 ,
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where Ω = ∑T
t=1
(
ξ ′t ⊗ Iq

)′Q−1 (ξ ′t ⊗ Iq
)
. Assuming that the block matrix is invertible and that

B has independent rows, its inversion can be expressed using the property:

Ω B′

B 0p

−1

=

Ω−1 −Ω−1B′
(
BΩ−1B′

)−1 BΩ−1 Ω−1B′
(
BΩ−1B′

)−1(
BΩ−1B′

)−1 BΩ−1 −
(
BΩ−1B′

)−1

 ,

and thus the solution to the system of equations above is given as:

vec (F)

λ

 =

Ω−1 −Ω−1B′
(
BΩ−1B′

)−1 BΩ−1 Ω−1B′
(
BΩ−1B′

)−1(
BΩ−1B′

)−1 BΩ−1 −
(
BΩ−1B′

)−1

∑T
t=1
(
ξ ′t ⊗ Iq

)′Q−1ξt

b


It is clear that if no restrictions were in place, that is B = b = 0, then the solution yields the

unconstrained classical EM result in vectorised form:

vec (Func) = Ω−1
T

∑
t=1

(
ξ ′t ⊗ Iq

)′Q−1ξt

=

[
T

∑
t=1

(
ξ ′t ⊗ Iq

)′Q−1 (ξ ′t ⊗ Iq
)]−1 T

∑
t=1

(
ξ ′t ⊗ Iq

)′Q−1ξt

At this point, it becomes useful to recall the unconstrained Q-maximising quantity for F and

express this in vectorised form to see the relation with smoothed quantities. The goal is to

express the constrained solution, vec (Fcon), in terms of the unconstrained vectorised solution,

vec (Func). Recall Equation (C.2):

Func =

(
T

∑
t=1

ξ̂t|T ξ̂ ′t−1|T + Pt,t−1|T

)(
T

∑
t=1

ξ̂t−1|T ξ̂ ′t−1|T + Pt−1|T

)−1

,

which implies:

vec (Func) = vec

( T

∑
t=1

ξ̂t|T ξ̂ ′t−1|T + Pt,t−1|T

)(
T

∑
t=1

ξ̂t−1|T ξ̂ ′t−1|T + Pt−1|T

)−1


=
T

∑
t=1

vec

Iq

[
ξ̂t|T ξ̂ ′t−1|T + Pt,t−1|T

] ( T

∑
t=1

ξ̂t−1|T ξ̂ ′t−1|T + Pt−1|T

)−1


=
T

∑
t=1

( T

∑
t=1

ξ̂t−1|T ξ̂ ′t−1|T + Pt−1|T

)−1

⊗ Iq

 vec
(

ξ̂t|T ξ̂ ′t−1|T + Pt,t−1|T

)
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=
T

∑
t=1

( T

∑
t=1

ξ̂t−1|T ξ̂ ′t−1|T + Pt−1|T

)−1

⊗ Iq

 [ξ̂t−1|T ⊗ ξ̂t|T + vec
(
Pt,t−1|T

) ]
.

It is also possible to express Ω in terms of smoothed quantities:

Ω
[q2×q2]

=
T

∑
t=1

(
ξ ′t ⊗ Iq

)′Q−1 (ξ ′t ⊗ Iq
)
=

T

∑
t=1

(
ξt ⊗ Iq

)
Q−1 (ξ ′t ⊗ Iq

)
=

(
T

∑
t=1

ξtξ
′
t

)
⊗Q−1 =

(
T

∑
t=1

ξ̂t|T ξ̂ ′t|T + Pt|T

)
⊗Q−1.

Using all of the above information, the constrained solution can thus be expressed as:

vec (Fcon) =

[
Ω−1 −Ω−1B′

(
BΩ−1B′

)−1
BΩ−1

]( T

∑
t=1

(
ξ ′t ⊗ Iq

)′Q−1ξt

)
+ Ω−1B′

(
BΩ−1B′

)−1
b

=

[
Iq2 −Ω−1B′

(
BΩ−1B′

)−1
B
]

vec (Func) + Ω−1B′
(

BΩ−1B′
)−1

b

= vec (Func) +

(
Ω−1B′

(
BΩ−1B′

)−1
B
)
(b− Bvec (Func)) , (D.1)

where Ω−1 =
(

∑T
t=1 ξ̂t|T ξ̂ ′t|T + Pt|T

)−1
⊗Q.

E Bayesian Analysis

E.1 Derivation of BLAME Quantities

We wish to minimise the the quantity:

φT(θn) =− log p(θn)−Q
(

θn, θ
(k)
n

)
=− log p(θn) +

2T − 2
2

log(2π)− 1
2

log
∣∣∣P−1

0

∣∣∣+ 1
2
(ξ0 − µ0)

′P−1
0 (ξ0 − µ0)

− T − 1
2

log
∣∣∣Q−1

∣∣∣+ 1
2

T

∑
t=1

(
ξt − Fξt−1

)′
Q−1

(
ξt − Fξt−1

)
− T − 2

2
log
∣∣∣R−1

∣∣∣+ 1
2

T

∑
t=3

(
xt −Hξt −K1zt−1 −K2zt−2

)′
R−1

(
xt −Hξt −K1zt−1 −K2zt−2

)
with respect to the vector of parameters θn = {µ0, P0, F, H, K1, K2, Q, R}. The full energy func-

tion comprises of the expected log-likelihood, as well as the collection of prior parameter
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distributions:

p(θn) = p(µ0)× p(P0)× p(F)× p(H)× p(K1)× p(K2)× p(Q)× p(R),

which yields the log-prior

log p(θn) = log p(µ0)+ log p(P0)+ log p(F)+ log p(H)+ log p(K1)+ log p(K2)+ log p(Q)+ log p(R).

The full energy function, therefore, reads:

φT(θn) =
2T − 2

2
log(2π)− 1

2
log
∣∣∣P−1

0

∣∣∣+ 1
2
(ξ0 − µ0)

′ P−1
0 (ξ0 − µ0)

− T − 1
2

log
∣∣∣Q−1

∣∣∣+ 1
2

T

∑
t=1

(
ξt − Fξt−1

)′
Q−1

(
ξt − Fξt−1

)
− T − 2

2
log
∣∣∣R−1

∣∣∣+ 1
2

T

∑
t=3

(
xt −Hξt −K1zt−1 −K2zt−2

)′
R−1

(
xt −Hξt −K1zt−1 −K2zt−2

)
− log p(µ0)− log p(P0)− log p(F)− log p(H)− log p(K1)− log p(K2)− log p(Q)− log p(R).

The resultant energy minimising quantities are derived below. For ease of computation, I initially

write the first order condition, solve for the parameter of interest, and then take the expectation

conditional on the full information set IT.

E.1.1 BLAME the System

I first apply the BLAME analysis to the state autoregressive system matrix. Let θn = F, where F

is a q× q matrix with a matricvariate normal distribution, then

p(F) ∼MN q×q (M, U, V) ,

p(F) ∝ e−
1
2 tr[V−1(F−M)′U−1(F−M)],

=⇒ log p(F) ∝ −1
2

tr
[
V−1(F−M)′U−1(F−M)

]
.

The first order condition is therefore written as

∂φT(θn)

∂F
=

1
2

∂

∂F

[
T

∑
t=1

(
ξt − Fξt−1

)′
Q−1

(
ξt − Fξt−1

)]
+

1
2

∂

∂F
tr
[
V−1(F−M)′U−1(F−M)

]
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=
1
2

∂

∂F
tr

[
Q−1

T

∑
t=1

(
ξt − Fξt−1

)(
ξt − Fξt−1

)′]
+

1
2

∂

∂F
tr
[
V−1(F−M)′U−1(F−M)

]
,

which I break up into two parts. The expression for the derivative of the prior reduces to

1
2

∂

∂F
tr
[
V−1(F−M)′U−1(F−M)

]
= U−1FV−1 −U−1MV−1 = U−1

(
F−M

)
V−1.

Similarly for the expected log-likelihood term, we have:

1
2

∂

∂F
tr

[
Q−1

T

∑
t=1

(
ξt − Fξt−1

)(
ξt − Fξt−1

)′]
= Q−1

T

∑
t=1

(
− ξtξ

′
t−1 + Fξt−1ξ ′t−1

)
.

The first order condition therefore reads:

∂φT(θn)

∂F
= Q−1

T

∑
t=1

(
− ξtξ

′
t−1 + Fξt−1ξ ′t−1

)
+ U−1

(
F−M

)
V−1.

This equation is now solved for ∂φT(θn)
∂F = 0. Pre-multiply by Q to yield

−
T

∑
t=1

ξtξ
′
t−1 + F

T

∑
t=1

ξt−1ξ ′t−1 + QU−1FV−1 −QU−1MV−1 = 0,

then post-multiply both sides by V and rearrange:

F

(
T

∑
t=1

ξt−1ξ ′t−1

)
V︸ ︷︷ ︸

Ψ

+

Ξ︷ ︸︸ ︷
QU−1 F =

(
T

∑
t=1

ξtξ
′
t−1

)
V + QU−1M︸ ︷︷ ︸

Λ

FΨ + ΞF = Λ.

The final expression is solved for F using the Lyapunov equation, which, for a general q× q

system, yields

vec(F̂) =
(
Iq ⊗ Ξ + Ψ′ ⊗ Iq

)−1 vec(Λ)

=

[
Iq ⊗

(
QU−1

)
+

[
V

(
T

∑
t=1

ξt−1ξ ′t−1

)′]
⊗ Iq

]−1

vec

[(
T

∑
t=1

ξtξ
′
t−1

)
V + QU−1M

]
,
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where Iq is the q × q identity matrix. Finally, I apply the conditional expectation on all the

variables to get the minimising quantity:

argmin
θn=F

φT(θn) = vec (Fblame) = E
[
vec(F̂)|IT

]
= Y−1vec (Γ) , (E.1)

where

Y = Iq ⊗
(

QU−1
)
+

[
V

(
T

∑
t=1

ξ̂t−1|T ξ̂ ′t−1|T + Pt−1|T

)′]
⊗ Iq,

and

Γ =

(
T

∑
t=1

ξ̂t|T ξ̂ ′t−1|T + Pt,t−1|T

)
V + QU−1M.

E.1.2 BLAME the Covariance

I now apply the BLAME analysis to the state covariance matrix. The derivation for R is similar,

and can be found in Appendix E. Let θn = Q, where Q is a q× q matrix with an inverse Wishart

distribution, then

p(Q) ∼ W−1(T, ν),

p(Q) ∝ |Q|−
ν+q+1

2 e−
1
2 tr(TQ−1),

=⇒ log p(Q) ∝
ν + q + 1

2
log
∣∣∣Q−1

∣∣∣− 1
2

tr(TQ−1),

where I have used that
∣∣Q−1

∣∣ = 1/|Q|. In this situation, it is more convenient to minimise the

energy function with respect to Q−1, rather than the regular Q. The first order condition reads

∂φT(θn)

∂Q−1 = −T − 1
2

Q +
1
2

T

∑
t=1

(
ξt − Fξt−1

)(
ξt − Fξt−1

)′
− ν + q + 1

2
Q +

1
2

T′,

where I have used that:
∂

∂A
tr(BA) = B′.

Setting this quantity to zero and solving for Q yields

Q̂ =
1

T + ν + q

T

∑
t=1

(ξt − Fξt−1) (ξt − Fξt−1)
′ +

1
T + ν + q

T′.
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We can see how the prior hyperparameter scale matrix T has the ability to fix the usual problem

faced by classical EM by shifting the covariance matrix to becoming full rank whenever necessary.

Taking the conditional expectation of this quantity gives

argmin
θn=Q

φT(θn) =E
[
Q̂|IT

]
=

1
T + ν + q

T

∑
t=1

[
ξ̂t|T ξ̂ ′t|T + Pt|T −

(
ξ̂t|T ξ̂ ′t−1|T + Pt,t−1|T

)
F′ − F

(
ξ̂t−1|T ξ̂ ′t|T + Pt−1,t|T

)
+ F

(
ξ̂t−1|T ξ̂ ′t−1|T + Pt−1|T

)
F′
]
+

1
T + ν + q

T′. (E.2)

E.1.3 BLAME the Rest

Following the same steps as above, the remaining matrices are analysed in turn.

• If θn = µ0, then p(µ0) ∝ 1. Therefore,

∂φT(θn)

∂µ0
= −P−1

0 ξ0 + P−1
0 µ0 = 0

=⇒ µ̂0 = ξ0.

Taking the conditional expectation gives

argmin
θn=µ0

φT(θn) = E
[
µ̂0|IT

]
= ξ̂0|T, (E.3)

which is readily given by the RTS smoother.

• If θn = P0, then p(P0) ∝ 1. Therefore,

∂φT(θn)

∂P0
= −1

2
P0 +

1
2
(ξ0 − µ0)(ξ0 − µ0)

′ = 0

=⇒ P̂0 = (ξ0 − µ0)(ξ0 − µ0)
′.

Taking the conditional expectation gives

argmin
θn=P0

φT(θn) = E
[
P̂0|IT

]
= P0|T, (E.4)

which is also readily given by the RTS smoother.
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• For θn = H with r× q dimensions and a matricvariate normal prior, we follow the same

procedure as before, and we yield:

argmin
θn=H

φT(θn) = E
[
Ĥ|IT

]
= vec−1

r×q

(
YH
−1vecrq

(
ΓH
))

, (E.5)

where

YH = Iq ⊗
(

RU−1
)
+

(
V

(
T

∑
t=3

ξ̂t|T ξ̂ ′t|T + Pt|T

)′)
⊗ Ir,

and

ΓH =

(
T

∑
t=3

(
xt −K1zt−1 −K2zt−2

)
ξ̂ ′t|T

)
V + RU−1M.

• Similarly for a matricvariate normal K1 with r× g dimensions:

argmin
θn=K1

φT(θn) = E
[
K̂1|IT

]
= vec−1

r×g

(
YK1

−1vecrg
(
ΓK1

))
, (E.6)

where

YK1 = Ig ⊗
(

RU−1
)
+

(
V

(
T

∑
t=3

zt−1z′t−1

)′)
⊗ Ir,

and

ΓK1 =

(
T

∑
t=3

(
xt −Hξ̂t|T −K2zt−2

)
z′t−1

)
V + RU−1M.

• Similarly for a matricvariate normal K2 with r× g dimensions:

argmin
θn=K2

φT(θn) = E
[
K̂2|IT

]
= vec−1

r×g

(
YK2

−1vecrg
(
ΓK2

))
, (E.7)

where

YK2 = Ig ⊗
(

RU−1
)
+

(
V

(
T

∑
t=3

zt−2z′t−2

)′)
⊗ Ir,

and

ΓK2 =

(
T

∑
t=3

(
xt −Hξ̂t|T −K1zt−1

)
z′t−2

)
V + RU−1M.

• If θn = R, where R is a r× r matrix with an inverse Wishart distribution, then

p(R) ∼ W−1(S, ρ),
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p(R) ∝ |R|−
ρ+r+1

2 e−
1
2 tr(SR−1),

=⇒ log p(R) ∝
ρ + r + 1

2
log
∣∣∣R−1

∣∣∣− 1
2

tr(SR−1),

Following the same steps as for Q, the first order conditions reads

∂φT(θn)

∂R−1 =− T − 2
2

R +
1
2

T

∑
t=3

(
xt −Hξt −K1zt−1 −K2zt−2

)(
xt −Hξt −K1zt−1 −K2zt−2

)′
− ρ + r + 1

2
R +

1
2

S′,

which yields

R̂ =
1

T + ρ + r− 1

[
T

∑
t=3

(
xt −Hξt −K1zt−1 −K2zt−2

)(
xt −Hξt −K1zt−1 −K2zt−2

)′
+ S′

]
.

In a similar fashion to Q, the minimising quantity is given as:

argmin
θn=R

φT(θn) = E
[
R̂|IT

]
=

1
T + ρ + r− 1

T

∑
t=3

[(
xt −K1zt−1 −K2zt−2

)(
xt −K1zt−1 −K2zt−2

)′
−Hξ̂t|T

(
xt −K1zt−1 −K2zt−2

)′
−
(

xt −K1zt−1 −K2zt−2

)
ξ̂ ′t|TH′

+ H
[
ξ̂t|T ξ̂ ′t|T + Pt|T

]
H′
]

+
1

T + ρ + r− 1
S′. (E.8)

E.2 Derivation of Con-BLAME Quantities

It will be assumed again that F follows a matricvariate normal, which implies that vec (F)

follows a multivariate normal:

p(F) ∼MN q×q (M, U, V) ⇐⇒ p(vec (F)) ∼ Nq2 (vec (M) , V⊗U) .
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With this prior information, the constrained energy function (considering only variables relevant

to F) reads:

φT,con|θ=vec(F) ∝− Qcon|θ=vec(F) +
1
2
[vec (F)− vec (M)]′ (V⊗U)−1 [vec (F)− vec (M)]

∝
1
2

T

∑
t=1

[
ξt −

(
ξ ′t ⊗ Iq

)
vec (F)

]′Q−1 [ξt −
(
ξ ′t ⊗ Iq

)
vec (F)

]
+ λ′ (Bvec (F)− b)

+
1
2
[vec (F)− vec (M)]′ (V⊗U)−1 [vec (F)− vec (M)]

The first order condition thus yields

∂φT,con

∂vec (F)
=− ∂Qcon

∂vec (F)
+ (V⊗U)−1 [vec (F)− vec (M)]

=

Ω + (V⊗U)−1 B′

B 0p

vec (F)

λ

−
(∑T

t=1
(
ξ ′t ⊗ Iq

)′Q−1ξt

)
+ (V⊗U)−1 vec (M)

b

 = 0,

from which we can easily infer the constrained EM solution with added information from the

prior distribution. Denote Φ = Ω + (V⊗U)−1, then Φ−1 =
(

Ω + (V⊗U)−1
)−1

. It is now

possible to express the solution to the above system of equations in a similar fashion to the

constrained EM solution:vec (Fcon-blame)

λ

 =

Φ−1 −Φ−1B′
(
BΦ−1B′

)−1 BΦ−1 Φ−1B′
(
BΦ−1B′

)−1(
BΦ−1B′

)−1 BΦ−1 −
(
BΦ−1B′

)−1


×

(∑T
t=1
(
ξ ′t ⊗ Iq

)′Q−1ξt

)
+ (V⊗U)−1 vec (M)

b


It is also possible to express the vectorised solution of constrained vec (Fcon-blame) in terms of the

unconstrained classical version vec (Func), as had been done for the constrained EM algorithm.

Since (V⊗U)−1 is a q2 × q2 symmetric matrix, single value decomposition (SVD) gives:

(V⊗U)−1 = JDJ′
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where J contains all eigenvectors of (V⊗U)−1 as its columns and D is a diagonal matrix

containing the eigenvalues of (V⊗U)−1 along the diagonal. Therefore, I can write

Φ−1 =
(
Ω + JDJ′

)−1

= Ω−1 −Ω−1J
(

D−1 + J′Ω−1J
)−1

J′Ω−1,

where I invoke the Woodbury identity to expand this inverse. By recalling the form of vec (Func):

vec (Fcon-blame) =

[
Φ−1 −Φ−1B′

(
BΦ−1B′

)−1
BΦ−1

] [( T

∑
t=1

(
ξ ′t ⊗ Iq

)′Q−1ξt

)
+ (V⊗U)−1 vec (M)

]

+ Φ−1B′
(

BΦ−1B′
)−1

b

=

[
Iq2 −Φ−1B′

(
BΦ−1B′

)−1
B
] [

Φ−1

(
T

∑
t=1

(
ξ ′t ⊗ Iq

)′Q−1ξt

)
+ Φ−1 (V⊗U)−1 vec (M)

]

+ Φ−1B′
(

BΦ−1B′
)−1

b,

where I pull one Φ−1 into the second square bracket. I then expand the Φ−1 in the first term

within the second square bracket to yield an expression in terms of vec (Func):

vec (Fcon-blame) =

[
Iq2 −Φ−1B′

(
BΦ−1B′

)−1
B
]

×
[[

Ω−1 −Ω−1J
(

D−1 + J′Ω−1J
)−1

J′Ω−1
] T

∑
t=1

(
ξ ′t ⊗ Iq

)′Q−1ξt + Φ−1 (V⊗U)−1 vec (M)

]

+ Φ−1B′
(

BΦ−1B′
)−1

b

=

[
Iq2 −Φ−1B′

(
BΦ−1B′

)−1
B
]

×
[[

Iq2 −Ω−1J
(

D−1 + J′Ω−1J
)−1

J′
]

vec (Func) + Φ−1 (V⊗U)−1 vec (M)

]
+ Φ−1B′

(
BΦ−1B′

)−1
b. (E.9)
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F Standard Normal Random Variate Generators

F.1 Polar Box-Muller Method

The polar Box-Muller method returns a pair of independent normal random variates based on

two independent uniform variates and is given in Algorithm 1 below.

Algorithm 1 Polar Box-Muller

1: Generate u1 ∼ U(0, 1) and u2 ∼ U(0, 1);
2: Set v1 = 2u1 − 1 and v2 = 2u2 − 1;
3: Compute s = v2

1 + v2
2;

4: if (s = 0 or s ≥ 1) then
5: Discard u1 and u2, go to Step 1;
6: else
7: Return z1 ← u1

√
−2 log s

s ;

8: Return z2 ← u2

√
−2 log s

s ;
9: end if

F.2 Inversion Method

The inversion method by Rao et al. (2011) utilises the “best fit” logistic regression on the

cumulative distribution function of a standard normal random variable z ∼ N (0, 1), which they

give as:

φ(z) =
1

1 + e−1.702z .

They then invert this formula and yield the method given in Algorithm 2 below.

Algorithm 2 Inversion Method

1: Generate u ∼ U(0, 1);

2: Return z← − log( 1
u−1)

1.702

G Simulation Study Architecture

Here I outline the setup of the simulation study in terms of the constraints imposed and the

initial (hyper)parameters used for the estimation process. One simulated dataset of 10,000 data

points is produced for analysis.
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G.1 Initialisation

Below are tables showing the initialisation of all the parameters for the production of the results

in the simulation study. For the classical algorithms, the initial point coincides with the location

hyperprior of the Bayesian algorithms. For the covariance matrices in the classical algorithms,

the initialisation is Ψ−1. The state is given a diffuse initialisation for all algorithms.

System Matrix M U V

F
[

1 0
0 −1

] [
0.1 0
0 0.1

] [
1 0
0 1

]

H

0.1 −0.1
0.8 0
0 −0.01

 0.1 0 0
0 0.1 0
0 0 0.1

 [
0.1 0
0 0.1

]

K1

 0 0
0.1 −0.1
0 0.1

 0.1 0 0
0 0.1 0
0 0 0.1

 [
1 0
0 1

]

K2

 0 0
−0.1 0

0 0.05

 0.1 0 0
0 0.1 0
0 0 0.1

 [
1 0
0 1

]

Table 5: Prior hyperparameters for all the system matrices used for both the BLAME and the
Con-BLAME estimation methods in the simulation study.

Covariance Matrix Ψ ν

Q
[

100 0
0 100

]
4

R

10 0 0
0 10 0
0 0 10

 4

Table 6: Prior hyperparameters for all the covariance matrices used for both the BLAME and
the Con-BLAME estimation methods in the simulation study.
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G.2 Constraints

The constraints imposed in both the constrained EM and constrained BLAME algorithms are a

direct imposition of the RW macrofinance model. Thus, the restricted system matrices that are

enforced through the linear constraints have the form:

F =

ρL 0

ρS (ρS − 1)gπ


for the state autoregressive matrix, and

H =


δL δS

µπ 0

0 −βr

 , K1 =


0 0

(1− µπ)α1 αy

0 (1− µy)β1

 , K2 =


0 0

(1− µπ)α2 0

0 (1− µy)β2


for the observed system matrices.

H Prior Parameter Generation

Implementing any form of the BLAME algorithm whether on simulated or real data requires the

generation of prior estimates of the system and covariance matrices given sets of hyperparame-

ters. Here, I digress and outline the methods used to generate matricvariate normal and inverse

Wishart random variates for the system and covariance matrices, respectively.

H.1 Generating Matricvariate Normal Matrices

As an example of the method, I use the system autoregressive matrix F. Let p(F) ∼MN q×q (M, U, V)

for given hyperparameters M, U and V. Then, p(vec (F)) ∼ Nq2 (vec (M) , V⊗U). The method

that generates the matricvariate normal F is given in Algorithm 3 below.

Algorithm 3 Generate Matricvariate Normal F

1: Vectorise M;
2: Perform Choleski decomposition on V⊗U = CC′;
3: Generate q2 independent standard normal random variables via Box-Muller or Inversion;
4: Collect them into a q2 × 1 vector a;
5: Set f = vec (M) + Ca;
6: Return reshaped F← vec−1( f )
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H.2 Generating Inverse Wishart Matrices

To exemplify the method on generating inverse Wishart random matrices, I use the state

covariance matrix. Let p(Q) ∼ W−1(T, τ). In order to generate an initial estimate of Q, we begin

by generating a d−dimensional correlated multivariate normal random vector z ∼ Nd(0, Σ).

Then, for τ degrees of freedom, we have the property that

W =
τ

∑
i=1

zz′ = τzz′ ∼ W(Σ, τ).

Therefore, W has an inverse Wishart distribution with scale matrix Σ−1 and τ degrees of

freedom. Given hyperparameters T and ν degrees of freedom, the algorithm for generating

inverse Wishart matrices is given in Algorithm 4 below.

Algorithm 4 Generate Inverse Wishart Q

1: Invert T, Σ = T−1;
2: Perform Choleski decomposition on Σ = CC′;
3: Generate q2 independent standard normal random variables via Box-Muller or Inversion;
4: Collect them into a q2 × 1 vector a;
5: Set z = Ca;
6: Calculate W = νzz′;
7: Return Q←W

I Prior Hyperparameters for US Data Study

This section outlines the exact hyperparameters used in the estimation procedure of the Bayesian

algorithms for the real data study. For the system matrices, the location parameters at subsequent

estimation windows after the first are based on the converged matrices of the previous window.

Thus, given below in Table 7 are only the location parameters of the first initial estimation

window. In Table 8 the hyperparameters for the covariance matrices are given, which remain

the same at each estimation window.
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System Matrix M U V

F
[

0.9 0
0 0.9

] [
0.1 0
0 0.1

] [
1 0
0 1

]

H


0.1 0.1
0.01 0

0 −0.01
0 0.1




0.1 0 0 0
0 0.1 0 0
0 0 0.1 0
0 0 0 0.1

 [
0.1 0
0 0.1

]

K1


0 0 0

0.1 0 0
0 0.1 0
0 0 0.1




0.1 0 0 0
0 0.1 0 0
0 0 0.1 0
0 0 0 0.1


1 0 0

0 1 0
0 0 1



K2


0 0 0

0.01 0 0
0 0.01 0
0 0 0.01




0.1 0 0 0
0 0.1 0 0
0 0 0.1 0
0 0 0 0.1


1 0 0

0 1 0
0 0 1



Table 7: Prior hyperparameters for all the system matrices used for both the BLAME and the
Con-BLAME estimation methods on the first initial estimation window.

Covariance Matrix Ψ ν

Q
[

100 0
0 100

]
5

R


10 0 0 0
0 10 0 0
0 0 10 0
0 0 0 10

 5

Table 8: Prior hyperparameters for all the covariance matrices used for both the BLAME and
the Con-BLAME estimation methods at each estimation window.
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J Supplementary Figures and Tables
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Figure 6: The first 400 out of 10,000 simulated data for short rate, inflation and output gap
variables with simulated dynamics similar to the estimates found by RW.

Coefficient EM Con-EM BLAME Con-BLAME
ρL 0.00 0.00 −0.20 −0.17
ρS −0.71 −0.97 −0.94 −0.84
gπ −0.19 0.32 −0.32 −0.85
δL 0.90 −0.32 0.77 0.44
δS 0.38 0.01 −0.66 −0.83
µπ −0.78 −0.92 −0.50 −0.38
α1 −0.27 −0.01 −0.06 0.11
α2 −0.32 −0.27 −0.26 −0.14
αy −0.01 −0.63 −0.31 −0.52

(1− µy)β1 0.03 0.01 −0.03 −0.02
(1− µy)β2 −0.15 −0.06 −0.14 −0.09

βr −0.78 −1.25 −0.27 −0.80
Mean Relative Diff −0.16 −0.34 −0.16 −0.34

Table 9: These are the (average) relative differences of the estimated parameters with respect
to the true ones from the simulation study in Table 1. All four techniques underestimate the
parameters on average, with BLAME performing the best on average.
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Short Rate Inflation Output Gap Unemployment
Short Rate 0.00091 0.65 0.32 −0.12
Inflation 0.00026 0.00017 0.17 −0.11
Output Gap 0.00017 0.00004 0.00032 −0.86
Unemployment −0.00006 −0.00002 −0.00003 0.00026

Table 10: Corr-covariance matrix of US macroeconomic data over the full sample. The diago-
nal represents the sample variance, the lower triangular matrix contains sample covariances,
and the upper triangular matrix contains the sample correlations.

Macroeconomic Variable ADF Statistic 5% p-value

Short Rate −2.79 0.060
Inflation −2.92 0.043
Output Gap −2.52 0.110
Cyclical Unemployment −2.83 0.055

Table 11: Prior hyperparameters for all the covariance matrices used for both the BLAME and
the Con-BLAME estimation methods at each estimation window.
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Figure 7: Normalised sample autocorrelation functions of US short rate, inflation and output
gap with standardised 95% confidence intervals.

66



Thesis MSc Quantitative Finance

'����� ����� ����� ����� ���	� ����� ����� �����
�� "$���$�

�

��

��

��

��

��

�� ��

�� "$�"�$�����#�$&

'���� ���� ���� ���� ���� ���

�����$� �

�

�

��

��

��

��

��

��

�� ��

�����$� �����#�$&

'���
 '���� '���� '���� ���� ���� ����
�%$!%$���!

�

�

��

��

��

��

��

��

��
��

�%$!%$���!����#�$&

'���� ���� ���� ���� ����
�&�����������!� &���$

�

��

��

��

��

��

�&�������%���!� &���$����#�$&

Figure 8: Histograms of US short rate, inflation, output gap and cyclical unemployment data
from 1983:M1-2018:M12. For each histogram, the kernel density function is plotted in the
same color as the histogram, and overlayed is a fitted Gaussian kernel done via maximum
likelihood. The data density kernels for output gap and inflation are similar to the fitted Gaus-
sian kernel, whereas that of cyclical unemployment and the short rate density show a bimodal
nature and are not well represented by the Gaussian kernel.
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