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Abstract

The aim of this paper is to price caps and swaptions using multi-factor term structure models

in a low interest rate environment. We price these products within the Heath-Jarrow-Morton

framework, condition on the term structure, and investigate the pricing errors to detect possible

modeling biases. The volatility functions are modeled using principal component analysis of

up to three factors using interest-rate or option data with either constant or time-varying

parameters. We use weekly data of US swaps, caps and swaptions from 2013-2019. The results

show that option-based estimation outperforms interest-rate based estimation, and that the

multi-factor models generally outperform one-factor models in pricing. We find that pricing

errors vary over time, and are related to the term structure shape and level, and moneyness,

but not to time-to-maturity, option expiry, and swap tenor. We further find that the low interest

rate environment has a negative influence on pricing errors.
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1 Introduction

The market for interest rate derivatives is very large and has rapidly expanded over the last

decades. Among these interest rate derivatives are caps and swaptions. According to the

International Swaps and Derivatives Association (ISDA), the notional outstanding for swaptions

and interest rate options such as caps reached $30 and $12 trillion US Dollar (USD) respectively

in 2014.1 These derivatives can be used for hedging or speculating on interest rates. Swaptions

are often used by investors that have a large portion of liabilities, such as insurers and pension

funds, because they provide a hedge against rising rates whilst still being able to profit from

declining rates. Interest rate caps are, among others, useful for borrowers paying a floating

LIBOR that wish to limit their risk exposure to increasing rates. It is important for investors

to properly price and hedge these products in order to successfully manage their risk exposure.

In the existing literature, research has been done on the modeling of interest rate derivatives.

This followed after the extensive literature on term structure models. A good term structure

model should be able to price and hedge interest rate derivatives. The majority of the interest

rate derivatives research has been done around the 1990s, this was mainly theoretical due to the

difficulty in obtaining data.2 In the early 2000s more empirical research came to light.3 The

empirical papers distinguish themselves from each other in that they use a different modeling

framework, estimation approach, underlying instrument, and/or evaluation criteria.

The direction of this paper is similar to Driessen et al. (2003), who analyze the pricing

and hedging performance of caps and swaptions in the Heath et al. (1992) (HJM) framework.

They use both an interest-rate-based and option-based estimation method and assume that the

interest rates follow either a Gaussian or log-normal distribution. The parameters of the volatil-

ity functions are estimated with either Principal Component Analysis (PCA) or Generalized

Method of Moments, using a time-series data set from 1995 to 1999. The pricing and hedging

performance are both analyzed in an out-of-sample setting. Our approach for pricing purposes

is similar, except we only use the models that assume a Gaussian distribution on interest rates,

and only use PCA to estimate volatility functions.

In this paper we investigate which combination of volatility function model and estimation

method has a good pricing and hedging performance for caps and swaptions within the HJM

framework. We investigate up to three factor models for the volatility functions, estimated

1Source: https://www.isda.org/a/qJEDE/isda-final-2014.pdf.
2See, among others, Amin and Morton (1994), Brace and Musiela (1994a) and Heath et al. (1992).
3For example Driessen et al. (2003), Gupta and Subrahmanyam (2005), and Falini (2010).
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interest-rate-based or option-based, with constant or time-varying parameters. We further

investigate which economic factors (e.g. time-to-maturity, option maturity (swaptions), mon-

eyness (caps), and interest rate level) influence the pricing and hedging errors of models using

an error regression.

The main contribution of this paper is the application of an existing pricing framework

for caps and swaptions using a recent data set that is characterized by a low interest rate

environment. This paper extends on Driessen et al. (2003) in various ways. First, we analyze

caps both at-the-money (ATM) and out-of-the-money (OTM), whereas Driessen et al. (2003)

only looks at ATM caps. Second, we perform a model forecast comparison test using a novel

panel data approach based on Diebold and Mariano (2002) tests using a bootstrapped sampling

distribution.4 Third, we further analyze the pricing errors using an approach similar to Gupta

and Subrahmanyam (2005), which has not yet been done on the models used by Driessen et al.

(2003). Fourth, we investigate the effect of the low interest rate environment on the pricing

errors by linear regressions using OLS, LASSO, and ridge estimation methods. Finally, we

perform an in-sample test to investigate the model restrictions.

The main ingredient for pricing derivatives within the HJM framework is the volatility func-

tion. The volatility functions in this paper are estimated using PCA (interest-rate-based esti-

mation), with an additional scaling factor for option-based estimation that uses cross-sectional

option data. This estimation procedure can use constant parameters, in which we use the

first half of the sample as estimation window, or time-varying parameters, in which we use

a rolling window of 40 weeks. We subsequently price the caps and swaptions out-of-sample,

conditional on the term structure. Caps and swaptions are priced using the derivative pricing

formulas of Brace and Musiela (1994a), the implementation of these formulas is not necessarily

straightforward. We compare the forecasting performance of the models using a variation on

Diebold and Mariano (2002) tests. We perform a Diebold-Mariano test on every product (cap

or swaption) for each combination of models and assess the percentage of products in which

one model forecast outperforms the other. This allows us to find the model that has the best

forecasting performance for the largest amount of products. The Diebold-Mariano statistics

are tested against a bootstrapped sampling distribution. The pricing errors in terms of Black

implied volatility are regressed on option properties and economic variables in order to find

possible sources of modeling bias. We further regress absolute pricing errors on the interest rate

level and control variables to assess the effect of the low interest rate environment on pricing

4I have tried to find precedents of a similar approach in the literature, but did not find any.
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errors; this regression uses OLS, LASSO, and ridge estimation methods. In this research we use

a balanced panel data set obtained from Bloomberg that ranges from January 2013 to March

2019 with weekly intervals.

We find that the option-based estimation method outperforms the interest-rate estimation

method in most situations. The multi-factor models generally outperform the one-factor models

in pricing. The conditional pricing forecasts for caps are quite accurate, but not so much for

swaptions. The pricing errors of all products are mainly caused by possible model deficiencies

with respect to the term structure shape and level. We find that pricing errors vary over time,

however, the time-to-maturity, option expiry, and swap tenor do not influence the pricing errors.

The low interest rate environment has a negative influence on pricing errors. The in-sample

pricing analysis reveals that a near-perfect pricing prediction is unlikely in this sample using

PCA based volatility functions.

This paper is organized as follows. Section 2 contains an overview of existing literature

regarding the pricing of interest rate caps and swaptions. In Section 3, the research methodology

is discussed. In Section 4, the data used in this research is described. Section 5 contains the

results of this research. In Section 6 the conclusions are discussed.

2 Literature

In the current literature a large part of interest-rate-derivative pricing models are modeled with

the Heath et al. (1992) framework based on forward rates. This framework has the ability to

model the entire yield curve exactly. Amin and Morton (1994) use this framework to price

Eurodollar futures and options. They use various term structure models with an option-based

estimation method. They find that two-parameter models provide a better fit to prices, both

in-sample and out-of-sample, but their estimates are less stable. Their one-parameter models,

however, are more robust and profitable in a trading strategy exercise. Flesaker (1993) also uses

the HJM framework to price Eurodollar futures and options but with focus on cross-sectional

pricing. Bühler et al. (1999) investigate various interest-rate option valuation models with

an interest-rate-based estimation method for warrants in the German market within the HJM

framework. Their one-factor forward rate model with linear proportional volatility has the most

robust pricing performance and outperforms all of their other models. Similar to these papers,

we also take the HJM framework as starting point for our pricing exercise.

Option pricing is not limited to the forward rate based HJM framework. Moraleda and
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Pelsser (2000) compare the performance of spot and forward rate models in pricing caps and

floors. They find that traditional spot rate models, such as Black and Karasinski (1991) and

Hull and White (1994), provide the best fit to market prices both in- and out-of-sample.5

Longstaff et al. (2001) price swaptions and caps using a string market model. Their paper

is cross-sectional in essence but still provides useful theoretical results. They estimate their

model based on swaption prices which are then, in turn, used to price caps. They use the

property that a cap can be seen as a portfolio of options on forward rates, and a swaption

can be seen as an option on a portfolio of individual forward rates. Using swaption prices,

and the aforementioned property, they estimate an implied covariance matrix that is used to

price caps. They find that caps and swaptions are not always priced correctly towards each

other which might imply arbitrage opportunities. Collin-Dufresne and Goldstein (2001) argue

that these mispricings (but also the mispricings of e.g. Jagannathan et al. (2003) and Driessen

et al. (2003)) can be explained due to modeling restrictions regarding the correlation structure.

Further, multiple papers use LIBOR market models, among which Brace et al. (1997) and Gupta

and Subrahmanyam (2005). The latter, especially, shows that LIBOR market models calibrated

on at-the-money options work well in cross-sectionally pricing out-of-the-money options.

This paper takes the same direction as Driessen et al. (2003) and Gupta and Subrahmanyam

(2005). Driessen et al. (2003) test various HJM factor models for pricing and hedging ATM

caps and swaptions. They use an option-based and interest-rate-based estimation method and

find that the option-based prediction results are better overall. A regression-based hedging

technique using a nonlinear regression model with time-varying parameter estimates yields the

best hedging results. In terms of hedging performance, they find that the amount of available

instruments (in their case zero coupon bonds) is more important than the pricing model used,

which they test using bucket hedging. They further find that when predicting prices, a multi-

factor PCA model with time-varying parameters works best. Gupta and Subrahmanyam (2005)

test the pricing and hedging of caps and floors using various spot rate and forward rate mod-

els. In terms of out-of-sample pricing accuracy their one-factor log-normal forward rate model

performs best. They find that one-factor models are better in pricing due to more parameter

stability compared to two-factor models. In terms of hedging, they find that two-factor models

work well, they claim this is due to the second factor representing the yield curve dynamics over

time, which is important for hedging. They further find that time-varying parameters work

5The authors note that their out-of-sample tests are not very formal and unable to capture slow mispricing
corrections.
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well in pricing, where the time-varying aspect helps fit the volatility term structure, but not in

hedging, where stable parameter estimates are more important.

A sizable part of the literature focuses on the amount of factors necessary to properly price

and hedge interest-rate derivatives. Fan et al. (2001) find that one and two-factor models are

capable of accurately pricing swaptions, whereas multi-factor models are better for hedging.

These results are in line with Gupta and Subrahmanyam (2005) and Driessen et al. (2003).

Jagannathan et al. (2003) analyze multi-factor Cox et al. (1985) (CIR) models. They find that

three-factor models provide a good fit to the term structure. However, in pricing caps and

swaptions they find that their three-factor model is misspecified and does not perform well.

Heidari and Wu (2001) find that three principal components from both the yield curve and

interest-rate-option data (yielding six factors total) are needed to explain movements in the

implied volatility surface of swaptions. Subsequently, Heidari and Wu (2002) propose a frame-

work which first models the yield curve dynamics, and in turn prices interest rate derivatives.

The yield curve residuals, which are neglectable in yield curve modeling, prove to be important

for pricing interest rate caps. De Jong et al. (2004) find that option prices imply a covariance

matrix that differs from the covariance matrix in the underlying data. This difference results in

the mispricing of caps and swaptions. In this paper we also compare the pricing performances

of our single-factor and multi-factor models.

Empirical results show that interest rate derivatives contain a humped shape volatility struc-

ture. Moraleda and Vorst (1997) and Ritchken and Chuang (2000) price American interest rate

options using a single factor Gaussian model that allows for a humped shape volatility structure.

Mercurio and Moraleda (2000) derive an HJM-based interest rate model that also allows for

a humped shape volatility. Their model has a good out-of-sample performance when using an

option-based estimation method in pricing caps and floors. Falini (2010) also prices caps using

multi-factor HJM models containing a humped volatility. He uses the Kalman filter to estimate

his models, this has the advantage of using both the cross-sectional correlations between yield

curves as the autocorrelation within each yield curve. All of his results are obtained by merely

using interest-rate-based estimation. He finds that humped volatility models perform well in

pricing caps.
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3 Methodology

This section contains the methodology of the research. In Section 3.1, we introduce the HJM

framework along with the volatility function models and pricing formulas. In Section 3.2, we

explain the empirical implementation of the yield curve and parameter estimation methods.

Section 3.3 contains the setup of the pricing exercise and evaluation.

3.1 Heath-Jarrow-Morton Framework

In this section we introduce the HJM framework. Section 3.1.1 contains the theoretical aspects

of the HJM framework starting from the bond price function to the forward rate process.

In Section 3.1.2 we introduce the volatility function used in the pricing model. And finally,

Section 3.1.3 contains pricing formulas for caps and swaptions specific for the HJM framework.

3.1.1 Theoretical Framework

The pricing of caps and swaptions are modeled within the HJM (Heath et al., 1992) framework.

The HJM framework has the advantage that it is able to model the entire curve. The essence

of this framework will be repeated in this section based on the notation of Brace and Musiela

(1994b).

Denote f(t, T ) as the forward rate at time t with forward maturity T , and P (t, T ) as the

price of a zero coupon bond at time t with maturity T , where t ≤ T . We can write the price of

a zero coupon bond in terms of forward rates as

P (t, T ) = exp

{
−
∫ T

t
f(t, u)du

}
, (1)

and taking the natural logarithm and differentiating both sides yields the instantaneous forward

rate

f(t, T ) = −∂ logP (t, T )

∂T
. (2)

Under the true probability distribution (physical measure P) it can be shown that the bond

price process is as

dP (t, T ) = P (t, T )

(
f(t, t)dt−

(∫ T

t
σ(t, u)′du

)
dW (t)

)
, (3)
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and the instantaneous forward rate process is as

df(t, T ) =

(
σ(t, T )′

(∫ T

t
σ(t, s)ds

))
dt+ σ(t, T )′dW (t). (4)

Taking the drift separately and rewriting the second term yields

df(t, T ) = α(t, T )dt+

K∑
i=1

σi(t, T )dWi(t), (5)

in which

α(t, T ) = σ(t, T )′
(∫ T

t
σ(t, s)ds

)
, (6)

where σi(t, T ) is the volatility function of factor i, K the amount factors modeled, and Wi(t)

a P-Brownian motion. It follows from equation (4) that the forward curve dynamics only

depend on the volatility functions. Note that the drift and volatility functions need to satisfy

weak regularity conditions that can be found in for example Baxter and Rennie (1996). The

volatility function σ(t, T ) in a K-factor model looks as follows

σ(t, T ) =


σ1(t, T )

...

σK(t, T )

 , (7)

and can be modeled as explained in Section 3.1.2.

3.1.2 Volatility Functions

As mentioned earlier, in the HJM-framework we only need to model the volatility function

σi(t, T ). For simplicity, let the volatilty functions be deterministic functions that only depend

on the time to maturity such that σi(t, T ) = σi(T − t). This simplification is common in the

literature and able to provide reliable prices for at-the-money European options, given that the

volatility functions are well-designed (Brace and Musiela, 1994b).

The volatility function used is taken from Driessen et al. (2003). This is a principal compo-

nent analysis (PCA) based factor model, which is defined as

σi(T − t) = gi(T − t), i = 1, 2, 3. (8)

This model is selected based on its pricing and hedging performance in Driessen et al. (2003) (for

7



i = 2, 3). The volatility function can be estimated using PCA with either interest-rate-based or

option-based estimation, as discussed in Section 3.2.2 and 3.2.3.

3.1.3 Pricing Formulas

Caps and swaptions within the Gaussian HJM-framework can be priced with the formulas as

defined in Brace and Musiela (1994a). The notation here is similar to Brace and Musiela (1994b)

and reported for convenience.

The pricing formula for a cap at time t paying n caplets at time Tj for j = 0, ..., n− 1 with

a notional equal to 1 is

Cap(t) =

n−1∑
j=0

(
P (t, Tj)Φ(−hj(t))− (1 + kδ)P (t, Tj+1)Φ(−hj(t)− ζj(t))

)
, (9)

which is essentially the sum of discounted caplets written as put options on zero coupon bonds.

Here δ = Tj+1 − Tj denotes the period between payments, k denotes the strike price, Φ(·)

denotes the cumulative distribution function of the standard normal distribution, and payments

are settled in arrears. Further,

hj(t) =

(
log

(1 + kδ)P (t, Tj+1)

P (t, Tj)
− 1

2
ζj(t)

2

)
/ζj(t), (10)

and

ζj(t)
2 = Var(logP (Tj , Tj+1)|Ft) =

∫ Tj−t

0

[ K∑
i=1

(∫ s+δ

s
σi(u)du

)2]
ds, (11)

where Ft denotes the filtration at time t. The inner integral can be approximated with a

Riemann sum as the volatility functions are linearly interpolated between quarterly estimations

which is explained later in Section 3.2.2. The outer integral can be approximated using numerical

integration.

The price of a payer swaption, again derived from Brace and Musiela (1994b), at time t is

Swaptiont =

∫
RK

max

{
0, P (t, T )φK(x)−

n∑
i=1

CiP (t, Ti)φK(x+ γi)

}
dx, (12)

where

Ci = kδ for i = 1, ..., n− 1, Cn = 1 + kδ, (13)
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and

γ′iγj = cov(logP (T, Ti), logP (T, Tj)|Ft)

=

∫ T−t

0

[
K∑
k=1

(∫ Ti−T+s

s
σk(u)du

)(∫ Tj−T+s

s
σk(u)du

)]
ds,

(14)

with φK(x) the K-dimensional standard normal probability density function. Further, γi can

be estimated by performing an eigendecomposition on the covariance matrix of log bondprices

of varying maturities.6 Equation (14) can be approximated similarly to equation (11). Equa-

tion (12) is approximated using numerical integration over the area between −5 and 5 for each

dimension, which is sufficient for standard normal probability density functions.

3.2 Empirical Implementation

In this section we explain the empirical implementation of the model introduced in the previous

section. In Section 3.2.1 we introduce the smoothed yield curve used for discounting cash flows.

Section 3.2.2 and Section 3.2.3 contain the interest-rate-based and option-based estimation

techniques of the volatility functions respectively.

3.2.1 Yield Curve Smoothing

In order to construct a forward interest rate curve we start by constructing a yield curve. The

yield curve is smoothed based on Bliss (1997) with parameters similar to Driessen et al. (2003)

which yields

P (t, T ) = exp

{
β1(T −t)+β2(T −t)2+β3(T −t)3+β4 max(0, T −t−2)3+β5 max(0, T −t−4)3

}
.

(15)

This function provides a good fit to the actual yield curve, especially on a medium- and long-

horizon. The inclusion of the last two maximization terms within the exponent allow the model

to provide a smooth fit with a low error for these horizons. The beta values are estimated

by performing a linear regression on the logarithm, where the dependent variable is based on

observed yields. This regression is performed for each time t and is therefore cross-sectional in

nature. This yields a bond price function that is defined for maturities for which there is no

observed data or financial product. The instantaneous forward rate function can be constructed

6The eigenvalues resulting from the eigendecomposition are sometimes negative in practice, which is in contra-
diction with the positive semi-definiteness of a covariance matrix. These eigenvalues are multiplied by negative
one to avoid imaginary numbers and only has a small effect on the swaption pricing performance.
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by substituting equation (15) in equation (2), which yields

f(t, T ) = −
(
β1 +2β2(T − t)+3β3(T − t)2 +1{T−t>2}3β4(T − t−2)2 +1{T−t>4}3β5(T − t−4)2

)
.

(16)

3.2.2 Interest-Rate-Based Parameter Estimation of Volatility Functions

The interest-rate-based parameter estimation method is similar to that of Driessen et al. (2003).

We approximate the covariance matrix of instantaneous forward rate changes by starting with

equation (5) and setting the drift α(t, T ) = 0, this yields

cov
[
df(t, Ti), df(t, Tj)

]
≈

K∑
k=1

σk(Ti − t)σk(Tj − t)dt =
K∑
k=1

gk(Ti − t)gk(Tj − t)dt. (17)

This approximation is justified as for weekly forward rate changes the drift is relatively small

(Driessen et al., 2003). The first equality follows from the simplification introduced in Section

3.1.2, and assuming independent Brownian motions; the dt term arises due to the quadratic

variation property of Brownian motions. The second equality follows from equation (8).

In order to estimate the gi(T−t) functions we start by taking weekly changes of instantaneous

forward rates

d̂f(t, T ) = f(t, T )− f(t− 1, T ), (18)

where the instantaneous forward rates are calculated as in equation (16). Next, we perform an

eigendecomposition on the sample covariance matrix of weekly changes of instantaneous forward

rates, Σ̂, where the columns contain forward rate maturities, varying between 3 months and 15

years with quarterly intervals, and the rows contain observations. We sort the eigenvectors and

eigenvalues in descending order, and select K factors, similar to the use of PCA. This yields

Σ̂ =
n∑
i=1

δiviv
′
i ≈

K∑
i=1

δiviv
′
i, K = 1, 2, 3, (19)

where vi is the eigenvector corresponding to eigenvalue δi, such that δ1 > δ2 > ... > δn. This

covariance matrix has element ij equal to

cov
[
d̂f(t, Ti), d̂f(t, Tj)

]
= Σ̂ij ≈

K∑
k=1

δkvk,ivk,j , (20)
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such that

σ̂k(T − t) = ĝk(T − t) =
√
δkvk,T−t

√
252, (21)

where the last term comes from the Euler discretization of weekly data using daily observed

implied volatilities. This function is made continuous by linearly interpolating between time to

maturity values T − t.

Yield curves, but also forward curves, are often characterized by high correlations between

yields. This property makes these curves suitable for data reduction techniques such as PCA.

PCA has mainly been used on yield curves, e.g. Bühler et al. (1999), but in some cases also on

(changes in) forward curves, e.g. Driessen et al. (2003). Litterman and Scheinkman (1991), who

apply PCA on yield curves, interpret the first three factors as level, steepness, and curvature.

This interpretation is not necessarily one-to-one with the factors of the forward curve, which is

discussed in Section 5.1.

3.2.3 Option-Based Parameter Estimation of Volatility Functions

The volatility models can also be estimated using an option-based estimation, this method is

similar to that of Driessen et al. (2003). The goal of the option-based estimation is to use

observed option prices to improve volatility functions. This method is implemented due to

volatility functions often having the right shape but not the right magnitude, a scale parameter

can help improve the price predictions. We define the volatility function, as introduced in

equation (8), for option-based estimation as

gi(T − t) = αiĝi(T − t), i = 1, 2, 3, (22)

where ĝi(T − t) is estimated using interest-rate-based estimation as defined in equation (21).

We estimate αi, a scale parameter, such that the sum of squared residuals between observed

option prices and model implied option prices is minimized. An αi value equal to 1 for all i

indicates that the interest-rate-based estimation is equal to the option-based estimation and

therefore optimal in-sample.

The constant parameter models estimate the αi’s using panel data of the constant estimation

period. This yields αi values that provide a good on-average fit. We define the loss function as

min
α

∑
t∈W

∑
j∈C

(
Pmktt,j − Pmodelt,j (α)

)2

, (23)
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which is minimized with respect to vector α which contains up to three elements. Here set W

consists of the constant estimation window times, set C of ATM caps, Pmktt,j is the observed

market price in basis points, and Pmodelt,j (α) the modeled option price in basis points as a

function of α. The time-varying parameter models estimate the αi’s by calibrating the model

to the observed option prices for each week and we therefore have an α(t) vector for each week

t. This is similar to regular calibration and has a loss function defined as

min
α(t)

∑
j∈C

(
Pmktt,j − Pmodelt,j (α(t))

)2

, ∀t ∈ C, (24)

which is minimized with respect to α(t) and contains up to three elements for each time t.

All αi’s are optimized to ATM caps as we conjecture these to be the most stable. Using

OTM caps could lead to biased scale parameter estimates as cap volatilities as a function of their

strike price are usually not constant. Further, using caps and swaptions combined to optimize

αi’s provided optimization problems that did not necessarily converge when minimized.

3.3 Pricing and Evaluation

In this section we discuss the pricing of caps and swaptions and its further evaluation. Sec-

tion 3.3.1 contains the setup of the conditional pricing out-of-sample. In Section 3.3.2 we discuss

the Diebold-Mariano based model forecast comparison test to compare the forecast accuracy

of pricing models. Section 3.3.3 contains the methodology regarding the evaluation of pricing

errors, and in Section 3.3.4 we introduce an in-sample pricing exercise to explore the limitations

of the HJM framework regarding cap pricing.

3.3.1 Conditional Pricing Setup

In this section the setup of the out-of-sample h-period ahead conditionally pricing exercise is

described. The setup is similar to that of Driessen et al. (2003). For all pricing predictions we

take h = 2 weeks which is a commonly used horizon in bank risk management (Driessen et al.,

2003).

The first step is to estimate the parameters of the volatility functions, as defined earlier,

using yield data and/or option data up to time t, this yields volatility functions. A rolling

window of 40 weeks of yield and option data is used to estimate the time-varying volatility

function parameters, whereas a fixed estimation period is used to estimate the constant volatility

function parameters. The fixed estimation period is equal to the first half of the sample (January
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2013 up to January 2016), and the out-of-sample period spans the second half of the sample

(January 2016 up to and including March 2019). The second step is to estimate the parameters

of the bond pricing function using yield data at time t+ h, as explained in Section 3.2.1. The

volatility function and bond pricing function are plugged into the pricing formulas which results

in a cap or swaption price estimate at time t + h. To summarize, given the new yield curve,

what is our prediction for the prices of caps and swaptions.

The estimated prices are compared to the observed prices. A relative measure, the mean

absolute percentage error, is used for ATM caps and swaptions. An absolute measure, the mean

absolute error, is used for OTM caps due to observed OTM cap prices often being relatively

close to zero.

3.3.2 Model Forecast Comparison Test

In order to test which model has the best out-of-sample pricing performance, we use Diebold

and Mariano (2002) tests. This test is useful to compare predictive accuracy of model forecasts

using time series data of forecast errors. The loss differential of this test is defined as follows

dt = e21t − e22t, (25)

where eit is the forecast error of model i at time t. The null hypothesis H0 is the two forecasts

have the same accuracy, and the alternative hypothesis H1 is method 2 (model that provides

e2t) provides more accurate forecasts than method 1. As this is a one-sided test, the results

will not be symmetric, however, this allows us to assess whether one model has a higher fore-

casting accuracy than another. It is important to note that the Diebold-Mariano test compares

forecasts, and not models (Diebold, 2015). It is possible that the model that has more accurate

forecasts, is not the model that is more likely to have generated the data.

As we use a panel data set, we cannot apply this test on our data directly, hence we make a

small alteration. We perform a test on each individual product for each combination of models

(constant or time-varying parameters, 1-3 factors, interest-rate-based or option-based), this

yields 132 (= 12 · 11) tests per product. A product is defined as a cap or swaption with certain

properties. When comparing model forecasts we evaluate how often H0 is rejected relative to

the total amount of products. This allows us to assess the percentage of products in which one

model outperforms the other.

The Diebold-Mariano test requires that the loss differential, dt, is covariance stationary,
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this is also known as “Assumption DM” (Diebold, 2015). If this assumption holds then the

test statistic is standard normal distributed. As the sampling distribution of the test statistic

is unknown in practice, we use a bootstrapping procedure to estimate this distribution. This

procedure is as follows: first we de-mean the loss differential data for the selected models

and product, this ensures that the mean is zero which is the case given H0 is true. Second,

we apply the bootstrapping procedure by random sampling with replacement from the loss

differential data and subsequently calculate the Diebold-Mariano test statistic, this provides us

with an estimated sampling distribution of the test statistic. Lastly, we calculate the p-value

of the Diebold-Mariano test statistic calculated using the full sample against the estimated

sampling distribution. The advantage of bootstrapping is that it is asymptotically more accurate

compared to assuming, in this case, the standard normal distribution (DiCiccio and Efron, 1996).

The Diebold-Mariano test further requires models to be non-nested as nested models can

exhibit unwanted correlations between the model errors that can cause the test statistic to

explode. This is only problematic in case of perfect correlation, nevertheless, the test remains

asymptotically valid.

3.3.3 Pricing Prediction Error Evaluation

The pricing errors are further investigated with an approach similar to Amin and Morton (1994)

and Gupta and Subrahmanyam (2005). This step is not performed by Driessen et al. (2003) and

might therefore provide new findings. We linearly regress the pricing errors on option properties

to examine the (possible) source of error. The regression for caps is almost equivalent to the

one Gupta and Subrahmanyam (2005) use on pricing errors of caps and floors and is as follows

(IVmkt − IVmodel)t = β0 + β1LMRt + β2MATt + β3ATMVolt + β4rt + β5Slopet + εt, (26)

for swaptions a slight alteration is made and looks as follows

(IVmkt − IVmodel)t = β0 + β1OPTt + β2TENt + β3rt + β4Slopet + εt, (27)

where IVmkt is the Black implied volatility according to the market and IVmodel the Black im-

plied volatility according to our model. The first regressor, LMR, is the logarithm of moneyness

ratio (par rate divided by strike rate) and measures the effect of being more in- or out-of-the-

money. The first regressor for swaptions, OPT, measures the effect of the option maturity.

The second regressor, MAT, measures the cap maturity effect, for swaptions this is replaced
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with, TEN, which measures the effect of the swap tenor. The third regressor, ATMVol, con-

tains the implied volatility of an option with similar characteristics but ATM moneyness.7 The

fourth regressor, rt, contains the observed 3-Month LIBOR rate percentage at time t. The fifth

regressor, Slope, is defined as the difference in zero coupon bond price between a 5-year and

3-month maturity. We estimate both regressions using OLS and use White standard errors to

draw inference on the significance of the coefficient estimates.

The goal of the regressions explained above is to assess whether certain models contain a

modeling bias. We perform a second regression to assess the influence of the interest rate level

on absolute modeling errors. In this situation we take the observed 5-year swap rate as proxy

for interest rate level. The regression for caps looks as follows

|IVmkt − IVmodel|t = β0 + β1LMRt + β2MATt + β3ATMVolt + β4IRLvlt + εt, (28)

and for swaptions we have

|IVmkt − IVmodel|t = β0 + β1OPTt + β2TENt + β3IRLvlt + εt, (29)

where IRLvlt is the 5-year observed swap rate at time t and | · | is the absolute value function.

We estimate this regression using OLS with White standard errors, and other linear estimations

with LASSO (least absolute shrinkage and selection operator) and ridge penalties. The LASSO

penalty is defined as ||β||1 and the ridge penalty as 1
2 ||β||

2
2, where || · ||1 denotes the Manhattan

norm and || · ||2 denotes the Euclidian norm. These penalized estimation techniques reduce

the variance of the estimators by introducing a bias. The advantage of these penalties is

that the estimators often have a higher predictive accuracy. The LASSO penalty contains a

regressor selection that makes the model more interpretable. The ridge penalty contains a form

of shrinkage which reduces overfitting. In our case the penalized estimates can be compared

to the OLS estimates, which gives us an indication of the predictive power of the estimates,

combined with a significance test from OLS. The LASSO and ridge estimators are not tested

for significance as they are biased by nature.

In a low interest rate environment rising rates are more dangerous to asset valuations than

in a high rate environment. This is due to the often observed concave shape of the yield curve.

A 1% increase in interest rates if the current rate is 1% decreases future cash flows (due to

“heavier” discounting) more than an identical increase if the current rate is 5%. We conjecture

7Swaptions are only considered ATM, hence the moneyness and ATM volatilty regressors are omitted.
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that this results in a higher demand for interest rate derivatives in a low rate environment,

and therefore affect prices and thus mispricing. Further, a low interest rate level is more likely

to reach negative values than a high interest rate level. A negative interest rate level, and

especially negative forward rates, are more consequential as most of the pricing models used

in practice are not suitable for this.8 We conjecture that the usage of different models, due to

rates being close to zero, influences the mispricing of caps and swaptions.

3.3.4 In-Sample Pricing

The usage of pricing formulas for caps within the HJM framework will not necessarily provide

accurate prices. The full pricing potential of this framework can be shown with an in-sample

pricing exercise. The goal of this exercise is to identify sources of mispricing from within the

model. The in-sample pricing exercise aims to minimize the squared differences of observed

prices and modeled prices (in basis points) by changing the volatility functions. Specifically, the

optimizer can change the percentage volatility for each quarterly forward maturity between 0

and 10 years. The forward maturities in between these quarterly points are linearly interpolated.

This set-up most closely resembles the optimal potential of the PCA models. The difference

with the earlier mentioned option-based estimation is that in this setup the pricing is done

in-sample, and the volatility function can take any shape and not just the shape provided by

the interest-rate-based PCA models. This exercise is merely done for ATM caps as convergence

is not guaranteed when increasing the amount of products and forward maturities, which is

necessary for OTM caps and swaptions.

4 Data

The data of this research is split up into two parts: yield curve data and (interest rate) deriva-

tives data. The yield curve data set consists of LIBOR rates with maturities varying between

1 and 6 months, and US swap rates with maturities varying between 1 and 15 years. The

derivative data set consists of US caps and swaptions. The caps have a maturity between 1 and

10 years. The swaptions have an option duration between 1 month and 5 years, and a swap

duration between 1 and 10 years. The combined data set contains daily observations ranging

from January 2013 to March 2019, and is obtained from Bloomberg (Bloomberg Tickers in Ap-

pendix A). The daily data is converted to weekly data by taking the values on Friday of each

8For example the Black model or any other model using a log-normal distributed forward rate or natural
logarithm of the forward rate.
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Table 1: Yield Curve Fit

Rates Avg. Error Avg. Abs. Error Avg. of Weekly Maximum Error

Money Market -10.1 bps 14.6 bps 7.4 bps
Swap -0.1 bps 0.7 bps 1.8 bps

Note: Yield curve fit using weekly data ranging from January 2013 to March 2019 (326 observations). An error
is defined as the difference between the observed yield and the modeled yield. The money market rates consists
of LIBOR-based products with maturities of 1, 2, 3, and 6 months. The swap rates consist of US Swap rates
with maturities of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, and 15 years.

week. The data is not based on actual market trades as caps and swaptions are over-the-counter

(OTC) derivatives, instead the rates are generated by the Bloomberg Generic Composite pricing

algorithm.9 This algorithm produces an indication of a quote based on actual OTC deals.10

The buyer of a cap receives a payment if the interest rate exceeds the agreed upon strike

price at the end of a pre-specified quarterly period. These individual (potential) cashflows are

called caplets. The caps considered have the 3-month LIBOR rate as underlying index, which

is plotted in Appendix B Figure 9. The caps used are both at-the-money and out-of-the-money.

The OTM caps contain strike premia between 1 and 5 percent. The strike price of a cap equals

the swap rate of corresponding maturity. The ATM caps are quoted in Black (1976) implied

volatility, and the OTM caps are quoted in a basis point (bps) premium. The ATM caps are

converted to basis point premium by using the Black (1976) formula for caps as defined in

Appendix C.

The buyer of a payer (receiver) swaption has the option to enter an payer (receiver) interest

rate swap with a certain strike rate at a pre-specified date. Swaptions have varying option dura-

tions (expiry) and swap durations (tenor). The swaptions considered have an option expiration

date that equals the start of the underlying swap. The strike rate is equal to the swap rate

that corresponds with the maturity of the tenor. In our data set all floating legs are based on

the 3-month LIBOR rate. The ATM swaptions are quoted in Black implied volatility based on

a straddle (long position in both a payer and receiver swaption with identical properties), and

converted to payer swaptions in basis points for pricing purposes.

Table 1 shows the fit of the yield curve smoothing from equation (15). The money market

rates (maturities less than 1 year) have an average absolute error of 14.6 bps, which is relatively

high but not problematic as the average of weekly maximum errors is 7.4 bps. The swap rates

(maturities between 1 and 15 years) have a good fit with an average absolute error of 0.7 bps.

9Source: https://www.bloomberg.com/notices/financial-data.
10The dataset contains four observations that are considered as measurement errors where daily prices change

with more than 10,000% only to revert the day after. These observations have been removed and replaced by a
linear interpolation of the next and previous daily observation.
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Figure 1: Yield Curve Comparison
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Note: Average actual yield curve and average fitted yield curve using weekly data ranging from January 2013
to March 2019 (326 observations). The fitted yield curve is constructed using equation (15). Both curves are
linearly interpolated between observed maturities.

Figure 1 shows the average percentage yield of the observed/actual yield curve and the fitted

curve. The relatively poor fit of money market rates is again visible, however, the error is on

average both positive and negative with reasonable magnitude.

Table 2 shows the descriptive statistics of interest rate caps where Panel A shows the average

prices and Panel B the standard deviation. Note that the ATM options are quoted in implied

volatility (IV), whereas the OTM options are quoted in basis points, this is similar to the

quotations on Bloomberg. The ATM caps indicate a hump shaped volatility structure which

has also been found by, among others, Amin and Morton (1994), Driessen et al. (2003), and

Falini (2010). Note that the OTM cap prices increase for longer maturities, due to a larger

amount of caplets and hence more potential cash flows, and decrease for higher strike prices,

due to a lower probability of the underlying rate to exceed the strike price.

Table 3 shows the descriptive statistics of swaptions where Panel A shows the average prices

and Panel B the standard deviation. Note that, in general, both the average and standard

deviation of implied volatility decrease when either the option duration or swap tenor increase.

There is minor evidence of a hump shaped volatility structure. The standard deviations of

both caps and swaptions are approximately 5 times higher than standard deviations found in

research dealing with option data of the late 1990s.11

11See for example Longstaff et al. (2001) and Driessen et al. (2003).
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Table 2: Interest Rate Cap Descriptive Statistics

Panel A: Averages of Cap Prices

OTM Premium (bps)
Maturity ATM (IV) 1% 2% 3% 4% 5%

1 44.2 - 9.5 0.6 0.1 0.1
2 50.2 100.2 31.9 5.7 1.1 -
3 50.9 204.6 80.1 24.7 8.8 -
4 48.6 340.8 155.5 62.7 27.6 14.7
5 46.2 491.9 256.8 119.1 58.6 32.6
6 43.1 667.8 369.8 188.9 99.6 56.9
7 42.1 853.9 501.6 267.8 150.6 87.8
8 39.6 1046.6 629.0 352.7 204.1 125.9
9 38.2 1242.8 766.2 442.1 262.1 166.1
10 37.6 1438.7 904.7 534.1 321.6 207.3

Panel B: Standard Deviations of Cap Prices

OTM Premium (bps)
Maturity ATM (IV) 1% 2% 3% 4% 5%

1 22.5 - 19.5 1.3 0.3 0.2
2 23.4 107.5 49.5 8.9 0.9 -
3 20.8 148.6 70.7 19.0 5.5 -
4 17.1 172.8 85.0 32.8 16.3 10.8
5 14.5 187.8 99.9 53.3 33.3 24.0
6 12.7 205.5 120.6 80.3 55.6 39.7
7 11.3 227.3 149.1 110.9 80.5 57.5
8 10.6 253.5 178.6 143.1 106.0 78.1
9 10.0 282.0 211.6 175.3 132.1 96.5
10 9.4 312.1 245.1 207.6 158.1 115.7

Note: Average weekly cap prices with varying maturities and strike prices over the period January 2013 to March
2019 (326 observations). ATM caps are given in Black Implied Volatility (IV), OTM caps are given in basis point
(bps) price. The three omitted products were not available for this period. The strike price of a cap is equal to
the swap rate of the same maturity plus a premium for OTM caps.
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Table 3: Swaption Descriptive Statistics

Panel A: Averages of Swaption Black Implied Volatilities (%)

Option Swap Tenor
Expiry 1 2 3 4 5 6 7 8 9 10

1 MO 40.8 44.5 43.4 41.3 39.6 36.8 35.4 33.8 32.2 30.3
3 MO 43.8 45.3 43.9 41.7 39.5 36.9 35.0 34.0 32.7 31.2
6 MO 45.9 45.3 43.4 41.2 39.1 37.3 35.2 35.1 33.3 31.5
1 YR 47.1 44.9 42.5 40.0 37.9 36.4 34.5 33.8 32.9 31.5
2 YR 45.2 41.9 39.2 37.0 35.4 34.2 32.9 32.5 31.5 30.6
3 YR 41.5 38.6 36.4 34.7 33.4 32.7 31.5 31.5 30.6 29.6
4 YR 38.0 35.7 34.3 32.9 31.9 31.3 30.3 30.3 29.8 28.7
5 YR 35.1 33.5 32.4 31.5 30.6 30.2 29.3 29.4 29.0 28.0

Panel B: Standard Deviations of Swaption Black Implied Volatilities (%)

Option Swap Tenor
Expiry 1 2 3 4 5 6 7 8 9 10

1 MO 22.7 21.0 18.0 15.7 14.4 12.3 11.2 10.4 9.7 9.5
3 MO 22.9 19.2 16.4 14.6 13.3 11.5 10.9 10.0 9.5 9.1
6 MO 22.3 18.3 15.5 13.3 12.3 10.9 10.1 10.7 9.2 8.7
1 YR 20.4 16.1 13.6 11.8 10.8 9.7 9.2 9.2 9.8 8.0
2 YR 15.7 12.2 10.4 9.5 9.0 8.1 8.0 9.3 7.7 7.2
3 YR 11.6 9.8 8.9 8.3 7.9 7.5 7.3 7.9 7.1 6.8
4 YR 9.6 8.6 7.9 7.6 7.3 7.1 6.8 7.2 7.2 6.4
5 YR 8.3 7.8 7.4 7.2 7.0 6.8 6.6 6.8 6.6 6.2

Note: Average weekly US swaption prices with varying swap tenors and (European) option expirations over the
period January 2013 to March 2019 (326 observations). All prices are in Black Implied Volatility. The strike
price of a swaption is equal to the swap rate of the same maturity.
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5 Results

This section contains the results of this paper. In Section 5.1, we analyze the results of the

parameter estimation techniques. Section 5.2 contains the pricing prediction results of caps

and swaptions. In Section 5.4, we further analyze the pricing errors with an error regression.

Section 5.5 contains the results of the in-sample pricing exercise.

5.1 Parameter Estimates

Figure 2 shows the volatility functions used in the constant parameter models (left) and the

average of the volatility functions used in the time-varying parameter models (right) as explained

in Section 3.2.2. There is an overlap of at most 40 weeks between the two samples, the volatility

functions are of similar shape and magnitude. In the constant parameter case the first factor

explains 89.5%, the second factor 7.6%, and the third factor 1.9% of the variation. In the

time-varying parameter case the first factor explains on average 91.3%, the second 6.9%, and

the third 1.1% of the variation. The factors in the time-varying case have an average standard

deviation of 0.2%, 0.1%, and 0.1% respectively, and a maximum standard deviation of 0.3%,

0.2%, and 0.3% respectively. Figure 10 in Appendix D shows the interest-rate-based volatility

function of the 3-factor model over time for forward maturities of 1 month, and 1 and 5 years.

This figure indicates that the volatility functions vary over time and this variation differs per

forward maturity.

Figure 2: Interest Rate Based Volatility Functions: constant (left) and time-varying (right)
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Note: Percentage volatility of the volatility functions per maturity estimated using PCA on the weekly changes
in instantaneous forward rates using equation (21). The left figure contains constant parameter estimates based
on the estimation period from January 2013 to January 2016 (161 observations). The right figure contains aver-
age time-varying parameter estimates based on a rolling window of 40 weeks on the out-of-sample period from
January 2016 to March 2019 (163 windows). The forward maturities are expressed in years.
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Table 4: Option-Based Alpha Estimates Optimized with at-the-money Caps

Panel A: Constant Parameters

Constant α1 α2 α3

1-factor 0.8 - -
2-factor 1.0 0.8 -
3-factor 1.5 2.4 1.4

Panel B: Time-Varying Average Parameters

Time-Varying α1 α2 α3

1-factor 5.1 (5.7) - -
2-factor 1.6 (2.0) 3.2 (3.7) -
3-factor 2.1 (1.9) 3.7 (4.2) 3.5 (7.6)

Note: Alpha estimates used for option-based estimation of volatility functions optimized with ATM Caps as
explained in Section 3.2.3. Panel A contains estimates based on the estimation period from January 2013 to
January 2016 (161 observations). Panel B contains average estimates and standard deviations between parenthesis
based on a rolling window of 40 weeks on the out-of-sample period from January 2016 to March 2019 (163
windows).

The volatility function shapes in Figure 2 are not uncommon and relatively similar shapes

are found in e.g. Driessen et al. (2003). The shape of the factors are, however, different than

those of yield curve factors in e.g. Litterman and Scheinkman (1991). The first factor is only

a true ‘level’ factor for forward maturities larger than approximately 2.5 years, this is possibly

caused due to the usage of changes in forward rates instead of forward rates. The second

factor corresponds with the shape of a ‘curvature’ factor, it increases the volatility changes for

maturities smaller than 6 years, and decreases for maturities larger than 6 years; this is the

case for both constant and time-varying estimates. The third factor resembles the ‘steepness’

or ‘slope’ factor for forward maturities larger than 3 years. As opposed to yield curve factors,

the curvature factor explains more variation than the slope factor. Using a three factor model

implies using the sum of the first three factors, this results in a shape that increases up to

approximately 3 years forward maturity and decreases afterwards (for reference see black and

blue line in Figure 8).

Table 4 contains estimates of α values used for option-based estimation optimized using

ATM caps as explained in Section 3.2.3. The 1-factor constant α1 value of 0.8 indicates that

when using this model, the volatility function values are multiplied by 0.8 when used for pricing.

The α estimates in the constant parameter models are relatively small and close to 1, this means

that we can expect the interest-rate-based and option-based constant parameter models to be

relatively close to each other in the pricing prediction exercise. On the contrary, the average α

estimates of the time-varying model are larger with relatively high standard deviations. This
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would imply that interest-rate-based and option-based time-varying parameter models can have

very different results when used in a pricing prediction exercise. The high standard deviations

have multiple causes. First, the optimization problem is quite large and it is therefore difficult to

guarantee a global minimum, this can cause parameter estimates to differ substantially. Second,

multi-factor models have multiple α values to estimate, and as each routine starts from scratch

this causes an almost label-switching-like behavior, which increases standard deviations.

5.2 Pricing Prediction

Table 5 contains relative pricing prediction errors of ATM caps. The standard deviation of all

models is on average 25.6% (unreported) and similar between models. The constant parameter

models outperform the time-varying parameter models for every combination of factors and

estimation technique, this is not in line with the findings of e.g. Driessen et al. (2003). These

results indicate that a longer, more stable estimation window is more favorable for caps pricing

in this sample. Option-based estimated models generally outperform the interest-rate-based

estimated models, except in the 1-factor constant parameter case. As expected, the improvement

of option-based estimated models compared to interest-rate-based estimated models is larger for

time-varying parameters than constant parameters. The 3-factor models generally outperform

the 1- and 2-factor models, which is in line with e.g. Driessen et al. (2003).

Figure 3 shows the relative prediction errors of ATM caps for interest-rate-based models

(left) and option-based models (right) against cap maturity. The figures indicate that there

seems to be a relation between the cap maturity and the percentage prediction error. The

prediction error increases up to a cap maturity of 4 years after which the constant parameter

model rapidly decreases and the time-varying model stays at roughly that level with a slight

decrease. In Section 5.4 we see that this possible maturity effect disappears when performing

an error regression on multiple regressors.

Table 5: Relative Prediction Errors at-the-money Caps

Parameters: Constant Time-Varying
Estimation/
Model

Interest-Rate-
Based

Option-Based Interest-Rate-
Based

Option-Based

1-Factor 19.1% 19.3% 45.3% 35.6%
2-Factor 20.4% 18.6% 38.3% 29.1%
3-Factor 20.3% 16.7% 34.9% 20.9%

Note: Relative 2-week ahead mean absolute prediction errors for all ATM caps in the out-of-sample period from
January 2016 to March 2019 (163 weekly predictions). A relative prediction error is defined as the observed price
minus the modeled price divided by the observed price.

23



Figure 3: Relative Prediction Errors at-the-money Caps by Maturity
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Note: Relative 2-week ahead mean prediction errors for all ATM caps in the out-of-sample period from January
2016 to March 2019 (163 weekly predictions). The left (right) figure plots the interest-rate-based (option-based)
models. A relative prediction error is defined as the observed price minus the modeled price divided by the
observed price.

Table 6 shows the absolute pricing prediction errors of both ATM and OTM caps in terms of

basis points. The standard deviation of all models is on average 222 basis points (unreported)

and similar between models. The option-based estimation is done using the parameters esti-

mated using ATM caps. The time-varying models generally perform better than the constant

parameter models and the option-based estimated models perform better than the interest-rate-

based estimated models. The amount of factors necessary for pricing OTM caps is not clear,

this is possibly due to prediction errors arising from high strike prices and not from erroneous

volatility functions.

Figure 4 shows plots of absolute pricing prediction errors of ATM and OTM caps against

strike price and cap maturity. Both plots are based on the 3-factor interest-rate-based model,

with constant parameters in the left panel and time-varying parameters in the right panel. The

plots indicate that the absolute pricing error increases as the cap maturity increases. Further,

Table 6: Absolute Prediction Errors ATM and OTM Caps

Parameters: Constant Time-Varying
Estimation/
Model

Interest-Rate-
Based

Option-Based Interest-Rate-
Based

Option-Based

1-Factor 200.4 bps 195.5 bps 198.9 bps 193.5 bps
2-Factor 190.8 bps 196.6 bps 191.3 bps 189.3 bps
3-Factor 207.0 bps 199.3 bps 189.3 bps 190.2 bps

Note: Mean absolute 2-week ahead prediction errors for all caps (both ATM and OTM) in the out-of-sample
period from January 2016 to March 2019 (163 weekly predictions) in basis points. An absolute prediction error is
defined as the absolute value of the observed price minus the modeled price. Option-based estimation parameters
are optimized with ATM caps.
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Figure 4: Absolute Prediction Errors ATM and OTM Caps
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Note: Mean absolute 2-week ahead prediction errors for all caps (both ATM and OTM) in the out-of-sample
period from January 2016 to March 2019 (163 weekly predictions) in basis points. Both figures are based on the
3-factor interest-rate-based model with constant parameters (left), and time-varying parameters (right). An abso-
lute prediction error is defined as the absolute value of the observed price minus the modeled price. Option-based
estimation parameters are optimized with ATM caps.

the 1% OTM strike proves troublesome for all models, excluding this result the absolute pricing

error increases as the strike price increases. The time-varying model’s pricing prediction errors

are smaller as the strike price increases, which is especially visible for the 5% OTM cap. Ap-

pendix E Figure 11 and Figure 12 contain the plots of the other models, however, their shapes

are similar.

Figure 5 shows the average absolute prediction errors averaged over all factor models using

both constant and time-varying parameters plotted against cap maturity (left) and strike pre-

mium (right). The averaging over models and parameters has little impact on the shape of the

curves as they are all similar. The purpose of these figures is to amplify the results found in

Figure 4. Figure 5 indicates that the absolute prediction error increases as the cap maturity

Figure 5: Average Absolute Prediction Error ATM and OTM Caps by Maturity and Strike
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Note: Mean absolute 2-week ahead prediction errors in bps over all six pricing models (time-varying, constant,
1-3 factors) for all ATM and OTM caps in the out-of-sample period from January 2016 to March 2019. An
absolute prediction error is defined as the absolute value of the observed price minus the modeled price.
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Figure 6: Average Prediction Error ATM (left) and OTM Caps (right) over time
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Note: Mean 2-week ahead prediction errors over all factor models (1-3) for ATM caps in percentage absolute
error (left), and for ATM and OTM caps in absolute basis point error (right). Calculated in the out-of-sample
period from January 2016 to March 2019 (163 weekly predictions).

increases, however, the prices of caps also increase with maturity, hence the relative effect is

dampened. The relatively high prediction error of the 1% strike premium (compared to other

OTM caps) can be traced back to a steeper slope for low strike prices when regressing cap prices

against cap maturity. These pricing error effects are further examined in Section 5.4.

Figure 6 plots the average percentage absolute prediction error of ATM caps (left) and the

average absolute prediction error of ATM and OTM caps (right) against time. The shapes of

the factor models are all quite similar, hence the average of all factor models (1-3 factors) is

plotted. The left panel shows that the prediction errors vary over time, further, the time-varying

models show much more volatile errors which possibly points to an estimation window that is

too narrow. The right panel shows that when adding OTM caps to the mix, the prediction

errors also vary over time. This is, however, only a conjecture as the right panel uses absolute

prediction errors. These findings indicate that time-homogeneous volatility functions might not

be able to fully capture the dynamics of the forward rate volatility.

Table 7: Relative Prediction Error Swaptions

Parameters: Constant Time-Varying
Estimation/
Model

Interest-Rate-
Based

Option-Based Interest-Rate-
Based

Option-Based

1-Factor 60.8% 61.1% 61.2% 59.2%
2-Factor 60.5% 60.7% 61.0% 60.9%
3-Factor 60.6% 59.6% 61.0% 60.1%

Note: Relative 2-week ahead mean absolute prediction errors for all swaptions in the out-of-sample period from
January 2016 to March 2019 (163 weekly predictions). A relative prediction error is defined as the observed price
minus the modeled price divided by the observed price. Option-based estimation parameters are optimized with
ATM caps.
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Figure 7: Relative (left) and Average over time (right) Swaption Prediction Errors
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Left: Relative 2-week ahead mean absolute prediction errors for swaptions using the 1-factor option-based model
with time-varying parameters. The option-based estimation parameters are optimized with ATM caps. Right:
The average 2-week ahead prediction error for swaptions over time. The plotted lines are averaged over the
factor models (1-3). Both: Calculated in the out-of-sample period from January 2016 to March 2019 (163 weekly
predictions).

Table 7 shows the relative pricing prediction errors of swaptions. The standard deviation

of all models is on average 66.6% (unreported) and similar between models. The option-based

parameters are estimated using ATM caps. The time-varying option-based 1-factor model

performs best with a pricing error of 59.2%. The prediction errors are all close to 61% which is

somewhat alarming and indicative of more fundamental pricing problems.

Figure 7 (left) shows a plot of relative pricing prediction errors for swaptions using the

1-factor option-based model with time-varying parameters. The option maturity has an am-

biguous effect on the pricing prediction errors. The prediction errors increase as the tenor

increases. The plots of other models, which are quite similar, can be found in Appendix F on

Figure 13 and Figure 14.

Figure 7 (right) shows the average pricing prediction errors of swaptions over time. The

shapes of the factor models are all quite similar, hence the average of all factor models (1-

3 factors) is plotted. The figure indicates that swaption errors vary over time, in fact, the

swaptions are priced relatively well in some periods. The average pricing prediction errors seem

to be increasing in a linear fashion from 2017 until the end of the sample. The caps and swaption

pricing errors are further analyzed in the next section.

5.3 Model Forecast Comparison Test

This section contains the results of the model comparison tests as explained in Section 3.3.2.

Table 8, 9, and 10 contain the results of ATM caps, OTM caps, and swaptions respectively.
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Table 8: Model Forecast Comparison Test ATM Caps

Estimation Interest-Rate-Based Option-Based

Parameters Constant Time-Varying Constant Time-Varying

Factors 1 2 3 1 2 3 1 2 3 1 2 3 Avg.

In
te

re
st

-R
at

e-
B

as
ed

C
on

st
an

t 1 - 50% 60% 80% 80% 80% 60% 20% 50% 90% 90% 80% 67%
2 50% - 40% 80% 80% 70% 50% 40% 40% 90% 90% 70% 64%
3 40% 60% - 90% 80% 80% 50% 40% 30% 100% 100% 80% 68%

T
im

e-
V

a
r. 1 20% 20% 10% - 0% 0% 20% 10% 10% 30% 20% 20% 15%

2 20% 20% 20% 100% - 20% 20% 10% 10% 30% 20% 20% 26%
3 20% 30% 20% 100% 80% - 20% 10% 10% 60% 20% 20% 35%

O
p

ti
on

-B
as

ed

C
on

st
a
n
t 1 40% 50% 50% 80% 80% 80% - 30% 40% 90% 90% 80% 65%

2 80% 60% 60% 90% 90% 90% 70% - 40% 90% 90% 80% 76%
3 50% 60% 70% 90% 90% 90% 60% 60% - 100% 100% 90% 78%

T
im

e-
V

ar
.

1 10% 10% 0% 70% 70% 40% 10% 10% 0% - 0% 0% 20%
2 10% 10% 0% 80% 80% 80% 10% 10% 0% 100% - 10% 35%
3 20% 30% 20% 80% 80% 80% 20% 20% 10% 100% 90% - 50%

Average 33% 36% 32% 85% 74% 65% 35% 24% 22% 80% 65% 50% -

Note: Percentage of rejected H0, using a 5% significance level, for ATM Caps of Diebold-Mariano tests where
H1 states that the model in the row has greater accuracy than the model in the column. Sampling distribution
of test statistic estimated using bootstrapping. Out-of-sample period ranges from January 2016 to March 2019
(163 weekly predictions).

The tables contain the percentage of rejected H0 of equal forecasting accuracy between models

of Diebold-Mariano tests, using a bootstrapped sampling distribution, where H1 states that

the model in the row has greater accuracy than the model in the column. This means that

a high percentage indicates that the model in the row has a greater statistical accuracy for

that percentage of products than the model in the column. For example, in Table 10 we see

that the H0 of equal predictive accuracy between the option-based constant parameters 3-factor

(column) and option-based time-varying 1-factor (row) model is rejected 75% of the time against

the H1 that option-based time-varying 1-factor model has a greater predictive accuracy than

the option-based constant parameter 3-factor model. This implies that, on average, the option-

based time-varying 1-factor model is more accurate for 75% of the swaptions. A model with

relatively good forecasts is characterized by a high percentage in the average column, and a low

percentage in the average row. Appendix G contains the same test without bootstrapping and

thus assuming a standard normal test distribution.

Table 8 contains the results of the model comparison test for ATM caps. The option-based
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Table 9: Model Forecast Comparison Test ATM and OTM Caps

Estimation Interest-Rate-Based Option-Based

Parameters Constant Time-Varying Constant Time-Varying

Factors 1 2 3 1 2 3 1 2 3 1 2 3 Avg.

In
te

re
st

-R
at

e-
B

as
ed

C
on

st
an

t 1 - 49% 61% 54% 54% 54% 40% 51% 56% 58% 60% 56% 54%
2 51% - 60% 56% 58% 54% 51% 53% 60% 60% 61% 58% 56%
3 39% 40% - 53% 53% 53% 39% 39% 46% 60% 63% 56% 49%

T
im

e-
V

a
r. 1 46% 44% 47% - 44% 44% 46% 46% 54% 53% 51% 56% 48%

2 46% 42% 47% 56% - 54% 46% 46% 54% 58% 56% 56% 51%
3 46% 46% 47% 56% 46% - 44% 46% 54% 67% 56% 56% 51%

O
p

ti
on

-B
as

ed

C
on

st
a
n
t 1 60% 49% 61% 54% 54% 56% - 60% 58% 63% 60% 58% 58%

2 49% 47% 61% 54% 54% 54% 40% - 60% 61% 60% 58% 55%
3 44% 40% 54% 46% 46% 46% 42% 40% - 60% 65% 60% 49%

T
im

e-
V

ar
.

1 42% 40% 40% 47% 42% 33% 37% 39% 40% - 37% 44% 40%
2 40% 39% 37% 49% 44% 44% 40% 40% 35% 63% - 54% 44%
3 44% 42% 44% 44% 44% 44% 42% 42% 40% 56% 46% - 44%

Average 46% 44% 51% 52% 49% 49% 42% 45% 51% 60% 56% 56% -

Note: Percentage of rejected H0, using a 5% significance level, for ATM and OTM Caps of Diebold-Mariano
tests where H1 states that the model in the row has greater accuracy than the model in the column. Sampling
distribution of test statistic estimated using bootstrapping. Out-of-sample period ranges from January 2016 to
March 2019 (163 weekly predictions).

constant parameter 2- and 3-factor models have a statistically significant outperformance for

on average 76% and 78% of the products, and they only get outperformed 24% and 22% of

the time respectively. This result is in line with the low prediction errors found in Table 5.

The results in this table further confirm the outperformance of constant parameter models over

time-varying parameter models, and the outperformance of 3-factor models over smaller factor

models.

Table 9 contains the results of the model comparison test for ATM and OTM caps. The ATM

and OTM caps performances are much closer together than for the ATM caps only. We find

that the interest-rate-based constant parameter 2-factor and option-based constant parameter

1-factor models marginally outperform the rest as they both significantly outperform the other

models 56% and 58% of the time, and are outperformed 44% and 42% of the time respectively.

Further, the constant parameter models perform better than the time-varying parameter models.

These findings are not perfectly in line with Table 6, however, the results are relatively close

together in both tables and a clear winner does not seem present.
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Table 10: Model Forecast Comparison Test Swaptions

Estimation Interest-Rate-Based Option-Based

Parameters Constant Time-Varying Constant Time-Varying

Factors 1 2 3 1 2 3 1 2 3 1 2 3 Avg.

In
te

re
st

-R
at

e-
B

as
ed

C
on

st
an

t 1 - 6% 6% 93% 74% 71% 99% 28% 8% 21% 18% 10% 39%
2 94% - 15% 96% 94% 94% 96% 94% 10% 21% 21% 13% 59%
3 94% 85% - 96% 93% 93% 96% 94% 8% 23% 20% 14% 65%

T
im

e-
V

a
r. 1 8% 4% 4% - 1% 3% 21% 4% 6% 19% 11% 6% 8%

2 26% 6% 8% 99% - 9% 50% 10% 9% 19% 15% 10% 24%
3 29% 6% 8% 98% 91% - 53% 10% 8% 19% 15% 10% 31%

O
p

ti
on

-B
as

ed

C
on

st
a
n
t 1 1% 4% 4% 79% 50% 48% - 5% 8% 19% 14% 10% 22%

2 73% 6% 6% 96% 90% 90% 95% - 9% 21% 19% 11% 47%
3 93% 90% 93% 94% 91% 93% 93% 91% - 25% 59% 29% 77%

T
im

e-
V

ar
.

1 79% 79% 78% 81% 81% 81% 81% 79% 75% - 79% 76% 79%
2 83% 79% 80% 89% 85% 85% 86% 81% 41% 21% - 9% 67%
3 90% 88% 86% 94% 90% 90% 90% 89% 71% 24% 91% - 82%

Average 61% 41% 35% 92% 76% 69% 78% 53% 23% 21% 33% 18% -

Note: Percentage of rejected H0, using a 5% significance level, for swaptions of Diebold-Mariano tests where H1

states that the model in the row has greater accuracy than the model in the column. Sampling distribution of
test statistic estimated using bootstrapping. Out-of-sample period ranges from January 2016 to March 2019 (163
weekly predictions).

Table 10 contains the results of the model comparison test for swaptions. Whereas the results

in Table 7 were inconclusive, this table is more pronounced. The option-based 3-factor constant,

1-factor time-varying, and 3-factor time-varying model outperform the rest of the models on

average. Especially the option-based time-varying 1-factor model has promising results as it

outperforms other models 79% of the time, and gets outperformed 21% of the time on average.

The option-based time-varying 3-factor model has slightly better average statistics, however,

when they are tested against each other, the 1-factor variant comes out on top. We further find

that multi-factor models generally outperform single-factor models.

5.4 Error Analysis

This section contains the results of the error regressions as explained in Section 3.3.3. Table 11

contains the results of the error regression on ATM and OTM caps pricing errors. The beta

estimates for each model are all statistically significant at a 1% level except β̂2 (Maturity). An

F-test for each model (unreported) indicates that the null hypothesis that all coefficients jointly
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Table 11: Error Regressions ATM and OTM Caps

Model Const. LMR
(x102)

MAT
(x104)

ATMVol r Slope Adj. R2

Interest-rate-based – constant parameters
1-factor 4.0* 6.1* -1.2 0.5* -4.5* -4.5* 21.1%
2-factor 4.4* 6.1* -1.3 0.7* -4.9* -5.0* 20.6%
3-factor 4.1* 6.1* -0.9 0.5* -4.6* -4.6* 22.2%

Interest-rate-based – time-varying parameters
1-factor 5.6* 6.2* -0.7 1.3* -6.4* -6.5* 21.2%
2-factor 3.8* 6.2* -0.8 1.2* -4.5* -4.6* 20.6%
3-factor 3.1* 6.2* -0.9 1.2* -3.7* -3.9* 20.6%

Option-based – constant parameters
1-factor 4.1* 6.1* -1.3 0.6* -4.6* -4.7* 20.7%
2-factor 4.4* 6.1* -1.3 0.6* -4.9* -5.0* 21.6%
3-factor 5.1* 6.1* -0.3 0.6* -5.8* -5.8* 24.0%

Option-based – time-varying parameters
1-factor 4.3* 6.2* -0.4 1.3* -5.1* -5.2* 18.4%
2-factor 4.5* 6.2* -0.5 1.0* -5.2* -5.3* 20.0%
3-factor 5.5* 6.2* -0.8 1.1* -6.4* -6.5* 22.2%

Note: Estimates of error regressions of ATM and OTM caps as defined in Section 3.3.3. The observed implied
volatility on the market minus modeled is regressed on a constant (Const.), logarithm of the moneyness ratio
(LMR), maturity (MAT), volatility of a similar ATM product (ATMVol), 3-month observed LIBOR rate (r), and
term structure slope (Slope). White standard errors are used, * indicates 1% significance level. Estimated in the
out-of-sample period from January 2016 to March 2019 (163 weekly predictions).

equal zero is rejected. The constant estimate, β̂0, indicates that, on average, the modeled implied

volatility is too low. The significant estimate for the logarithm of the moneyness ratio, β̂1, is in

line with the findings of Gupta and Subrahmanyam (2005), and indicates that as the strike price

increases, the difference in Black implied volatility decreases. The significant positive estimate

for ATM Volatility, β̂3, confirms the volatility skew (situation in which the implied volatility

goes down when the option gets more out-of-the-money) found in the data (unreported). The

significant β̂4 (r) and β̂5 (Slope) values indicate that the prediction errors partly come form the

models inability to model the level of the underlying 3-month LIBOR and the slope of the term

structure, which can explain the variability in errors over time. The option-based 1-factor model

with time-varying parameters has the lowest adjusted R-squared of 18.4%, which implies this

model is the least biased. Interestingly, the coefficient estimates between models are roughly

the same, possibly indicating that a better pricing prediction requires a different method to

estimate the volatility functions.

Table 12 contains the results of the error regression on swaption pricing errors. An F-test
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Table 12: Error Regressions Swaptions

Model Const. OPT
(x104)

TEN
(x104)

r Slope Adj. R2

Interest-rate-based – constant parameters
1-factor -4.2* -12.3 -4.0 4.7* 4.4* 9.5%
2-factor -4.2* -11.9 -3.4 4.6* 4.3* 9.3%
3-factor -4.1* -11.5 -2.5 4.5* 4.3* 8.9%

Interest-rate-based – time-varying parameters
1-factor -4.3* -12.1 -3.4 4.7* 4.5* 9.9%
2-factor -4.2* -11.9 -2.1 4.6* 4.4* 9.6%
3-factor -4.2* -11.9 -2.0 4.6* 4.4* 9.5%

Option-based – constant parameters
1-factor -4.3* -12.5 -3.9 4.7* 4.5* 9.6%
2-factor -4.2* -11.9 -3.6 4.6* 4.4* 9.3%
3-factor -3.8* -11.0 -0.7 4.2* 4.0* 8.6%

Option-based – time-varying parameters
1-factor -5.2* -13.2 -4.0 5.6* 5.4* 9.6%
2-factor -3.9* -6.9 -3.5 4.3* 4.1* 9.2%
3-factor -3.7* -11.0 -2.9 4.0* 3.8* 8.4%

Note: Estimates of error regressions of swaptions as defined in Section 3.3.3. The observed implied volatility
on the market minus modeled is regressed on a constant (Const.), option expiry (OPT), option tenor (TEN),
3-month observed LIBOR rate (r), and term structure slope (Slope). White standard errors are used, * indicates
1% significance level. Estimated in the out-of-sample period from January 2016 to March 2019 (163 weekly
predictions).

for each model (unreported) indicates that the null hypothesis that all coefficients jointly equal

zero is rejected. The beta estimates of the constant, β̂0, LIBOR rate, β̂3, and term structure

slope, β̂4, are statistically significant at a 1% level for all models; the latter two coefficients can

help explain the variability of prediciton errors over time found earlier. The betas estimates of

the option expiry, β̂1, and swap tenor, β̂2, are not significantly different from zero, indicating

the earlier conjectured tenor relation in e.g. Figure 7 (left panel) disappears when converting

to Black implied volatility. In contrast with caps, the intercepts for swaption error regressions

are all negative, indicating that, on average, the modeled implied volatility is too high. The

option-based 3-factor model with time-varying parameters has the lowest adjusted R-squared

of 8.4%, which implies that this model is the least biased. The coefficient estimates are all quite

similar between models and estimation techniques.

Table 13 contains estimates of the interest rate level coefficient, β4, of all our models on

various linear regressions for caps. The OLS estimates are (almost) all negative and mostly

statistically significant (at the 1% level) except for the interest-rate-based time-varying models
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Table 13: Error Regressions Interest Rate Level ATM and OTM Caps

β4 - Interest Rate Level - coefficient (x102)
Model LASSO Ridge OLS White

Interest-rate-based – constant parameters
1-factor -2.0 -1.9 -2.2*
2-factor -1.9 -1.7 -2.0*
3-factor -2.4 -2.3 -2.6*

Interest-rate-based – time-varying parameters
1-factor 0.9 0.9 0.9
2-factor -0.7 -0.7 -0.7
3-factor -1.4 -1.3 -1.4

Option-based – constant parameters
1-factor -2.0 -1.8 -2.1*
2-factor -2.2 -2.0 -2.4*
3-factor -4.3 -3.6 -4.4*

Option-based – time-varying parameters
1-factor -6.0 -5.8 -6.1*
2-factor -6.3 -5.8 -6.4*
3-factor -9.6 -8.2 -9.8*

Note: β4 estimates of error regressions for interest rate level of ATM and OTM caps as defined in Section 3.3.3
and as follows |IVmkt − IVmodel|t = β0 + β1LMRt + β2MATt + β3ATMVolt + β4IRLvlt + εt. White standard
errors are used for OLS, * indicates 1% significance level (OLS Only). Estimated in the out-of-sample period
from January 2016 to March 2019 (163 weekly predictions).

(which all have p-values that exceed 10%). The negative sign indicates that as the interest rates

increase, the absolute modeling error decreases. The option-based time-varying models have the

highest sensitivity to interest rate changes as their values are largest in magnitude. The LASSO

model estimates are all close to the OLS estimates, this further emphasizes the predictability

of the OLS results. The ridge estimates all slightly shrink towards zero. We conclude based on

this table that a lower interest rate environment leads to on average larger modeling errors for

caps.

Table 14 contains estimates of the interest rate level coefficient, β3, of all our models on

various linear regressions for swaptions. The OLS estimates are all negative and statistically

significant at the 1% level. The LASSO model estimates are again close to the OLS estimates,

and the ridge estimates show very little shrinkage. These results emphasize that the unbiased

OLS estimates also have a strong predictability. The results of these models again indicate

that as the interest rate level increases, the absolute errors decrease. The magnitude of the

estimators is, on average, slightly larger for swaptions than caps. We conclude that also for
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Table 14: Error Regressions Interest Rate Level Swaptions

β3 - Interest Rate Level - coefficient (x102)
Model LASSO Ridge OLS White

Interest-rate-based – constant parameters
1-factor -6.2 -6.0 -6.2*
2-factor -6.2 -6.0 -6.2*
3-factor -6.3 -6.1 -6.3*

Interest-rate-based – time-varying parameters
1-factor -6.0 -5.8 -6.0*
2-factor -6.0 -5.9 -6.1*
3-factor -6.1 -5.9 -6.1*

Option-based – constant parameters
1-factor -6.2 -6.0 -6.2*
2-factor -6.2 -6.1 -6.3*
3-factor -6.2 -6.0 -6.2*

Option-based – time-varying parameters
1-factor -7.3 -7.1 -7.4*
2-factor -6.3 -6.1 -6.3*
3-factor -6.9 -6.7 -6.9*

Note: β3 estimates of error regressions for interest rate level of swaptions as defined in Section 3.3.3 and as
follows |IVmkt− IVmodel|t = β0 + β1OPTt + β2TENt + β3IRLvlt + εt. White standard errors are used for OLS, *
indicates 1% significance level (OLS Only). Estimated in the out-of-sample period from January 2016 to March
2019 (163 weekly predictions).

swaptions, a lower interest rate environment leads to on average larger modeling errors.

5.5 In-Sample Pricing

This section contains the results of the in-sample pricing exercise as explained in Section 3.3.4.

Using the time-varying optimized volatility function for ATM caps yields a absolute pricing

prediction error of 7.6%. The out-of-sample pricing prediction model with the best performance

is the constant parameter option-based 3-factor model with an error of 16.7% (Table 5). Figure 8

shows the sum of the first three volatility functions for the interest-rate-based constant (black)

and time-varying model (blue), and the average volatility function that minimizes the in-sample

fit of ATM cap prices (red). On average, the interest-rate-based out of sample volatility functions

are higher than the optimal volatility function. These results indicate that there is room for

improvement in the estimation of volatility functions, however, there will always remain some

mispricing. These findings are in line with e.g. Driessen et al. (2003) and other pricing papers.

Collin-Dufresne and Goldstein (2001) state that these mispricings are due to restrictions on
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Figure 8: Volatility Function Comparison
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Note: Percentage volatility of various PCA-based volatility functions. The black line is the sum of the first
three volatility functions of the constant interest-rate-based model. The blue line is the average sum of the first
three volatility functions of the time-varying interest-rate-based model. The red line is the average time-varying
volatility function that minimizes the in-sample fit of ATM cap prices. Based on weekly data ranging from
January 2013 to March 2019 (326 observations).

the term structure, volatility structure and correlation structure, and that in order to better

price these products, models that account for interest rate jumps and stochastic volatility are

required.

6 Conclusion

The aim of this paper is to conditionally price caps and swaptions in an empirical low-interest-

rate environment using multi-factor term structure models based on PCA with constant or time-

varying parameters and an interest-rate-based or option-based estimation method. The pricing

errors are further investigated to find possible sources of bias. Additionally, we investigate which

model has the best forecasting accuracy and what the effect of a low interest rate environment

is on pricing errors.

For the pricing of ATM caps, the constant parameter models outperform the time-varying

parameter models, and the option-based estimation method outperforms the interest-rate esti-

mation method. The best result is obtained using the 3-factor constant parameter option-based
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estimation method, which is confirmed in the model forecast comparison test. The pricing errors

show a maturity effect, this however disappears when performing an error regression (combined

with OTM caps) using black implied volatility. The pricing errors further vary over time which

indicates the need for time-dependent volatility models. As a robustness test, an in-sample

pricing exercise is performed for ATM caps. This test showed that, on average, the shape of

the volatility functions is in the right direction, however, the model can never exceed a pricing

error of 7.6%.

In terms of prediction errors, the OTM caps can be priced relatively well using time-varying

parameters and an option-based estimation method (calibrated to ATM caps). Multi-factor

models generally have a smaller pricing error than single-factor models. The model forecast

comparison test, however, shows that the constant parameter models have a stronger on average

forecasting accuracy compared to the time-varying parameter models. We conclude that for

OTM caps the pricing results are not very pronounced and more research might be required.

The pricing errors show a visible maturity effect that, again, disappears when performing an

error regression. The error regression further shows a significant relation between the pricing

errors and the moneyness, volatility skew, underlying rate, and yield curve shape. Also for

OTM caps, the pricing errors vary over time.

The swaption pricing predictions in terms of prediction errors are less pronounced than for

caps. The swaption pricing errors are all relatively high. The best results are obtained when

using option-based estimation. The model forecast comparison test reveals a relatively accurate

on average forecasting accuracy for option-based time-varying parameter models and we further

find that multi-factor models, on average, outperform single-factor models. For swaptions, we

also find that the errors vary over time. The pricing error regression shows that the errors are

mainly caused by time-dependent variables such as the LIBOR rate and term structure slope.

The error regressions on interest rate level reveal that as interest rates decrease, absolute

modeling errors increase. We conclude that a part of our pricing errors is possibly caused by the

low interest-rate level. This is partially emphasized by smaller pricing errors found in earlier

research in higher interest rate level environments.

The results of this paper come with its limitations. These last few paragraphs contain said

limitations and ideas for future research. In Section 3.2.2 the drift of the instantaneous forward

rate process is set to zero. The justification of this approximation is based on an argument

given by Driessen et al. (2003), they state that this approximation is justified as the drift is

small relative to the volatility of forward rate changes. We did, however, not check whether this
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was also the case in our sample. Further, a model that is also capable of modeling this drift

can possibly achieve better pricing results.

The ATM caps are given in Black implied volatility and converted to basis points, however,

this requires several input parameters such as a discount curve, a certain forward rate, and a

strike price. The discount curve we choose is based on swaps, which are very liquid products,

whereas Bloomberg uses an overnight-indexed-swap curve. We take the other parameters as

close as possible to the Bloomberg parameters, however, the resulting basis point prices imply

arbitrage opportunities between ATM and 1% OTM caps. Further, as the caps and swaption

quotes are based on the mentioned Bloomberg Generic Composite pricing algorithm, no in-

formation about trading volume and liquidity is available, which could influence the pricing

predictions.

The conditional pricing predictions in this paper are all based on a random walk forecast.

The 2-week ahead forecasts could also be predicted using a more sophisticated method that

benefits from the time series data of volatility function parameters such as an autoregressive

model. Further, the volatility functions in this paper are all time-homogeneous deterministic

functions, better pricing results can possibly be obtained by using time-dependent or stochastic

volatility functions. This has already been done, by e.g. Falini (2010), for caps, but not yet for

swaptions.
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A Bloomberg Tickers

Table 15: Bloomberg Tickers: Yield Curve

Bloomberg Ticker Type Maturity

US0001M Index LIBOR Rate 1 month
US0002M Index LIBOR Rate 2 months
US0003M Index LIBOR Rate 3 months
US0006M Index LIBOR Rate 6 months
USSW1 Curncy Interest Rate Swap 1 year
USSW2 Curncy Interest Rate Swap 2 years
USSW3 Curncy Interest Rate Swap 3 years
USSW4 Curncy Interest Rate Swap 4 years
USSW5 Curncy Interest Rate Swap 5 years
USSW6 Curncy Interest Rate Swap 6 years
USSW7 Curncy Interest Rate Swap 7 years
USSW8 Curncy Interest Rate Swap 8 years
USSW9 Curncy Interest Rate Swap 9 years
USSW10 Curncy Interest Rate Swap 10 years
USSW15 Curncy Interest Rate Swap 15 years

Note: Tickers as per April 2019.

Table 16: Bloomberg Tickers: Interest Rate Caps

OTM Premium
Maturity ATM 1% 2% 3% 4% 5%

1 USCV1 - USCV201 USCV301 USCV401 USCV501
2 USCV2 USCV102 USCV202 USCV302 USCV402 -
3 USCV3 USCV103 USCV203 USCV303 USCV403 -
4 USCV4 USCV104 USCV204 USCV304 USCV404 USCV504
5 USCV5 USCV105 USCV205 USCV305 USCV405 USCV505
6 USCV6 USCV106 USCV206 USCV306 USCV406 USCV506
7 USCV7 USCV107 USCV207 USCV307 USCV407 USCV507
8 USCV8 USCV108 USCV208 USCV308 USCV408 USCV508
9 USCV9 USCV109 USCV209 USCV309 USCV409 USCV509
10 USCV10 USCV1010 USCV2010 USCV3010 USCV4010 USCV5010

Note: Tickers as per April 2019. All tickers are followed by a space and “Curncy”.
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Table 17: Bloomberg Tickers: Swaptions

Option Swap Tenor
Expiry 1 2 3 4 5 6 7 8 9 10

1 MO 0A1 0A2 0A3 0A4 0A5 0A6 0A7 0A8 0A9 0A10
3 MO 0C1 0C2 0C3 0C4 0C5 0C6 0C7 0C8 0C9 0C10
6 MO 0F1 0F2 0F3 0F4 0F5 0F6 0F7 0F8 0F9 0F10
1 YR 011 012 013 014 015 016 017 018 019 0110
2 YR 021 022 023 024 025 026 027 028 029 0210
3 YR 031 032 033 034 035 036 037 038 039 0310
4 YR 041 042 043 044 045 046 047 048 049 0410
5 YR 051 052 053 054 055 056 057 058 059 0510

Note: Tickers as per April 2019. All tickers are preceded with “USSV”, followed by the code from the table, and
ending with “Curncy”; e.g. “USSV0F5 Curncy”

B Libor Rate

Figure 9: LIBOR Rate
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Note: 3-month LIBOR Rates in %.

Figure 9 shows the movement of the LIBOR rate over time. The LIBOR rate is important since it

is the underlying floating rate for all of the caps and swaptions in our sample.
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C Black’s Formula Implementation

This section provides the pricing formulas of Black (1976) used to convert Black implied volatility prices

into actual prices and our implementation of it. All the formulas are retrieved from Filipovic (2009). For

caplet i with a notional of 1, reset date Ti−1 and payment date Ti the time t value is

Caplet(t;Ti−1, Ti) = δP (t, Ti)

(
F (t;Ti−1, Ti)Φ(d1(i; t))− kΦ(d2(i; t))

)
, (30)

where

d1(i; t) =
log
(F (t;Ti−1,Ti)

k

)
+ 1

2σiv(t)2(Ti−1 − t)
σiv(t)

√
Ti−1 − t

, (31)

and

d2(i; t) = d1(i; t)− σiv(t)
√
Ti−1 − t, (32)

where δ = Ti−Ti−1, F (t;T, T + δ) the δ-period forward rate at time t, Φ(·) denotes the standard normal

cumulative distribution function, k the strike price, and σiv the Black option implied volatility. In our

implementation we take the strike price equal to the swap rate with corresponding maturity defined in

Filipovic (2009) as

k =
P (0, T0)− P (0, Tn)

δ
∑n

i=1 P (0, Ti)
, (33)

and the δ-period forward rate as

F (t;T, T + δ) =
1

δ

(
P (t, T )

P (t, T + δ)
− 1

)
. (34)

The caplet price becomes undefined in case the forward rate is negative, in this situation we set the

respective caplet price to zero.

For a payer swaption with swap cashflows at Ti for i = 1, ..., n, and option maturity T0 − t, the time

t value is

Swaptiont = δ

(
Rswap(t)Φ(d1(t))−KΦ(d2(t))

) n∑
i=1

P (t, Ti), (35)

where

d1(t) =
log
(Rswap(t)

K

)
+ 1

2σiv(t)2(T0 − t)
σiv(t)

√
T0 − t

, (36)

and

d2(t) = d1(t)− σiv(t)
√
T0 − t, (37)

which is again taken from Filipovic (2009). Here δ = Ti − Ti−1, Φ(·) again denotes the standard normal

cumulative distribution function, K the strike price, and σiv the Black option implied volatility.
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D Supplementary Results

Figure 10: Volatility Functions Over Time
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Note: Volatility functions (sum of factors) of the 3-factor interest-rate-based model for various forward maturies
over time in the out-of-sample period from January 2016 to March 2019 (163 weekly predictions)
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E Cap Prediction Errors

Figure 11: Absolute Prediction Errors ATM and OTM Caps (Constant Parameters)
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(b) 1-factor Option-Based
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(c) 2-factor Interest-Rate-Based
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(d) 2-factor Option-Based
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(e) 3-factor Interest-Rate-Based
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(f) 3-factor Option-Based

Note: Mean absolute 2-week ahead prediction errors for all caps (both ATM and OTM) in the out-of-sample
period from January 2016 to March 2019 (163 weekly predictions) in basis points for constant parameter models.
An absolute prediction error is defined as the absolute value of the observed price minus the modeled price.
Option-based estimation parameters are optimized with ATM caps.
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Figure 12: Absolute Prediction Errors ATM and OTM Caps (Time-Varying Parameters)

0 1 2 3 4 5

2

4

6

8

10

200

400

600

800

1000

Strike 
(OTM %)

        Maturity 
        (years)

Abs. 
Error 
(bps)

0

200

400

600

800

1000

(a) 1-factor Interest-Rate-Based

0 1 2 3 4 5

2

4

6

8

10

200

400

600

800

Strike 
(OTM %)

        Maturity 
        (years)

Abs. 
Error 
(bps)

0

200

400

600

800

(b) 1-factor Option-Based
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(c) 2-factor Interest-Rate-Based
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(d) 2-factor Option-Based
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(e) 3-factor Interest-Rate-Based
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(f) 3-factor Option-Based

Note: Absolute 2-week ahead prediction errors for all caps (both ATM and OTM) in the out-of-sample period
from January 2016 to March 2019 (163 weekly predictions) in basis points for time-varying parameter models.
An absolute prediction error is defined as the absolute value of the observed price minus the modeled price.
Option-based estimation parameters are optimized with ATM caps.
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F Swaption Prediction Errors

Figure 13: Relative Prediction Errors Swaptions (Constant Parameters)
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(b) 1-factor Option-Based
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(c) 2-factor Interest-Rate-Based

1
2

3
4

5
2

4
6

8
10

−50

0

50

          Option 
          Maturity 
          (years)

Tenor 
(years)

Rel. 
 Error 

(%)

−100

−50

0

50

100

(d) 2-factor Option-Based
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(e) 3-factor Interest-Rate-Based
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(f) 3-factor Option-Based

Note: Relative 2-week ahead mean absolute prediction errors for swaptions using constant parameter models
in the out-of-sample period from January 2016 to March 2019 (163 weekly predictions). A relative prediction
error is defined as the observed price minus the modeled price divided by the observed price. The option-based
estimation parameters are optimized with ATM caps.
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Figure 14: Relative Prediction Errors Swaptions (Time-Varying Parameters)
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(a) 1-factor Interest-Rate-Based
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(b) 1-factor Option-Based
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(c) 2-factor Interest-Rate-Based
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(d) 2-factor Option-Based
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(e) 3-factor Interest-Rate-Based
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(f) 3-factor Option-Based

Note: Relative 2-week ahead mean absolute prediction errors for swaptions using time-varying parameter models
in the out-of-sample period from January 2016 to March 2019 (163 weekly predictions). A relative prediction
error is defined as the observed price minus the modeled price divided by the observed price. The option-based
estimation parameters are optimized with ATM caps.
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G Model Forecast Comparison Test (Standard Normal)

Table 18: Model Forecast Comparison Test ATM Caps (Standard Normal)

Estimation Interest-Rate-Based Option-Based

Parameters Constant Time-Varying Constant Time-Varying

Factors 1 2 3 1 2 3 1 2 3 1 2 3 Avg.

In
te

re
st

-R
at

e-
B

as
ed

C
o
n

st
an

t 1 - 50% 60% 80% 80% 80% 60% 20% 50% 90% 90% 80% 67%
2 50% - 40% 80% 80% 70% 50% 40% 40% 90% 80% 70% 63%
3 40% 60% - 80% 80% 80% 50% 40% 30% 100% 100% 60% 65%

T
im

e-
V

ar
.

1 20% 20% 10% - 0% 0% 20% 10% 10% 30% 20% 20% 15%
2 20% 20% 20% 90% - 0% 20% 10% 10% 30% 20% 20% 24%
3 20% 20% 20% 90% 80% - 20% 10% 10% 30% 20% 20% 31%

O
p

ti
on

-B
a
se

d

C
on

st
an

t 1 40% 50% 50% 80% 80% 80% - 30% 40% 90% 90% 70% 64%
2 80% 60% 60% 90% 90% 90% 60% - 40% 90% 90% 80% 75%
3 40% 50% 70% 90% 90% 90% 60% 60% - 100% 100% 90% 76%

T
im

e-
V

ar
.

1 0% 10% 0% 70% 60% 10% 10% 0% 0% - 0% 0% 15%
2 10% 10% 0% 80% 80% 80% 10% 10% 0% 90% - 0% 34%
3 20% 30% 20% 80% 80% 80% 20% 10% 10% 90% 80% - 47%

Average 31% 35% 32% 83% 73% 60% 35% 22% 22% 75% 63% 46% -

Note: Percentage of rejected H0, using a 5% significance level, for ATM Caps of Diebold-Mariano tests where
H1 states that the model in the row has greater accuracy than the model in the column. Sampling distribution
of test statistic assumed standard normal. Out-of-sample period ranges from January 2016 to March 2019 (163
weekly predictions).
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Table 19: Model Forecast Comparison Test ATM and OTM Caps (Standard Normal)

Estimation Interest-Rate-Based Option-Based

Parameters Constant Time-Varying Constant Time-Varying

Factors 1 2 3 1 2 3 1 2 3 1 2 3 Avg.

In
te

re
st

-R
at

e-
B

as
ed

C
on

st
an

t 1 - 49% 61% 54% 54% 54% 40% 47% 54% 56% 58% 54% 53%
2 51% - 60% 56% 54% 54% 51% 51% 60% 58% 58% 58% 56%
3 39% 40% - 51% 53% 53% 39% 39% 44% 58% 60% 49% 48%

T
im

e-
V

ar
.

1 46% 44% 46% - 39% 40% 46% 46% 54% 49% 49% 56% 47%
2 46% 42% 47% 53% - 44% 46% 46% 54% 56% 56% 56% 50%
3 44% 42% 44% 53% 46% - 40% 46% 54% 51% 56% 56% 48%

O
p

ti
on

-B
as

ed

C
on

st
an

t 1 60% 49% 61% 54% 54% 51% - 58% 56% 53% 58% 56% 56%
2 49% 47% 60% 53% 53% 53% 39% - 60% 53% 58% 58% 53%
3 37% 39% 53% 46% 46% 46% 40% 40% - 58% 58% 56% 47%

T
im

e-
V

ar
.

1 39% 37% 39% 44% 40% 19% 35% 33% 37% - 21% 37% 35%
2 39% 35% 35% 42% 42% 42% 33% 35% 32% 42% - 44% 38%
3 37% 37% 37% 44% 44% 42% 39% 37% 35% 37% 42% - 39%

Average 44% 42% 49% 50% 48% 45% 41% 43% 49% 52% 52% 53% -

Note: Percentage of rejected H0, using a 5% significance level, for ATM and OTM Caps of Diebold-Mariano
tests where H1 states that the model in the row has greater accuracy than the model in the column. Sampling
distribution of test statistic assumed standard normal. Out-of-sample period ranges from January 2016 to March
2019 (163 weekly predictions).
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Table 20: Model Forecast Comparison Test Swaptions (Standard Normal)

Estimation Interest-Rate-Based Option-Based

Parameters Constant Time-Varying Constant Time-Varying

Factors 1 2 3 1 2 3 1 2 3 1 2 3 Avg.

In
te

re
st

-R
at

e-
B

as
ed

C
on

st
an

t 1 - 5% 5% 93% 71% 69% 98% 26% 5% 19% 8% 9% 37%
2 93% - 11% 96% 93% 94% 95% 91% 8% 20% 13% 10% 57%
3 91% 84% - 95% 91% 91% 94% 93% 8% 19% 13% 10% 63%

T
im

e-
V

ar
.

1 6% 4% 3% - 1% 1% 19% 4% 4% 15% 6% 6% 6%
2 20% 4% 8% 98% - 6% 44% 8% 5% 16% 9% 10% 21%
3 23% 5% 6% 98% 86% - 48% 9% 5% 16% 8% 9% 28%

O
p

ti
on

-B
as

ed

C
on

st
an

t 1 1% 3% 3% 73% 48% 43% - 4% 5% 16% 8% 9% 19%
2 70% 5% 5% 95% 88% 88% 94% - 8% 19% 9% 10% 44%
3 90% 90% 93% 93% 90% 91% 90% 91% - 21% 41% 19% 74%

T
im

e-
V

ar
.

1 78% 76% 76% 79% 79% 79% 78% 76% 74% - 76% 70% 76%
2 78% 71% 63% 83% 80% 80% 81% 76% 21% 19% - 0% 59%
3 86% 84% 84% 88% 88% 88% 86% 86% 58% 20% 88% - 78%

Average 58% 39% 32% 90% 74% 66% 75% 51% 18% 18% 25% 15% -

Note: Percentage of rejected H0, using a 5% significance level, for swaptions of Diebold-Mariano tests where H1

states that the model in the row has greater accuracy than the model in the column. Sampling distribution of
test statistic assumed standard normal. Out-of-sample period ranges from January 2016 to March 2019 (163
weekly predictions).
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