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Abstract

In this paper, we aim to investigate whether lagged U.S. tail risk can predict non-U.S. returns

and whether lagged non-U.S. tail risk can predict U,S. returns. We measure the U.S. tail risk

by constructing a portfolio that long the CBOE Put Protection Index (PPUT) and short

the S&P 500 index. We find that lagged U.S. tail risk displays strong predictive ability

for non-U.S. returns by means of predictive regression model, pairwise Granger causality

test, adaptive elastic-net estimation, variable importance and out-of-sample forecast gains.

Whereas, non-U.S. tail risk exhibits limited ability in predicting U.S. returns.
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1 Introduction

With the development of economic globalization, the interdependence of world economies has

increased rapidly. U.S. is the world’s largest goods importer and third largest exporter based

on World FactBook of CIA (" Central Intelligence Agency ") in 2018. The connection between

U.S. economy and the world has become closer and closer. According to the World Bank’s

global prospect report in January, 2019, during 2018, approximately 2.5 percent of global goods

trade has been affected by new U.S. tariffs and trading countries response on global imports.

Changing in the U.S. economy influences the world’s economy at the mean time. Wongswan

(2008) shows that the U.S. monetary policy has an essential impact on more than 10 foreign

equity indexes in Europe, Asia and Latin America. Moreover, U.S. offers the largest equity

market in the world. As the growing scale of cross-border trade in the equity market, U.S. equity

market takes a leading role in pricing international assets. Rapach et al. (2013) show that lagged

U.S. returns improves the returns predictability in 10 non-U.S. industrialized countries, whereas

lagged non-U.S. returns hardly improve U.S. returns predictability. The strong link in equity

markets between U.S. and non-U.S. countries may cause severe problems. The fluctuation in

U.S equity market will simultaneously affect worldwide equity markets. Kelly and Jiang (2014)

find that U.S. tail risk displays strong ability in predicting its own aggregate market returns.

However, questions regarding the role of lagged tail risk in return predictability remain unknown

for us.

In this paper, our aim is to investigate the role of tail risk in pricing the returns. More

precisely, it is to figure out whether the lagged U.S. tail risk improves returns predictability in

non-U.S. industrialized countries and whether lagged non-U.S. tail risks improve U.S. returns

predictability.

We measure the U.S. tail risk by constructing a zero-investment portfolio. That is taking a

long position in the CBOE Put Protection Index (PPUT) and a short position in the S&P 500

index. The log portfolio return is defined as the tail risk factor. It pays off when the S&P 500

prices decrease. The CBOE PPUT index tracks the performance of a hypothetical strategy that

takes a long position to the SP 500 Index and a rolling position in monthly 5% Out-of-the-Money

(OTM) SPX Put options. To measure non-U.S. tail risk, we replicate PPUT index for non-U.S.

countries by following the methodology of CBOE, and then together with the country index to

construct the tail risk portfolio. The advantage of our option-implied tail risk measurement with

respect to other approaches is that it is easy to construct using publicly available data, such as

option spot prices, strike prices, and the interpretation is intuitive, in particular, compared to

Kelly and Jiang (2014), they use extreme value theory to estimate the tail risk. The disadvantage
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of this approach is that it requires a large amount of stock returns by pooling different stocks

in the same period with assuming that stock returns are i.i.d distributed. However, in reality, it

is hard to believe that all stock returns in the cross-section share the same distribution, which

contradicts the assumption.

Before studying the role of lagged tail risk, we re-investigate the role of lagged U.S. returns

(Rapach et al. (2013)) using the data from July 1986 to November 2015. We conduct pairwise

Granger causality test, that is testing whether one country returns can be predicted by the other

country returns. Further, we combine it with least absolute shrinkage and selection operation

("LASSO") by Tibshirani and Robert (1996). For each country, we have its own country returns,

interest rate, dividend yield and the other country returns in previous month as candidate vari-

ables. In an out-of-sample test, we compute the Campbell and Thompson (2008) R2
OS statistics

and Clark and West (2007) adjusted MSFE by computing the forecasting gains of the model

which uses lagged U.S. returns as additional predictor, comparing with historical average fore-

casts. We find that lagged U.S. returns improve the predictability of non-U.S. returns, while

non-U.S. returns cannot improve the predictability of U.S. returns, which agrees with the finding

in Rapach et al. (2013).

Based on this finding, we examine the role of lagged U.S. tail risk in return predictability.

First, for nine industrialized countries, the benchmark predictive regression model regresses the

monthly excess return of the country on the interest rate, U.S. returns and dividend yield in

previous month based on the finding in Ang and Bekaert (2007) who argues that both nominal

interest rate and dividend yield are economically important predictors in an asset pricing model.

Second, to further determine the role of lagged U.S. tail risk, we construct a general model that

includes all country returns, U.S. tail risk, country dividend yield and interest rate, then use

LASSO to select variables. We find that most of the countries select lagged U.S. tail risk as a

significant predictor. Third, we implement random forests to obtain the variable importance,

which gives the insight at non-parametric level. We find that for most of the countries, lagged

U.S. tail risk belongs to the top 3 important variable. Fourth, we conduct out-of-sample tests.

We compute the Campbell and Thompson (2008) R2
OS statistics and Clark and West (2007)

adjusted MSFE by computing the forecasting gains of the model which uses lagged U.S. tail

risk comparing with historical average forecasts. We show that lagged tail risk of the U.S. exhibits

great out-of-sample gains, especially during the 2000 dot-com bubble and 2008 Global Financial

Crisis.

To investigate the predictive power of non-U.S. tail risk, we utilize the same approach as

Rapach et al. (2013) and use the sample from February 2006 to November 2015 due to the
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limited access to the non-U.S. tail risk factors. The main difference is that in the benchmark

model we include lagged U.S. returns. And to continue exploring the role of lagged international

tail risk, we study their pairwise lead-lag relationships using Granger causality tests. We use

augmented predictive regressions that uses the lagged tail risk of a country and that of another

country as additional predictors. According to the wild bootstrap p-values, we only find two

of five countries outside the U.S. are significantly Granger caused by U.S. tail risk in the past

month. In general, our results show that lagged U.S. tail risk plays a lead role on predicting

non-U.S. counties returns, whereas lagged tail risk in non-U.S. countries hardly capture returns

U.S. returns predictability. The predictive power of U.S. tail risk decreases when we use short

sample period. However, the predictive ability is still stronger, compared to lagged U.S. returns.

This paper contributes to the literature in three aspects. First, this paper contributes to the

literature on examining the predictive ability of lagged U.S. tail risk for non-U.S. industrialized

countries returns. Kelly and Jiang (2014) provide the evidence of strong predictive power of

U.S. tail risk on U.S. market returns. The role of U.S. tail risk with respect to non-U.S returns

remain unknown. In this paper, we shows that lagged U.S. tail risk improves non-U.S. returns’

predictability, which is supported by predictive regression model, pairwise Granger causality

test and machine learning techniques (adaptive elastic-net estimation by Zou and Zhang (2009),

variable importance by Breiman (2002)). Second, this paper contributes to the literature on

constructing tail risk factor. Kelly and Jiang (2014) construct the conditional tail risk from

cross-sectional stocks in spirit of extreme value theory. Our paper differs from this approach.

We construct option-implied tail risk factor from a zero-investment portfolio. Third, this paper

contributes to the literature on power of lagged U.S. returns on returns’ predictability of non-

U.S. countries. Rapach et al. (2013) show that lagged U.S. return is a significant predictor for

returns in non U.S. industrialized countries. Our paper differs from this paper in two aspects.

One is that we use the longer period of the dataset. Second is that we utilize a machine learning

approach, namely variable importance, to further investigate the lagged U.S. returns’ predictive

power.

The rest of the paper proceeds as follows. Section 2 introduces the methodology for in-

vestigating the role of lagged U.S. returns in returns predictability. Section 3 describes the

methodology for examining the predictive power of lagged tail risk and constructing the tail risk

factor. Section 4 describes the data used in the paper. Section 5 discusses the results. Section 6

concludes the paper.
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2 Investigating Predictive Ability of Lagged U.S. Returns

Rapach et al. (2013) show the strong predict power of lagged U.S. returns on returns in many

non-US industrialized countries. In this section, we re-investigate the role of lagged U.S. returns

in predicting non-U.S. returns and introduce the approaches in Rapach et al. (2013).

2.1 Benchmark Predictive Regression

At first, we build up a benchmark predictive model to determine the predictability of excess

returns. Following Ang and Bekaert (2007), we consider a predictive regression model that

regresses monthly excess returns on a lagged normal interest rate and log dividend yield:

ri,t+1 = βi,0 + βi,bBilli,t + βi,dY ieldi,t + εi,t+1, i = 1, ..., N, (1)

where ri,t+1 stands for the country i’s monthly return in excess of the nominal interest rate at

month end t + 1 and are measured in national currency. Billi,t represents the country nominal

interest rate, which is measured by 3-month Treasury bill rate. Y ieldi,t is the natural logarithm of

dividend yield. εi,t+1 represents a disturbance term that follows the standard normal distribution

2.2 Predictive Ability of Lagged Returns

In this section, we examine the predictive ability of lagged international returns by means of two

aspects, namely pairwise comparison and general specification.

2.2.1 Pairwise Granger Causality Tests

We follow Rapach et al. (2013) and conduct the augmented prediction regression is shown below:

ri,t+1 = βi,0 + βi,bBilli,t + βi,dY ieldi,t + βi,iri,t + βi,jrj,t + εi,t+1, i 6= j. (2)

We extend the benchmark model by including ri,t and rj,t as regressors. By doing so, we can

test the hypothesis that lagged returns in country j can predict the lagged returns in country i.

If we accept the hypothesis, that means that country j returns Granger cause country i returns.

2.2.2 General Model Specification

We consider general model specification approaches instead of pairwise comparison. For each

country, we have an augmented VAR(1) model as shown below:

ri,t+1 = βi,0 + βi,bBilli,t + βi,dY ieldi,t + βi,iri,t +
∑
j 6=i

βi,jrj,t + εi,t+1, i = 1, ..., N. (3)
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We include all international monthly return factors. It may reduce the reliability of statistical

outcomes, since it may result in multicollinearity by a plethora of regresses. Therefore, we

consider two approaches for improving the accuracy of parameter estimates and tests, namely

the pooled model specification and machine learning methods. More details are in Section 2.2.2.1

and 2.2.2.2

2.2.2.1 Pooled Model Specification

The first approach is on the basis of Ang and Bekaert (2007) and Hjalmarsson (2010). We restrict

parameters to incorporate homogeneity by imposing the restrictions: βi,i = βAR, βi,j = βj ,

βi,b = βb and βi,d = βd for i = 1, ..., N . Such restriction scarifies the estimation biasness, but

improves the efficiency, since it helps to reduce the mean squared error. The model takes the

following form:

ri,t+1 = βi,0 + β̄bBilli,t + β̄dY ieldi,t + β̄ARri,t +
∑
j 6=i

β̄jrj,t + εi,t+1, i = 1, ..., N. (4)

2.2.2.2 LASSO

The second approach is a seminal machine learning method, namely least absolute shrinkage and

selection operation ("LASSO") created by Tibshirani and Robert (1996). It absorbs the good

feature of subset selection and ridge regression by means of performing parameter shrinkage

and variable selection at the same time. Therefore, it provides more interpredictable and stable

models. The multiple predictive regression model for country i can be expressed as

ri,t+1 = x′tβi + εi,t+1, i = 1, ..., N. (5)

where xt represents a K × 1 predictors vector and βi = (βi,1, ..., βi,k)
′ is a K × 1 parameters

vector from equation (3).

The Tibshirani and Robert (1996) LASSO estimator is defined by solving the `1 penalized

least squares problem

min
βLASSO
i

[

T−1∑
t=1

(ri,t+1 − x′tβi)2 + λ1

K∑
k=1

|βi,k|], (6)

where λ1 is the parameter corresponding to `1 penalty terms that shrinks some parameters to

zero. However, the performance of LASSO estimator is not stable and less informative with

strong correlated predictors, since it tends to randomly choose one predictor out of a set of

highly related predictors. Zou and Zhang (2009) propose an improved version of the LASSO,

namely the adaptive elastic-net estimator and define as follows:

min
βenet
i

[

T−1∑
t=1

(ri,t+1 − x′tβi)2 + λ1

K∑
k=1

ωk|βi,k|+ λ2

K∑
k=1

β2i,k], (7)
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where λ1 and λ2 are parameters corresponding to `1 and `2 penalty terms, respectively. ω =

(ω1, ..., ωk)
′ is a K × 1 vector is the adaptive data-driven weights of parameters and one can

define ωk = |β̂i,k|−γ in `1 penalty where γ is positive and β̂i,k is the OLS parameter estimate in

equation (5).

Following Rapach et al. (2013), we use Friedman et al. (2010) algorithm to solve the mini-

mization problem in equation (7) and use five-fold cross-validation to select λ1, λ2 and γ.

2.3 Out-Of-Sample Tests

Goyal and Welch (2008) show that economic variables usually fails to beat the native historical

average forecast when forecasting excess returns, although these variables have significant in-

sample predictability. Therefore, instead of using relatively weak in-sample tests, we determine

whether the out-of-sample performance of the models that based on U.S. returns in the past

month to forecast country excess returns is better than historical average forecasts.

The historical average baseline forecasts take the form

ri,t+1 = βi,0 + εi,t+1, (8)

which is identical to a baseline model without predictability. The forecast of country i excess

return in month t + 1 equals to the averaging of the excess return in country i over the sample

period (till month t). In comparison, the competitive model includes U.S. returns in the past

month:

ri,t+1 = βi,0 + βi,USrUS,t + εi,t+1, (9)

To forecast the country i excess return in month t + 1, we first apply OLS using the data in

month t. Afterwards, we plug rUS,t in equation (9), as shown below:

r̂i,t+1 = β̂i,0 + β̂i,USrUS,t, (10)

where β̂i,0 and β̂i,US are the OLS estimates of βi,0 and βi,US .

2.4 Out-of-Sample Evaluation

To compare the forecasting performance of baseline model and the competitive model, we measure

the proportion of reduction in mean-squared forecast error (MSFE) for the competing model

relative to the baseline forecasts, which are labeled as out-of-sample R2 statistics, R2
OS (Campbell

and Thompson (2008)),

R2
OS = 1−

∑T
t=1(rt − r̂t)2∑T
t=1(rt − r̄t)2

, (11)
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where r̂t is the prediction in competing model and r̄t is the historical average return. Positive

R2
OS means that competing model generates a lower MSFE.

In addition, we also employ the Clark and West (2007) adjusted MSFE, which tests the null

hypothesis of equal MSFE (R2
OS = 0) against the alternative hypothesis that the MSFE of

the predictive regression model is lower than the baseline model (R2
OS > 0).

2.5 Wild Bootstrap Procedure

The evaluation of the model is based on computing the wild bootstrap p-value and the confidence

interval for test statistics, which follows Rapach et al. (2013). Each bootstrap procedure generates

the pseudo-sample of country returns and preserves the pattern of conditional heterskedasticity

in error terms. We generate predictive regression and historical average forecasts, respectively.

For each pseudo-sample, we obtain the slope estimates and corresponding t-statistics as well

as χ2-statistics for R2 estimates. Repeating the procedure 2000 times, we obtain the empirical

distribution for t-statistics and χ2-statistics, respectively. For example, in benchmark predictive

model (equation (1)), the empirical p-value of β̂i,b is computed as the proportion of bootstrapped

t-statistics smaller than the t-statistic for the original sample under the null hypothesis of zero

β̂i,b against the alternative hypothesis of negative β̂i,b. For out-of-sample tests, in each bootstrap

process, we store the largestMSFE−adjusted statistics for each country. Therefore, we have an

empirical distribution of maximum MSFE − adjusted statistics with 1% bootstrapped critical

value of 2.49. For pooled general model, we compute fixed design wild bootstrap Gouçalves and

Lutz (2004) and Clark and McCracken (2012). See Rapach et al. (2013) for more details.

3 Investigating Predictive Ability of Lagged U.S. Tail Risk

In this section, we investigate the role of lagged tail risk in predicting international stock returns.

We incorporate the information in lagged U.S. returns in benchmark model based on finding in

Rapach et al. (2013).

3.1 Benchmark Predictive Regression

We add lagged U.S. returns in the benchmark predictive model (equation (1)). The benchmark

model becomes

ri,t+1 = βi,0 + βi,bBilli,t + βi,dY ieldi,t + βi,rri,t + βi,USrUS,t + εi,t+1, i 6= US, (12)

ri,t+1 = βi,0 + βi,bBilli,t + βi,dY ieldi,t + βi,rri,t + εi,t+1, i = US, (13)

8



where for non-U.S. countries we include lags of its own returns ri,t and U.S. returns rUS,t, while

for the U.S., only its own lagged return ri,t is included.

3.2 Predictive Ability of Lagged Tail Risk

This section introduces approaches used in investigating the role of the lagged tail risk. We apply

pairwise Granger causality tests introduced in Section 3.2.1 when non-U.S. tail risk factors are

available. In case that only the U.S. tail risk is available, we implement regression in Section

3.2.2. For general model specification (Section 3.2.3), we also distinguish two situations.

3.2.1 Pairwise Granger Causality Tests

We conduct the augmented prediction regressions for i 6= j and i 6= US are shown below:

ri,t+1 = βi,0 + βi,bBilli,t + βi,dY ieldi,t + βi,rri,t + βi,USrUS,t + αi,iTaili,t + αi,jTailj,t + εi,t+1,

(14)

for i = US and j 6= US,

rUS,t+1 = βUS,0 + βUS,bBillUS,t + βUS,dY ieldUS,t + βUS,rrUS,t + αUS,USTailUS,t + αUS,jTailj,t + εUS,t+1,

(15)

where we extend the benchmark model by including Taili,t and Tailj,t as regressors. By doing

so, we can analyze the predictability of lagged tail risk of country j relating to the lagged tail risk

of country i. That is examing whether the country j tail risk Granger causes country i returns.

3.2.2 Predictive Regression Model

To examine the predictive ability of lagged U.S. tail risk, we construct the predictive regression

model by taking U.S. tail risk factor into account:

ri,t+1 = βi,0 + βi,bBilli,t + βi,dY ieldi,t + βi,rri,t + βi,USrUS,t + αi,USTailUS,t + εi,t+1, i 6= US,

(16)

ri,t+1 = βi,0 + βi,bBilli,t + βi,dY ieldi,t + βi,rri,t + αi,USTailUS,t + εi,t+1, i = US. (17)

3.2.3 General Model Specification

When the international tail risk factors are available, we define the general model by extending

the equation (12) in order to examine the predict ability of tail risk lags. The model is defined
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as

ri,t+1 = βi,0 + βi,bBilli,t + βi,dY ieldi,t + βi,rri,t + βi,USrUS,t + αi,iTaili,t +
∑
j 6=i

αi,jTailj,t

+ εi,t+1, i = 1, ..., N − 1 and i 6= US ,

(18)

ri,t+1 = βi,0 + βi,bBilli,t + βi,dY ieldi,t + βi,rri,t + αi,iTaili,t +
∑
j 6=i

αi,jTailj,t + εi,t+1, i = US.

(19)

Equation (18) and (19) are the augmented VAR(1) models. We include all international tail

risk factors.

When only the U.S. tail risk factor is available, the general model is defined as: for i = 1, ..., N,

ri,t+1 = βi,0 + βi,iri,t +
∑
j 6=i

βi,jrj,t + αi,USTailUS,t + βi,bBilli,t + βi,dY ieldi,t + εi,t+1, (20)

where we include all international lagged returns and U.S. tail risk. It may reduce the reliability

of statistical outcomes, since it may results in multicollinearity by a plethora of regresses. To

improve the accuracy of parameter estimates and tests, we extend the pooled model specification

and machine learning methods.

3.2.3.1 Pooled Model Specification

We restrict parameters in equation (18) and (19) by following Ang and Bekaert (2007) and

Hjalmarsson (2010). It incorporates homogeneity by imposing the restrictions: αi,i = αAR,

αi,j = αj , βi,b = βb, βi,d = βd and βi,r = βr and βi,US = βUS . Such restriction scarifies the

estimation biasness, but improves the efficiency, since it helps to reduce the mean squared error.

Equations become:

ri,t+1 = βi,0 + β̄bBilli,t + β̄dY ieldi,t + β̄rri,t + β̄USrUS,t + ᾱARTaili,t +
∑
j 6=i

ᾱjTailj,t

+ εi,t+1, i = 1, ..., N = 1 and i 6= US,

(21)

ri,t+1 = βi,0 + β̄bBilli,t + β̄dY ieldi,t + β̄rri,t + ᾱARTaili,t +
∑
j 6=i

ᾱjTailj,t + εi,t+1, i = US, (22)

Similarly, by posing the restrictions on parameters, equation (20) becomes:

ri,t+1 = βi,0 + βARri,t +
∑
j 6=i

βjrj,t + αUSTailUS,t + βbBilli,t + βdY ieldi,t + εi,t+1, (23)

3.2.3.2 LASSO

The second approach is an application of least absolute shrinkage and selection operation ("LASSO")

created by Tibshirani and Robert (1996). More details about estimation procedure can be found

in Section 2.2.2.2.
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3.2.3.3 Variable Importance - Random Forests

So far, methods are on the basis of parametric model. In this section, we implement a non-

parametric model to give more insight into the predictive ability of tail risk factor. Breiman

(2001) defines the random forests, which consist of a large amount of tress. Groemping (2009)

summarizes two key features of random forests: (i) a random subset of the observations is used

for constructing an individual tree. (ii) a random subset of variables is used in creating the

split within individual tree. Such randomness makes sure the individual trees’ diversity. The

prediction of the forest equals to the average over all individual trees’ predictions. Note that on

average 36.8% of observations are not used for any construction of trees, call "out of the bay"

(OOB) for the tree.

Breiman (2002) introduces a well-know variable importance metric in random forests, called

permutation-based "MSE reduction", which has been widely used in various researches ( Groemp-

ing (2009); Ishwaran (2007); Strobl et al. (2008)). It is defined as the difference between the

baseline model and competing model. In our case, the baseline model is designed as follows: the

OOB mean squared error for individual tree k is equal to the mean of the squared differences

between OOB values and the corresponding predictions.:

OOBMSEk
=

1

nOOB,k

n∑
i=1:i∈OOBk

(ri − r̂i,k)2, (24)

where nOOB,k is the number of OOB observations in tree k, ri is the actual value of return i and

r̂i,k is the corresponding prediction in tree k.

The competing model is computing the OOB-MSE after permuting the column values of one

predictor Xj . If the predictor Xj has little predictive power for ri, permuting the column values

of Xj in OOB samples makes rarely difference in OOB mean squared error. The competing

model is shown as follows:

OOBMSEk(Xj,permuted) =
1

nOOB,k

n∑
i=1:i∈OOBk

(ri − r̂i,k(Xj,permuted))
2, (25)

where Xj could be lagged returns, interest rate and dividend yield of country i as well as lagged

returns in other countries. The difference for predictor Xj in tree k is calculated as

differencej,k = OOBMSEk(Xj,permuted) −OOBMSEk
, (26)

the difference is equal to 0 if Xj does not join any split of tree k. The average of these difference

over all trees is defiend as the permutation-based "MSE reduction" for regressor Xj for the

forests.
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3.3 Out-Of-Sample Tests

The out-of-sample tests are very similar to tests in Section 2.3. The baseline model remains the

same. The only difference is that We use lagged U.S. tail risk instead of lagged U.S. returns in

the competing model.

The baseline forecasts can be expressed as

ri,t+1 = βi,0 + εi,t+1, (27)

which is identical to a baseline model without predictability. As comparison, we include the tail

risk lags of U.S. in the model:

ri,t+1 = βi,0 + αi,USTailUS,t + εi,t+1, (28)

To forecast the country i excess return in month t + 1, we first apply OLS using the data over

month t, then fill TailUS,t in equation (29), as shown below:

r̂i,t+1 = β̂i,0 + α̂i,USTailUS,t, (29)

where β̂i,0 and α̂i,US are the OLS estimates of βi,0 and αi,US .

3.4 Constructing Tail Risk Factor

To construct tail risk factor, we require historical prices of country index and the Put Protec-

tion Index (PPUT) from Chicago Board Options Exchange (CBOE) for the U.S.. PPUT is a

benchmark index, which tracks the performance of hypothetical risk management strategy that

takes a long potion to the S&P 500 Index and buys a monthly 5% Out-of-the-Money (OTM)

SPX Put option. Following the methodology of CBOE, we construct PPUT index for the rest

of countries.

The index is designed as purchasing a unit of the SPX Index and a unit of a 5% OTM monthly

SPX Put option simultaneously. CBOE selects the first available strike below 95% of the last

disseminated value of the SPX Index before 11:00 am ET to be the strike of the SPX Put option.

The SPX Put option is purchased at a volume weighted average trade price between 11:30 am

and 12:00 pm ET (VWAP). If there is no trade in the SPX Put option during the period, instead

CBOE uses the last ask quote of the SPX Put option before 12:00 pm ET. Typically, on the

third Friday (Roll Day) of every month since the initial roll date, the old SPX Put option settles

at 9:30 am ET against the Special Opening Quotation of the S&P 500 Index. A new 5% OTM

monthly SPX Put option will be subsequently purchased.

12



Following the CBOE methodology, the daily return of the index on each trading day (exclud-

ing roll dates) is calculated as:

Rt =
SPXt +DIVt + Put_5%t

SPXt−1 + Put_5%t−1
, (30)

where SPXt is the SPX Index close price on day t, DIVt is the SPX dividend, Put_5%t is the

average of the last bid-ask quote of the 5% OTM Put option before 4:00 pm ET. The terms with

subscript t− 1 refers to indicate the values on the previous day.

In our case, due to the unavailability of the data for the SPX dividend, we ignore the DIVt in

numerator of equation (30) (also the following equations). To obtain the 5% OTM Put option,

we first rank all put options on day t by moneyness, then select the put option with the nearest

value of moneyness to 95% from below. If the volume of selected Put option is zero, Put_5%t is

approximated by the ask quote on the previous day. To make it comparable to historical PPUT

index returns, we calculate the historical PPUT index daily return as Pricet
Pricet−1

, where Pricet

stands for the historical daily price of PPUT index on day t.

On Roll Days, the returns are calculated in three steps. First, we calculate the return from

the previous day market close to morning settlement of the expiring option (9:30 am ET):

R1 =
SOQt +DIVt + Put_5%_oldsettle

SPXt−1 + Put_5%_oldt−1
, (31)

where SOQt is the Special Opening Quotation of the SPX Index on the Roll Day. DIVt is the

SPX dividend, Put_5%_oldsettle = Max(0,Kold−SOQt) is the settlement value of the old SPX

Put option, and Put_5%_oldt−1 is the average of the last bid-ask quote of the old SPX Put

option before 4:00 pm ET on the previous day.

In our case, Kold in Put_5%_oldsettle = Max(0,Kold − SOQt) is the strike price of the Put

option selected on the previous day.

Second, we calculate the return from morning settlement (9:30 am ET) to the moment the

new SPX option position is deemed purchased:

R2 =
SOQt

SPXvwap
, (32)

where SOQt is the Special Opening Quotation of the SPX Index on the Roll Day, and SPXvwap

is the volume weighted average price of the SPX Index.

Lastly, we calculate the return from the time the new SPX Put option position is deemed

purchased to the market close:

R3 =
SPXt +DIVt + Put_5%_newt
SPXvwap + Put_5%_newvwap

, (33)
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where SPXt is the last disseminated value of the SPX Index on the Roll Day, and Put_5%_newt

is the average of the last bid-ask quote of the new SPX Put option before 4:pm ET on the Roll

Day.SPXvwap and Put_5%_newvwap are after volume weighted.

The total return of the Rolling Day:

Rt = R1 ∗R2 ∗R3. (34)

In our case, we do not have intraday data. Therefore, it is impossible to compute the volume

weighted average return. We approximate Rt = R1

3.5 Black-Scholes Model

When the option prices are unknown, we consider the Black-Scholes model to price European

put option, provided by Black and Scholes (1973). The Black-Scholes formulas are shown below:

P (St, t) = N(−d2)Ke−r(T−t) −N(−d1)St, (35)

d1 =
1

σ
√
T − t

[ln(
St
K

+ (r +
σ2

2
)(T − t)], (36)

d2 = d1 − σ
√
T − t, (37)

where St is the spot price of the underlying option, K is the strike price, r is the risk-free rate,

σ is the volatility of the option returns and T − t is the time to maturity in years. σ can be

approximated by the implied volatility. Hence, given the volatility, we can back out the spot

price of the option.

4 Data

This section describes the dataset used to replicate the Rapach et al. (2013) and analyze the role

of lagged tail risk.

4.1 Predictive Ability of Lagged U.S. Returns

We use the same dataset as Rapach et al. (2013), which is derived from Global Financial Data

(GFD) including 9 industrialized countries: United States, France, Germany, Japan, Switzerland,

United Kingdom, Australia, Italy and Netherlands . We update the sample to the most recent

available period, ranging from July 1986 to November 2015. The dataset contains monthly

indices returns, dividend yield and 3-month Treasury bill rates at the country level, where the

Treasury bill rates are served to compute the excess returns.
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Table 1 shows the descriptive statistic for countries excess returns in monthly frequency. On

average the monthly excess returns range from 0.14% (Italy) to 0.61 % (United States). All

countries have high volatility of excess returns, which is also in line with the large magnitude of

maximum/minimum values. Especially, Italy displays the largest volatility among all countries.

Three out of nine countries obtain monthly Sharpe ratios larger or equal to 0.10, among which

the United States has the largest Sharpe ratio (0.14). five out of nine countries display fairly

substantial positive autocorrelations in their returns, among which Switzerland displays the

largest autocorrealtions (0.16). The rest of countries exhibit fairly small autocorrelations, ranging

from 0.01 to 0.05.

Table 1: Descriptive Statistics: 1986:07-2015:11

Table 1 shows the descriptive statistics for country excess returns in monthly frequency for 9 industrialized
countries, ranging from July 1986 to November 2015. The excess return is the country index minus the 3-
month Treasury bill rate. The autocorrelation is the first-order autocorrelation. Sharpe ratio is the fraction of
the average excess return over its volatility.

Country Mean (%) Volatility (%) Min (%) Max (%) Autocorrelation Sharpe ratio

United States 0.61 4.41 -22.09 12.96 0.04 0.14

France 0.46 5.48 -22.49 21.58 0.11 0.08

Germany 0.45 5.86 -24.09 19.84 0.10 0.08

Japan 0.19 5.59 -21.68 17.51 0.14 0.03

United Kingdom 0.37 4.48 -27.33 12.90 0.05 0.08

Switzerland 0.54 4.65 -24.88 12.22 0.16 0.12

Australia 0.34 4.65 -43.06 14.27 0.01 0.07

Italy 0.14 6.26 -16.16 22.64 0.02 0.02

Netherlands 0.54 5.22 -23.69 13.32 0.12 0.10

4.2 Predictive Ability of Lagged U.S. Tail Risk

This section introduces the dataset used for constructing non-U.S. tail risk factor and investi-

gating the predictive power of lagged tail risk.

4.2.1 Constructing Tail Risk Factor

To construct the tail risk factor, we require daily option prices listed on the country’s Exchange,

1-month Treasury bill rates and implied volatility. Based on the availability of option price, there

are 6 industrialized countries left: United States, France, Germany, Japan, United Kingdom and

Switzerland, ranging from February 2006 to December 2015. Table 2 introduces the country

option indices used to construct PPUT index.
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Table 2: Information on Indices used for Tail Risk Factor Construction

Table 2 gives the information on indices used to construct Put Protection Index.

Country Index Name Issuer Ticker

United States S&P 500 NEW S & P 500 INDEX SPX

France CAC 40 R© index CAC 40 CAC

Germany DAX R©, the blue chip index of Deutsche Börse AG DAX IND DAX

Japan Nikkei Stock Average (Nikkei 225) NIKKEI 225 NKY

United Kingdom FTSE 100 index FTSE 100 UKX

Switzerland SMI R©, the blue chip index of SIX Swiss Exchange SMI SMI

Before constructing the non-U.S. tail risk factor, we replicate the U.S. PPUT index from 2006

to 2015, where the daily returns on Roll Days are approximated by Rt = R1. The correlation

between constructed PPUT index returns and historical PPUT index returns is 0.68. There are

120 Roll Days, which have limited effect over the whole sample period. If we subtract all Roll

Days, the correlation increases to 0.89. Figure 1 are the plots of obtained returns. We see that

most of volatile returns are on Roll Days. Therefore, we decide to construct the PPUT index for

the rest of the countries without Roll Days.

To measure the tail risk, we construct a zero-investment strategy that long the PPUT index

and short a chosen index. The strategy is to hedge the decrease in S & P 500 index. The log

return of this strategy refers to the tail risk. For instance, the U.S. tail risk can be interpreted

as long the PPUT index and short S&P 500 index and can be calculated as:

Tailus,t = log(
PPUTt
PPUTt−1

)− log(
SPXt

SPXt−1
), (38)

where PPUTt and SPXt are the prices of PPUT index and S&P 500 index at time t. In this

paper, we use month-end observations of PPUT index and chosen indices.

Figure 2 shows the time series plot of S & P 500 index returns and PPUT index returns from

February 2006 to November 2015. We see several spikes in the tail returns, that means PPUT

index pays off when there is large negative jump in the S & P 500 returns
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Figure 1: PPUT Index Construction: Figure 1 are the plots for PPUT index returns and constructed
PPUT index. The daily return is computed as shown in equation (30). In the upper panel, PPUTrollday is
the constructed PPUT index including the Roll days, where daily returns on the Roll Days are approximated by
Rt = R1. In the lower panel, PPUTexrollday is the constructed PPUT index excluding the Roll days
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Figure 2: Time Series of SP 500 Return and Tail Return: Figure 2 shows the time series of S & P 500
returns and constructed tail risk factor from February 2006 to November 2015.

Table 3 shows the descriptive statistics of monthly country tail returns. All of the countries

have negative average tail returns, among which the United State has the lowest average tail

returns (-0.026%). The kurtosis of the United Kingdom, Switzerland and the United States

are above 20%, among which the United Kingdom has the highest kurtosis (45.063%). The

distribution of the United States and Japan are skewed towards the right, while the rest is

skewed towards the left.

Table 3: Descriptive Statistics - Monthly Country Tail Risk Returns

Table 3 shows the descriptive statistics for monthly tail risk returns of 6 industrialized countries, ranging from
February 2006 to November 2015. The autocorrelation is the first-order autocorrelation.

Country Mean (%) Volatility (%) Kurtosis(%) Skewness(%) Autocorrelation

United States -0.026 2.349 33.736 4.826 0.307

France -0.009 0.085 2.894 -0.997 0.093

Germany -0.009 0.077 3.458 -0.685 0.095

Japan -0.005 0.127 2.848 0.234 0.019

United Kingdom -0.007 0.140 45.063 -4.538 -0.051

Switzerland -0.013 0.082 19.060 -3.561 0.384
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Table 4 reports the correlation for countries tail risk returns. U.S. tail risk is negatively

correlated with EU countries, among which Switzerland has the largest correlation with the

value of -0.556. In contrast, U.S. tail risk is positively correlated with Japan. In addition, we

observe tail risk returns of France, Germany and Switzerland are highly correlated with each

other, since they develop closely in numerous areas as the members of European Union.

Table 4: Correlation Matrix - Monthly Country Tail Risk Returns

Table 4 reports the correlations for monthly national tail risk returns for 6 industrialized countries, ranging
from February 2006 to November 2015.

Country United States France Germany Japan United Kingdom Switzerland

United States 1.000 -0.251 -0.238 0.189 -0.003 -0.556

France 1.000 0.932 0.017 0.563 0.743

Germany 1.000 0.049 0.560 0.722

Japan 1.000 -0.027 -0.012

United Kingdom 1.000 0.583

Switzerland 1.000

Table 3 plots the constructed non-U.S. tail risk returns together with the U.S. tail risk (in

gray line). Tail risk returns in all countries fluctuate over the sample period, among which France

and Germany display similar patterns. We notice that at the end of 2008 Financial Crisis, most

of countries generate negative tail risk returns, except the United States and Japan. Because

they have world’s first and second largest developed economy, respectively. They are more likely

to overcome the crisis. United Kingdom and Switzerland display fairly stable patterns over the

whole sample period, albeit experience large peaks in 2009. In general, we see that the patter of

the U.S. tail risk is more stable than the patterns of non U.S. tail risk returns and they display

opposite patterns in returns at the end of the crisis.
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Figure 3: Time Series of Country Tail Risk Returns: Figure 3 shows the time series of U.S. tail risk
returns and constructed non-U.S. tail risk returns from February 2006 to November 2015.

4.2.2 Analyzing the Predictive Ability of Lagged Tail Risk

The dataset consists of 9 industrialized countries: United States, France, Germany, Japan, United

Kingdom, Switzerland, Australia, Italy and Netherlands,. The dataset contains indices returns,

dividend yield, 3-month Treasury bill rates and tail risk factors in monthly frequency, where

the Treasury bill rates are served to compute the excess returns. Note that CBOE PPUT

index is available from July 1986, we have U.S. tail risk factor from July 1986 to November 2016.

Therefore, we use the sample from July 1986 to November 2015 when investigating the predictive

ability of American tail risk. We use the smaller sample from February 2006 to November 2015

(including France, Germany, Switzerland, Japan, United Kingdom and United States) when

investigating the predictive ability of non-U.S. tail risk, because the constructed non-U.S. tail

risk is available from February 2006.

Table 5 reports the descriptive statistic for excess returns of 6 countries in monthly fre-
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quency. The average monthly excess returns range from 0.21% (Japan) to 0.65 % (Germany).

All countries have high volatility of excess returns, which is also consistent with the large mag-

nitude of maximum/minimum values. Especially, Germany displays the largest volatility among

all countries. 3 out of 6 countries have monthly Sharpe ratios larger or equal to 0.10, among

which Sharpe ratio of Germany is the largest(0.12). Most of countries returns display fairly large

positive autocorrealtions above 0.15.

Table 5: Descriptive Statistics: 2006:02-2015:11

Table 5 reports the descriptive statistics for monthly country excess returns in national currency for 6 indus-
trialized countries, ranging from February 2006 to November 2015. The excess return is the country index
minus the 3-month Treasury bill rate. The autocorrelation is the first-order autocorrelation. Sharpe ratio is
the fraction of the mean excess return over its volatility.

Country Mean (%) Volatility (%) Min (%) Max (%) Autocorrelation Sharpe ratio

United States 0.60 4.39 -16.87 12.96 0.17 0.14

France 0.39 4.98 -14.62 21.58 0.16 0.08

Germany 0.65 5.52 -18.04 19.84 0.18 0.12

Japan 0.21 5.22 -19.97 17.51 0.24 0.04

United Kingdom 0.38 4.14 -13.65 12.90 0.03 0.09

Switzerland 0.40 3.90 -10.28 12.22 0.20 0.10

4.3 Data Adjustment

In reality, different national equity markets have different closing times. We need to account

for it when investigating the relationships of international returns. Because in the same month

up-to-date information is not supposed to be incorporated into all equity market on the final

trading day of the month. It means, if the market in country A is closed while at the same

time, the information has been spread in country B on the final trading day of the month t.

The stock prices in country A can not incorporate the new information till the first trading

day of the month t + 1. It will result in spurious evidence of lagged relations among monthly

country returns. Following Rapach et.al (2013), this problem can be solved by adjusting rj,t in

equation (14) in a way that can exactly reflect the differences in closing times between country

i and country j. More precisely, if the equity market in country j close after the market in

country i, we eliminate the final trading day of month t from rj,t. The same adjustment applies

when investigating lead-lag relationships across countries in returns. Table 6 reports the data

adjustment for the selected indices according to their closing time.
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Table 6: Lagged Country Excess Stock Returns Adjustment
Table 6 reports the adjustment on rj,t in the model:

ri,t+1 = βi,0 + βi,bBilli,t + βi,dY ieldi,t + βi,iri,t + βi,jrj,t + εi,t+1, i 6= j,

"All" indicates that rj,t is calculated as the price of total return index at the end of the last trading day of
month t divided by its price at the end of the last trading day of month t− 1. "Exclude" indicates that rj,t is
calculated as the price of total return index at the end of the penultimate trading day of month t divided by its
price at the end of the penultimate trading day of month t− 1.

(1) (2)
j

(3) (4) (5) (6) (7) (8) (9) (10)

i AUS FRA DEU ITA JPN NLD CHE GBR USA

AUS Exclude Exclude Exclude ALL Exclude Exclude Exclude Exclude

FRA ALL Exclude ALL ALL ALL ALL ALL Exclude

DEU ALL Exclude ALL ALL ALL ALL ALL Exclude

ITA ALL ALL Exclude ALL ALL ALL ALL Exclude

JPN ALL Exclude Exclude Exclude Exclude Exclude Exclude Exclude

NLD ALL ALL Exclude ALL ALL ALL ALL Exclude

CHE ALL ALL Exclude ALL ALL ALL ALL Exclude

GBR ALL ALL Exclude ALL ALL ALL ALL Exclude

USA ALL ALL ALL ALL ALL ALL ALL ALL

5 Results

In this section, first, we report the results for replication of Rapach et al. (2013). We investigate

the role of lagged U.S. returns in predicting non-U.S. returns. Second, we report the results for

examining the predictive ability of lagged tail risk. The results are based on two sample periods

from July 1986 to November 2015 and February 2006 to November 2015.

5.1 Predictive Ability of Lagged U.S. Returns

This section presents the results for the role of lagged U.S. returns. Table 7 reports results of

benchmark predictive regression. The signs of β̂i,b and β̂i,d are in accordance with expectations

(negative and positive), except Italy and Switzerland (negative βi,d estimates). We observe that

the magnitude of β̂i,d for United Kingdom is relatively larger than others. It is in line with the

finding from Kellard et al. (2010) that the United Kingdom has greater predictability of dividend

yield than the United States.

We noticed that the R2 statistics are fairly small because to some extent the stock returns

are unpredictable. However, Kandel et al. (1996) argue that R2 statistics close to 0.5% can be
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accepted as an economically significant signal for return predictability. The United States, Ger-

many, United Kingdom, the Netherlands and Italy have R2 statistics larger than 1%. We reject

the null hypothesis of zero beta estimates for Germany, United Kingdom and the Netherlands

based on the wild bootstrapped p-values. Besides, we estimate the equation (1) under the pooled

restrictions: βi,b = β̄b and βd = β̄d. We see that β̄b is significant at 10% level.

Table 7: Estimation of Benchmark Predictive Regression Model - 1986:07 to 2015:11
Table 7 reports the results of the model:

ri,t+1 = βi,0 + βi,bBilli,t + βi,dY ieldi,t + εi,t+1,

where ri,t+1, Billi,t and Y ieldi,t represents the monthly country excess returns, the 3-month Treasury bill rate
and the log country dividend yield, respectively. In column (2), (3), (6) and (7), heteroskedasticity-robust
t-statistics in brackets test for the null hypothesis that βi,b = 0 (βi,d = 0) against alternative hypothesis that
βi,b < 0 (βi,d > 0). In column (4) and (8), heteroskedasticity-robust χ2 statistics in brackets test for the null
hypothesis that βi,b = βi,d = 0. The pooled results are estimated under the restrictions that βi,b = β̄b and
βi,d = β̄d. Following Rapach et al. (2013), the p-values are computed by means of wild bootstrap procedures,
which accounts for the contemporaneous correlation in the data. * presents the 10% significance of the estimate.

(1) (2) (3) (4) (5) (6) (7) (8)

i β̂i,b β̂i,d R2 i β̂i,b β̂i,d R2

United States −0.070
(−0.659)

1.485
(1.712)

1.049%
(2.932)

France −0.140
(−1.657)

0.922
(0.668)

0.947%
(3.555)

Germany −0.293∗
(−2.352)

0.938
(0.644)

1.383%∗
(5.704)

Japan −0.172
(−0.608)

0.211
(0.224)

0.685%
(1.691)

United Kingdom (−0.128)
−1.659

3.613∗
(2.785)

2.622%∗
(7.984)

Switzerland −0.159
(−1.606)

−0.155
(−0.183)

0.763%
(2.578)

Australia −0.072
(−0.630)

1.809
(0.588)

0.488%
(0.414)

Italy −0.144∗
(−1.703)

−1.126
(−0.981)

1.056%
(2.935)

Netherlands −0.231∗
(−2.221)

0.647
(0.530)

1.093%∗
(6.132)

Pooled −0.110∗
(−1.701)

0.461
(0.763)

0.643%
(3.369)

Table 8 reports the pairwise Granger causality test results. There are 64 out of 72 positive

β̂i,j estimates, among which 27 are significant at 10% level. We observe the strongest predictive

ability for lags of U.S. returns. Five out of eight β̂i,US are significant, among which 5 are larger

than 0.15 when i = DEU, UK, AUS, ITA, NLD. The pooled β̂i,US estimate is still significant,

and the magnitude of average of the β̂i,US (0.138) is larger than 0.10. In contrast, we observe no

insignificant β̂US,j for j =non-U.S. countries. This reflects the lags of returns in countries outside

the United States hardly predict returns of the United States. Overall, large βi,US estimates and

small βUS,j estimates show that the lagged U.S. returns play an important role in predicting

international returns.

In addition, France and Switzerland show strong predictive power for other countries. Returns

in five out of eight countries can be significantly predicted by lagged French returns and βi,FRA

estimates are larger than 0.15 for i = DEU, JPN, AUS, ITA, NLD. Lagged Swiss returns can
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significantly predict 5 out of 8 countries returns. The βi,CHE estimates are sizable for European

countries (i = DEU, ITA, NLD). In the last row, pooled beta estimates for France and Switzerland

are also relatively sizable at 10 % significant level (0.153 and 0.141, respectively).

Table 8: Results of Pairwise Granger Causality Test - 1986:07 to 2015:11
Table 8 reports the results of the model:

ri,t+1 = βi,0 + βi,iri,t + βi,jrj,t + βi,bBilli,t + βi,dY ieldi,t + εi,t+1, i 6= j,

where ri,t+1, Billi,t and Y ieldi,t represents the monthly country excess returns, the 3-month Treasury bill rate
and the log country dividend yield, respectively. Heteroskedasticity-robust t-statistics in brackets test for the
null hypothesis of zero βi,j against the alternative hypothesis of positive βi,j. "Average" is the mean of β̂i,j
estimates in column. The pooled results are estimated under the restrictions that βi,j = β̄j for all i 6= j. The
wild bootstrapped p-value is constructed by following Rapach et al. (2013). * presents the 10% significance of
the estimate.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

i β̂i,US β̂i,FRA β̂i,DEU β̂i,JPN β̂i,UK β̂i,CHE β̂i,AUS β̂i,ITA β̂i,NLD

United States (US) 0.078
(1.430)

0.034
(0.593)

0.051
(1.194)

0.064
(0.559)

0.048
(0.548)

0.081
(1.098)

0.051
(1.124)

0.037
(0.416)

France (FRA) 0.094
(0.855)

−0.007
(−0.072)

0.022
(0.317)

−0.015
(−0.107)

0.123
(1.046)

0.050
(0.614)

−0.036
(−0.521)

−0.003
(−0.017)

Germany (DEU) 0.192∗
(1.788)

0.210∗
(1.773)

0.089∗
(1.450)

0.080
(0.708)

0.233∗
(1.967)

0.079
(0.848)

0.046
(0.680)

0.064
(0.458)

Japan (JPN) 0.065
(0.813)

0.157∗
(2.787)

0.054
(1.013)

0.115∗
(1.575)

0.107∗
(1.536)

0.044
(0.640)

0.030
(0.583)

0.039∗
(2.016)

United Kingdom (UK) 0.156∗
(1.454)

0.122
(1.420)

0.017
(0.251)

0.081∗
(1.710)

0.075
(0.960)

0.076
(0.988)

−0.009
(−0.186)

−0.051
(−0.499)

Switzerland (CHE) 0.078
(0.818)

0.064
(0.702)

−0.006
(−0.082)

0.045
(0.980)

0.052
(0.642)

0.066
(0.944)

−0.016
(−0.310)

0.014
(0.145)

Australia (AUS) 0.155∗
(1.676)

0.181∗
(2.535)

0.115∗
(1.867)

0.114∗
(2.332)

0.086
(1.014)

0.103∗
(1.554)

0.075∗
(1.882)

0.008
(0.328)

Italy (ITA) 0.182∗
(1.911)

0.275∗
(3.037)

0.182∗
(2.240)

0.062
(0.913)

0.165∗
(1.568)

0.286∗
(2.719)

0.081
(1.049)

0.150
(1.392)

Netherlands (NLD) 0.248∗
(2.732)

0.219∗
(2.402)

0.132∗
(1.385)

0.114∗
(2.237)

0.148
(1.171)

0.266∗
(2.154)

0.133∗
(1.625)

0.041
(0.740)

Average 0.130 0.145 0.058 0.064 0.077 0.138 0.068 0.020 0.029

Pooled 0.138∗
(2.125)

0.153∗
(3.332)

0.064∗
(1.497)

0.073∗
(1.842)

0.089
(1.372)

0.141∗
(2.394)

0.071
(1.228)

0.025
(0.732)

0.028
(1.211)

The main reason why lagged U.S. returns play a leading role in predicting international

returns could be that the United States has the world’s largest GDP and world’s largest equity

market in terms of market capitalization. As for France and Switzerland, they have relatively

smaller equity markets, comparing to the Unite States. Market concentration is an essential

issue. The top ten firms in terms of capitalization in France and Switzerland comprise over half

of total country capitalization according to the World Federation of Exchanges. By the concept

of information frictions, when shocks occur, a small amount of large companies are more likely

to incorporate information in stock prices.

Table 9 reports the pooled OLS results in equation (4), which measures the relations on

average. The lagged returns of the United States and France still significantly improve the
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return predictability of other countries. We see that the U.S. returns in the past month continue

to play a leading role in forecasting international returns. The βUS estimate (0.124) is very close

to the pooled estimate in Table 8. The main difference is that Swiss returns do not display

significant predictive ability for European countries any more. Therefore, its predictive power is

not robust.

Table 9: Pooled General Model Specification Estimation Results - 1986:07 to 2015:11
Table 9 reports the estimates of β̄i,j (denoted by β̂j) in the model:

ri,t+1 = βi,0 + β̄bBilli,t + β̄dY ieldi,t + β̄ARri,t +
∑
j 6=i

β̄jrj,t + εi,t+1, i = 1, ..., N,

where ri,t+1, Billi,t and Y ieldi,t represents the monthly country excess returns, the 3-month Treasury bill
rate and dividend yield, respectively. Following Rapach et al. (2013), we compute the bias-corrected wild
bootstrapped 90 % confidence intervals. * presents the 10% significance of the estimate.

(1) (2) (3) (4) (5) (6) (7) (8) (9)

β̂US β̂FRA β̂DEU β̂JPN β̂UK β̂CHE β̂AUS β̂ITA β̂NLD

0.124∗
([0.009,0.241]

0.121∗
[0.020,0.218]

−0.064
[−0.150,0.022]

0.012
[−0.053,0.073]

−0.012
[−0.149,0.123]

0.073
[−0.052,0.199]

0.008
[−0.028,0.043]

−0.015
[−0.078,0.048]

−0.021
[−0.068,0.027]

Table 10 reports the results of adaptive elastic-net estimation. To some extent, we see some

similarities in results with Table 8 and 9. Five of eight countries select returns lags of U.S. as

predictors for their returns by LASSO, among which the Netherlands and the United Kingdom

can be significantly predicted by returns lags of U.S.. In contrast, none of returns lags could

significantly predict returns of the United States. This agrees with the conclusion in Rapach

et al. (2013). In addition, lagged French returns display strongest predictive ability. However,

according to the finding in Rapach et al. (2013), when the data ranges from February 1980 to

December 2010, France displays limited predictive ability for non-FRA countries. Therefore, the

robustness of the results for France needs to be further examined.
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Table 11 reports the out-of sample results. The in-sample period ranges from July 1986

to December 1989. By doing so, we balance the number of observations for estimation and

evaluation. There are five of eight non-U.S. countries having positive R2
OS in column (2) and (5).

This means that the competitive model that incorporates information in lagged returns of the

U.S. reduces theMSFE comparing to the historical average return model. Among these positive

R2
OS statistics, France, Switzerland, Germany and the Netherlands has economically sizable R2

OS

statistics (above 0.5%). The 1% bootstrapped critical value under the null hypothesis that

country returns cannot be predicted is equal to 2.49. The Netherlands has the largest critical

value of 2.014 in column (2) and (5). Column (3) and (6) reports the pooled R2
OS statistics

under the restriction: βi,US = β̄US for non-U.S. countries. It improves the efficiency, albeit with

the sacrifice in biasness. In truth, we see the pooled R2
OS statistics in column (3) and (6) larger

than R2
OS statistics in column (2) and (5). There are six of eight positive R2

OS statistics, among

which five are significant at the conventional level. It provides further evidence of the better

out-of-sample performance of the competing model relative to the historical average model.

Table 11: Out-of-Sample Tests for Lagged U.S. Return - 1990:01 to 2015:11
Table 11 reports out-of-sample R2 and R2

OS statistics (Campbell and Thompson (2008)) by measuring the
difference in mean-squared forecast error between constant expected excess return model and a competing
model that includes lagged U.S. returns. Baseline model and competing model are shown as follows:

ri,t+1 = βi,0 + εi,t+1,

ri,t+1 = βi,0 + βi,USrUS,t + εi,t+1,

where ri,t+1 is the country monthly excess returns at month t. The results in column (3) and (6) are obtained
by imposing the restriction on the competing model: βi,US = βUS for non-U.S. countries. MSFE − adjusted
statistics (Clark and West (2007)) in brackets test for the null hypothesis of zero R2

OS against positive R2
OS.

* presents the 10% significance of the estimate. "Average" is the average of R2
OS across 8 countries. The

in-sample period is from July 1986 to December 1989.

(1) (2) (3) (4) (5) (6)

i R2
OS R2

OS,pooled i R2
OS R2

OS,pooled

France 0.808%∗
(1.395)

1.100%∗
(1.586)

Germany 0.961%∗
(1.589)

1.182%∗
(1.666)

Japan −0.145%
(0.619)

0.292%
(1.016)

United Kingdom −0.820%
(0.625)

−1.248%
(0.683)

Switzerland 1.659%∗
(2.224)

1.622%∗
(2.112)

Australia −0.425%
(0.655)

−0.703%
(0.925)

Italy 0.233%
(0.930)

0.945%∗
(1.571)

Netherlands 1.836%∗
(2.014)

1.964%∗
(2.004)

Average 0.513% 0.644%

Figure 4 depicts the cumulative differences in MSFE for the baseline model relative to

the competing forecasts. This graphical approach is provided by Goyal and Welch (2008) to

27



determine the out-of-sample forecasting performance. The height of the curve at the end of the

period higher than the height at the beginning of the period reveals MSFE of the competing

model is smaller than that of the baseline model. For most of the countries, the competing

model consistently beats the baseline forecasts. In particular, there are sizable forecast gains

in the competing model during the 2008 global financial crisis. Given the importance of U.S.

economy in the world, shocks in the United States simultaneously affects the market outside

the United States. Together with the information friction, the predictive ability of lagged U.S.

returns becomes stronger during American recessions.

Figure 4: Out-Sample forecasting results - 1990:01-2015:11 Figure 4 illustrates cumulative squared
differences of forecasts errors for monthly excess return between historical average baseline model (ri,t+1 = βi,0 +

εi,t+1) and the competitive model that uses lagged U.S. return (ri,t+1 = βi,0 + βi,USrUS,t + εi,t+1).
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5.2 Predictive Ability of Lagged Tail Risk

This section presents the results based on two different sample periods. For the long sample

period (July 1986 to November 2015), we report the results for investigating the role of lagged

U.S. tail risk in returns predictability of the non-U.S. countries. For the short sample period

(February 2006 to November 2015), we check the consistency of predictive power of U.S. tail

risk. In addition, we report the results for investigating the role of the lagged non-U.S. tail risk

in returns predictability of the U.S..

5.2.1 Predictive Ability of Lagged U.S. Tail risk: 1986:07-2015:11

In this section, we report the results using sample from July 1986 to November 2015 for testing the

predictive power of lagged U.S. tail risk in pricing non-U.S. industrialized countries. In section

5.1, we conclude that returns predictability is significantly improved by lagged U.S. returns,

which agrees with Rapach et al. (2013). Therefore, we extend the benchmark predictive model

by adding lagged U.S. returns.

Table 12 reports the OLS estimates in the predictive regression model that additionally

includes lagged returns and lagged U.S. returns. Results in the fifth column are consistent with

the pairwise Granger causality test results in the second column of Table 8. Thus, based on the

replication results in the previous section, it is reasonable to include the lagged U.S. returns in

the benchmark model. Indeed, lagged returns of the U.S. display sizable predictive ability for

international returns, and the positive sign of β̂i,US agrees with our expectation. The reason why

we expect positive sign is due to the positive first-order autocorrelation of U.S. returns (shown

in Table 1). That means large returns today display a positive signal for tomorrow returns.

Table 13 reports the OLS estimates of U.S. tail risk lags in the predictive regression model.

In the column (6), seven of eight non-U.S. countries have significant αi,US estimates at 10%

level with (absolute) value above 0.25. That means lagged U.S. tail risk improve the returns

predictability. In addition, we notice that lagged U.S. tail risk can significantly predict the U.S.

returns while its lagged returns cannot. Besides, we find that the negative sign of α̂i,US agrees

with our expectation. That means that if a stock suffers from shocks today, its returns will

decrease tomorrow. Indeed, it happens in reality, especially during the financial crisis.

In the last column of Table 13, the number of significant R2 statistics increases from 3 to

7, comparing to the last column of Table 12, in which we do not incorporate the information

in U.S. tail risk. These R2 statistics can be seen as economically significant signal for return

predictability, since they are much larger than 1.5%. In particular, United Kingdom, Switzerland

and the Netherlands have R2 statistics above 5%. In the last row of Table 13, the pooled results
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are obtained under the restriction: βi,b = β̄b, βi,d = β̄d, βi,r = β̄r, βi,US = β̄US and αi,US = ᾱUS

for all i. By doing so, we scarify the biasness but gain the efficiency. The magnitude of pooled

α̂i,US is more than three times as large as other significant pooled predictors. Overall, lagged

U.S. tail risk shows strongest predictive power on returns in non-U.S. areas.

Table 12: Benchmark Predictive Regression Model Estimation - 1986:07: to 2015:11
Table 12 reports the results of the model:

ri,t+1 = βi,0 + βi,bBilli,t + βi,dY ieldi,t + βi,rri,t + βi,USrUS,t + εi,t+1, i 6= US,

ri,t+1 = βi,0 + βi,bBilli,t + βi,dY ieldi,t + βi,rri,t + εi,t+1, i = US,

where ri,t+1, Billi,t and Y ieldi,t represents the monthly country excess returns, the 3-month Treasury bill rate
and country dividend yield, respectively. In column (2), (3), (4) and (5), heteroskedasticity-robust t-statistics
in brackets test for H0: βi,b = 0 against HA: βi,b < 0; H0: βi,d = 0 against HA: βi,d > 0; H0: βi,r = 0

against HA: βi,r > 0; H0: βi,US = 0 against HA: βi,US > 0. In column (6), heteroskedasticity-robust χ2

statistics in brackets test for H0: βi,b = βi,d = βi,r(= βi,US) = 0. The pooled results are estimated under the
restrictions that βi,b = β̄b, βi,d = βd, βi,r = β̄r and βi,US = β̄US for all i. Based on wild bootstrapped p-value,
constructing by following Rapach et al. (2013), * presents the 10% significance of the estimate.

(1) (2) (3) (4) (5) (6)

i β̂i,b β̂i,d β̂i,r β̂i,US R2

United States −0.071
(−0.673)

1.522
(1.772)

0.048
(0.688)

- 1.277%
(4.003)

France −0.124
(−1.486)

1.308
(0.973)

0.056
(0.569)

0.094
(0.855)

2.404%
(7.853)

Germany −0.276∗
(−2.244)

1.225
(0.866)

−0.003
(−0.043)

0.192∗
(1.788)

3.353%∗
(10.100)

Japan −0.111
(−0.391)

0.401
(0.436)

0.107∗
(1.455)

0.065
(0.813)

2.582%
(5.693)

United Kingdom −0.127
(−1.654)

3.620∗
(2.854)

−0.072
(−0.655)

0.156∗
(1.454)

3.734%∗
(10.974)

Switzerland −0.133
(−1.366)

0.100
(0.117)

0.103
(1.009)

0.078
(0.818)

3.432%
(8.876)

Australia −0.068
(−0.605)

1.590
(0.532)

−0.077
(−1.043)

0.155∗
(1.676)

1.755%
(2.996)

Italy −0.151∗
(−1.826)

−1.134
(−1.016)

−0.067
(−1.033)

0.182∗
(1.911)

2.189%
(7.527)

Netherlands −0.210∗
(−2.057)

0.783
(0.683)

−0.041
(−0.483)

0.248∗
(2.732)

4.244%∗
(14.608)

Pooled −0.107∗
(−1.240)

0.452
(0.244)

0.010
(0.205)

0.138∗
(2.125)

2.108%∗
(8.974)

Table 14 reports the results of the adaptive elastic-net estimation. For each country, we build

up a predictive regress model that contains a number of predictors: own nominal interest rate,

own dividend yield, lagged returns in all countries and U.S. lagged tail risk. Six of eight countries

select lagged U.S. tail risk as predictors for their return (except Australia), among which France,

Germany, United Kingdom, Switzerland, Italy and the Netherlands can be significantly predicted

by lagged U.S. tail risk. In addition, we observe that predictive ability of lagged French returns
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remain strong, while that of returns lags of the United States declines.

Compared to Table 10, the number of countries that select lagged U.S. returns as predictor

decreases from five to three. And lagged U.S. returns are not as a significant predictor anymore

for the United Kingdom and the Netherlands. We see that in table 14 most of countries tend

to select lagged U.S. tail risk rather than U.S. returns. That means the U.S. tail risk is more

important in return predictability than U.S. returns.

Table 13: Predictive Regression Model Estimation - 1986:07: to 2015:11
Table 13 reports the results of the model:

ri,t+1 = βi,0 + βi,bBilli,t + βi,dY ieldi,t + βi,rri,t + βi,USrUS,t + αi,USTailUS,t + εi,t+1, i 6= US,

ri,t+1 = βi,0 + βi,bBilli,t + βi,dY ieldi,t + βi,rri,t + αi,USTailUS,t + εi,t+1, i = US,

where ri,t+1, Billi,t, Y ieldi,t and TailUS,t represents the monthly country excess returns, the 3-month Treasury
bill rate, the log country dividend yield and the U.S. tail risk, respectively. In column (2), (3), (4), (5) and
(6), heteroskedasticity-robust t-statistics in brackets test for H0: βi,b = 0 against HA: βi,b < 0, H0: βi,d = 0

against HA: βi,d > 0, H0: βi,r = 0 against HA: βi,r > 0, H0: βi,US = 0 against HA: βi,US > 0 and
H0: αi,US = 0 against HA: αi,US < 0, respectively. In column (7), heteroskedasticity-robust χ2 statistics
in brackets test for H0: βi,b = βi,d = βi,r = αi,US(= βi,US) = 0. The pooled results are estimated under
the restrictions that βi,b = β̄b, βi,d = β̄i,d, βi,r = β̄r, βi,US = β̄US and αi,US = ᾱUS for all i. Based on
wild bootstrapped p-value, computing by following Rapach et al. (2013), * presents the 10% significance of the
estimate.

(1) (2) (3) (4) (5) (6) (7)

i β̂i,b β̂i,d β̂i,r β̂i,US α̂i,US R2

United States −0.088
(−0.836)

1.709
(1.967)

−0.071
(−0.880)

- −0.443∗
(−2.563)

3.598%
(9.024)

France −0.127
(−1.549)

1.461
(1.099)

0.042
(0.549)

0.127∗
(1.982)

−0.392∗
(−1.918)

4.773%∗
(16.379)

Germany −0.298∗
(−2.424)

1.577
(1.114)

0.028
(0.414)

0.070
(1.038)

−0.431∗
(−2.165)

4.191%∗
(12.760)

Japan −0.099
(−0.358)

0.468
(0.508)

0.107∗
(1.492)

0.124∗
(1.922)

−0.250∗
(−1.695)

4.124%∗
(13.721)

United Kingdom −0.142
(−1.849)

3.929∗
(3.024)

−0.037
(−0.513)

0.121∗
(2.550)

−0.335∗
(−2.216)

5.840%∗
(18.526)

Switzerland −0.138
(−1.449)

0.214
(0.261)

0.064
(0.929)

0.053
(1.128)

−0.474∗
(−3.016)

6.610%∗
(21.398)

Australia −0.075
(−0.652

1.939
(0.633)

−0.024
(−0.419)

0.075∗
(1.429)

−0.187
−1.178)

1.511%
(3.857)

Italy −0.146∗
(−1.753)

−1.060
(−0.953)

−0.040
(−0.700)

0.099
(1.191)

−0.392∗
(−2.403)

2.928%∗
(12.751)

Netherlands −0.232∗
(−2.289)

1.082
(0.934)

0.020
(0.250)

0.056
(0.975)

−0.501∗
(−3.045)

5.241%∗
(19.676)

Pooled −0.110∗
(−1.303)

0.552
(0.330)

0.025
(0.516)

0.088∗
(1.789)

−0.357∗
(−2.695)

3.359%∗
(16.030)
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Table 15 reports the results out-of-sample tests. In general, results agree with out-of-sample

results in Table 11. Half of countries have positively sizable R2 statistics in the column (2) and

(5) (France, Switzerland, Italy and the Netherlands). This means that competing model that

uses lagged tail risk of the U.S. has smaller MSFE, comparing to the baseline model. The 1%

bootstrapped critical value under the null hypothesis that country returns can not be predicted

is equal to 2.49. The Netherlands still has the largest critical value of 2.394 in column (2) and

(5). Column (3) and (6) reports the pooled R2 statistics under the restriction: αi,US = ᾱi,US .

Again it improves the efficiency, albeit with the sacrifice in biasness. In truth, we see the pooled

statistics in column (3) and (6) are larger than those in column (2) and (5). Six of eight R2

statistics are positively significant at conventional level. It provides further evidence of the better

out-of-sample performance of the competing model.

Compared to Table 11, the sign of out-of-sample R2
OS and R2

OS,pooled for all countries remain

the same. However, the number of significantly positive R2
OS and R2

OS,pooled increases from nine

to ten. The U.S. tail risk has better out-of-sample performance than U.S. returns.

Table 15: Out-of-Sample Tests for Lagged U.S. Tail Risk - 1990:01 to 2015:11
Table 15 shows out-of-sample R2 and R2

OS statistics (Campbell and Thompson (2008)) by measuring the
difference in mean-squared forecast error between constant expected excess return model and a competing
model that includes lagged U.S. returns. Baseline model and competing model are shown as follows:

ri,t+1 = βi,0 + εi,t+1,

ri,t+1 = βi,0 + αi,USTailUS,t + εi,t+1,

where ri,t+1 represents the monthly excess returns at month t. Results in column (3) and (6) are obtained by
imposing the restriction on the competing model: βi,US = β̂US for non-U.S. countries. MSFE − adjusted
statistics (Clark and West (2007)) in brackets test for the null hypothesis of zero R2

OS against positive R2
OS.

* presents the 10% significance of the estimate. "Average" is the average of R2
OS across 8 countries. The

in-sample period is from July 1986 to December 1989.

(1) (2) (3) (4) (5) (6)

i R2
OS R2

OS,pooled i R2
OS R2

OS,pooled

France 0.614%∗
(1.651)

1.493%∗
(1.743)

Germany −0.409%∗
(1.635)

0.317%∗
(1.538)

Japan −0.238%∗
(1.845)

0.075%∗
(1.872)

United Kingdom −0.331%∗
(1.650)

−1.679%∗
(1.681)

Switzerland 2.553%∗
(2.748)

5.131%∗
(2.740)

Australia −0.432%
(−0.489)

−3.663%
(0.841)

Italy 0.555%∗
(1.631)

0.788%∗
(1.810)

Netherlands 1.644%∗
(2.394)

2.093%∗
(2.326)

Average 0.495% 0.569%

Figure 5 depicts the cumulative differences in MSFE for the baseline forecasts relative to

the competing forecasts. The curve above 0 represents a smaller MSFE for the competing

model. we see that for most of the countries, the competing model outperforms the baseline
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model. In particular, there are sizable forecast gains during the 2000 dot-com bubble. Given

the importance of the U.S. economy in the world together with the information friction, the

predictive ability of lagged tail risk of the United States becomes stronger during the recessions.

Figure 5: Results of Out-of-Sample Forecasting - 1990:01 - 2015:11 Figure 5 presents cumulative
squared differences of forecasts errors for monthly excess return between the historical average baseline model
(ri,t+1 = βi,0+εi,t+1) and the competitive model that uses lagged U.S. tail risk (ri,t+1 = βi,0+αi,USTailUS+εi,t+1).

Figure 6 plots the permutation-based variable importance. We add a random column, which

is generated from random numbers. Any features with negative importance or less important

than the random column should be tossed out. All non-U.S. countries select U.S. tail risk as

regresses, since it is more important than the random column. In most of the countries, U.S.

tail risk lies in the top three important variables. In particular, for Switzerland, Australia and

the Netherlands, it is the most important variable. In addition, six of nine countries select U.S.
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return as regresses, which agrees with Rapach et al. (2013).

Figure 6: Variable Importance Figure 6 plots the permutation-based variable importance (Breiman (2002)).
"Random" is a series of random number. Any features less important than the random column could be tossed
out.
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There are two main findings compared to U.S. returns. First, U.S. tail risk is more important

than U.S. returns in the United Kingdom, Switzerland, the United States, Australia and Italy.

In another word, U.S. returns are more important than U.S. tail risk in only three countries

(France, Germany, Japan). To some extent, we can say that the predictive power of U.S. tail

risk is stronger than that of U.S. returns. Second, We find that lagged U.S. tail risk is the most

important variable for Australian returns. However, we do not see any significant predictive

power of lagged U.S. tail risk in predictive regression model and adaptive elastic net estimation.

The possible explanation could refer to the intuition behind the approaches. The predictive

regression and adaptive elastic-net estimation are parametric models. However, the permutation-

based variable importance is constructed at non-parametric level. Only a random subset of

variables and observations is used to construct each individual tree. In total, we have many

"trees". Therefore, the importance is expected to be rather stable..

5.2.2 Predictive Ability of Lagged International Tail Risk: 2006:02 - 2015:11

This section reports the results for testing the lagged international tail risk using data from

February 2006 to November 2015 based on the availability of international tail risk. In addition,

by using different sample periods we can test the robustness of predictive power for lagged tail

risk of the U.S..

Table 16 reports the OLS estimates in the benchmark predict regression model using a small

dataset from February 2006 to November 2015. Because we use fewer observations, results might

be not very robust. We see that the R2 statistics become larger than before and the sign of β̂i,d

does not consistent any more.

Table 17 reports the pairwise Granger causality test results. There are 22 out of 30 negative

αi,j estimates, Among which six are significant at 10% level. In particular, returns in France and

Switzerland can be significantly predicted by lagged U.S. tail risk. However, we observe stronger

predictive power for lagged Japanese tail risk in terms of the magnitude of estimates. Two out

of five α̂i,JPN are significant with absolute value above 5.5 at conventional level i = FRA, DEU.

The pooled αi,US estimate is still significant, and the magnitude of average of the α̂i,US (-0.275)

is larger than 0.25. In contrast, we observe no insignificant α̂US,j for j = countries other than the

United States. This reflects the lagged tail risk of countries other than the United States hardly

predict its returns. Overall, the lagged U.S. tail risk consistently dominates the predictability

of international returns in small dataset, while U.S. returns can not be predicted by lagged tail

risk of non-U.S. countries.
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Table 16: Benchmark Predictive Regression Model Estimation - 2006:02: to 2015:11
Table 16 reports the results of the model:

ri,t+1 = βi,0 + βi,bBilli,t + βi,dY ieldi,t + βi,rri,t + βi,USrUS,t + εi,t+1, i 6= US,

ri,t+1 = βi,0 + βi,bBilli,t + βi,dY ieldi,t + βi,rri,t + εi,t+1, i = US,

where ri,t+1, Billi,t and Y ieldi,t represents the monthly country excess returns, 3-month Treasury bill rate and
log country dividend yield, respectively. In column (2), (3), (4) and (5), heteroskedasticity-robust t-statistics
in brackets test for H0: βi,b = 0 against HA: βi,b < 0; H0: βi,d = 0 against HA: βi,d > 0; H0: βi,r = 0

against HA: βi,r > 0; H0: βi,US = 0 against HA: βi,US > 0 In column (6), heteroskedasticity-robust χ2

statistics in brackets test for H0: βi,b = βi,d = βi,r = βi,US = 0. The pooled results are estimated under the
restrictions that βi,b = β̄b, βi,d = β̄d, βi,r = β̄r and βi,US = β̄US for all i. Based on wild bootstrapped p-value,
constructing by following Rapach et al. (2013), * presents the 10% significance of the estimate.

(1) (2) (3) (4) (5) (6)

i β̂i,b β̂i,d β̂i,r β̂i,US R2

United States −0.136
(−0.675)

2.194
(0.472)

0.180∗
(1.492)

- 3.912%
(6.257)

France −0.709∗
(−2.113)

0.141
(0.046)

0.114
(0.650)

0.854
(0.041)

7.409%
(9.805)

Germany −0.682
(−1.775)

−0.209
(−0.057)

0.064
(0.408)

12.426
(0.592)

7.434%
(9.378)

Japan −5.018
(−1.882)

0.924
(0.458)

0.188∗
(1.712)

−0.522
(−0.036)

9.884%∗
(10.626)

United Kingdom −0.376
(−1.667)

0.745
(0.187)

−0.189
(−0.958)

21.107
(1.253)

5.475%
(6.550)

Switzerland −1.202∗
(−2.211)

−2.756
(−1.264)

0.208
(1.152)

−10.356
−0.736)

10.661%
(9.137)

Pooled −0.561∗
(−1.852)

0.647
(0.116)

0.136∗
(0.766)

1.374
(0.067)

6.155%∗
(10.501)

Table 18 reports the pooled OLS results by means of measuring the relations on average.

However, we see no significant beta estimates. Note that the pooled estimation uses observations

across six countries, which reduces the impact of "small T" problem and tests for all countries at

the same time. In addition, we are able to incorporate the information in high variability of data,

which is often ignored or even not exist in individual time-series (Hicks and Janoski (1994)).

Table 19 reports the adaptive elastic-net estimation results. Four of five countries select

lagged U.S. tail risk as predictors for their return (except Japan), among which France, Germany

and Switzerland can be significantly predicted by lagged U.S. tail risk. In addition, we observe

that lagged Japanese and Swiss tail risk are statistically significant predictors for returns of the

United States. The adaptive elastic net estimation results are different from pooled estimation

results. The possible explanation could be in two ways. The first one is that we use individual

time series when applying LASSO for each countries. However, we incorporate the homogeneity,

which is often ignored or even not exist in individual time-series when pooling the data. The

second one is that two approaches impose different constrains. LASSO shrinks some parameters

37



to zero while pooled estimation restrict the parameters of different countries to be the same.

Table 17: Results of Pairwise Granger Causality Test - 2006:02 to 2015:11
Table 17 shows the results for the model:

ri,t+1 = βi,0 + βi,bBilli,t + βi,dY ieldi,t + βi,rri,t + βi,USrUS,t + αi,iTaili,t + αi,jTailj,t + εi,t+1, i 6= US,

ri,t+1 = βi,0 + βi,bBilli,t + βi,dY ieldi,t + βi,rri,t + αi,iTaili,t + αi,jTailj,t + εi,t+1, i = US,

where ri,t+1, Billi,t and Y ieldi,t represents the monthly country excess returns, 3-month Treasury bill rate and
log country dividend yield, respectively. Heteroskedasticity-robust t-statistics in brackets test for H0: αi,j = 0

against HA: αi,j < 0. "Average" is the mean of αi,j estimates in the column. For all i 6= j, the pooled results
are estimated under the restrictions that αi,j = ᾱj. We construct the wild bootstrapped p-value by following
Rapach et al. (2013), * presents the 10% significance of the estimate.

(1) (2) (3) (4) (5) (6) (7)

i α̂i,US α̂i,FRA α̂i,DEU α̂i,JPN α̂i,UK α̂i,CHE

United States (US) 1.923
(0.364)

2.284
(0.420)

−5.145
(−1.356)

−0.390
(−0.089)

5.010
(0.638)

France (FRA) −0.404∗
(−1.788)

4.184
(0.227)

−5.582∗
(−1.588)

−7.990
(−1.553)

5.367
(0.796)

Germany (DEU) −0.342
(−1.335)

−28.688
(−1.376)

−7.671∗
(−2.100)

−8.213
(−1.277)

−0.064
(−0.006)

Japan (JPN) −0.022
(−0.095)

−5.548
(−0.976)

−4.578
(−0.862)

−4.731∗
(−1.983)

−3.251
(−0.633)

United Kingdom (UK) −0.249
(−1.314)

0.936
(0.177)

2.538
(0.455)

−3.360
(−1.150)

4.157
(0.662)

Switzerland (CHE) −0.350∗
(−1.637)

−9.976∗
(−1.951)

−8.590
(−1.424)

−3.330
(−1.330)

−5.947
(−1.598)

Average -0.228 -9.739 -1.055 -5.018 -6.401 2.244

Pooled −0.275∗
(−1.589)

−1.956
(−0.140)

0.398
(0.022)

−4.892∗
(−0.463)

−3.067
(−0.303)

1.678
(0.154)

Table 18: Pooled General Model Specification Estimation Results - 2006:02 to 2015:11
Table 18 reports the estimates of ᾱi,j (denoted by α̂j) in the predictive regression mode for i = 1, ..., N − 1
and i 6= US:

ri,t+1 = βi,0 + β̄bBilli,t + β̄dY ieldi,t + β̄rri,t + β̄USrUS,t + ᾱARTaili,t +
∑
j 6=i

ᾱjTailj,t + εi,t+1,

where ri,t+1, βi,iTaili,t, Billi,t and Y ieldi,t is the monthly excess return, the country tail return, the 3-month
Treasury bill rate and the log dividend yield, respectively. Following Rapach et al. (2013), we compute the
bias-corrected wild bootstrapped 90 % confidence intervals in brackets. * presents the 10% significance of the
estimate.

(1) (2) (3) (4) (5) (6)

α̂US α̂FRA α̂DEU α̂JPN α̂UK α̂CHE

−0.187
([−0.557,0.181]

−3.227
[−9.441,3.059]

4.170
[−4.352,12.713]

−4.822
[−9,864,0.152]

−4.253
[−10.467,2.104]

3.183
[−8.283,14.879]
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Table 20 reports the results of out-of-sample test. The in-sample period ranges from February

2006 to December 2010. In column (2) and (5), all of non-U.S. countries having positively sizable

R2 statistics. It means that competing model generates the smaller MSFE, comparing to the

historical average model. The 1% bootstrapped critical value under the null hypothesis that

country returns can not be predicted is equal to 2.49. Germany has the largest critical value of

1.619 across countries. Column (3) and (6) report the pooled R2 statistics under the restriction:

αi,US = αUS for non-U.S. countries. Three of five R2 statistics are positively significant at the

conventional level. It provides evidence of the better out-of-sample performance of the competing

model than baseline forecasts.

Table 20: Out-of-Sample Performance of Lagged U.S. Tail Risk - 2011:01 to 2015:11
Table 20 shows out-of-sample R2 and R2

OS statistics (Campbell and Thompson (2008)) by measuring the
difference in mean-squared forecast error between historical average model and the competitive model which
includes U.S. returns in the past month. Baseline model and competing model are shown as follows:

ri,t+1 = βi,0 + εi,t+1,

ri,t+1 = βi,0 + αi,USTailUS,t + εi,t+1,

where ri,t+1 is the country monthly excess returns at month t. The results in column (3) and (6) are obtained
by imposing the restriction on the competing model: αi,US = α̂US for non-U.S. countries. MSFE− adjusted
statistics in brackets from Clark and West (2007) test for the null hypothesis of zero R2

OS against positive
R2

OS. * presents the 10% significance of the estimate. "Average" is the mean of R2
OS across 5 countries. The

in-sample period is from February 2006 to December 2010.

(1) (2) (3) (4) (5) (6)

i R2
OS R2

OS,pooled i R2
OS R2

OS,pooled

France 4.288%∗
(1.371)

3.683%∗
(1.351)

Germany 3.145%∗
(1.619)

2.608%∗
(1.605)

Japan 0.329%
(0.877)

0.255%
(0.791)

United Kingdom 2.015%
(1.112)

2.992%
(1.125)

Switzerland 0.975%∗
(1.408)

1.069%∗
(1.407)

Average 2.151% 2.121%

Figure 7 depicts the cumulative differences in MSFE for the baseline model relative to the

competing forecasts. For all of the countries, the competing model still generates a smaller

MSFE relative to the baseline model. In particular, there are sizable forecast gains at the

beginning of 2012.
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Figure 7: Out-of-Sample Forecasting Results - 2010:01 - 2015:11 Figure 7 presents cumulative squared
differences of forecasts errors for monthly excess return between the historical average baseline model (ri,t+1 =

βi,0 + εi,t+1) and the competitive model that uses lagged U.S. tail risk (ri,t+1 = βi,0 + βi,USTailUS + εi,t+1).

6 Conclusion

This paper re-investigates the finding in Rapach et al. (2013) utilizing the most recent dataset

and studies the role of lagged U.S. tail risk in international returns predictability. Following

the methods in Rapach et al. (2013) , our results show that lagged returns in the United States

have robust and consistent predictive ability for non-U.S. returns, whereas lagged returns in non-

U.S. countries still exhibit little predictive ability for U.S. returns. Regarding the tail risk, we

conclude that U.S. tail risk in the past month displays economically sizable predictive ability for

international returns. In the model specification, adaptive elastic net estimation results show that

seven of eight non-U.S. countries select lagged tail risk of the United State as predictor, among

which six countries returns can be economically predicted by lagged U.S. tail risk. Furthermore,

results of variable importance show that for most of the countries, lagged U.S, tail risk belongs

to the top three important regressors. In addition, lagged U.S. tail risk exhibits great out-of-
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sample forecast gains in MSFE relative to the historical average forecasts, especially during

Global Financial Crisis in 2008. It can be explained by the leading position of the United States’

economy and information friction.

We also discuss the predictive power of non-U.S. tail risk. By replicating PPUT index, we

construct non-U.S. tail risk from February 2006 to November 2015. The adaptive elastic net

estimation results show that four of five countries select lagged U.S. tail risk as predictor, among

which returns in France, Germany and the Netherlands can be statistically predicted by lagged

U.S. tail risk. In contrast, non-U.S. tail risk does not display significant predictive ability for

U.S. returns.

There are several limitations in this paper. First, we exclude the returns on Roll Days when

replicating the PPUT index for other countries. Thus, those tail risk factors may be not very

accurate to some extent. Second, we use a short sample from February 2006 to November 2015

when investigating the role of non-U.S. tail risk. The results may be plausible because only a

small number of observations are used. Third, the predictive ability of tail risk in U.S. is strong

using our dataset. However, the robustness remains unknown. The direction of further research

could be examining the robustness of the predictive ability of U.S. tail risk factor by means of

using different datasets. In addition, we could investigate whether the predictive power differs if

we use non-option-implied tail risk.
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